高中数学专题:求离心率的常用的两种方法
双曲线离心率如何求——从一道高考真题谈起
双曲线离心率如何求从一道高考真题谈起ʏ河南省禹州市第一高级中学 冯会远求双曲线的离心率,是高考常考题型㊂那么双曲线的离心率该如何求呢?让我们从一道高考真题谈起㊂题目:(2023年高考新课标Ⅰ卷)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左㊁右焦点分别为F 1㊁F 2,点A 在双曲线C 上,点B 在y 轴上,F 1A ңʅF 1B ң,F 2A ң=-23F 2B ң,则双曲线C 的离心率为㊂分析:方法1:利用双曲线的定义与向量数量积的几何意义得到|A F 2|,|B F 2|,|B F 1|,|A F 1|关于a ,m 的表达式,从而利用勾股定理求得a =m ,最后利用余弦定理得到a ,c 的齐次方程,进行得解㊂方法2:依题意设出各点坐标,从而由向量坐标运算求得x 0=53c ,y 0=-23t ,t 2=4c 2,将点A 代入双曲线C 的方程得到关于a ,b ,c 的齐次方程,最后得解㊂图1解析:(方法1)依题意,如图1,设|A F 2|=2m ,则|B F 2|=3m =|B F 1|,|A F 1|=2a +2m ㊂在R t әA B F 1中,9m 2+(2a +2m )2=25m 2,则(a +3m )(a -m )=0,故a =m 或a =-3m(舍去)㊂所以|A F 1|=4a ,|A F 2|=2a ,|B F 2|=|B F 1|=3a ,则|A B |=5a ㊂故c o s øF 1A F 2=|A F 1||A B |=4a 5a =45㊂所以在әA F 1F 2中,c o søF 1A F 2=16a 2+4a 2-4c 22ˑ4a ˑ2a=45,整理得5c 2=9a 2㊂故e =c a =355㊂(方法2)依题意,得F 1(-c ,0),F 2(c ,0),令A (x 0,y 0),B (0,t )㊂因为F 2Aң=-23F 2B ң,所以(x 0-c ,y 0)=-23(-c ,t ),则x 0=53c ,y 0=-23t ㊂又F 1A ңʅF 1B ң,所以F 1A ң㊃F 1B ң=83c ,-23t㊃(c ,t )=83c 2-23t 2=0,则t 2=4c 2㊂又点A 在双曲线C 上,则259c 2a 2-49t 2b2=1,整理得25c 29a 2-4t 29b 2=1,即25c 29a 2-16c29b2=1㊂所以25c 2b 2-16c 2a 2=9a 2b 2,即25c 2(c 2-a 2)-16a 2c 2=9a 2(c 2-a 2)㊂整理得25c 4-50a 2c 2+9a 4=0㊂则(5c 2-9a 2)(5c 2-a 2)=0,解得5c 2=9a 2或5c 2=a 2㊂又e >1,所以e =355或e =55(舍去)㊂故e =355㊂点评:解决过双曲线焦点的三角形的关键是充分利用双曲线的定义,结合勾股定理与余弦定理得到关于a ,b ,c 的齐次方程,从而得解㊂从这道高考真题的解法可以看出,双曲线离心率的求法主要有两种方法:定义法和方程法㊂我们再来看几个变式题㊂变式1:过双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的左焦点F ,作x 2+y 2=a 2的一条切线,设切点为T ,该切线与双曲线E 在第一象限交于点A ,若F A ң=3F T ң,则双曲线E 的离心率为( )㊂A.3 B .5C .132 D .152分析:取线段A T 中点,根据给定条件,结03 解题篇 经典题突破方法 高二数学 2023年12月合双曲线定义及勾股定理解答㊂图2解析:如图2,令双曲线E 的右焦点为F ',半焦距为c ,取线段A T 中点M ,连接O T ,A F ',F 'M ㊂因为F A 切圆x 2+y2=a 2于T ,所以O T ʅF A ,|F T |=|O F |2-|O T |2=c 2-a 2=b ㊂因为F A ң=3F T ң,所以|A M |=|M T |=|F