最新公因数和公倍数练习题(1)
最大公因数和最小公倍数练习题1
最大公因数和最小公倍数小练习一、写出下列各数的最大公因数和最小公倍数(1) 4和6的最大公因数是;最大公倍数是;(2) 9和3的最大公因数是;最大公倍数是;(3) 9和18的最大公因数是;最大公倍数是;(4) 11和44的最大公因数是;最大公倍数是;(5) 8和11的最大公因数是;最大公倍数是;(6) 1和9的最大公因数是;最大公倍数是;(7) 已知A=2×2×3×5,B=2×3×7,那么A、B的最大公因数是;最小公倍数是;(8)已知A=2×3×5×5,B=3×5×5×11,那么A、B的最大公因数是;最小公倍数是。
1.在17、18、15、20和30五个数中,能被2整除的数是();能被3整除的数是();能被5整除的数是();能同时被2、3整除的数是();能同时被3、5整除的数是();能同时被2、5整除的数是();能同时被2、3、5整除的数是()。
2.在20以内的质数中,()加上2还是质数。
3.如果有两个质数的和等于24,可以是()+(),()+()或()+()。
4.把330分解质因数是()。
5.一个能同时被2、3、5整除的三位数,百位上的数比十位上的数大9,这个数是()。
6.在50以内的自然数中,最大的质数是(),最小的合数是()。
7.既是质数又是奇数的最小的一位数是()。
二、判断题1.两个质数相乘的积还是质数。
()2.成为互质数的两个数,必须都是质数。
()3.任何一个自然数,它的最大约数和最小倍数都是它本身。
()4.一个合数至少得有三个约数。
()5.在自然数列中,除2以外,所有的偶数都是合数。
()是36与48的最大公约数。
()三、选择题的最大约数是(),最小倍数是()。
①1 ②3 ③5 ④152.在14=2×7中,2和7都是14的()。
①质数②因数③质因数3.有一个数,它既是12的倍数,又是12的约数,这个数是()。
公因数与公倍数专项练习.docx
公因数与公倍数专项练习一、填空:1、如果自然数A除以自然数B商是17,那么A与B的最大公约数是(倍数是(3、能被5. 7、16整除的最小自然数是(5、在1、2. 3、9、24. 41 和51 中,奇数是(一个合数的质因数是10以内所有的质数,这个合数是(12.把171分解质因数是(最小公2、最小质数与最小合数的最大公约数是(),最小公倍数是(4、24和乩()的约数,()的倍数。
合数是()是奇数但不是质数,()是偶数但不是合数。
6、一个数的最小倍数是12,这个数有()个约数。
7、21的所有约数是(),21的全部质因数有(9、a=2ab ,b=2bc, a. b两数的最大公约数是(最小公倍数是(10、a与b是互质数,它们的最大公约数是(),它们的最小公倍数是(1K 20以内,既是偶数又是质数的数是(),是奇数但不是质数的数是(13、5和12的最小公倍数减去()就等于它们的最大公约数。
91和13的最小公倍数是它们最大公约数的()倍。
14、已知两个互质数的最小公倍数是153,这两个互质数是(15、甲t=2 x 3 x 5 x 7,乙数=2x3x11,甲乙两数的最大公约数是(),最小公倍数16. 3个连续自然数的最小公倍数是60,这三个数是(17.被2、3、5除,结果都余1的最小整数是(),最小三位整数是(18、一筐苹果4个4个拿,6个6个拿,或者8个8个拿都正好拿完,这筐苹果最少有()。
19、三个连续偶数的和是42,这三个数的最大公约数是()。
20、三个不同质数的最小公倍数是105,这三个质数是()、()和()。
21、自然数m和n, n=m+l, m和ri的最大公约数是(),最小公倍数是()。
22、把自然数a与b分解质因数,得到a=2 x 5 x 7 x m, b=3 x 5 x m ,如果a与b的最小公倍数是2730,那么m=()。
23、甲、乙两数的最大公约数是3,最小公倍数是30,已知甲数是6,乙数是()。
公倍数和公因数的应用题
10 道公倍数和公因数的应用题题目一:有一张长48 厘米、宽36 厘米的长方形纸,如果要剪成若干同样大小的正方形而没有剩余,剪出的小正方形的边长最大是多少厘米?解析:求剪出的小正方形的边长最大是多少厘米,就是求48 和36 的最大公因数。
48 的因数有1、2、3、4、6、8、12、16、24、48;36 的因数有1、2、3、4、6、9、12、18、36。
它们的公因数有1、2、3、4、6、12,其中最大公因数是12。
所以剪出的小正方形的边长最大是12 厘米。
题目二:把两根分别长24 分米和30 分米的木料锯成若干相等的小段而没有剩余,每段最长是多少分米?解析:求每段最长是多少分米,就是求24 和30 的最大公因数。
24 的因数有1、2、3、4、6、8、12、24;30 的因数有1、2、3、5、6、10、15、30。
它们的公因数有1、2、3、6,其中最大公因数是6。
所以每段最长是 6 分米。
题目三:用96 朵红花和72 朵黄花做成花束,如果每个花束里的红花同样多,黄花也同样多。
那么最多能做几束花?每束花里有几朵红花和几朵黄花?解析:求最多能做几束花,就是求96 和72 的最大公因数。
