年产12万吨氯乙烯合成工艺设计书
年产万吨聚氯乙烯车间工艺设计
一、工艺流程概述1.原料准备:将乙烯气体通过氯化反应和氯化工艺制备成氯乙烯。
2.聚合反应:将制备好的氯乙烯与过氯化钴等催化剂进行聚合反应,生成聚氯乙烯。
3.精炼和提炼:通过卸料和提炼过程,除去聚合反应产生的杂质和残留催化剂。
4.融化加工:将精炼和提炼后的聚氯乙烯经过加热和融化,通过挤出、注塑、吹膜等加工工艺,制成各种产品。
5.产品检验:对融化加工后的产品进行物理性能和质量的检验。
6.包装和出库:将合格的产品进行包装,并出库销售。
二、关键设备的选择和工艺参数的确定1.氯化塔:采用液氯氯化法,选择高效的氯化塔设备,保证氯化反应的高效进行。
2.反应釜:选择适当规格的不锈钢反应釜,对聚合反应进行控制。
3.蒸馏塔:选择具有高效蒸馏性能的蒸馏塔,进行精炼和提炼过程。
4.挤出机、注塑机、吹膜机等加工设备:选择具有高效和稳定性能的加工设备,满足产品加工要求。
5.检测仪器:选择高精度的物理性能和质量检测仪器,确保产品符合标准要求。
三、安全措施和环保要求1.氯气泄漏报警和处理系统:设置氯气泄漏探测器,在发现泄漏情况时及时报警,并启动处理系统进行处理,保证车间人员的安全。
2.废气处理系统:设置废气处理设备,对产生的废气进行处理,减少对环境的污染。
3.废水处理设施:建立废水处理系统,对产生的废水进行处理,达到排放标准。
4.严格操作规程和个人防护措施:制定严格的操作规程,包括操作流程、操作要求等,并提供个人防护装备,提醒员工遵守相关安全规定。
5.废弃物处理:建立废弃物分类处理系统,对废弃物进行分类、包装和处理,减少对环境的影响。
四、能源消耗和优化1.合理规划车间布局和设备布置,减少能源输送、损耗和消耗。
2.对设备进行定期检修和维护,保持设备运行的稳定性和高效性,减少能源的浪费。
3.提高工艺参数的优化,减少生产过程中能源的消耗。
4.引入智能化管理系统,对能源消耗进行实时监控和调整,达到最佳的能效。
总结:年产万吨聚氯乙烯车间的工艺设计需要考虑原料准备、聚合反应、精炼和提炼、融化加工、产品检验以及包装和出库等环节。
年产10万吨氯乙烯工艺设计项目设计方案
设计方案项目背景:氯乙烯是一种重要的有机化工原料,广泛应用于塑料、橡胶、涂料、农药等多个领域。
我国是全球最大的氯乙烯生产和消费国家之一,但生产设备老化、能耗高等问题制约了其可持续发展。
因此,本设计方案旨在设计一套年产量为10万吨的氯乙烯工艺,利用先进的技术和设备,提高产能和能源利用效率。
设计方案:1.原料准备:该工艺采用乙烯和氯气为原料,通过氯化反应生成氯乙烯。
乙烯和氯气作为主要原料需要在储罐中储存,并通过气体管道输送至反应箱进行反应。
为确保原料的供给稳定和安全,需要设计合适的储存和输送系统,并设置相应的自动控制和安全设备。
2.反应过程:该工艺采用常压氯化法进行氯化反应。
乙烯和氯气通过催化剂在反应箱中进行氯化反应生成氯乙烯。
为提高反应效率和选择性,需要选择合适的催化剂和反应条件,并设计适当的反应器结构和控制系统。
同时,需要考虑废气处理和安全措施,避免有毒气体泄漏和环境污染。
3.分离和提纯:反应产生的气体混合物需要经过分离和提纯才能得到纯净的氯乙烯产品。
首先通过冷凝和压缩将气体混合物转化为液体,然后采用分离技术如蒸馏、吸附等进行分离和提纯。
分离后的氯乙烯产品需要经过后续的脱水、脱色等工艺步骤,得到满足市场要求的产品。
4.能源回收利用:为提高能源利用效率,该工艺设计考虑了能源回收利用系统。
具体包括废热回收、废气回收等。
废热回收可以通过余热锅炉进行,将废热转化为蒸汽等能源进行再利用;废气回收可以通过气体分离和净化系统,将有价值的气体组分进行回收利用。
5.自动控制系统:为确保生产过程的稳定和安全,该工艺设计采用自动控制系统进行全面控制。
通过传感器和仪表对关键工艺参数进行监测和控制,自动化地调节反应条件、制备工艺等,提高生产效率和产品质量。
同时,系统还需要具备报警、故障诊断等功能,保证生产的安全和可靠性。
6.安全环保措施:该工艺设计重点考虑安全和环保问题。
针对反应过程中有毒气体的泄漏和排放,需要设计相应的密封装置和废气处理系统,降低对环境和人体的影响。
年产万吨聚氯乙烯车间工艺设计
年产万吨聚氯乙烯车间工艺设计1. 引言本文档旨在对年产万吨聚氯乙烯(PVC)车间的工艺设计进行详细说明。
PVC是一种重要的合成树脂,广泛应用于建筑材料、电线电缆、塑料制品等领域。
设计一个高效、稳定和可持续发展的车间工艺对于确保产品质量和提高生产效率至关重要。
2. 工艺流程2.1 原料准备PVC的主要原料包括乙烯、氯乙烯和氢氯酸等。
原料准备阶段需要对原料进行储存、提供和混合。
储存区域应具备良好的通风和防火设施,确保原料的安全性和稳定性。
2.2 反应PVC的生产主要通过聚合反应完成。
聚合反应要求严格的温度控制、压力控制和触媒添加。
反应釜设备应具备高效的加热和冷却系统,以确保反应的可控性和高效性。
2.3 分离和磺化在聚合反应完成后,需对产物进行分离和磺化处理。
分离过程主要通过卸料和过滤等方式进行,确保分离效果良好。
磺化处理则需通过控制温度和添加磺化剂等手段,使产物获得所需的性质和品质。
2.4 硫化经过分离和磺化处理后的产物需要进行硫化反应,以提高PVC的机械性能和耐候性。
硫化过程需要控制温度、压力和硫化剂的添加量,确保硫化反应的完全性和一致性。
2.5 润滑和加工硫化后的PVC需要进行润滑处理,以增强其流动性和加工性。
润滑处理一般通过添加润滑剂,同时需要控制温度和混合速度,以确保润滑剂均匀分布。
之后,PVC可进行成型、挤出、注塑等加工方式,制成最终的产品。
3. 设备需求为了实现年产万吨聚氯乙烯的目标,车间需要配置以下主要设备:•反应釜:高效的反应釜能够提供良好的加热和冷却系统,满足反应过程的要求。
•分离设备:包括卸料和过滤设备,能够实现有效和高效的分离过程。
•磺化设备:具备精确的温度控制和添加磺化剂的能力,以实现良好的磺化效果。
•硫化设备:提供准确的温度和压力控制,确保硫化反应的完全性和一致性。
•润滑设备:包括润滑剂添加设备和混合设备,能够实现均匀的润滑处理。
