数学选修2-3知识点总结
高中数学选修2-3
高中数学选修2-3基础知识一.基本原理111111111111.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+(2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-;(3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同元素中取出个元素的一个组合,所有组合个数记为m C n m .1. 公式: ()()()C A A n n n m m n m n m nmn m mm ==--+=-11……!!!!10=n C 规定:组合数性质:.2 nn n n n m n m nm n m n n m n C C C C C C C C 21011=+++=+=+--……,,①;②;③;④11112111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++= 注:若12mm1212m =m m +m n n n C C ==则或 四.处理排列组合应用题1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。
高二数学(选修2-3人教B版)-计数原理全章总结
例6、求 (1 2x)5的展开式的:
(1)第三项的二项式系数; (2)第三项的系数; (3)所有项的系数和. 解:(2)由通项可知,展开式的第三项是
T3 C52 13 (2x)2 40x2
所以,第三项的系数为40.
例6、求 (1 2x)5的展开式的:
表示?
(a b)n (a b)(a b) (a b)
n个a b
Tr1 Cnr anr br
例6、求 (1 2x)5的展开式的:
(1)第三项的二项式系数; (2)第三项的系数; (3)所有项的系数和.
例6、求 (1 2x)5的展开式的:
(1)第三项的二项式系数; (2)第三项的系数; (3)所有项的系数和.
解:首先将A、B、C、D排成一排,共有 A44 种排法,每一种
排法都会产生五个“空”,在这五个“空”中任选一个,将E
放入,共有 C51 种方法;其次,E中的两个元素可以交换,有 A22
种方法.
所以,共有 A44 C51 A22 240 种不同的排法.
问题4 (a b)n 的展开式中的系数为什么可以用组合数的形式
(
Cm n1
ቤተ መጻሕፍቲ ባይዱ
Cmn
Cm1 n
)?
作业: 1.一个集合由8个元素组成,这个集合含有3个元素的子集有多 少个? 2.将6名应届大学毕业生分配到两个用人单位,每个单位至少 两人,一共有多少种不同的分配方案? 3.求 (9x 1 )18 展开式的常数项,并说明它是展开式的第几项.
3x
入,共有 A43 种排法. 所以,一共有A33 A43 144 种不同的排法.
例5、有6位同学站成一排,符合下列各题要求的不同排法有多 少种? (2)甲、乙相邻. 解:(2) 设除甲、乙之外的另外四个同学为A、B、C、D. 因为甲、乙要相邻,所以可以把甲、乙“绑”在一起看作一个 元素(记为E).
数学选修2-3知识点总结
数学选修2-3知识点总结
计数原理:这部分主要讲解分类加法计数原理与分步乘法计数原理。
分类加法计数原理指的是,如果完成一件事情有N类方法,每类方法中有不同的方法数,那么完成这件事情的总方法数就是各类方法数之和。
而分步乘法计数原理则是说,如果完成一件事情需要分成N 个步骤,每个步骤中有不同的方法数,那么完成这件事情的总方法数就是各步骤方法数之积。
二项式定理:这部分主要讲解二项式定理及其通项公式,以及二项式系数的性质。
二项式定理给出了(a+b)^n的展开式,而二项式通项公式则给出了展开式中每一项的具体形式。
二项式系数的性质包括对称性、增减性与最大值以及各二项式系数和等。
概率论初步:这部分主要讲解随机事件、概率等基本概念,以及概率的基本性质。
随机事件是指在一次试验中可能出现的结果,而概率则是衡量随机事件发生的可能性的数值。
随机变量及其分布:这部分主要讲解随机变量的概念及其分布。
随机变量是随机试验可能出现的结果的数值表示,常见的随机变量分布有离散型分布和连续型分布。
以上就是数学选修2-3的主要知识点,通过学习这些内容,学生可以掌握基本的计数原理、二项式定理、概率论以及随机变量及其分布等数学知识,为进一步学习数学或其他相关学科打下基础。
人教版高中数学选修2-3知识点汇总
人教版高中数学必修2-3知识点第一章计数原理1.1分类加法计数与分步乘法计数分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法。
分类要做到“不重不漏”。
分步乘法计数原理:完成一件事需要两个步骤。
做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法。
分步要做到“步骤完整”。
n元集合A={a1,a2⋯,a n}的不同子集有2n个。
1.2排列与组合1.2.1排列一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列(arrangement)。
从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用符号表示。
排列数公式:n个元素的全排列数规定:0!=11.2.2组合一般地,从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合(combination)。
从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号或表示。
组合数公式:∴规定:组合数的性质:(“构建组合意义”——“殊途同归”)1.3二项式定理1.3.1二项式定理(binomial theorem)*注意二项展开式某一项的系数与这一项的二项式系数是两个不同的概念。
1.3.2“杨辉三角”与二项式系数的性质*表现形式的变化有时能帮助我们发现某些规律!(1)对称性(2)当n 是偶数时,共有奇数项,中间的一项取得最大值;当n 是奇数时,共有偶数项,中间的两项,同时取得最大值。
(3)各二项式系数的和为(4)二项式展开式中,奇数项二项式系数之和等于偶数项二项式系数之和:(5)一般地,第二章随机变量及其分布2.1离散型随机变量及其分布(n ∈N *)其中各项的系数(k ∈{0,1,2,⋯,n})叫做二项式系数(binomial coefficient);2.1.1离散型随机变量随着试验结果变化而变化的变量称为随机变量(random variable)。
高中数学选修2-3知识点汇编
高中数学必修2知识点第3章 直线与方程 (1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k 表示。
即tan k α=。