96 的因数有1、2、3、4、6、8、12、16、24、32、48、96;72 的因数有1、2、3、4、6、8、9、12、18、24、36、72。
它们的公因数有1、2、3、4、6、8、12、24,其中最大公因数是24。
所以最多能做24 束花。
96÷24 = 4(朵),72÷24 = 3(朵),每束花里有4 朵红花和 3 朵黄花。
题目四:有一批图书,总数在1000 本以内。
若按24 本包成一捆,最后一捆差 2 本;若按28 本包成一捆,最后一捆还是差 2 本;若按32 本包成一捆,最后一捆是30 本。
这批图书有多少本?解析:由题意可知,这批图书的数量加上 2 本后,就是24、28、32 的公倍数。
24 的倍数有24、48、72、96、120、144、168、192、216、240、264、288、312、336、360、384、408、432、456、480、504、528、552、576、600、624、648、672、696、720、744、768、792、816、840、864、888、912、936、960、984;28 的倍数有28、56、84、112、140、168、196、224、252、280、308、336、364、392、420、448、476、504、532、560、588、616、644、672、700、728、756、784、812、840、868、896、924、952、980;32 的倍数有32、64、96、128、160、192、224、256、288、320、352、384、416、448、480、512、544、576、608、640、672、704、736、768、800、832、864、896、928、960、992。
五年级最大公因数与最小公倍数
一、填空(1)用 12个边长是 1cm 的小正方形摆一个长方形,你会几种摆法?①可以摆成长是 ( )厘米,宽是 ( ) 厘米的长方形,即 ( ) ×( )=12。
②可以摆成长是 ( )厘米,宽是 ( )厘米的长方形,即 ( ) ×( ) =12。
③可以摆成长是 ( )厘米,宽是 ( ) 厘米的长方形,即 ( )×( ) =12。
以上所填的都是 12的 ( ) , 12是这些数的 ( )。
(2)如果 a ×b =c (a、 b 、 c 是不为 0的整数 ) ,那么, c 是( )和( ) 的倍数, a 和 b 是 c 的( )如果 A、B 是两个整数(B ≠ 0) ,且 A ÷B =2,那么 A 是 B 的( ) ,B 是 A 的( ) 。
(3)在 1、 6、 7、 12、 14、 49这六个数中,是 7的倍数的数有 ( )(4) 12的因数有 ( ) ,4的倍数有( ) (从小到大写 5个 ) ,一个数的倍数的个数是 ( )(5)在 1, 2, 3, 6, 9, 12, 15, 24中, 6的因数有( ) , 6的倍数有( )(6)一个数,它的倍数的个数是 ( )个,其中最小的一个因数是( ) ,最大的一个因数是( ) 。
(7) 5的因数有 ( ) , 5的倍数有 ( )(写 5个) , 5既是 5的 ( ) ,又是 5的( ) 。
二、判断(1)一个数的因数的个数是无限的,而倍数的个数是有限的 ( )(2)因为 7×8=56,所以 56是倍数, 7和 8是因数 ( )(3) 14比 12大,所以 14的因数比 12的因数多 ( )(4) 1是 1, 2, 3, 4, 5…的因数 ( )(5)一个数的最小因数是 1,最大因数是它本身。
( )(6)一个数的最小倍数是它本身 ( )(7) 12是 4的倍数, 8是 4的倍数, 12与 8的和也是 4的倍数。
最大公因数和最小公倍数练习题(专项练习)
最大公因数和最小公倍数练习题姓名:成绩一. 填空题。
1. A与B的最小公倍数是10,那么它们的下一个公倍数应该是()。
2、所有自然数的公因数为()。
3、a和b都是自然数,如果a是b的倍数,那么他们的最大公因数是(),最小公倍数是()。
4. 如果m和n是互质数,那么它们的最大公因数是(),最小公倍数是()。
5. 在4、9、10和16这四个数中,()和()是互质数,()和()是互质数,()和()是互质数。
6. 分母是15的最简真分数一共有( )个。
三. 在左边写出每组数的最大公约数,右边写最小公倍数。
()26和13()()13和6()()4和6()()5和9()()29和87()()30和15()()13、26和52()()2、3和7()四. 用短除法求下面每组数的最大公因数和最小公倍数。
(注意格式完整)45和60 36和60 27和72 72和80五、生活中的应用(注意分清楚是与最大公因数有关还是与最小公倍数有关)1、五年级(1)同学参加植树活动,如果8人一组或14人一组,正好分配完,五年级最少有多少人?2、五年级某班学生在40—50人间,如果分成2人一组、5人一组、4人一组都恰好分完,这个班有多少人?3、两条钢条,一根长18米,一根长24米,要把它们截成同样长的小段,每段最长可以有几米?一共截成多少段?4、7路车每5分钟发一班车,12路车每8分钟发,这两路车同时出发后,至少再经过多少分钟后又同时发车?5、有饼干27千克、糖18千克,这些物品都刚好能平均分给一些小朋友,最多可以分给几个小朋友?6、两个连续自然数的和是21,这两个数的最大公因数是(),最小公倍数是()。