4. 安全和环境考虑在设计车间工艺时,安全和环境因素是非常重要的考虑因素。
年产10万吨氯乙烯工艺设计项目设计方案
年产10万吨氯⼄烯⼯艺设计项⽬设计⽅案年产10万吨氯⼄烯⼯艺设计项⽬设计⽅案第⼀章绪论1.1聚氯⼄烯1.1.1聚氯⼄烯性质和⽤途⑴常温常压下,氯⼄烯(vinyl chloride ,CH2=CHCI是⽆⾊⽓体,具有微甜⽓味,微溶于⽔,溶于烃类,醇,醚,氯化溶剂和丙酮等有机溶剂中,氯⼄烯沸点-13.9 C,易聚合,并能与⼄烯、丙烯、醋酸⼄烯酯,偏⼆氯⼄烯、丙烯腊、丙烯酸酯等单体共聚,⽽制得各种性能的树脂,加⼯成管材、⾯膜、塑料地板、各种压塑制品、建筑材料、涂料和合成纤维等。
近年来世界和中国聚氯⼄烯树脂消耗⽐例分别见表 1.1和表1.2。
表1.1近年来世界聚氯⼄烯树脂消耗⽐例品种⽐例/% 品种⽐例/%管材33 薄膜⽚材13 PVC 护墙板8 PVC 地板地砖 3硬薄膜和⽚材8 软合成⽪⾰ 3制吹塑制品 5 制电线电缆8品其他 6 品其他13合计60 合计40表1.2近年来中国聚氯⼄烯树脂消耗⽐例品种⽐例/% 品种⽐例/%管材14 薄膜⽚材11 PVC 护墙板18 PVC 地板地砖8硬薄膜和⽚材15 软合成⽪⾰7制吹塑制品 5 制电线电缆 4品其他 5 品其他13合计57 合计431.2 氯⼄烯VC1.2.1 氯⼄烯在国民经济中的地位和作⽤⾃1835 年法国化学家V.Regnault ⾸先发现了氯⼄烯,于1838年他⼜观察到聚合体,这就是最早的聚氯⼄烯。
聚氯⼄烯⾃⼯业化问世⾄今,六⼗多年来仍处不衰之势。
占⽬前塑料消费总量的29%以上。
到上世纪末,聚氯⼄烯树脂⼤约以3%的速度增长。
这⾸先是由于新技术不断采⽤,产品性能亦不断地得到改进,品种及牌号的增加,促进⽤途及市场的拓宽。
其次是制造原料来源⼴、制造⼯艺简单。
产品质量好。
在耐燃性、透明性及耐化学药品性能⽅⾯均较其它塑料优异。
⼜它是氯碱⾏业耗“氯”的⼤户,对氯碱平衡起着举⾜轻重的作⽤。
从⽬前世界主要聚氯⼄烯⽣产国来说:⼀般耗⽤量占其总量的20?30%。
特别是60 年代以来,由于⽯油化⼯的发展,为聚氯⼄烯⼯业提供廉价的⼄烯资源,引起了⼈们极⼤的注意,因⽽促使氯⼄烯合成原料路线的转换和新制法以及聚合技术不断地更新,使聚氯⼄烯⼯业获得迅猛的发展。
年产10万吨聚氯乙烯生产工艺设计
聚氯乙烯(Polyvinyl Chloride,简称PVC)是一种用途广泛的塑料材料,其年产量也相对较大。
本文将对年产10万吨聚氯乙烯的生产工艺进行设计,并将工艺步骤进行详细介绍。
1.原料准备2.氯乙烯制备利用氯气和乙烯进行反应,生成氯乙烯。
这一步需要精确控制反应的温度、压力和氯乙烯生成的速率,以确保反应的高效性和安全性。
3.聚合反应将氯乙烯和引发剂引入聚合反应器中进行聚合反应。
聚合反应器需要具备良好的搅拌和加热功能,以确保反应均匀进行且能高效完成。
聚合反应的时间和温度控制至关重要,以确保所得的聚合物的分子量和物性符合要求。
4.分离和净化将聚合反应产生的混合物进行分离和净化。
这一步主要包括聚合物的沉淀、过滤、洗涤等操作,以去除杂质和未反应的原料。
5.干燥和造粒将净化后的聚合物颗粒进行干燥处理,以去除水分和挥发性杂质,同时将其熔融并通过造粒机构成颗粒状的聚氯乙烯。
颗粒的大小和形状对后续的加工工艺和产品质量有关联。
6.真空除气将造粒后的聚氯乙烯通过真空除气设备进行处理,去除颗粒中的气体和挥发性成分,以确保产品的稳定性。
7.制品加工将除气处理后的聚氯乙烯颗粒进行制品加工。
常见的制品加工方式包括挤出、注塑、吹塑等。
通过这些加工方式,可以将聚氯乙烯颗粒制成板材、管材、型材等不同形状和尺寸的产品。
8.产品测试和质量控制对最终产品进行测试,检查其物理、力学、热学等性能指标,确保产品质量达到要求。
并建立质量控制体系,对每批产品进行检验和记录,以便进行溯源和质量追踪。
9.废弃物处理对生产过程中产生的废弃物进行处理和回收利用。
这些废弃物包括回收的聚氯乙烯颗粒、废水、废气等,应根据地方环保要求进行合理的处理。
综上所述,年产10万吨聚氯乙烯的生产工艺设计包括原料准备、氯乙烯制备、聚合反应、分离和净化、干燥和造粒、真空除气、制品加工、产品测试和质量控制以及废弃物处理等主要步骤。
在每一步骤中,都需要精确控制工艺参数、确保产品质量和安全性。
万吨聚氯乙烯车间工艺设计
万吨聚氯乙烯车间工艺设计1.工艺流程:PVC的生产工艺通常包括聚合、塑化、脱除不饱和气体、热稳定、挤出和制品成形等步骤。
聚合是PVC制备的关键步骤,通常采用悬浮聚合法,其中乙烯氯和稳定剂等原料在聚合釜中发生聚合反应。
塑化过程将聚合物颗粒加热成粘稠的熔体,以便后续处理。
脱除不饱和气体过程将熔融的PVC中的不饱和气体去除。
热稳定工艺用于防止PVC分解,在高温条件下添加热稳定剂。
挤出工艺将熔融的PVC通过模具挤出,形成所需的形状。
制品成形过程将挤出的PVC制品进行冷却、切割和包装。
2.设备布局:PVC车间的设备布局应考虑到安全、生产效率和操作便利性。
首先,应将不同的工艺步骤合理安排,以确保工序之间的流程顺畅。
例如,聚合反应器应位于PVC车间的中心位置,以便于原料的输入和产物的输出。
其次,应根据原料、中间产物和成品的特性进行合理的设备布置。
例如,塑化机、挤出机和制品成形设备应根据工艺流程的要求进行合理的布局,以方便操作和流程控制。
此外,应考虑设备的安全性和防火防爆要求,并合理布置安全设施和逃生通道。
3.能耗分析:在PVC车间中,能耗管理是至关重要的。
应进行能耗分析,找出能耗高的环节,并采取合理的措施降低能耗。
例如,在塑化过程中,采用高效的预热装置和加热系统,减少能量损耗。
在挤出过程中,采用高效的挤出机和冷却系统,减少能耗和水的浪费。
此外,应优化生产计划,避免设备空闲和停机时间,提高生产效率和能源利用率。
4.环保措施:PVC生产过程中会产生废水、废气和固体废物,对环境造成一定的影响。
为满足环保要求,应采取相应的环保措施。
首先,在废水处理方面,应安装废水处理设施,对生产废水进行处理,并达到排放标准。
其次,在废气处理方面,应安装废气处理设备,对排放的废气进行净化和回收利用。