斜率反映直线与轴的倾斜程度。
当[)90,0∈α时,0≥k ; 当()180,90∈α时,0<k ; 当90=α时,k 不存在。
②过两点的直线的斜率公式:)(211212x x x x y y k ≠--=注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x 注意:当直线的斜率为0°时,k=0,直线的方程是y =y 1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x =x 1。
②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b③两点式:112121y y x x y y x x --=--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x④截矩式:1x y a b+= 其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b 。
⑤一般式:0=++C By Ax (A ,B 不全为0)注意:○1各式的适用范围 ○2特殊的方程如:平行于x 轴的直线:b y =(b 为常数); 平行于y 轴的直线:a x =(a 为常数); (5)直线系方程:即具有某一共同性质的直线 (一)平行直线系平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=++C y B x A (C 为常数)(二)过定点的直线系 (ⅰ)斜率为k 的直线系:()00x x k y y -=-,直线过定点()00,y x ;(ⅱ)过两条直线0:1111=++C y B x A l ,0:2222=++C y B x A l 的交点的直线系方程为()()0222111=+++++C y B x A C y B x A λ(λ为参数),其中直线2l 不在直线系中。
高中数学选修2-2,2-3知识点、考点、典型例题
高中数学选修2-2,2-3知识点、考点、典型例题高中数学选修2-2,2-3知识点、考点、典型例题一、2-2数列的概念、数列的通项公式及递推公式1. 数列的概念数列是按照一定规律排列的一系列数,一般用字母 an 表示第n 个数。
2. 数列的通项公式数列的通项公式是指通过数列的位置 n,直接求出该位置上的数 an 的公式。
通项公式可以是一个数学式子,也可以是一个算法。
3. 数列的递推公式数列的递推公式是指通过数列前一项或前几项的值,推导出数列下一项的公式。
递推公式是数列中相邻两项之间的关系式。
4. 常见数列的通项公式和递推公式- 等差数列:an = a1 + (n-1)d (通项公式),an = an-1 + d (递推公式)- 等比数列:an = a1 * q^(n-1) (通项公式),an = an-1 * q (递推公式)- 斐波那契数列:an = an-1 + an-2 (递推公式)二、2-3数列的求和、数列的性质及应用1. 数列的求和- 等差数列的前 n 项和:Sn = (a1 + an) * n / 2- 等比数列的前 n 项和(q ≠ 1):Sn = a1 * (1 - q^n) / (1 - q) - 斐波那契数列的前 n 项和:Sn = Fn+2 - 12. 数列的性质- 常数列:数列中的每一项都是一个常数。
- 奇数列:数列中的每一项都是奇数。
- 偶数列:数列中的每一项都是偶数。
- 单调递增数列:数列中的每一项都比前一项大。
- 单调递减数列:数列中的每一项都比前一项小。
- 正项数列:数列中的每一项都是正数。
- 负项数列:数列中的每一项都是负数。
3. 数列的应用- 利用数列的递推关系,求解实际问题中的特定数值。
- 利用数列的性质,进行数学推理和证明。
- 利用数列的规律,设计算法解决问题。
典型例题:1. 已知等差数列的前三项分别为 1,5,9,求数列的通项公式和第 n 项的值。
解:设数列的首项为 a,公差为 d,则有以下等差数列的递推公式:a2 = a1 + d = 1 + da3 = a2 + d = (1 + d) + d = 1 + 2d将 a1,a2,a3 分别代入等差数列的通项公式,可得:a1 = a = 1a2 = a + d = 1 + d = 5 --> d = 4a3 = a1 + 2d = 1 + 2(4) = 9所以该等差数列的通项公式为 an = a + (n-1)d = 1 + 4(n-1) = 4n - 3第 n 项的值为:an = 4n - 32. 求等差数列 3,6,9,...,101 的前 n 项和。
选修2-3离散型随机变量及其分布知识点
离散型随机变量及其分布知识点一:离散型随机变量的相关概念;随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。
若ξ是随机变量,a b ηξ=+,其中a 、b 是常数,则η也是随机变量连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出离散型随机变量的分布列:设离散型随机变量ξ可能取的值为12i x x x ⋅⋅⋅⋅⋅⋅、ξ取每一个值()1,2,i x i =⋅⋅⋅的概率为()i i P x p ξ==,则称表为随机变量ξ的概率分布,简称ξ的分布列 知识点二:离散型随机变量分布列的两个性质;任何随机事件发生的概率都满足:0()1P A ≤≤,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质:(1) 01,2,i p i ≥=⋅⋅⋅,;12(2) 1P P ++=特别提醒:对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率的和即1()()()k k k P x P x P x ξξξ+≥==+=+知识点二:两点分布:若随机变量X 的分布列: 则称X 的分布列为两点分布列.特别提醒:(1)若随机变量X 的分布列为两点分布, 则称X 服从两点分布,而称P(X=1)为成功率.(2)两点分布又称为0-1分布或伯努利分布(3)两点分布列的应用十分广泛,如抽取的彩票是否中奖;买回的一件产品是否为正品;新生婴儿的性别;投篮是否命中等等;都可以用两点分布列来研究.知识点三:超几何分布:一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则(),0,1,,min{,},,,.k n kM N MnNC C P X k k m m M n n N M N C --===⋅⋅⋅=≤≤其中称超几何分布列.