7.为美化市容市貌,市政府决定对某地区进行整改,有一排电线杆,相邻两根电线杆之间的距离是45米,现在要改成相距都是60米,且起点那根电线杆不动。
从起点开始到第一根不需移动的电线杆之间的距离是多少米?*六. 动脑筋,想一想:*1某数除以3、5、7时都余1,这个数最小是()。
公倍数公因数练习题
五年级下册第三单元《公倍数和公因数》同步练习一、填空。
1. 18的因数有(),24的因数(),18和24的公因数数有(),12和8的最大公因数是()。
2. 两个连续偶数的和是30,它们的最大公因数是()3. 所有自然数的公因数是()4. 所有素数的最大公因数是(),所有偶数(除0外)的最大公因数是()。
5.两个数的最大公因数是12,它们的公因数有()。
6.一个数的最大因数是a,它的最小倍数是()。
7.如果a=2×3×7,b=2×3×5,那么a和b的最大公因数是()8.如果a和b是不为0的自然数,并且a=b+1,那么a和b的最大公因数是()。
9. 按要求写出两个数,使它们的最大公因数是1.两个都是合数()两个都是质数()一个质数和一个合数()一个奇数和一个偶数()10.写出最大公因数是5的两组数()和()。
二、判断。
1. 所有自然数(0除外)的最大公因数是1. ()2. a÷b=3,a和b的最大公因数3. ()3.任意两个相邻的偶数(0除外)的最大公因数都是2. ()4.一个数如果是偶数,它一定是2的倍数。
()5. 两个素数没有最大公因数。
()6.最小的质数和最小的合数的最大公因数是1. ()7.两个数的最大公因数一定比这两个数小。
()8. 7和13没有公因数。
()9.A=2×3×m,B=2×5×m(m是自然数且m≠0),如果A、B的最大公因数是14,m=7. ()10.两个数的公因数的个数是有限。
()三、求下面每组数的最小公倍数20和30 13和8 10和15 6和2715和18 8和12 5和10 16和817和51 52和4 15和60 18和728和9 45和54 28和70 9和1524和28 18和24 14和21 12和1024和36 27和72 22和99 65和9117和68 45和81 32和8 3和2916和20 34和17 51和34 26和39四、解决问题。
公因数公倍数练习题
公因数公倍数练习题今天,我们来回顾一下关于公因数和公倍数的练习题。
通过这些练习题,我们可以提高自己在找到数的公因数和公倍数方面的能力。
让我们开始吧!练习一:找出给定的数的公因数和公倍数。
1. 找出6和8的公因数和公倍数。
解析:首先我们列出6的因数:1,2,3,6;再列出8的因数:1,2,4,8。
很明显,6和8的公因数是1和2,公倍数是24。
2. 找出9和15的公因数和公倍数。
解析:列出9的因数:1,3,9;列出15的因数:1,3,5,15。
因此,9和15的公因数是1和3,公倍数是45。
3. 找出12和20的公因数和公倍数。
解析:列出12的因数:1,2,3,4,6,12;列出20的因数:1,2,4,5,10,20。
因此,12和20的公因数是1,2和4,公倍数是60。
练习二:根据给定的公因数或公倍数,找出可能的数。
1. 如果一个数有因数2和3,这个数可能是多少?解析:这个数可以是最小的公倍数,即2 × 3 = 6。
2. 如果一个数有因数4和6,这个数可能是多少?解析:这个数可以是8,因为8的因数有1,2,4,8,并且8也是4和6的公倍数。
3. 如果一个数有公倍数24和36,这个数可能是多少?解析:这个数可以是最大的公因数,即24的36倍,即864。
练习三:问题解决。
1. 小明有三个球,其中两个球的直径是10cm,另一个球的直径是15cm。
他希望把这三个球放在一个箱子里,这个箱子的内部高度是一个正整数。
那么,小明最小需要找到一个什么样的高度才能把这三个球都放进去?解析:我们需要找到这三个直径的最小公倍数,然后将其除以2,即可得到所需的箱子内部高度。
对于这个问题,最小公倍数为30cm,所以小明最小需要找到一个15cm高的箱子来放这三个球。
2. 小明有一些小黄花,他想把它们排成一排。
他发现,每5朵小黄花就能摆成一圈,每7朵小黄花就能摆成一圈,不过每12朵小黄花就能摆成两圈。
那么,小明最少有多少朵小黄花?解析:我们需要找到这三个数的最小公倍数,然后才能确定最少需要多少朵小黄花。
最大公因数和最小公倍数练习题
最大公因数和最小公倍数练习题
题目一
已知两个整数的最大公因数是12,且其中一个整数是36,求另一个整数是多少?
题目二
求下列整数的最大公因数和最小公倍数:
1. 12和18
2. 15和25
3. 24和36
题目三
已知两个整数的最小公倍数是60,且其中一个整数是20,求另一个整数是多少?
题目四
求下列整数的最大公因数和最小公倍数:
1. 30和45
2. 40和60
3. 72和96
题目五
已知两个整数的最大公因数是8,且其中一个整数是24,求另一个整数是多少?