最后,在固体废物处理方面,应实施废物分类和合理处置,减少对环境的负面影响。
综上所述,万吨级PVC车间的工艺设计应合理安排工艺流程,合理布局设备,进行能耗分析和实施环保措施,以确保生产的安全、高效和环保。
年产12万吨氯乙烯合成工艺——-初步设计书
课程设计说明书
武汉工程大学
化工与制药学院
课程设计说明书
课题名称年产12万吨氯乙烯合成工艺
——初步设计书
专业班级
学生学号
学生姓名
学生成绩
指导教师
课题工作时间10-05-2013
武汉工程大学化工与制药学院
化工与制药学院
《课程设计》综合成绩评定表
年月日年月日
氯乙烯(简称VC),是合成聚氯乙烯(简称PVC)的单体。
聚氯乙烯树脂是一种重要的塑料原料,是五大通用合成树脂之一,具有良好的物理及机械性能,广泛应用于生产生活中的各个领域。
氯乙烯单体的生产是聚氯乙烯工业中的一个重要环节。
本次设计的主要目的是培养正确的设计思想,理论联系实际的工作作风,严谨求实的科学态度和勇于探索的创新精神以及综合运用所学知识分析和解决工程实际问题的能力,同时提高在理论计算、结构设计、工程绘图、查阅设计资料、标准与规范的运用和计算机应用方面的能力,巩固、扩展理论知识与初步的专业技能。
本书主要介绍了电石法生产氯乙烯单体的工业过程,其中主要涉及生产工艺流程、生产原理、设备选型、设备布置等问题。
由于时间有限,本人的水品有限,所以书中的内容难免有很多不足,而且很多细节问题可能都没有详细介绍,希望老师们批评指正!
工业上生产氯乙烯的方法很多,大致分为乙炔法和乙烯法两种。
乙炔法是将乙炔和氯化氢混合气体在较高温度下通过氯化汞催化制得氯乙烯。
乙炔法原料易于取得、技术成熟、投资规模相对较小、具有成本优势,流程简单,转化率较高;为此本文将对乙炔法生产氯乙烯的工艺进行说明。
关键词:氯乙烯;工艺;设备。
年产10万吨氯乙烯工艺设计
氯乙烯是一种重要的有机化工原料,广泛用于制造PVC、丁二烯橡胶、氯乙烯树脂等产品。
本文将对年产10万吨氯乙烯的工艺设计进行详细介绍。
一、原料与工艺流程1.原料2.工艺流程(1)乙烯与氯气的氯化反应乙烯和氯气经过氯化反应生成氯乙烯。
反应温度一般在50℃-100℃之间,反应压力在1.0-2.0MPa之间。
为了增加反应速率和产率,可以添加一定的催化剂,如二氯化铁等。
(2)氯乙烯的分离氯乙烯与未反应的氯气通过冷凝器进行冷凝,形成液态氯乙烯。
然后,通过采用分馏塔进行分馏,将氯乙烯与反应废气进行分离,得到纯净的氯乙烯产品。
(3)氯乙烯的纯化通过进一步的纯化步骤,去除氯乙烯中的杂质,得到高纯度的氯乙烯产品。
主要的纯化方法包括化学纯化和物理纯化两种。
化学纯化主要是指利用化学反应去除杂质,物理纯化主要指利用物理方法如溶剂萃取、吸附等去除杂质。
二、工艺设备1.乙烯裂解装置乙烯裂解装置是将较重的石脑油等原料在适宜的温度下进行裂解,生成乙烯。
2.电解氯化钠装置电解氯化钠装置将氯化钠电解产生氯气。
3.盐酸制备装置盐酸制备装置通过反应制备盐酸。
4.氯化反应釜氯化反应釜是进行乙烯与氯气的氯化反应的设备,通过控制反应温度和压力,实现氯乙烯的产生。
5.冷凝器冷凝器通过冷凝氯乙烯和氯气混合物,将其分离出液态氯乙烯。
6.分馏塔分馏塔通过分馏氯乙烯和反应废气,将纯净的氯乙烯产品分离出来。
三、工艺设计1.反应温度和压力的选择反应温度和压力的选择会影响氯化反应的速率和产率。
合理选择反应温度和压力可以提高氯乙烯的产率,并且减少副反应的产生。
2.催化剂的选择和适量添加适量添加一定的催化剂可以提高氯化反应速度和产率,促进反应的进行。
常用的催化剂有二氯化铁等。
3.设备选型和工艺流程优化选用适当的设备和优化工艺流程可以提高工艺的效率和产品质量,同时降低能耗和成本。
4.废气处理废气处理也是工艺设计中的重要环节,通过合适的废气处理方法,减少对环境的污染。
12万吨聚氯乙烯聚合工段工艺设计毕业设计
毕业设计题目名称:年产12万吨聚氯乙烯聚合工段的工艺设计目录摘要 (1)关键词 (1)第一章设计说明书 (2)1.1 设计项目 (2)1.2设计依据、生产规模、设计原则 (2)1.2.1设计内容 (2)1.2.2生产规模 (2)1.2.3设计依据 (2)1.2.4设计原则 (2)1.3厂址选择及建厂地区自然条件 (2)1.3.1地理位置及环境 (2)1.3.2工厂用水情况 (3)1.3.3供电 (3)1.3.4原料供应 (3)1.3.5工厂所处自然条件 (3)第二章聚氯乙烯工业发展概况 (3)2.1 聚氯乙烯工业的发展概况 (4)2.2聚氯乙烯工业在国民经济中的作用 (4)2.3聚氯乙烯系列聚合物的性质 (5)2.4聚氯乙烯制品的开发与应用技术 (5)第三章生产方法简介及设计方法的确定 (7)3.1聚合方法简述 (7)3.1.1本体聚合 (7)3.1.2溶液聚合 (7)3.1.3悬浮聚合 (8)3.1.4乳液聚合 (9)3.3产品的基本性能 (11)3.4有关设计参数 (12)3.5产品规格与质量指标 (12)第四章物料衡算 (14)4.1聚合釜物料衡算 (14)4.2出料槽物料衡算 (15)4.3汽提塔物料衡算 (16)4.4离心部分物料衡算 (18)4.5气流干燥部分物料衡算 (18)4.6沸腾干燥部分物料衡算 (19)4.7筛分包装部分物料衡算 (19)4.8物料衡算总平衡 (20)4.9概念配方 (22)第五章热量衡算. (23)5.1反应体系升温过程的热量衡算 (23)5.2气提塔热量衡算 (26)5.3列管式换热器热量衡算 (27)5.4气流干燥塔热量衡算 (27)第六章聚合反应釜选型 (31)6.1聚合过程的影响因素 (31)6.2反应釜选型结果 (32)第七章废水处理 (33)7.1废水的处理 (33)7.2 废水排放标准 (33)7.3废水的处理方法 (33)7.4其他三废的处理 (34)第八章生产工艺过程说明 (35)8.1工艺过程简介 (35)8.2设备一览表 (36)总结 (38)参考文献 (39)致谢 (40)摘要本设计是一个年产12万吨聚氯乙烯(PVC)反应工程中的聚合反应工段的设计。
年产万吨聚氯乙烯车间工艺设计