为超几何分布列,知识点四:离散型随机变量的二项分布;在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是p ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是kn k k n n q p C k P -==)(ξ,(0,1,2,3,k =…, p q -=1)于是得到随机变量ξ的概率分布如下:由于k k n knC p q -恰好是二项式展开式: 00111()n n n k k n kn n n n n n p q C p q C p q C p q C p q --+=+++++中的各项的值,所以称这样的随机变量ξ服从二项分布,记作(,)B n p ξ,其中n ,p 为参数,并记(,,)k k n kn C p q b k n p -=知识点五:离散型随机变量的几何分布:在独立重复试验中,某事件第一次发生时,所作试验的次数ξ也是一个正整数的离散型随机变量.“k ξ=”表示在第k 次独立重复试验时事件第一次发生.如果把k 次试验时事件A 发生记为k A 、事件A 不发生记为k A ,()k p A p =,(), (1)k p A q q p ==-,那么112311231()()()()()()()k k k k k P k P A A A A A P A P A P A P A P A q p ξ---====(0,1,2,k =…,p q -=1)于是得到随机变量ξ的概率分布如下:称这样的随机变量ξ服从几何分布, 记作1(,),0,1,2,,1.k g k p q p k q p -===-其中知识点六:求离散型随机变量分布列的步骤;(1)要确定随机变量ξ的可能取值有哪些.明确取每个值所表示的意义;(2)分清概率类型,计算ξ取得每一个值时的概率(取球、抽取产品等问题还要注意是放回抽样还是不放回抽样;(3)列表对应,给出分布列,并用分布列的性质验证. 几种常见的分布列的求法:(1)取球、投骰子、抽取产品等问题的概率分布,关键是概率的计算.所用方法主要有划归法、数形结合法、对应法等对于取球、抽取产品等问题,还要注意是放回抽样还是不放回抽样.(2)射击问题:若是一人连续射击,且限制在n 次射击中发生k 次,则往往与二项分布联系起来;若是首次命中所需射击的次数,则它服从几何分布,若是多人射击问题,一般利用相互独立事件同时发生的概率进行计算.(3)对于有些问题,它的随机变量的选取与所问问题的关系不是很清楚,此时要仔细审题,明确题中的含义,恰当地选取随机变量,构造模型,进行求解. 知识点六:期望数学期望:则称=ξE +11p x 22p x n n 数学期望的意义:数学期望离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平。
高三数学选修2-3知识点
高三数学选修2-3知识点高三数学选修2-3是高中数学课程中的一部分,主要讲解了数学中的一些应用问题和数学建模的技巧。
这一部分的内容比较具体,其中包括了概率统计、三角函数、向量和解析几何等知识点。
下面我将分别介绍这些知识点的重点内容和应用。
一、概率统计概率统计是实际生活中常常用到的一门数学知识。
它主要研究随机事件的发生概率及其统计规律。
在概率统计中,最常见的一种问题是求解事件发生的概率。
为了求解概率,我们需要掌握一些基本概念和方法。
首先,我们需要了解事件的概念以及事件之间的关系。
事件通常用一个大写字母表示,而事件之间的关系通过并、或等运算来描述。
例如,如果事件A和事件B是互不相容的,那么它们的并就是两事件之和;如果它们是相容的,那么它们的并就是两事件的交集。
其次,我们需要学会如何计算概率。
概率有两种计算方法,一种是几何概率,一种是统计概率。
几何概率常用来解决几何问题,并通过实验次数的频率来估计概率。
统计概率则是通过一系列试验结果的频率来估计概率,常用于描述随机事件在长期实验中出现的可能性。
在实际生活中,概率统计可以应用于很多领域,例如金融、保险、科学实验等。
它可以帮助我们评估风险、预测趋势,对决策和规划起到重要的指导作用。
二、三角函数三角函数是数学中的一类特殊函数,它们描述的是角度和长度之间的关系。
在高三数学选修2-3中,我们主要学习了正弦函数、余弦函数和正切函数。
正弦函数描述的是一个角对应的直角三角形中,斜边与对边的比值。
余弦函数描述的是一个角对应的直角三角形中,斜边与邻边的比值。
正切函数则描述的是一个角对应的直角三角形中,对边与邻边的比值。
三角函数的应用广泛,包括工程、物理、天文等多个领域。
例如在三角测量中,可以利用三角函数计算出不可达区域的高度和距离;在物理中,三角函数可以用于描述波动、振动等现象。
三、向量和解析几何向量和解析几何是高三数学选修2-3中比较抽象和复杂的一部分。
它们主要研究的是空间中的点和直线的性质以及它们之间的关系。
高中数学选修2-3排列组合
计数原理【知识要点】一、分类加法原理与分布乘法计数原理1.加法原理:完成一件事有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事一共有N=m 1+m 2+…+m n 种不同的方法。
种不同的方法。
2.乘法原理:完成一件事,完成它需要分n 个步骤,第1步有m 1种不同的方法,第2步有m 2种不同的方法,……,第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×…×m n 种不同的方法。
种不同的方法。
二、排列与组合1.排列与排列数:从n 个不同元素中,任取m(m m(m≤≤n)n)个元素,按照一定顺序排成一列,叫做从个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m (m≤≤n)n)元素的所有排列个元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用mn A 表示,表示,mn A =n(n-1)=n(n-1)……(n-m+1)=)!(!m n n -,其中m,n m,n∈∈N,m N,m≤≤n,注:一般地0n A =1,0!=1,n n A =n! 。
2.组合与组合数:一般地,从n 个不同元素中,任取m(m m(m≤≤n)n)个元素并成一组,叫做从个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。