题目六
求下列整数的最大公因数和最小公倍数:
1. 16和20
2. 27和36
3. 48和64
答案
1. 题目一的答案是24。
2. 下列整数的最大公因数和最小公倍数分别是:- 12和18:最大公因数为6,最小公倍数为36。
- 15和25:最大公因数为5,最小公倍数为75。
- 24和36:最大公因数为12,最小公倍数为72。
3. 题目三的答案是60。
4. 下列整数的最大公因数和最小公倍数分别是:- 30和45:最大公因数为15,最小公倍数为90。
- 40和60:最大公因数为20,最小公倍数为120。
- 72和96:最大公因数为24,最小公倍数为288。
5. 题目五的答案是12。
6. 下列整数的最大公因数和最小公倍数分别是:- 16和20:最大公因数为4,最小公倍数为80。
- 27和36:最大公因数为9,最小公倍数为108。
- 48和64:最大公因数为16,最小公倍数为192。
最大公因数与最小公倍数练习题(解题方法)
最大公因数与最小公倍数练习题(解题方法)引言最大公因数和最小公倍数是数学中常见的概念,在解题过程中需要掌握它们的计算方法。
本文将给出一些练题,并提供解题方法。
练题1. 求下列两个数的最大公因数和最小公倍数:a) 12和18b) 24和36c) 15和252. 求下列两个数的最大公因数和最小公倍数:a) 42和56b) 60和84c) 72和1083. 通过因数分解法求解下列两个数的最大公因数和最小公倍数:a) 36和48b) 54和72c) 90和120解题方法1. 方法一:列举法首先,列举出两个数的所有因数,然后找出它们的共同因数,最大公因数即为共同因数中的最大值,最小公倍数即为两个数的乘积除以最大公因数。
2. 方法二:因数分解法先将两个数进行因数分解,然后找出它们的所有公因数,最大公因数即为公因数中的最大值,最小公倍数即为两个数的乘积除以最大公因数。
答案1. 求下列两个数的最大公因数和最小公倍数:a) 12和18- 最大公因数:6- 最小公倍数:36b) 24和36- 最大公因数:12- 最小公倍数:72c) 15和25- 最大公因数:5- 最小公倍数:752. 求下列两个数的最大公因数和最小公倍数:a) 42和56- 最大公因数:14- 最小公倍数:168b) 60和84- 最大公因数:12- 最小公倍数:420c) 72和108- 最大公因数:36- 最小公倍数:2163. 通过因数分解法求解下列两个数的最大公因数和最小公倍数:a) 36和48- 最大公因数:12- 最小公倍数:144b) 54和72- 最大公因数:18- 最小公倍数:216c) 90和120- 最大公因数:30- 最小公倍数:360结论通过练题中的解题方法,我们可以求出两个数的最大公因数和最小公倍数。
这些概念在数学中具有重要的作用,并在实际问题中起到指导作用。
最新最大公因数与最小公倍数练习1含答案
最大公因数与最小公倍数练习1含答案------------------------------------------作者xxxx------------------------------------------日期xxxx最大公因数与最小公倍数(练习1)1. 求下列每组数的最大公因数12和32 18和24 146和152 12和8和14(12,32)=4 (18,24)=6 (146,152)=2(12,8,14)=22. 求下列各组数的最小公倍数24和48 6和7 8和9 24和32 84和56 []=487,642 []729,8= ,2448 []=[]9656,84=24=[]168,323. 五年级2班运动会时进行方阵表演,在排练时变化队形的过程中,每排5人或6人都能形成长方形方阵,方阵前有一名领操员,则六年级二班参加表演的最少为多少人?[]306,5=(人)4. 一个数既能被5整除,也能被8整除,这个数最小为多少?[5,8]=405. 甲数是36,甲乙两数的最小公倍数是252,最大公因数是4,则乙数为多少?252×4÷36=286.把1米3分米5厘米长、1米5厘米宽的长方形纸,裁成同样大小的正方形,至少能裁多少块?1米3分米5厘米长=135厘米1米5厘米=105厘米(135,105)=15(厘米)135×105÷(15×15)=63(个)或7×9=63(个)7.一块长45厘米、宽30厘米的长方形木板,把它锯成若干块正方形而无剩余,所锯成的正方形的边长最长是多少厘米?(45,30)=15(厘米)8.将一块长80米、宽60米的长方形土地划分成面积相等的小正方形,小正方形的面积最大是多少?(80,60)=20(米)20×20=400(平方厘米)。
最大公因数和最小公倍数练习题(1)
最大公因数和最小公倍数练习题(1)最大公因数和最小公倍数是数学中常见的概念。
下面分别介绍几个例子。
例1:有三根铁丝,长度分别为18米、24米和30米。
现在要把它们截成同样长的小段,每段最长可以有多少米?一共可以截成多少段?解:首先求出它们的最大公因数,即6米。
然后分别将每根铁丝截成6米长的小段,可以得到每根铁丝可以截成3、4、5段。
因此,一共可以截成12段。
例2:一张长方形纸,长60厘米,宽36厘米,要把它截成同样大小的长方形,并使它们的面积尽可能大,截完后又正好没有剩余,正方形的边长可以是多少厘米?能截多少个正方形?解:首先求出它的最大公因数,即12厘米。
然后将长方形纸分别截成12厘米长和12厘米宽的小长方形,可以得到每个小长方形的面积是432平方厘米。
因此,正方形的边长为12厘米,能截成15个正方形。
例3:用96朵红玫瑰花和72朵白玫瑰花做花束。
若每个花束里的红玫瑰花的朵数相同,白玫瑰花的朵数也相同,最多可以做多少个花束?每个花束里至少要有几朵花?解:首先求出它们的最大公因数,即24朵花。
然后将红玫瑰花和白玫瑰花分别每24朵一束,可以得到最多可以做4个花束。
每个花束里至少要有4朵红玫瑰花和3朵白玫瑰花。