● ,a click to unlimited possibilities
目录
● /目录
01
02
0
点击此处添加目
项目背景与目标
聚
录标题
艺
04
05
0
● 01
添加章节标题
● 02
项目背景与目标
项目背景介绍
聚氯乙烯在化工行业中的地位
聚氯乙烯生产工艺的发展历程
当前聚氯乙烯生产工艺存在的
操作规程编写要求
明确操作步骤:按 照生产流程,详细 描述每个工序的操 作步骤,确保员工 能够准确执行。
强调安全注意事项: 在规程中明确标注 安全风险和注意事 项,确保员工在操 作过程中能够注意
图文结合:在规程 中配以相应的图片 和图表,帮助员工 更好地理解和掌握 操作要领。
员工培训计划与内容
培训内容:聚氯乙烯生产工艺流 程、设备操作、安全规范等
添加标题
聚合反应条件:在引发剂、催化剂等作用下,氯乙烯单体发生
添加标题
聚合反应过程:聚合反应过程中,氯乙烯单体逐渐转化为聚氯
产物分离与纯化
产物纯化:通过各种方法将产物 中的杂质去除,提高产品纯度
产物分离:将反应产物从反应体 系中分离出来
常见分离方法:蒸馏、萃取、沉 淀等
干燥与包装
干燥方式:采用
包装方式:采用 干燥与包装设备: 干
气流干燥、真空
袋装、桶装等包 介绍干燥设备和
流
干燥等干燥方式, 装方式,确保产 包装设备的选型、 干
去除物料中的水
品在运输和储存
操作和维护
流
● 04
车间布局与设备选型
车间布局设计原则
12万吨∕年聚氯乙烯聚合工段安全设计
12万吨/年聚氯乙烯聚合工段安全设计摘要随着社会生产力的不断提高,社会对聚氯乙烯PVC(polyvinyl chloride)的需求越来越大。
聚氯乙烯生产具有工艺复杂、有害物质多、连续性强等特点,生产安全要求标准较高。
本设计的主要内容为聚氯乙烯聚合工段的安全设计。
比较几种制备PVC 的生产方法,本设计选用悬浮聚合法。
重点进行了聚氯乙烯聚合工段的物料、热量衡算,对聚合釜体以及聚合工段的附属设备和装置都进行了较为详细的安全设计,并对生产过程中可能出现的安全隐患进行了分析,提出了切实有效的解决方案。
安全设计分析结果对于保障聚氯乙烯的正常安全生产具有显著意义。
关键词:聚氯乙烯;悬浮聚合;安全设计AbstractAbstractWith the improvement of social productivity, the social demand for PVC (polyvinyl chloride) was growing. The production of PVC has the characteristics of complicated process, harmful substances, strong continuity, high standards of production safety requirements. The main contents of the design for safety design of PVC polymerization. The design selects suspension polymerization by comparing with several production methods. It mainly includes the material, the heat balance calculation of PVC polymerization section, and carried out a detailed design of security accessory equipment and analyzed device of polymerization kettle body and polymerization section, and the possible security risks in the production process, and put forward some effective solutions. Safety design analysis results have significant for the production safety of PVC.Keywords: polyvinyl chloride; suspension polymerization; safety design目录摘要 (I)Abstract (II)第一章研究背景 (1)1.1 引言 (1)1.2聚氯乙烯的物化性质 (1)1.3聚氯乙烯生产发展状况 (1)1.4国内外聚氯乙烯生产研究现状 (2)1.5 课题的提出 (4)第二章工艺计算 (5)2.1 物料衡算 (5)2.2 热量衡算 (6)第三章聚合釜及辅助设备设计与选型 (10)3.1 聚合釜体积与台数的确定 (10)3.2 聚合釜选型 (10)3.3 夹套的设计 (12)3.4 搅拌装置设计 (13)3.5 支座及人孔设计 (15)3.6 主要计量槽及管道设计 (17)第四章安全装置设计 (20)4.1温度的控制 (20)4.2 超压泄放装置的设计 (20)4.3 紧急终止加料系统 (22)4.4 其它相关安全设施的考虑 (23)第五章危险因素分析及相关注意事项 (24)5.1 危险化学品的识别及中毒后的急救措施 (24)5.2危险因素分析及解决方法 (24)5.3聚合釜相关注意事项 (25)第六章三废处理 (26)结论 (27)致谢 (28)参考文献 (29)附图 (30)第一章研究背景1.1 引言聚氯乙烯是由氯乙烯(Vinyl chloride,VCM),经过多种聚合方式生产的热塑性树脂,是五大热塑性通用树脂(聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯、ABS树脂)中较早实现工业化生产的品种,其产量仅次于VCM。
年产10万吨氯乙烯工艺设计
一、总体技术方案
1.1产品和质量要求
本工艺设计是针对每年产10万吨氯乙烯的,氯乙烯工艺流程采用芳
烃炔反应法生产,氯乙烯产品的质量指标应符合GB1408-93的质量标准,