从n 个不同元素中取出m(m m(m≤≤n)n)个元素的所有组合的个数,叫做从个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用mn C 表示:表示:.)!(!!!)1()1(m n m n m m n n n C mn -=+--=规定:1C 0=n组合数的基本性质:(1)mn n m n C C -=;(2)11--+=n n m n m n C C C ;解决排列与组合的应用题的一般方法有:解决排列与组合的应用题的一般方法有:(1)特殊元素(位置)法)特殊元素(位置)法 (2)相邻问题的“捆绑法”)相邻问题的“捆绑法” (3)不相邻问题“插空法”)不相邻问题“插空法” (4)正难则反)正难则反 “排除法”“排除法”一、两个计数原理1、某人计划按“石家庄—青岛—广州”的路线旅游,从石家庄到青岛可乘坐汽车、火车、飞机3种交通工具,从青岛到广东可以乘坐汽车、火车、飞机、轮船4种交通工具,文此人可选择的旅行方式有 ()选择的旅行方式有A、7 种B、8 种C、10 种D、12种2、从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b 组成复数a+bi,其中虚数有其中虚数有 ()A、30个B、36个C、42个D、35个3、(07全国)从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一人参加,则不同的选派方法有 ()天,要求星期五有2人参加,星期六、星期日各1人参加,则不同的选派方法有A、40种B、60种C、100 种D、120种4、有4部机床,需要加工3个不同的零件,其不同的安排方法有个不同的零件,其不同的安排方法有 ()A、43B、34C、3A D、4445、有一项活动,需在3名老师,8名男同学和5名女同学中选人参加。
初中数学选修2-3知识点
初中数学选修2-3知识点
=========================
在初中数学的选修2-3课程中,主要涉及以下几个知识点:
1. 三角形的面积
- 三角形的面积可以通过底边和高的乘积的一半来计算:$S =
\frac{1}{2} \times a \times h$,其中$a$是底边的长度,$h$是高的长度。
- 也可以通过海伦公式来计算三角形的面积:$S = \sqrt{p \times (p - a) \times (p - b) \times (p - c)}$,其中$a$、$b$、$c$分别是三角
形的三边长度,$p$是半周长。
2. 相似三角形
- 两个三角形相似意味着它们的对应角度相等,并且对应边的
比例相等。
- 如果两个三角形的对应边的比例相等,则它们是相似三角形。
3. 平行线和比例
- 如果两直线平行,对应角度相等,两直线对应的任意两条边
的比例相等。
- 平行线切割同一直线上的两组平行线,对应线段的比例相等。
4. 三角函数
- 正弦函数:$\sin(A) = \frac{a}{c}$,其中$A$是角度,$a$是
对边,$c$是斜边。
- 余弦函数:$\cos(A) = \frac{b}{c}$,其中$A$是角度,$b$是
邻边,$c$是斜边。
- 正切函数:$\tan(A) = \frac{a}{b}$,其中$A$是角度,$a$是
对边,$b$是邻边。
以上是初中数学选修2-3的主要知识点。
希望对你有帮助!。
高二数学选修2-3排列知识点
高二数学选修2-3排列知识点排列是数学中的一个重要概念,在高二数学选修2-3中,我们将深入学习排列的相关概念和应用。
本文将从基本概念、排列的计算方法和排列的应用几个方面进行探讨。
一、基本概念1. 排列的定义:排列是从给定的元素中选取一部分按照一定的顺序排列的方式。
2. 全排列:全排列指的是从给定的元素中选取所有元素按照不同的顺序进行排列的方式。
3. 循环排列:循环排列是一种特殊的排列方式,即在排列的过程中,首尾相连形成一个环。
二、排列的计算方法1. 排列的计算公式:在计算排列的数量时,我们可以使用排列的计算公式,即n个不同元素的全排列数量为n!。
2. 有重复元素的排列:当排列中存在重复的元素时,计算排列的数量需要考虑重复元素的情况,我们可以使用排列计算公式的变形公式,即在n个元素中,有n1个元素相同,n2个元素相同,...,nk个元素相同,则排列的数量为n!/(n1! * n2! * ... * nk!)。
三、排列的应用1. 字母组合:排列的概念在字母组合的问题中经常被应用。
例如,计算一个字母串中可能的组合数量、字母的全排列数量等。
2. 座位安排:排列的概念也被广泛应用于座位安排的问题中。
例如,如何安排n个人坐在一排座位上的不同方式数量。
3. 时间安排:排列还可以应用于时间安排问题。
例如,在参加一场比赛的选手中,如何安排他们的比赛顺序,使得每个选手都能与其他选手进行比赛。
4. 数字密码:排列的概念在密码学中也扮演着重要的角色。
例如,当设置数字密码时,我们可以使用排列的方式来确定密码的顺序与组合。
综上所述,排列作为高二数学选修2-3中的重要知识点,具有一定的理论基础和应用价值。
通过深入学习和实践,我们可以更好地掌握排列的计算方法和应用技巧,进一步提升我们的数学能力和问题解决能力。
选修数学2-3知识点总结
选修数学2-3知识点总结本文将对选修数学2-3中的几个重要知识点进行总结和介绍。
选修数学2-3是高中数学课程中的一部分,主要涉及到高中数学中的几个重要概念和方法。
在本文中,我将按照以下顺序进行介绍:函数的定义和性质、指数函数和对数函数、三角函数。
一、函数的定义和性质在选修数学2-3中,我们首先学习了函数的定义和性质。
函数是一种关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
函数可以用图像、表格或公式来表示。
函数的性质包括定义域、值域、单调性、奇偶性等。
我们学会了如何通过观察图像和计算来分析函数的性质,并解决与函数相关的问题。
二、指数函数和对数函数在选修数学2-3中,我们还学习了指数函数和对数函数。
指数函数是形如y=a^x的函数,其中a是一个正实数。
对数函数是指数函数的逆运算,由y=loga(x)表示,其中a是一个大于1且不等于1的实数。
我们学习了指数函数和对数函数的基本性质,如指数函数的增长特性和对数函数的性质。
这些函数在实际问题中有广泛的应用,如利息计算和指数增长问题等。
三、三角函数在选修数学2-3中,我们还学习了三角函数。
三角函数是以圆上的点坐标为基础定义的函数。
我们学习了正弦函数、余弦函数和正切函数的定义和性质。
我们了解了三角函数的周期性、奇偶性、对称性等性质,并学会了通过图像和计算来分析三角函数的特性。
三角函数在物理、工程和计算机图形学等领域有广泛的应用。
以上就是选修数学2-3中的几个重要知识点的总结和介绍。
通过学习这些知识点,我们可以更好地理解数学的基本概念和方法,并在实际问题中应用数学知识解决问题。
希望本文对你在学习选修数学2-3时有所帮助。
高中数学选修2-3知识点总结
高中数学选修2-3知识点总结Mathematics Elective 2-3 Chapter 1 Counting Principles Must-Know1.What is the principle of n n counting?Answer: To do something。
there are n ways to complete it。
In the first way。
there are m1 different methods。
in the second way。
there are m2 different methods。
in the nth way。
there are mn different methods。