T |=b ,|A F '|=|A F |-2a =3b -2a ㊂而O 为F F '的中点,于是F 'M ʊO T ,即F 'M ʅA F ,|F 'M |=2|O T |=2a ㊂在R t әA F 'M 中,(2a )2+b 2=(3b -2a )2,整理得b a =32㊂所以双曲线E 的离心率e =ca=1+b 2a2=132,选C ㊂点评:本题采用了定义法,关键是应用双曲线的定义和几何图形的性质,求出a 与b 的关系式,进而再通过a 2+b 2=c 2,来求a 与c 的关系式,即双曲线的离心率㊂变式2:已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的左㊁右焦点分别为F 1㊁F 2,点M 在双曲线E 上,әF 1M F 2为直角三角形,O 为坐标原点,作O N ʅM F 1,垂足为N ,若2MN ң=3N F 1ң,则双曲线E 的离心率为㊂分析:根据给定条件,确定直角三角形的直角顶点位置,建立方程并结合双曲线定义求出|M F 1|,|M F 2|,再借助相似三角形性质列式求解㊂图3解析:әF 1M F 2为直角三角形,显然øM F 1F 2ʂ90ʎ,否则N 与F 1重合㊂若øF 1M F 2=90ʎ,由O N ʅM F 1,得O N ʊM F 2,则N 为M F 1的中点,与2MN ң=3N F 1ң矛盾㊂于是øM F 2F 1=90ʎ,即M F 2ʅx 轴,如图3㊂令双曲线半焦距为c ,由x =c ,x 2a 2-y 2b2=1,得y 2=b 4a2㊂因此,|M F 2|=b 2a ,|M F 1|=b2a +2a =a 2+c 2a㊂由2MN ң=3N F 1ң,得|N F 1|=25|M F 1|=2(a 2+c 2)5a㊂显然әO N F 1ʐәM F 2F 1,则|N F 1||F 1F 2|=|O F 1||M F 1|,即a 2+c 25a c =a c a 2+c2,整理得a 2+c 2=5a c ㊂则e 2-5e +1=0,解得e =5+12或e =5-12(舍去),所以双曲线E 的离心率为5+12㊂点评:本题采用了方程法,即通过建立关于离心率的方程来求得离心率,解答的关键是充分利用几何图形中相似三角形的对应边成比例建立方程㊂变式3:双曲线C :x 2a 2-y2b 2=1(a >0,b >),过虚轴端点且平行x 轴的直线交双曲线C 于A ,B 两点,F 为双曲线的一个焦点,且A F ʅB F ,则该双曲线的离心率e 为㊂分析:解决本题的落脚点是 A F ʅB F ,对于解决线线垂直问题,高中阶段我们常用的策略有:(1)两条直线垂直且斜率存在,则两条直线斜率之积等于-1;(2)考虑三边边长,利用勾股定理构造直角三角形;(3)转化为向量问题,两条垂线对应向量的数量积为零;(4)利用直角三角形的几何性质㊂解析:(方法1,利用 两条直线垂直且斜率存在,则两直线斜率之积等于-1)如图4,已知A ,B 两点的纵坐标都为b ,将b 代入双曲线方程得x =ʃ2a ,所以A (-2a ,b ),B (2a ,b )㊂13解题篇 经典题突破方法 高二数学 2023年12月图4设F (c ,0)为双曲线右焦点,则k A F =-bc +2a ,k B F =-bc -2a㊂因为A F ʅB F ,所以k A F ㊃k B F =-b c +2a ㊃-bc -2a=-1,整理得c 2+b 2=2a 2㊂①易知c 2=a 2+b 2㊂②由①②,得b 2a2=12㊂离心率e =1+ba2=62㊂(方法2,әA F B 是直角三角形,利用勾股定理解题)根据方法1可得A (-2a ,b ),B (2a ,b )㊂设F (c ,0)为双曲线的右焦点,则:|A B |=22a ,|A F |=(c +2a )2+b 2,|B F |=(c -2a )2+b 2㊂因为A F ʅB F ,所以由勾股定理得:|A F |2+|B F |2=|A B |2,即(c +2a )2+b 2+(c -2a )2+b 2=8a 2㊂整理得c 2+b 2=2a 2㊂①又在双曲线中有c 