即重量分析:99.6%以上;含醚:≤0.1%;酸值:≤0.1%;氯代烷烃:
≤0.3%;芳香族烃:≤0.2%;苯、邻苯和对苯二甲酸盐:≤0.05%;其
他不溶物:≤0.05%。
1.2主要工艺装置
本工艺设计中,主要工艺装置有芳烃炔反应塔(精炼装置)、精馏装置、蒸发装置、精分装置、气液混合装置、冷凝装置、蒸馏装置、再精馏
装置、萃取装置、汽油装置、热交换装置、分离装置、调节装置等。
1.3工艺流程
(1)芳烃炔反应:用氢气与乙炔反应在芳烃炔反应塔(精炼装置)内,产生氯乙烯油和稀释气,氯乙烯油经过精馏和蒸发进行净化,获得氯
乙烯产品;
(2)水蒸馏:将氯乙烯油送入蒸发器,加入混合物,经过精分后进
入气液混合装置,使稀释混合物加热混合,然后经过冷凝器,进入蒸馏器,经过混合,蒸发内循环,使氯乙烯油升温进行深度蒸馏,从而获得氯乙烯
产品;。
年产万吨聚氯乙烯生产工艺设计
聚氯乙烯(Polyvinyl chloride,简称PVC)是一种广泛应用于建筑、电子、包装、汽车等领域的合成材料。
年产万吨聚氯乙烯的生产工艺设计主要包括原料准备、聚合反应、聚合物处理和制品加工等过程。
下面将详细介绍该工艺设计。
一、原料准备聚氯乙烯的主要原料是乙烯和氯气。
乙烯是由石油或天然气制得的烃类气体,而氯气则是通过电解盐水制得。
原料准备过程主要包括乙烯和氯气的储存、输送和净化。
乙烯和氯气需要储存在专门的储罐中,通过管道输送到反应器中。
为了确保原料的纯度,乙烯和氯气需要经过净化处理,去除其中的杂质。
二、聚合反应聚合反应是将乙烯和氯气在反应器中进行化学反应,生成聚氯乙烯的过程。
这里主要采用的是自由基聚合反应。
具体的反应物料、反应条件和催化剂的选择根据具体的工艺设计而定。
在反应过程中,乙烯和氯气通过喷嘴进入反应器,并在一定的温度和压力下进行反应。
反应后,得到的聚合物溶液会经过分离和净化处理。
三、聚合物处理聚合物处理是将聚合反应产生的聚合物溶液进行分离、净化和浓缩的过程。
首先需要将聚合物溶液经过过滤器进行固液分离,去除其中的杂质和未反应的物质。
然后通过沉淀和离心等操作来进一步提纯。
最后,将提纯后的聚合物溶液通过蒸发器等设备进行浓缩,使其达到所需浓度。
四、制品加工制品加工是将处理后的聚合物溶液进行成型和后续处理的过程。
聚氯乙烯可以通过挤出、注塑、压延等方式制成各种形状的制品,如管材、板材、零件等。
这一过程中需要使用相应的机械设备和模具,根据产品的要求进行加工和成型。
加工后的制品还需要进行后续处理,如冷却、切割、喷涂等,以达到最终的产品质量要求。
以上是年产万吨聚氯乙烯生产工艺设计的基本步骤。
具体的工艺参数和设备选择可以根据厂家的实际情况和市场需求来确定。
在设计过程中,还需要考虑能源消耗、废水处理、烟尘排放等环保和安全方面的问题,以确保生产过程的安全和环保性。
年产万吨聚氯乙烯生产工艺设计
聚氯乙烯(PVC)是一种广泛应用于建筑、电缆、管道和包装等行业的合成塑料,生产PVC的工艺设计十分重要。
下面将详细介绍一个年产万吨聚氯乙烯的工艺设计。
1.原料准备:聚氯乙烯的主要原料为乙烯和氯气。
首先,将乙烯作为主要单体通过热蚀刻剂塔消除杂质后送入聚合装置中。
同时,通过电化装置电解氯气产生氯气。
2.聚合:将乙烯和氯气经过氢化剂的催化聚合生成聚氯乙烯。
一般来说,聚合反应采用连续流动的方式进行,聚合装置采用循环流化床或循环流化床是较常见的设备,并在特定温度、压力和催化剂条件下进行。
3.稳定化处理:聚合生成的聚氯乙烯需要进行稳定化处理,以防止分解和降解。
稳定化处理一般采用含有金属盐和有机锡化合物的混合物,例如,含锌和钙的体系可以用于聚氯乙烯的稳定化。
4.干燥和造粒:稳定化处理后的聚氯乙烯通过干燥装置进行干燥,以去除其中的水分。
然后将干燥的聚氯乙烯通过造粒机进行造粒,以便后续加工使用。
5.挤出或注射成型:造粒后的聚氯乙烯可通过挤出机或注射成型机进行成型。
这一步骤是将聚氯乙烯加热至熔化状态,并通过特定模具进行挤出或注射成型,形成所需产品。
6.附加操作:根据实际需要,可能还需要进行附加操作,例如,添加着色剂、增塑剂或其他添加剂,以调整聚氯乙烯的性能。
此外,还可能需要进行表面处理、检测和包装等操作。
7.尾气处理:PVC生产过程中产生的尾气中可能含有有害物质,比如氯气等。
因此,需要建立合适的尾气处理装置,对尾气进行净化和排放处理,确保环境友好。
以上是一个年产万吨聚氯乙烯的主要工艺设计步骤。
在实际生产过程中,还需要注意控制各参数的稳定性、催化剂的选择和使用、设备的运行和维护等方面的问题,以确保生产效率和产品质量的同时,也要注重环境保护。
年产十二万吨聚氯乙烯合成工艺设计--开题报告
七、指导教师评语:
签 名:
年 月 日
八、教研室审核意见
签 名:
年 月 日
2
3.26-3.31
根据查得的文献总结关于PVC的知识。
3
4.1-4.5
查找与PVC有关的英文资料,并对其进行翻译。
4
4.6-4.12
查找与PVC工艺相关的资料,比较其各自的优缺点,并最终确定聚合工艺。
5
4.13-4.19
对已经学习过的化工原理知识进行较系统的复习,同时查阅了好多与设计计算方面相关的资料。
(4)进行高沸塔的物料衡算
热
量
衡
算
基
本
步
骤
(1)确定热量衡算的已知条件
(1)确定热量衡算的已知条件
(1)确定热量衡算的已知条件
(2)进行冷却器的热量衡算
(2)进行低沸塔的热量衡算
(2)进行聚合釜的热量衡算
(3)进行固碱干燥器的热量衡算
(3)进行高沸塔的热量衡算
(3)进行空气加热器的热量衡算
(3)通过计算得到的数据,结合设备计算的理论知识,参照国家的有关要求标准,对设备进行设计计算和确定;
四、课题的研究方法:
该设计整体上来说可以按照下面几个步骤来进行研究:
(1)在设计计算之前,首先应对与PVC有关的文献资料进行查阅,大致了解PVC的发展现状,PVC合成的基本步骤以及PVC的发展趋势;
(2)通过对化工原理基础知识的回顾,熟悉物料衡算、热量衡算时所需的条件,结合已知参数,进行计算; 各工序段的物料及能量衡算基本步骤如下:
[5]李述文,范如霖.实用有机化学手册[M].上海:上海科技出版社.2007.