Then there are N=m1+m2+。
+mn different ways to XXX.2.What is the principle of step-by-step n counting?Answer: To do something。
it requires n steps。
There are m1 different methods for the first step。
m2 different methods for the second step。
and mn different methods for the nth step。
Then there are N=m1×m2×。
×mn different ways to XXX.3.What is the n of n?Answer: Generally。
taking m (m≤n) different elements from n different elements。
XXX order。
is called a n of taking m elements from n different XXX.4.What is the n of n?Answer: Generally。
高中选修2-3第一章计数原理知识点总结与训练
第一章:计数原理一、两个计数原理3、两个计数原理的区别二、排列与组合1、排列:一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
2、排列数:从n 个不同元素中取出m(m ≤n)个元素的所有不同排列的个数叫做从n 个不同元素中取出m 个元素的排列数。
用符号 表示.3、排列数公式: 其中4、组合:一般地,从n 个不同元素中取出m(m ≤n)个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合。
5、组合数:从n 个不同元素中取出m(m ≤n)个元素的所有不同组合的个数叫做从n 个不同元素中取出m 个元素的组合数。
用符号 表示。
6、组合数公式:其中注意:判断一个具体问题是否为组合问题,关键是看取出的元素是否与顺序有关,有关就是排列,无关便是组合.判断时要弄清楚“事件是什么”.7、性质: mn A m n A ()()()()!!121m n n m n n n n A mn -=+---= .,,*n m N m n ≤∈并且m n C ()()()()!!!!121m n m n m m n n n n C mn -=+---=.,,*n m N m n ≤∈并且mn nm n C C -=mn m n m n C C C 11+-=+三、二项式定理如果在二项式定理中,设a=1,b=x ,则可以得到公式:2、性质:02413512n n n nn n nC C C C C C -=+++=+++=奇数项二项式系数和偶数项二项式系数和:注意事项:相邻问题,常用“捆绑法”不相邻问题,常用“插空法”巩固训练:1、有4个男生和3个女生排成一排,按下列要求各有多少种不同排法:(1)男甲排在正中间;(2)男甲不在排头,女乙不在排尾;(3)三个女生排在一起;(4)三个女生两两都不相邻;2、某城新建的一条道路上有12只路灯,为了节省用电而不影响正常的照明,可以熄灭其中三盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,可以熄灭的方法共有()3、(1)今有10件不同奖品,从中选6件分成三份, 二份各1件,另一份4件, 有多少种分法?(2) 今有10件不同奖品,从中选6件分给甲乙丙三人,每人二件有多少种分法?4、从6个学校中选出30名学生参加数学竞赛,每校至少有1人,这样有几种选法?5、将8个学生干部的培训指标分配给5个不同的班级,每班至少分到1个名额,共有多少种不同的分配方法?6、对某种产品的6件不同的正品和4件不同的次品,一一进行测试,至区分出所有次品为止,若所有次品恰好在第5次测试时全部发现,则这样的测试方法有种可能?7、3 名医生和 6 名护士被分配到 3 所学校为学生体检,每校分配 1 名医生和 2 名护士,不同的分配方法共有多少种?8、如图,要给地图A 、B 、C 、D 四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?9、求值与化简:1055845635425215222221)1(⋅+⋅+⋅+⋅+⋅+C C C C C 求值:。
高中数学选修2-1、2-2、2-3知识总结
mn1C
m n
C
m n1
8、二项式定理: ( a b ) n C 0 n a n C 1 n a n 1 b C 2 n a n 2 b 2 … C n r a n r b r … C n n b n
二 项 9展 、开 二式 项的 式通 通项 项公 公式 式: T r 1 C n r a n r b r ( r 0 , 1 … … n )
② 解不等式 f '(x) 0或f '(x) 0 ;
③ 确定并指出函数的单调区间(区间形式,不要写范围形式),区间之间用“,”★隔开,不能 用“ ”连结。
8. 极值与最值
对于可导函数 f (x) ,在 x a 处取得极值,则 f '(a) 0 .
最值定理:连续函数在闭区间上一定有最大最小值.
若 f (x) 在开区间 (a, b) 有唯一的极值点,则是最值点。
求极值步骤:
① 确定函数 y f (x) 的定义域(不可或缺,否则易致错);
② 解不等式 f '(x)=0 ;
③ 检验 f '(x)=0 的根的两侧的 f '(x) 符号(一般通过列表)
求最值时,步骤在求极值的基础上,将各极值与端点处的函数值进行比较大小,切忌直接说某某 就是最大或者最小。
4、排列数:从 n 个不同元素中取出 m(m≤n)个元素排成一列,称为从 n 个不同元素中取出 m 个元素的
一个排列. 从 n 个不同元素中取出 m 个元素的一个排列数,用符号 Anm 表示。
Am n(n 1)(n m 1) n! (m n, n, m N) (n m)!
5、公式 Anm nAnm11
(答:(1)a=-3,b=4;(2) c (, 1) (9, ) )
高中数学选修2-3(人教A版)第一章计数原理1.2知识点总结含同步练习及答案
1 6 7 12 C0 12 < C12 < ⋯ < C12 > C12 > ⋯ > C12 ,所以 2x − 3 ⩾ 5 且 2x ⩽ 12 解得 4 ⩽ x ⩽ 6.
高考不提分,赔付1万元,关注快乐学了解详情。
− A5 9
= =
8 × 7 × 6 × 5 × (8 + 7) 8 × 7 × 6 × 5 × (24 − 9) = 1.
2×8×7×6×5×4+7×8×7×6×5 8×7×6×5×4×3×2×1−9×8×7×6×5
(3)根据原方程,可得
3x(x − 1)(x − 2) = 2(x + 1)x + 6x(x − 1).