例4:公共汽车站有三路汽车通往不同的地方。
第一路车每隔5分钟发车一次,第二路车每隔10分钟发车一次,第三路车每隔6分钟发车一次。
三路汽车在同一时间发车以后,最少过多少分钟再同时发车?解:首先求出它们的最小公倍数,即300分钟。
然后分别计算每路车需要等待的时间,第一路车需要等待295分钟,第二路车需要等待290分钟,第三路车需要等待294分钟。
因此,三路汽车最少需要过290分钟再同时发车。
例5:某厂加工一种零件要经过三道工序。
第一道工序每个工人每小时可完成3个;第二道工序每个工人每小时可完成12个;第三道工序每个工人每小时可完成5个。
要使流水线能正常生产,各道工序每小时至少安排几个工人最合理?解:首先分别求出每个工序的最小公倍数,分别为60、12和15.然后分别计算每个工序需要多少个工人,第一道工序需要至少20个工人,第二道工序需要至少5个工人,第三道工序需要至少4个工人。
五年级公因数和公倍数的题120道
五年级公因数和公倍数的题120道一、公因数相关题目(60道,先20道带解析)1. 求12和18的最大公因数。
- 解析:分别列出12和18的因数。
12的因数有1、2、3、4、6、12;18的因数有1、2、3、6、9、18。
它们共有的因数有1、2、3、6,其中最大的是6,所以12和18的最大公因数是6。
2. 求24和36的最大公因数。
- 解析:24的因数有1、2、3、4、6、8、12、24;36的因数有1、2、3、4、6、9、12、18、36。
共有的因数为1、2、3、4、6、12,最大公因数是12。
3. 求15和25的最大公因数。
- 解析:15的因数是1、3、5、15,25的因数是1、5、25。
它们的公因数有1和5,最大公因数是5。
4. 求8和12的最大公因数。
- 解析:8的因数有1、2、4、8,12的因数有1、2、3、4、6、12。
共有的因数为1、2、4,最大公因数是4。
5. 求20和30的最大公因数。
- 解析:20的因数有1、2、4、5、10、20,30的因数有1、2、3、5、6、10、15、30。
公因数有1、2、5、10,最大公因数是10。
6. 求16和24的最大公因数。
- 解析:16的因数有1、2、4、8、16,24的因数有1、2、3、4、6、8、12、24。
共有的因数为1、2、4、8,最大公因数是8。
7. 求9和15的最大公因数。
- 解析:9的因数有1、3、9,15的因数有1、3、5、15。
公因数为1和3,最大公因数是3。
8. 求14和21的最大公因数。
- 解析:14的因数有1、2、7、14,21的因数有1、3、7、21。
共有的因数为1、7,最大公因数是7。
9. 求28和42的最大公因数。
- 解析:28的因数有1、2、4、7、14、28,42的因数有1、2、3、6、7、14、21、42。
公因数有1、2、7、14,最大公因数是14。
10. 求10和15的最大公因数。
- 解析:10的因数有1、2、5、10,15的因数有1、3、5、15。
最大公因数、最小公倍数练习题
一、填空:1、如果自然数A除以自然数B商是17,那么A与B的最大公因数是(),最小公倍数是()。
2、最小质数与最小合数的最大公因数是(),最小公倍数是()。
3、能被5、7、16整除的最小自然数是()。
4、(1)(7、8)最大公因数(),最小公倍数()(2)(25,15)最大公因数(),最小公倍数()(3)(140,35)最大公因数()最小公倍数()(4)(24,36)最大公因数()最小公倍数()(5)(3,4,5)最大公因数()最小公倍数()(6)(4,8,16)最大公因数()最小公倍数()5、5和12的最小公倍数减去()就等于它们的最大公因数。
91和13的最小公倍数是它们最大公因数的()倍。
6、已知两个互质数的最小公倍数是153,这两个互质数是()和()。
7、甲数=2×3×5×7,乙数=2×3×11,甲乙两数的最大公因数是(),最小公倍数是()。
8、3个连续自然数的最小公倍数是60,这三个数是()、()和()。
9、被2、3、5除,结果都余1的最小整数是(),最小三位整数是()。
10、一筐苹果4个4个拿,6个6个拿,或者8个8个拿都正好拿完,这筐苹果最少有()个。
11、三个连续偶数的和是42,这三个数的最大公因数是()。
12、三个不同质数的最小公倍数是105,这三个质数是()、()和()。
13、自然数m和n,n= m+1,m和n的最大公因数是(),最小公倍数是()。
14、把自然数a与b分解质因数,得到a=2×5×7×m,b=3×5×m,如果a与b 的最小公倍数是2730,那么m =()。
15、(273,231,117)最大公因数(),[273,231,117]最小公倍数()16、三个数的和是312,这三个数分别能被7、8、9整除,而且商相同。
这三个数分别是()、()和()。
17、已知(A,40)=8,[A,40]=80,那么A=()。
(完整版)最大公因数和最小公倍数练习题
最大公因数相关练习题一、按照要求在下面的圈里填数,再找出它们的最大公因数。
12的因数 18的因数12和18的公因数12和18的最大公因数是:。
二、求下面各组数的最大公因数。
】15和18 36和12 45和60 64和72三、在括号里填上一个数,使它与前面的数成为互质数。
24和()13和()2和()5和()四、判断题。
(1)如果两个数互质,它们没有公因数。
()(2)两个不同的质数一定是互质数。
()(3)两个合数一定不是互质数。
()五、先把36和60分解质因数,再回答问题。
36= 60=36和60公有的质因数有:。
36和60的最大公因数是:。
六、生活中的数学。
有三根木棒,分别长12cm、44cm、56cm。
要把它们都截成同样长的小棒(不许剩余),每根小棒最长有多少厘米?七、数学智慧园。
三个质数,它们的乘积是1001.这三个质数各是多少?八、有一个长方体,长70cm,宽50cm,高45cm。