2=a 2+b 2㊂②由①②,得b 2a2=12㊂故离心率e =1+ba2=62㊂(方法3,转化为向量求解)根据方法1可得A F ң=(c +2a ,-b ),B F ң=(c -2a ,-b )㊂因为A F ʅB F ,所以A F ңʅB F ң㊂则(c -2a )(c +2a )+b 2=0,整理得c 2+b 2=2a 2㊂①又双曲线中有c 2=a 2+b 2㊂②由①②,得b 2a2=12㊂故离心率e =1+ba2=62㊂(方法4,转化为直角三角形性质求解)由方法2可得|A B |=22a ,如图5,设图5虚轴端点为C ,连接C F ,则|C F |=|A B |2=2a ㊂即c 2+b 2=2a ,c 2+b 2=2a 2㊂后面过程与前三种方法相同㊂(方法5,转化为双曲线定义求解)图6如图6,设虚轴端点为C ,连接C F ,则|C F |=|C A |=|C B |=2a ㊂由题意|A F |-|B F |=2a ,|A F |2+|B F |2=8a 2,得|A F |=(3+1)a ,|B F |=(3-1)a ㊂t a n øF A B =|B F ||A F |=(3-1)a(3+1)a=2-3,则t a nøF C B =t a n 2øF A B =33,故øF C B =30ʎ,øF C O =60ʎ㊂因为s i n øF C O =|O F ||C F |,所以s i n 60ʎ=c2a,则e =62㊂点评:双曲线有两个虚轴端点以及两个焦点,本题未明确给出哪个端点哪个焦点,看似让人无从下手,实则增加了问题的灵活性,同学们只需根据双曲线的对称性,任意选取其中的一个虚轴端点和焦点即可解决本题㊂方法总结:离心率是双曲线最重要的几何性质,求离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式e =ca ;②只需要根据条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式两边分别除以a 或a 2转化为关于e的方程,解方程即可得离心率e 的值㊂当求双曲线的离心率时一定要注意数形结合思想和双曲线定义的应用㊂(责任编辑 徐利杰)23 解题篇 经典题突破方法 高二数学 2023年12月。
人教版高中数学选修1-1习题课件第二章 微专题2 离心率的求法
率的定义求得.但在多数情况下,由于受到题目已知条件的限制,很
难或不可能求出a和c的值,只能将条件整理成关于a和c的关系式,进
而求得
c a
的值,其关键是善于利用定义以及图形中的几何关系来建立
关于参数a,b,c的关系式,结合c2=a2+b2,化简为参数a,c的与圆锥曲线的位置关系求离心率的取值范围
第二章 圆锥与曲线方程
在圆锥曲线的诸多性质中,离心率经常渗透在各类题型中.离心率是描述 圆锥曲线“扁平程度”或“张口大小”的一个重要数据,在每年的高考中它 常与“定义”、“焦点三角形”等联系在一起,有很强的可考性.其中求离心 率的取值范围,综合性强,是解析几何复习的一个热点,也是难点.
一、以渐近线为指向求离心率
程,或者已知渐近线方程,求离心率的值,都会有两解(焦点在 x 轴上和焦点在 y 轴上两种情况),不能忘记分类讨论.
二、以焦点三角形为指向求离心率
例 2 如图,F1 和 F2 分别是双曲线ax22-by22=1(a>0,b>0)的两个焦点,A 和 B 是 以O为圆心,|OF1|为半径的圆与该双曲线左支的两个交点,且△F2AB是等边 三角形,则双曲线的离心率为___3_+__1__.
例1 已知双曲线两渐近线的夹角为60°,则双曲线的离心率为_2__或__2_3_3__.
解析 由题意知,双曲线的渐近线存在两种情况.
当双曲线的焦点在x轴上时,若其中一条渐近线的倾斜角为
60°,如图1所示;
若其中一条渐近线的倾斜角为30°,如图2所示.
所以双曲线的一条渐近线的斜率 k= 3或 k= 33,
反思 感悟
(1)当直线与双曲线有一个公共点时,利用数形结合思想得到已知直线与
渐近线斜率的关系,得到ab的范围,再利用 e= 值范围.