0 10 (1)计算:C5 10 ⋅ C10 − C10 ; m−1 (2)证明:mCm n = nCn−1 .
解:(1)原式= (2)证明:因为
10 × 9 × 8 × 7 × 6 × 1 − 1 = 252 − 1 = 251 ; 5×4×3×2×1
Cm n =
n! , m!(n − m)! (n − 1)! n(n − 1)! n m−1 n n! ⋅ = = . Cn−1 = m m (m − 1)!(n − m)! m ⋅ (m − 1)!(n − m)! m!(n − m)!
正整数 1 到 n 的连乘积,叫做 n 的阶乘,用 n! 表示.另外,我们规定 0! = 1 .所以排列数公 式还可以写成
Am n =
(n − m)!
n!
.
组合的定义 一般地,从 n 个不同元素中取出 m (m ⩽ n )个元素合成一组,叫做从 n 个不同元素中取出 m 个元素的一个组合(combination). 组合数及组合数的公式 从 n 个不同元素中取出 m (m ⩽ n )个元素的所有不同组合的个数,叫做从 n 个不同元素中取 出 m 个元素的组合数,用符号 Cm n 表示.
(名师精编)高中数学选修2-3知识点清单
一般地,设 A,B 为两个事件,且 P(A)>0,称
P(B|A)
=
P(AB) P(A)
为在事件 A 发生的条件下,事件 B 发生的条件概率(conditional probability)。
如果 B 和 C 是两个互斥事件,则
P(B ∪ C|A) = P(B|A) + P(C|A)
2.2.2 事件的相互独立性
(4) 二项式展开式中,奇数项二项式系数之和等于偶数项二项式系数之和:
(5) 一般地,
Cn0 + Cn2 + Cn4 + ⋯ = Cn1 + Cn3 + Cn5 + ⋯
Crr + Crr+1 + Crr+2 + ⋯ + Cnr−1 = Cnr+1 (n > ������)
第二章 随机变量及其分布
2.1 离散型随机变量及其分布
另一方面,b̂和â为斜率和截距的估计值,它们与真实值 a 和 b 之间也存在误 差,这种误差是引起预报值ŷ与真实值 y 之间存在误差的另一个原因。
由于随机误差 e = y − (bx + a),所以ê = y − ŷ是 e 的估计量。 对于样本点
它们的随机误差为
(x1,y1),(x2,y2), ⋯ ,(xn,yn)
1.3.2 “杨辉三角”与二项式系数的性质 *表现形式的变化有时能帮助我们发现某些规律! (1) 对称性
(2) 当 n 是偶数时,共有奇数项,中间的一项Cnn2+1取得最大值;
n−1
n+1
当 n 是奇数时,共有偶数项,中间的两项Cn2 ,Cn2 同时取得最大值。
(3) 各二项式系数的和为 2n = Cn0 + Cn1 + Cn2 + ⋯ + Cnk + ⋯ + Cnn
高二数学选修2-3二项式知识点
高二数学选修2-3二项式知识点二项式是数学中一个重要的概念,广泛应用于代数、概率等领域。
在高二数学选修2-3中,学生将会学习有关二项式的重要知识点。
本文将介绍二项式的定义、展开、性质以及应用等内容。
1. 二项式的定义二项式是由两个代数项相加(或相减)而成的表达式,一般形式为:(a+b)^n,其中a和b为实数或变量,n为非负整数。
其中,a和b被称为二项式的项,n被称为二项式的指数。
2. 二项式的展开二项式展开是指将一个二项式表达式展开为多项式的过程。
根据二项式定理,当n为非负整数时,二项式(a+b)^n可以展开为多项式的形式。
二项式定理的表达式为:(a+b)^n = C(n,0)a^n b^0 + C(n,1)a^(n-1) b^1 + C(n,2)a^(n-2)b^2 + ... + C(n,n-1)a^1 b^(n-1) + C(n,n)a^0 b^n其中,C(n,r)表示从n个元素中取r个元素的组合数,计算公式为:C(n,r) = n! / [(n-r)!r!]3. 二项式的性质- 二项式展开后的多项式的项数为n+1,其中n为二项式的指数。
- 二项式展开后的多项式的各项系数由组合数C(n,r)决定。
- 二项式展开后的多项式中的各项次数之和为n。
4. 二项式的应用二项式在数学中有广泛的应用。
以下是一些常见的应用场景:- 概率计算:二项式系数可以用于计算二项分布的概率。
- 代数运算:二项式的展开可以应用于多项式的乘法运算。
- 公式推导:二项式展开后的多项式可以推导出各种数学公式,如二次方程的求根公式等。
- 组合数学:二项式系数在组合数学中有着重要的地位,用于解决组合问题。
总结:高二数学选修2-3中的二项式知识点包括了二项式的定义、展开、性质以及应用等内容。
掌握了这些知识,可以为学生在数学或其他相关领域的学习中提供帮助,并广泛应用于实际问题的解决中。
高中数学选修2-3知识点、考点、附典型例题
高中数学 选修2-3知识点第一章 计数原理知识点:1、分类加法计数原理:做一件事情,完成它有N 类办法,在第一类办法中有M 1种不同的方法,在第二类办法中有M 2种不同的方法,……,在第N 类办法中有M N 种不同的方法,那么完成这件事情共有M 1+M 2+……+M N 种不同的方法。
2、分步乘法计数原理:做一件事,完成它需要分成N 个步骤,做第一 步有m1种不同的方法,做第二步有M 2不同的方法,……,做第N 步有M N 不同的方法.那么完成这件事共有 N=M 1M 2...M N 种不同的方法。
3、排列:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列4、排列数:从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示。
),,()!(!)1()1(N m n n m m n n m n n n A m ∈≤-=+--= 5、公式:11--=m n m n nA A6、组合:从n 个不同的元素中任取m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合。
7、公式:)!(!!!)1()1(m n m n C m m n n n A A C m nm mm n mn-=+--== )!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -=+--==;mn n m n C C -=m n m n m n C C C 11+-=+8、二项式定理:()a b C a C a b C a b C a b C b n n n n n n n n r n r r n n n+=++++++---011222…… 9、二项式通项公式展开式的通项公式:,……T C a b r n r nr n r r+-==101() 考点:1、排列组合的运用2、二项式定理的应用m n A第二章 随机变量及其分布知识点:1、随机变量:如果随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母 ξ、η等表示。