如果要切成同样大的小正方体,那么这些小正方体的棱长最大可以是多少厘米?最小公倍数相关练习题一、选择题1.4和9是().A.质数B.奇数C.互质数D.质因数2.两个数的()的个数是无限的.A.最大公约数B.最小公倍数C.公约数D.公倍数3.互质的两个数的公约数().A.只有1个B.有2个C.有3个D.有无限个4.两个数的最大公约数是6,最小公倍数是90,已知一个数是18,另一个数是().A.90B.15C.18D.30二、填空题1.6的倍数有(),9的倍数有(),6和9公有的倍数有(),其中最小的一个是().2.把12分解质因数(),把18分解质因数().12和18全部公有的质因数有(),各自独有的质因数有().12和18的最小公倍数是().3.m=2×3×7n=2×3×3m和n全部公有的质因数有(),各自独有的质因数有(),m和n的最小公倍数是().4.把15和20的倍数和公倍数不超过100的填在括号里.(1)15的倍数()(2)20的倍数()(3)15和20的公倍数()(4)15和20的最小公倍数()5.在〔〕里写出下面各组数的最小公倍数.2和3〔〕5和6〔〕2和7〔〕7和1〔〕6和8〔〕18和6〔〕4和6〔〕4和12〔〕19和20〔〕5和8〔〕10和15〔〕7和11〔〕8和9〔〕3和14〔〕9和12〔〕52和13〔〕13和6〔〕10和8〔〕6和72〔〕17和4〔〕36和27〔〕三、计算题用短除法求下面各组数的最小公倍数.1.8和122.16和243.30和454.60和905.28和426.32和48四、提高题1.一个自然数被2、5、7除,商都是整数,没有余数,这个数最小是多少?2.有两根绳子,第一根长18米,第二根长24米,要把它们剪成同样长短的跳绳,而且不能有剩余,每根跳绳最长多少米?一共可剪成几根跳绳?参考答案一、1.4和9是(C).A.质数B.奇数C.互质数D.质因数2.两个数的(D)的个数是无限的.A.最大公约数B.最小公倍数C.公约数D.公倍数3.互质的两个数的公约数(A).A.只有1个B.有2个C.有3个D.有无限个4.两个数的最大公约数是6,最小公倍数是90,已知一个数是18,另一个数是(D).A.90B.15C.18D.30二、1.6的倍数有(6、12、18、24、36……),9的倍数有(9、18、27、36……),6和9公有的倍数有(18、36……),其中最小的一个是(18).2.把12分解质因数(12=2×2×3),把18分解质因数(18=2×3×3).12和18全部公有的质因数有(2、3),各自独有的质因数有(2和3).12和18的最小公倍数是(2×3×2×3=36).3.m=2×3×7n=2×3×3m和n全部公有的质因数有(2、3),各自独有的质因数有(7、3),m和n的最小公倍数是(2×3×3×7=126).4.把15和20的倍数和公倍数不超过100的填在括号里.(1)15的倍数(15、30、45、60、75、90)(2)20的倍数(20、40、60、80、100)(3)15和20的公倍数(60)(4)15和20的最小公倍数(60)5.在〔〕里写出下面各组数的最小公倍数.2和3〔6〕5和6〔30〕2和7〔14〕7和1〔7〕6和8〔24〕18和6〔18〕4和6〔12〕4和12〔12〕19和20〔380〕5和8〔40〕10和15〔30〕7和11〔77〕8和9〔72〕3和14〔42〕9和12〔36〕52和13〔52〕13和6〔78〕10和8〔40〕6和72〔72〕17和4〔68〕36和27〔108〕三、用短除法求下面各组数的最小公倍数.1.8和12的最小公倍数是24.2.16和24的最小公倍数是48.3.30和45的最小公倍数是90.4.60和90的最小公倍数是180.5.28和42的最小公倍数是84.6.32和48的最小公倍数是96.四、1.2×5×7=70答:这个数最小是70.2.18米和24米的最大公约数就是每根跳绳的长度,各自的商就是所剪跳绳的根数.根数的和就是要求的一共有几根跳绳.18和24的最大公约数是2×3=63+4=7(根)答:每根跳绳最长6米,一共可剪成7根跳绳.。
小学五年级最大公因数最小公倍数练习题
求最小公倍数,最大公因数练习题一、填空1、当两个数是互质数时,它们的最大公因数是(),它们的最小公倍数是()。
2、甲=2×3×6,乙2×3×7,甲和乙的最大公因数是()×()=(),甲和乙的最小公倍数是()×()×()×()=()。
3、所有自然数的公因数为()。
4、如果m和n是互质数,则它们的最大公因数是(),最小公倍数是()。
5、在4、9、10和16这四个数中,()和()是互质数,()和()是互质数,()和()是互质数。
6、用一个数去除15和30,正好都能整除,这个数最大是()。
7、两个连续自然数的和是21,这两个数的最大公因数是(),最小公倍数是()。
8、两个相邻奇数的和是16,它们的最大公因数是(),最小公倍数是()。
9、某数除以3、5、7时都余1,这个数最小是( )。
10、根据要求写互质数。
(1)、()质数和()奇数。
(2)、()合数和()合数。
(3)、( 9 )和()任意一自然数。
二、判断1、是互质数的两个数必须都是质数。
()2、最小的质数是所有偶数的最大公约数。
()3、有公约数1的两个数,一定是互质数。
()4、 a是质数,b也是质数,a×b-m,(m也是质数),一定是质数。
()5、最大公因数指几个数的共同的因数。
()三、用短除法求最小公倍数。
26和52 69和33 82和1811和77 16和24 688和3444和6 2和9 7和8四、想一想学校买来40支圆珠笔和50本练习本,平均分给四年级三好学生,结果圆珠笔多四支,练习本多二本,四年级有多少三好学生?他们各获得什么奖品?五、生活应用1、五年一班去划船,他们算了一下,如果增加一条船,正好每船坐6个,如果减少一条船,正好每船坐9人,这个班有多少人?2、两个数的最大公约数是15,最小公倍数是90,求这两个数分别是多少?3、一个数被2除余1,被3除余2,被4除余3,被5除余4,被6除余5,此数最小是几?4、甲、乙、丙三人是朋友,他们每隔不同天数到图书馆去一次,甲3天去一次,乙4天去一次,丙5天去一次。