年产10万吨聚氯乙烯生产工艺设计
聚氯乙烯(PVC)是一种广泛应用于管道、电线电缆、塑料制品等行业的重要合成材料。
年产量10万吨的聚氯乙烯生产工艺设计包含以下几个主要步骤:原料准备、聚合体系制备、聚合反应、分离纯化和成型等。
1.原料准备聚氯乙烯的主要原料包括乙烯(C2H4)和氯气(Cl2)。
乙烯是通过蒸馏、压缩和洗涤等步骤从乙烯炔或乙烯裂解产物中提取得到的。
氯气则可以通过电解盐酸或氯化钠来制备。
2.聚合体系制备聚合体系是聚氯乙烯的合成物料,主要包括引发剂、稳定剂、溶剂和助剂等。
引发剂用于引发聚合反应,稳定剂用于控制聚合反应过程中的温度和链酶活性,溶剂用于溶解乙烯和氯气以促进聚合反应,助剂则用于调节聚合反应的速率和产品的性能。
3.聚合反应聚合反应是通过将乙烯和氯气在一定的温度和压力条件下引发聚合体系中的引发剂进行聚合。
聚合反应一般采用连续式或间歇式反应器进行。
在反应器中,乙烯和氯气首先经过预处理装置,除去水分和杂质。
然后通过进料管道加入反应器中,与引发剂和溶剂混合,控制温度和压力使聚合反应进行。
4.分离纯化聚合反应结束后,需要对产物进行分离和纯化,以去除未反应的氯气、溶剂和引发剂等杂质。
分离纯化主要通过几个步骤实现,包括减压蒸馏、浸提和萃取等。
5.成型分离纯化后的聚氯乙烯可通过挤出、注塑、吹塑和泡沫成型等方式进行成型。
具体成型方式根据聚氯乙烯的用途和要求进行选择。
在设计年产10万吨聚氯乙烯生产工艺时,需要考虑以下几个方面:1.原料供应和质量控制确保乙烯和氯气的供应稳定,并且质量符合要求。
需要建立原料输入系统,控制原料的进料量和质量。
2.反应器的设计和工艺参数控制根据聚氯乙烯的生产需求,选择合适的反应器类型和尺寸,并且合理控制反应温度、压力和进料速率等参数,以确保聚合反应的高效进行。
3.分离纯化技术和设备选择根据产量规模,选择适合的分离纯化技术和设备,例如减压蒸馏塔、浸提塔和萃取塔等。
同时,要合理控制分离过程中的操作参数,提高产品纯度和回收率。
万吨聚氯乙烯车间工艺设计
万吨聚氯乙烯车间工艺设计聚氯乙烯(PVC)是一种重要的合成塑料材料,广泛应用于建筑、电子、汽车、医疗等各个领域。
万吨聚氯乙烯车间是一个大型工程,其工艺设计涉及到原料准备、聚合反应、卷取等多个环节。
首先,原料准备是万吨聚氯乙烯车间工艺设计的重要环节。
聚氯乙烯的生产主要依赖氯气(Cl2)和乙烯(C2H4)作为原料,其中氯气是通过电解食盐水来制备。
在工艺设计中,需要设计储气罐和气体输送管道,以确保供气的稳定性和安全性。
乙烯则是通过蒸馏等工艺来提纯和准备。
其次,聚合反应是聚氯乙烯生产过程中的核心环节。
聚合反应是指将氯气和乙烯在一定温度和压力下加入聚合反应器中,由聚合催化剂引发聚合反应,将氯气和乙烯分子进行链状连接,形成聚氯乙烯聚合物。
在设计聚合反应过程时,需要考虑反应温度、压力、反应时间以及搅拌方式等因素,以确保聚合反应的高效性和产物质量的稳定性。
聚合反应结束后,需要将聚合物从反应器中取出,进行加工和卷取。
在万吨聚氯乙烯车间工艺设计中,需要设计合适的聚合物取出装置,包括卧式和立式取出装置,以适应不同规格的反应器和生产能力。
取出装置需要考虑卷绕速度、加工温度、材料输送方式等因素,以确保聚合物的整齐和质量。
此外,还需要设计废气处理系统和废水处理系统,以确保生产过程中产生的废气和废水符合环境保护要求。
废气处理系统主要包括气体净化和尾气排放控制,废水处理系统主要包括废水回用和废水处理等。
在万吨聚氯乙烯车间工艺设计中,还需要考虑设备的选型和布局,以及安全措施的设置。
设备选型需要考虑设备的可靠性、耐腐蚀性以及维修性等因素,布局要合理,以确保生产流程的顺畅和高效。
安全措施包括防火、防爆、防毒等方面,以确保人员和设备的安全。
综上所述,万吨聚氯乙烯车间工艺设计是一个复杂而重要的任务,需要考虑原料准备、聚合反应、加工和卷取、废气废水处理等多个环节,确保生产的高效性、质量和环保性。
年产万吨聚氯乙烯车间工艺设计
结业设计题目: 年产万吨聚氯乙烯生产车间工艺设计院系: 质料科学与工程学院专业: 高分子质料与工程班级:学生姓名:指导西席:论文提交日期: 2011年 6 月 21 日论文答辩日期: 2011年 6月 28日内容摘要本文报告了我国聚氯乙烯产业生产技能的生长进程和目前状况,包罗原料路线、工艺设备、聚合要领等。
本设计采取悬浮法生产聚氯乙烯,介绍了采取悬浮法生产PVC树脂工聚合机理,工艺历程中需要注意的问题,包罗质量影响因素,工艺条件及合成工艺中的种种助剂选择,对聚合工艺历程进行详细的叙述。
并且从物料衡算、热量衡算和设备盘算和选型三个方面进行准确的工艺盘算,对厂址进行了选择,采取了防火防爆防雷等重要步伐,对三废的处理惩罚采取等进行了叙述,画出了整个工艺的流程图。
要害词:聚氯乙烯;生产技能;悬浮法;乙炔法;乙烯法;防粘釜技能;目录第一章总论 (2)1.1 国内外pvc生长状况及生长趋势 (2)1.2 单体合成工艺路线 (4)乙炔路线 (4)乙烯路线 (4)1.3聚合工艺实践要领 (5)本体法聚合生产工艺 (5)乳液聚合生产工艺 (6)悬浮聚合生产工艺 (6)1.4最佳的配方、后处理惩罚设备的选择 (7)配方的选择 (7)后处理惩罚设备侧选择 (8)1.5 防粘釜技能 (9)1.6原料及产物性能 (10)1.7 聚合机理 (11)1.7.1自由基聚合机理 (11)链反响动力学机理 (12)成粒机理与颗粒形态 (13)1.8影响聚合及产物质量的因素 (13)1.9工艺流程叙述 (15)加料系统 (15)聚合系统 (17)浆料汽提及废水汽提系统 (17)1.10厂址的选择 (19)第二章工艺盘算 (20)2.1物料衡算 (20)聚合釜 (20)混料槽 (23)汽提塔 (24)离心机 (27)沸腾床 (28)包装 (29)2.2热量衡算 (30)聚合釜 (30)沸腾床的热量盘算 (35)2.3 设备的盘算及选型 (41)聚合釜 (41)混料槽 (42)汽提塔 (43)离心机 (43)内热式沸腾床的盘算 (44)泵、鼓风机、过滤器 (49)第三章非工艺部分 (52)3.1厂内的防火防爆步伐 (52)3.2车间照明及采暖步伐 (52)3.3防静电,防雷步伐 (53)3.4三废处理惩罚情况 (54)电石渣的处理惩罚 (54)电石渣上清液的处理惩罚 (54)热水的综合利用 (54)尾气的采取利用 (55)转化水洗塔水的采取利用 (55)结束语 ..........................................................