高中数学选修2-3数列和数学归纳法的应用总结。
高中数学选修2-3数列和数学归纳法的应用总结。
高中数学选修2-3数列和数学归纳法的应用总结引言数学归纳法是数学中一种重要的证明方法,它在解决数列问题中具有广泛的应用。
本文主要总结了高中数学选修2-3中数列和数学归纳法的应用。
数列的概念数列是按照一定规律排列的一组数,其中每个数叫作数列的项。
数列可以分为等差数列、等比数列等。
- 等差数列:数列中相邻的两项之差恒定。
- 等比数列:数列中相邻的两项之比恒定。
数列的性质数列中的项具有一定的性质,包括:- 通项公式:通过找出数列中的规律,可以得到一个用自变量表示的一般公式。
- 前n项和公式:可以通过求前n项的和,进一步研究数列的性质和规律。
数学归纳法的基本思想数学归纳法通过证明两个命题成立来推断第n+1个命题成立的方法。
数学归纳法的基本思想可以概括为以下三步:1. 证明当n=1时命题成立。
2. 假设当n=k时命题成立。
3. 证明当n=k+1时命题也成立。
数学归纳法的应用数学归纳法在数列问题中的应用广泛,主要包括:- 证明数列的通项公式:通过利用归纳法可以推导出数列的通项公式,从而方便计算和研究数列的性质。
- 证明数列的前n项和公式:通过数学归纳法可以得到数列的前n项和公式,进一步研究数列的性质和规律。
结论数学归纳法是解决数列问题中常用的证明方法,通过归纳法可以得到数列的通项公式和前n项和公式,进一步研究数列的性质和规律。
在高中数学选修2-3中,数列和数学归纳法的应用是重要的内容,通过学习数列和数学归纳法,可以提高我们解决数学问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章概率总结一、知识结构二、知识点1.随机试验的特点:①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.2.分类随机变量(如果随机试验可能出现的结果可以用一个变量X来表示,并且X是随着试验的结果的不同而变化,那么这样的变量叫做随机变量.随机变量常用大写字母X、Y等或希腊字母ξ、η等表示。
)离散型随机变量在上面的射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.连续型随机变量对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量.连续型随机变量的结果不可以一一列出.3.离散型随机变量的分布列一般的,设离散型随机变量X可能取的值为x1,x2, ,xi, ,xnX取每一个值 xi(i=1,2, )的概率P(ξ=xi )=Pi,则称表为离散型随机变量X 的概率分布,简称分布列性质:① pi≥0, i =1,2,…;② p1 + p2+…+pn= 1.③一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和。
4.求离散型随机变量分布列的解题步骤例题:篮球运动员在比赛中每次罚球命中得1分,不中得0分,已知某运动员罚球命中的概率为0.7,求他罚球一次的得分的分布列.解:用随机变量X表示“每次罚球得的分值”,依题可知,X可能的取值为:1,0且P(X=1)=0.7,P(X=0)=0.3因此所求分布列为:引出二点分布如果随机变量X的分布列为:其中0<p<1,q=1-p,则称离散型随机变量X服从参数p的二点分布二点分布的应用:如抽取彩票是否中奖问题、新生婴儿的性别问题等.超几何分布一般地, 设总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n(n ≤N)件,这n 件中所含这类物品件数X 是一个离散型随机变量,则它取值为k 时的概率为()(0,1,2,,)k n k M N MnNC C P X k k m C --===L ,其中{}min ,m M n =,且*,,,,n N M N n M N N ∈≤≤ 则称随机变量X 的分布列为超几何分布列,且称随机变量X 服从参数N 、M 、n 的超几何分布注意:(1)超几何分布的模型是不放回抽样;(2)超几何分布中的参数是N 、M 、n ,其意义分别是总体中的个体总数、N 中一类的总数、样本容量解题步骤:例题、在某年级的联欢会上设计了一个摸奖游戏,在一个口袋中装有10个红球和20个白球,这些球除颜色外完全相同.游戏者一次从中摸出5个球.至少摸到3个红球就中奖,求中奖的概率解:设摸出红球的个数为X,则X 服从超几何分布,其中30,10,5N M n === X 可能的取值为0,1,2,3,4, 5. 由题目可知,至少摸到3个红球的概率为(3)(3)(4)(5)P X P X P X P X ==+=+=≥324150102010201020555303030C C C C C C C C C =++ ≈0.191答:中奖概率为0.191.nNn MN MCC C -0nNn MN MCC C 11--nNm n MN m MCC C --条件概率1.定义:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率,叫做条件概率.P(B|A),读作A 发生的条件下B 的概率2.事件的交(积):由事件A 和事件B 同时发生所构成的事件D ,称为事件A 与事件B 的交(或积作D=A ∩B 或D=AB3.条件概率计算公式:P(B|A)相当于把A 看作新的基本事件空间,求A∩B发生的概率:解题步骤:例题、10个产品中有7个正品、3个次品,从中不放回地抽取两个,已知第一个取到次品,求第二取到次品的概率.解:设 A = {第一个取到次品}, B = {第二个取到次品},所以,P(B|A) = P(AB) / P(A)= 2/9 答:第二个又取到次品的概率为2/9..0)(,)()()|(>=A P A P AB P A B P .1)|(0)()|()(0)A (P ≤≤⋅=>A B P A P A B P AB P (乘法公式);,则若.151)(21023==⇒C C AB P .103)(=A P相互独立事件1.定义:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立2.相互独立事件同时发生的概率公式两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。