最大公因数和最小公倍数练习题(专项练习)
最大公因数和最小公倍数练习题 姓名: 成绩一. 填空题。
1. A 与B 的最小公倍数是10,那么它们的下一个公倍数应该是( )。
2、 所有自然数的公因数为( )。
3、a b 和都是自然数,如果a b ÷=10,a b 和的最大公因数是( ),最小公倍数是( )。
4. 如果m 和n 是互质数,那么它们的最大公因数是( ),最小公倍数是( )。
5. 在4、9、10和16这四个数中,( )和( )是互质数,( )和( )是互质数,( )和( )是互质数。
6. 分母是15的最简真分数一共有( )个。
三. 在左边写出每组数的最大公约数,右边写最小公倍数。
( )26和13( )( )13和6( )( )4和6( )( )5和9( ) ( )29和87( ) ( )30和15( )( )13、26和52( )( )2、3和7( )四. 用短除法求下面每组数的最大公因数和最小公倍数。
(注意格式完整) 45和6036和60 27和7272和80五、生活中的应用(注意分清楚是与最大公因数有关还是与最小公倍数有关) 1、 五年级同学参加植树活动,如果8人一组或14人一组,正好分配完,五年级最少有多少人?2、 五年级某班学生在40—50人间,如果分成2人一组、5人一组、4人一组都恰好分完,这个班有多少人?3、 两条钢条,一根长18米,一根长24米,要把它们截成同样长的小段,每段最长可以有几米?一共截成多少段?4、 7路车每5分钟发一班车,12路车每8分钟发,这两路车同时出发后,至少再经过多少分钟后又同时发车?5、 有饼干27千克、糖18千克,这些物品都刚好能平均分给一些小朋友,最多可以分给几个小朋友?6、两个连续自然数的和是21,这两个数的最大公因数是( ),最小公倍数是( )。
*六. 动脑筋,想一想:*1某数除以3、5、7时都余1,这个数最小是( )。
*2)甲=⨯⨯235,乙=⨯⨯237,甲和乙的最大公因数是( ),甲和乙的最小公倍数是( ) *3)学校买40支钢笔和50本练习本,平均奖给四年级三好学生,结果钢笔多4支,练习本多2本,三好学生有几人五、生活中的应用(注意分清楚是与最大公因数有关还是与最小公倍数有关) 6、 五年级同学参加植树活动,如果8人一组或14人一组,正好分配完,五年级最少有多少人?7、 五年级某班学生在40—50人间,如果分成2人一组、5人一组、4人一组都恰好分完,这个班有多少人?8、 两条钢条,一根长18米,一根长24米,要把它们截成同样长的小段,每段最长可以有几米?一共截成多少段?9、 7路车每5分钟发一班车,12路车每8分钟发,这两路车同时出发后,至少再经过多少分钟后又同时发车?10、有饼干27千克、糖18千克,这些物品都刚好能平均分给一些小朋友,最多可以分给几个小朋友?6、两个连续自然数的和是21,这两个数的最大公因数是( ),最小公倍数是( )。
公因数与公倍数(综合练习)
公因数和公倍数问题1、(1)既是30的因数,又是45的因数的数共有几个?其中最大的数是多少?(2)既是30的倍数,又是45的倍数的数,最小是多少?想:(1)既是30的因数,又是45的因数的数,就是30和45的公因数,其中最大的就是30和45的最大公因数;(2)既是30的倍数,又是45的倍数的数就是30和45的公倍数,其中最小的数就是30和45的最小公倍数。
解:(1)30和45的公因数有:1,3,5,15共四个,其中最大的是15;(2)30和45的公倍数有:90,180,270等等,其中最小是90。
试一试:1、既是28的因数,又是42的因数的数有几个?其中最大的数是多少?2、既是30的倍数,又是45的倍数,还是75的倍数的数,最小是多少?问题2、三个连续自然数的最小公倍数是168,那这三个连续自然数的和是多少?解析:要求三个连续自然数的和,就要把这三个自然数求出来,而这三个连续自然数的最小公倍数是168,可先把168分解质因数168=2×2×2×3×7,根据168的质因数的情况可以肯定其中一个是7,(为什么不可能是14)因此这三个连续自然数只有6、7、8和7、8、9两种可能,而7、8、9这三个数任两个数公因数都是1,故这三个连续自然数只能是6、7和8。
(经检验正确)它们的和是6+7+8=21。
答:这三个连续自然数是6、7、8。
它们的和是21。
试一试:1、三个连续自然数的最小公倍数是660,那么这三个连续自然数各是几?2、四个连续自然数的最小公倍数是504,那么这四个自然数的和是多少?3、三个连续自然数的和是27,这三个连续自然数的最小公倍数是多少?问题3、有一种长60厘米,宽45厘米的长方形砖,用这样长方形砖铺地,至少要用多少块这样的砖,才能铺成一块正方形?想:用长60厘米,宽45厘米的砖铺成一块正方形,这个正方形的边长既是60的倍数,也是45的倍数,也就是60和45的公倍数,因此正方形的边长是180厘米,由此容易求得一共用的地砖块数。
(完整版)公因数和公倍数练习题
公因数和公倍数(一)概念整理。
1、倍数和因数是不能够单独存在的,我们往往会说“谁是谁的倍数,谁是谁的因数”,比如说,通过算式72÷8=9,我们可以说( )是()的因数,也可以说( )是()的因数,()是()的倍数.2、在自然数中,只有1和它本身两个因数的数,我们称为(),也叫();有三个或三个以上因数的数叫做( );1既不是(),也不是()。
3、12的因数有(),40的因数有(),其中既是12的因数,又是40的因数的数有(),它们是12和40共同的因数,也就是12和40的公因数...。
这些公因数当中,最大的是(),它就是12和40的最大公因数.....。