错误!未定义书签。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
年产12万吨氯乙烯合成工艺设计书第一章总论1.1项目建设依据①HGT 20688-2000化工工厂初步设计文件内容深度规定;②国家相关政策、技术及市场相关资料。
1.2项目建设范围根据课程设计的要求,本项目的设计内容为:初步设计说明书,项目可行性研究,工艺流程设计,设备选型,总厂的平面布局,车间设备的布局,创业规划书,用户手册。
1.3主要设计原则①反应热及时移出:反应是放热反应,局部过热会影响催化剂的寿命(HgCl升华,使其活性下降)。
因此,2在反应过程中,必须及时地移出反应热。
②反应器型式:工业上经常采用多管式的固定床氯化反应器,管内盛放催化剂。
经过干燥和已经净化的乙炔和氯化氢的混合气体,自上而下地通过催化剂床层,进行反应。
③管外用加压的循环热水进行冷却。
④发挥催化剂床层的效率,提高处理量:反应是放热反应,乙炔的空速大,则有局部过热现象(热点温度),因此,乙炔的空速也受到限制。
如果整个床层温度都接近最佳的允许温度,就可以充分发挥催化剂床层的效率:采取分段进气、分段冷却和适当调整催化剂活性等方法,可以使床层温度分布得到改善,乙炔空速可以提高,因而催化剂的生产能力也可以显著提高。
1.4设计特点本设计采用乙炔法。
在氯化汞催化剂存在下,乙炔与氯化氢加成直接合成氯乙烯:CH≡CH+HCl→CH2=CHCl1.5设计标准本设计按照原化工部制定的《化工工厂初步设计文件内容深度规定》及有关国家的专业标准。
第二章项目可行性论证2.1项目背景1835年法国人V.勒尼奥用氢氧化钾在乙醇溶液中处理二氯乙烷首先得到氯乙烯。
20世纪30年代,德国格里斯海姆电子公司基于氯化氢与乙炔加成,首先实现了氯乙烯的工业生产。
初期,氯乙烯采用电石,乙炔与氯化氢催化加成的方法生产,简称乙炔法。
以后,随着石油化工的发展,氯乙烯的合成迅速转向以乙烯为原料的工艺路线。
1940年,美国联合碳化物公司开发了二氯乙烷法。
为了平衡氯气的利用,日本吴羽化学工业公司又开发了将乙炔法和二氯乙烷法联合生产氯乙烯的联合法。
1960年,美国陶氏化学公司开发了乙烯经氧氯化合成氯乙烯的方法,并和二氯乙烷法配合,开发成以乙烯为原料生产氯乙烯的完整方法,此法得到了迅速发展。
乙炔法、混合烯炔法等其他方法由于能耗高而处于逐步被淘汰的地位。
随着国民经济的高速发展,社会需求的增长,刺激了PVC树脂生产的迅速发展,目前全国有生产企业80余家,但规模较小,年产十万吨以上的厂家仅有上海氯碱化工股份有限公司和齐鲁石化总公司。
近年我国PVC树脂产量远远不能满足市场的需求,这与我国大部分生产厂家工艺技术落后,VC原料短缺有直接关系。
我国相关技术也基本处于比较落后的水平,且相关资源也不够丰富,致使我国有相当一部分生产氯乙烯厂家还是使用的比较落后的乙炔法,但是此方法对于我国目前国情还是有相当大的适应性,虽然它是最古老但最简单的商业生产路线。
乙炔法合成氯乙烯曾为我国聚氯乙烯工业的发展做出巨大贡献,至今仍约占我国氯乙烯总生产能力的2/3、产量的1/2以上。
目前我国以电石乙炔为原料的聚氯乙烯生产厂共76家,总生产能力124万吨/年。
在能源成本愈来愈高以及国内外竞争日益激烈的今天,建立在高能耗电石基础上的乙炔法聚氯乙烯工业正面临严峻考验。
2.2国内市场现状及预测目前国内整体化工市场并未出现全面复苏的现象,仍然处于弱势格局,受房地产市场的影响PVC行业难改低迷态势,业内难言乐观,而作为电石的主要下游消耗行业,电石市场难免受此牵连,市场僵持局面难以突破,因此预计后市仍将以平稳运行为主,小幅调整为辅,变化不大。
此外,金融危机暴发以来,全球市场、贸易环境发生了很大改变,各国贸易保护主义抬头,针对我国企业产品的贸易摩擦显著增多。
我国PVC产量自20世纪90年代以来有了快速发展,但仍然赶不上发展更快的PVC 制品加工需求,自给率只能保持在70%左右。
需求的旺盛,国内乙烯资源的不足,反倾销终裁后进口量的下降,国际原油和石化产品的价格不断上升使乙烯法生产成本相应升高,也使得电石法成为许多企业的首选工艺。
随着近五年国际原油价格的居高不下,以石油天然气路线制聚氯乙烯的工艺路线将会受到乙烯供应的限制及成本的影响,近一段时期内,在市场竞争上不如电石法PVC价格低。
目前我国PVC生产以电石法为主。
根据我国现有能源结构和PVC行业国内竞争力的状况分析,今后西部地区(包括宁夏)建设电石法PVC项目尚有竞争优势,但也不容乐观。
①电石法与乙烯法原料路线不同,前者约耗电3000KWH/T(包括制氯气,氢气用电,)约耗电石1.5T/T,后者约耗电3000KWH/T,约耗乙烯0.5T/T。
电石耗电约3500KWH/T,因此,电石法PVC实际上以电为主要原料,综合耗电约8250KWH/T。
所以,供电与电价是电石法PVC生产的关键所在。
从自备热电平衡的角度出发,将大大缩减PVC的生产成本。