则有如果事件A1,A2,…An 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积。
即:P (A1·A2·…·An )=P (A1)·P (A2)·…·P(An)3.两事件是否互为独立事件的判断与证明4.解题步骤例题、一袋中有2个白球,2个黑球,做一次不放回抽样试验,从袋中连取2个球,观察球的颜色情况,记“第一个取出的是白球”为事件A ,“第二个取出的是白球”为事件B,试问A 与B 是不是相互独立事件?答:不是,因为件A 发生时(即第一个取到白球),事件B 的概率P (B )=1/3,而当事件A 不发 生时(即第一个取到的是黑球),事件B 发生的概率P (B )=2/3,也就是说,事件A 发生与否影响到事件B 发生的概率,所以A 与B 不是相互独立事件。
证明:由题可知, P(B|A) =1/3,P(B|A 的补集)=2/3因为 P(B|A)≠P(B|A 的补集) 所以 A 与B 不是相互独立事件则称A ,B 相互独立 )()()(B P A P AB P =)()()(B P A P B A P ⋅=⋅独立重复试验1.定义:在同等条件下进行的,各次之间相互独立的一种试验2.说明:①这种试验中,每一次试验只有两种结果,即某事件要么发生,要么不发生,并且任何一次试验中的概率都是一样的②每次试验是在同样条件下进行;③每次试验间又是相互独立的,互不影响.前提二项分布1.引入:一般地,如果在1次实验中某事件A 发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是P(A Pn(k)是[(1-P)+P]n 的通项公式,所以也把上式叫做二项分布公式.2.二项分布定义:设在n 次独立重复试验中某个事件A 发生的次数,A 发生次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是p ,事件A 不发生的概率为q=1-p ,那么在n 次独立重复试验中)(k P =ξk n k k n q p C -=(其中 k=0,1, ,n ,q=1-p )于是可得随机变量ξ的概率分布如下:由于kn k k nqp C -恰好是二项展开式b C b a C b a C a C b a nn nrrn rn n n nn n+++++=--+ΛΛ111)(中的第 k+1 项,所以,称这样的随机变量ξ服从二项分布,记作ξ~B(n ,p) ,其中n ,p 为参数, 并记:kn k k n q p C -),;(p n k B =k n k k n n p p C k P --=)1()(nn qp C 00111-n n qp Ckn k k n qp C -qp C n n n3.解题步骤例题、某厂生产电子元件,其产品的次品率为5%.现从一批产品中任意地连续取出2件,写出其中次品数ξ的概率分布. 解:依题意,随机变量ξ~B(2,5%).∴P(ξ=0)= (95%)2=0.9025,P(ξ=1)= (5%)(95%)=0.095, P(ξ=2)= (5%)2=0.0025.因此,次品数ξ的概率分布是几何分布1.定义:在独立重复试验中,某事件A 第一次发生时所作的试验次数ξ也是一个取值为正整数的随机变量。
“ξ =k ”表示在第k 次独立重复试验时事件A 第一次发生。
如果把第k 次实验时事件A 发生记为Ak , p( Ak)=p ,事件A 不发生记为 ,P( )=q(q=1-p),那么p q p p A P A P A P A P A P A A A A A P k P k k k K k K ⋅=⋅-=⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅==----1113211321)1()()()()()()()(ξ(k=0,1,2…,q=1-p.)于是得到随机变量ξ的概率分布如下:称ξ服从几何分布,并记g(k,p)=p ·qk-112C22C 02C ξ 0 1 2 P0.90250.0950.0025k A kA ξ 1 2 3 … k …P p pqpq2 … pqk-1 …离散型随机变量的期望和方差一般地,若离散型随机变量ξ的概率分布为则称 E ξ=x1p1+x2p2+…+xnpn +… 为ξ的数学期望或平均数、均值,数学期望又简称为期望.是离散型随机变量 说明:(1)数学期望的一个特征数,它反映了离散型随机变量取值的平均水平 (2)一般地,在有限取值离散型随机变量ξ的概率分布中,令p1=p2=…=pn ,则有p1=p2=…=pn = ,E ξ=(x1+x2+…+xn) ,所以ξ的数学期望又称为平均数、均值(3)随机变量的数学期望与样本的平均值的关系:前者是常数,不依赖样本抽取;后者是一个随机变量.D ξ=(x 1-E ξ)2·P 1+ (x 2-E ξ)2·P 2 + … + (x n -E ξ)2·Pn + … 叫随机变量ξ的均方差,简称方差。
说明:①、D ξ的算术平方根√D ξ—— 随机变量ξ的标准差,记作σξ; ②、标准差与随机变量的单位相同;③、随机变量的方差与标准差都反映了随机变量取值的稳定与波动,集中与分散的程度。
集中分布的期望与方差一览期望方差两点分布 E ξ=pD ξ=pq ,q=1-p超几何分布的超几何分布服从参数为n ,M ,N ξNMn ⋅=ξED (X )=np (1-p )* (N-n )/(N-1)不要求二项分布ξ ~ B (n,p ) E ξ=np D ξ=qE ξ=npq ,q=1-p几何分布p(ξ=k)=g(k ,p)1/p2p q D =ξ =E(ξ-E ξ)2=E ξ2—(E ξ正态分布连续型随机变量若数据无限增多且组距无限缩小,那么频率分布直方图的顶边缩小乃至形成一条光滑的曲线,我们称此曲线为概率密度曲线.概率密度曲线的形状特征:中间高,两头低正态分布若概率密度曲线就是或近似地是函数),(,21)(222)(+∞-∞∈=--x e x f x σμσπ的图像,其中解析式中的实数μ、)0(>σσ是参数,分别表示总体的平均数与标准差. 则其分布叫正态分布,记作f( x )的图象称为正态曲线2,σξμξ==D E=),(2σμN。