4、9的倍数有( )(写出10个)12的倍数有( )(写出10个)5、上面这些数当中,9和12共同的倍数有(),它们就是9和12的公倍数...,其中最小的是(),它就是9和12的最小公倍数.....。
(二)求两个数最大公因数的方法整理.1。
要找到两个数的最大公因数,我们可以先依次分别写出两个数的因数,然后在这当中找到它们的公因数,其中最大的就是两个数的最大公因数。
例如:27的因数有:______________________,45的因数有:______________________;27和45的公因数有:____________,27和45的最大公因数是:__________。
2.对于一些有特殊关系的数,我们可以迅速判断它们的最大公因数。
(1)公因数只有1的关系:两个数如果是公因数只有1关系,它们的最大公因数就是1。
公因数只有1的关系一般有4种情况:①两个素数公因数只有1,如3和7 ②相邻两个自然数公因数只有1,如15和16③1和任何自然数公因数只有1,如1和18④其他,如4和15,就需要我们自己判断,看看它们是不是只有公因数1(2)倍数关系:如12和72,8和64,15和60等等。
两个数如果是倍数关系,它们的最大公因数就是其中较小的数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
公因数和公倍数
(一)概念整理。
1、倍数和因数是不能够单独存在的,我们往往会说“谁是谁的倍数,谁是谁的因数”,比如说,通过算式72÷8=9,我们可以说()是()的因数,也可以说()是()的因数,()是()的倍数。
2、在自然数中,只有1和它本身两个因数的数,我们称为(),也叫();有三个或
三个以上因数的数叫做();1既不是(),也不是()。
3、12的因数有(),40的因数有(),其中既是12的因数,又是40的因数的数有(),它们是12和40共同的因数,也就是12和40的公因数
...。
这些公
因数当中,最大的是(),它就是12和40的最大公因数
.....。
4、9的倍数有()(写出10个)
12的倍数有()(写出10个)
5、上面这些数当中,9和12共同的倍数有(),它们就是9和12的公倍数
...,其中最小的
是(),它就是9和12的最小公倍数
.....。
(二)求两个数最大公因数的方法整理。
1.要找到两个数的最大公因数,我们可以先依次分别写出两个数的因数,然后在这当中找到它们的公因数,其中最大的就是两个数的最大公因数。
例如:27的因数有:______________________,45的因数有:______________________;
27和45的公因数有:____________,27和45的最大公因数是:__________。
2.对于一些有特殊关系的数,我们可以迅速判断它们的最大公因数。
(1)公因数只有1的关系:
两个数如果是公因数只有1关系,它们的最大公因数就是1。
公因数只有1的关系一般有4种情况:
①两个素数公因数只有1,如3和7 ②相邻两个自然数公因数只有1,如15和16
③1和任何自然数公因数只有1,如1和18
④其他,如4和15,就需要我们自己判断,看看它们是不是只有公因数1
(2)倍数关系:如12和72,8和64,15和60等等。
两个数如果是倍数关系,它们的最大公因数就是其中较小的数。
3.两个数如果没有特殊关系,我们也可以用短除法迅速地求出它们的最大公因数。
4.在以下各组数下面的横线上写出每组数的最大公因数。
10和20 6和17 25和50 5和8
________ ________ _________ _______
4和9 13和39 15和30 1和9
(三)求两个数最小公倍数的方法整理。
1、要找到两个数的最小公倍数,我们可以依次分别写出两个数的倍数(一般写5到6个),然后在
这当中找出它们的公倍数,再找出两个数的最小公倍数。
例如,8的倍数有:______________________,10的倍数有:______________________;
8和10的公倍数有:_____________________,8和10的最小公倍数是:________。
2、对于一些有特殊关系的数,我们可以迅速判断它们的最小公倍数。
(1)公因数只有1的关系:两个数如果是公因数只有1的关系,最小公倍数是它们的乘积。
(2)倍数关系:两个数如果是倍数关系,最小公倍数是其中较大的数。
(3)两个数如果没有特殊关系,我们也可以用短除法迅速地求出它们的最小公倍数。
3、在以下各组数下面的横线上写出每组数的最小公倍数。
20和30 7和17 25和50 35和8
4和9 13和39 14和28 1和11
第二部分能力提升训练
一、填空
1、一个三位数,百位上是最小的偶数,十位上是最小的合数,这个三位数是5的倍数,又有因数
2,这个三位数是_____。
2、如果a=4b,(a、b都是不为0的自然数),那么a和b的最小公倍数是____,最大公因数是____。
3、两个不为0的自然数m和n互质,那么m和n的最小公倍数是____,最大公因数是____。
二、判断
1、两个数的公因数个数是无限的。
………………………………………()
2、3和5是60的公因数。
…………………………………………………()
3、两个数的最小公倍数一定比这两个数大。
………………………………()
4、a、b两个自然数,a÷b=8,a和b的最小公倍数是8。
………………()
三、选择
1、48是6和8的()
A、公因数
B、公倍数
C、最小公倍数
2、24和36的公因数有()个
A、5
B、6
C、7、
3、一个数除以8余1,除以10也余1,这个数最小是()
A、40
B、41
C、81
四、解决实际问题
1、长途汽车站每15分钟向南京发一次车,每20分钟向常州发一次车,6:00同时发车后,要到什
么时间会再次同时发车?
2、把两根分别长40米和56米的铁丝截成同样长的小段且没有剩余,每小段最长多少米?一共可
以截多少段?。