在建设周期尚不能同步的情况下,可先期收购并改造发电机组,为一期工程供电供汽,考虑正常发电利润(约8%)的电力成本比网上供电价格要低50%左右,从而保证了把电石法PVC成本控制在较低的范围内的目标,与乙烯法PVC比较具有相当的市场价格竞争力。
②电石法与乙烯法PVC相比,前者生产中有一种副产品:电石渣浆,即含20%左右Ca(OH)2 的饱和溶液,可用其作为发电烟气的脱硫剂,而剩余的部分可以进行压滤,其中Ca(OH)2 96%以上的固相用于生产水泥,其含Ca(OH)2 5%左右的液相全部回收使用。
现在有一种干法乙炔生产技术值得关注,可以较好的改善生产过程对社会环境的影响,特别是节水、减少固体及气体废物的排放量,降低对电的使用量。
③大规模和联合生产是实现清洁工艺的基本条件。
实际上,电石法PVC三废的处理技术上是基本成熟的。
只是,以前电石法PVC企业主要分布在西部地区,规模小,实力差,技术落后,没有经济能力去解决。
大规模和联合生产不仅具备综合利用,变废为宝,大幅度降低三废处理条件,还可为社会提供具有可观效益的产品。
如用电石渣做水泥,20万吨/年规模可以保本,100万吨/年的规模可盈利。
西部的电石法PVC生产企业有望成为电石法PVC清洁生产工艺的开拓者。
此外,从可持续发展的理念出发,采取诸如膜过滤,生化处理等技术达标排放。
不管是电石法还是乙烯法PVC生产路线,最后都是由氯乙烯单体聚合生成PVC。
氯乙烯单体合成方法主要有乙炔法、联合法、烯烃法、乙烯氧氯化法、乙烷一步氧氯化法五种,我国目前普遍采用的为乙炔法(电石法)和乙烯氧氯化法两种。
当前我国氯碱工业大部分采用电石法生产PVC以平衡氯气。
虽然此法耗能较高,但因此方法具有投资低,设备简单、转化率及产品纯度较高等特点,所以,电石法在我国PVC生产中占有很大比例。
2.3.原料路线2.3.1原料选择本次设计采用乙炔法生产氯乙烯,固原料采用电石,氯化氢。
2.3.2原料价格生产氯乙烯的主要原料是电石。
国内电石市场整体来说维持稳的基调,但其中不免震荡调整,西北地区整体报价在3150-3200元/吨左右,高点在3250-3350元/吨左右,实际成交略有浮动。
电石用量还算可以,主要是由于PVC企业受液氯胀库影响维持不错的开工率,导致电石用量尚可,加上运输紧张,到货不平衡,部分小幅灵活上调报价,但由于电石开工未见提升,实际成交价格比较灵活,加上PVC整体行情偏弱,故电石价格整体走势维稳。
2.4产品结构本项目的主要产品为氯乙烯,设计产量为120000吨/年。
第三章工艺技术方案3.1工艺技术方案的选择尽管氯乙烯生产流程很多,但衡量一个流程的优劣应根据实际条件的不同,如生产规模,成品纯度要求,原料成本及公用工程费用等,采用不同流程。
由于本设计的生产规模是年产12万吨氯乙烯,所以本设计选用乙炔法来生产氯乙烯。
3.2生产工艺简介3.2.1工艺简介来自机后冷却器的VC气体进入全凝器,用5℃的水将大部分氯乙烯冷凝成液体,VC 液体去聚结器除去水分全凝器为冷凝下来的气体进入尾气冷凝器,经-35℃盐水冷却后,VCM进入聚结器除去水分。
尾气冷凝器中未冷凝的气体,去尾气吸附器经吸附氯乙烯和乙炔后定压排空。
从聚结器出来的氯乙烯气体进入低沸塔,低沸塔釜用热水见解加热使氯乙烯气化,在塔中上升的氯乙烯蒸汽同下降的液体在各层塔板上进行充分接触,进行传质传热。
将沿各层塔板下流的液相中的低沸物蒸出,经塔顶冷凝器用5℃水控制回流比后,低沸物由塔顶冷凝器出口进入尾气冷凝器,使塔釜氯乙烯由液位控制器进入高沸塔。
高沸塔釜用热水加热,上升的氯乙烯蒸汽用下降的液体在各层塔板上进行充分接触们进行传质传热,使氯乙烯蒸出,经塔顶冷凝器冷凝用5℃水将氯乙烯冷凝,控制部分氯乙烯回流。
由塔顶出来的大部分精氯乙烯进入成品冷凝器,用5℃水将氯乙烯冷凝,送氯乙烯液体贮存工序。
高沸塔釜分离出高沸物,压入高沸物贮槽至一定量后送入蒸馏Ⅲ塔,经Ⅲ塔蒸馏,塔顶流出的氯乙烯经塔顶冷凝器用5℃水控制回流比后,回收氯乙烯进入气柜,塔釜放出物排往二氯乙烷槽。
3.3.2项目产品及建设规模设计规模:产量为12万吨/年的氯乙烯的生产,每年300个工作日,即7200小时。
第四章环境保护4.1环保治理措施4.1.1“三废”处理电石渣一直都是电石法制取氯乙烯的生产者最烦恼的问题。
电石渣由于含有大量的氢氧化钙固体,具有强烈的碱性,并含有较高的硫化物,以及其它微量的杂质。
目前,多数工厂只将发生器排出的电石渣浆经过一级沉降分离,对干渣进行利用。
而将分离后的沉清水直接排放,这是不妥当的,因为沉清水即使达到“眼见不混”,其pH值也高达14,硫化物含量等都超过国家的“三废”排放标难,因此有必要对电石渣浆沉清水进行中和及脱硫处理。
4.1.2噪声处理本项目的主要噪声源为乙炔发生器、清净塔、乙炔水环泵。
为保证周边环境噪声达标,采取噪声治理措施如下:①对各类泵基座采取柔性连接,在冷却塔表面敷设适量海绵等柔性材料,以降低水滴声。
箱内衬吸声材料,设减振基础,吸气口装消声器;风机的进出风管加装消声器;对各设备电动机加装隔声罩。
②设备间采用隔音门、密闭窗;墙面和顶棚贴吸音材料。
③调整不合理的布局,使高噪声设备尽可能远离噪声敏感区,并使高噪声设备尽可能安置在低位处,减少声能对远距离的传播。
合理布置噪声敏感区中的建筑物功能和合理调整建筑物平面布局,把非噪声敏感建筑物或房间靠近噪声源,噪声敏感建筑物或房间远离噪声源。
④搞好厂区绿化工作,特别是四周厂界、厂前区应多种植草木和高大乔木,以达到隔声降噪、阻隔废气的作用。
⑤对于长期在噪声分贝过高的车间工作的员工,可以采取消除或降低哭声措施,如设置消声墙等,也可以采取相应的个人防护,如可以佩戴耳塞、防声帽、防声耳罩。
4.1.3绿化情况项目在建设同时必须加强绿化工作和景观建设。