离心率的五种求法
离心率的五种求法离心率是圆锥曲线中的一个重要的几何性质,在高考中频繁出现. 椭圆的离心率10<<e ,双曲线的离心率1>e ,抛物线的离心率1=e . 一、直接求出,a c ,求解e 已知标准方程或,a c 易求时,可利用离心率公式c e a=来求解。
例1. 过双曲线C :)0b (1by x 222>=-的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于点B 、C ,且|AB|=|BC|,则双曲线M 的离心率是( )A. 10B. 5C.310D. 25分析:这里的1,a c ==2b ,即可利用定义求解。
解:易知A (-1,0),则直线l 的方程为1x y +=。
直线与两条渐近线bx y -=和bx y =的交点分别为B )1b b ,1b 1(++-、C )1b b,1b 1(--,又|AB|=|BC|,可解得9b 2=,则10c =故有10ace ==,从而选A 。
二、变用公式)c e a =双曲线,)c e a ==椭圆,整体求出e例2. 已知双曲线22221(0,0)x y a b a b -=>>的一条渐近线方程为43y x =,则双曲线的离心率为( ) A.35 B. 34C.45D.23 分析:本题已知b a=34,不能直接求出a 、c ,可用整体代入套用公式。
解:因为双曲线的一条渐近线方程为43y x =,所以 43b a =,则53c e a ===,从而选A 。
1.设双曲线(a >0,b >0)的渐近线与抛物线21y x =+相切,则该双曲线的离心率等于( C )A. C. D.解:由题双曲线的一条渐近线方程为,代入抛物线方程整理得,因渐近线与抛物线相切,所以,即224b a =e ∴===2.过双曲线的右顶点作斜率为的直线,该直线与双曲线的两条渐近线的交点分别为.若12AB BC =uur uu u r,则双曲线的离心率是 ( )A .B .C .D . 答案:C【解析】对于,则直线方程为,直线与两渐近线的交点为B ,C ,,,222,4AB BC a b =∴=uur uu u r 因此 ,即224b a =,e ∴===3.过椭圆()的左焦点作轴的垂线交椭圆于点,为右焦点,若,则椭圆的离心率为( ) A . B . C . D .【解析】因为,再由有即2223b a =从而可得e ∴===B三、构造a 、c 的齐次式,解出e根据题设条件,借助a 、b 、c 之间的关系,构造a 、c 的关系(特别是齐二次式),进而得到关于e 的一元方程,从而解得离心率e 。
高中数学圆锥曲线中离心率的14种求解方法
圆锥曲线是高中数学的一个重要内容,其中离心率的求解是常考知识点之一。
本文将介绍圆锥曲线中离心率的14种求解方法,包括定义法、两点法、点差法、判别式法、参数方程法、切线法、弦长公式法、基本不等式法等。
每种方法都有其适用条件和优缺点,同学们可以根据具体情况选择合适的方法进行解题。
方法一:定义法定义法是通过利用圆锥曲线的定义来求解离心率的。
对于椭圆和双曲线,可以利用椭圆和双曲线的中心和对称性,以及长度的不减性来求解离心率的范围。
这种方法适用于简单的情况,但在复杂的情况下需要结合其他方法进行求解。
方法二:两点法两点法适用于求解椭圆的离心率。
当焦点在x 轴上时,设左、右两个顶点分别为A1、A2,焦距为F1、F2,通过求出丨FA1丨-丨FA2丨来求出离心率e 的范围。
当焦点在y 轴上时,同样利用左右顶点及中心来解题。
这种方法简单直观,但需要学生掌握椭圆的性质。
方法三:点差法点差法适用于求解圆锥曲线的离心率的范围。
通过将圆锥曲线上两个点的坐标进行差分,得到关于离心率的方程,从而求解离心率的值或范围。
这种方法需要学生具有一定的技巧和经验,但对于一些较为复杂的问题,能够得到事半功倍的效果。
方法四:判别式法对于双曲线和抛物线,判别式法是一种常用的求解离心率的简便方法。
通过将圆锥曲线的方程化简为二次方程或一元二次方程,利用判别式小于零得到离心率的范围。
这种方法简单易行,但需要学生具有一定的数学基础和解题技巧。
方法五:参数方程法对于一些较为复杂的圆锥曲线,可以使用参数方程来求解离心率的值或范围。
通过将圆锥曲线转化为参数方程的形式,利用参数的几何意义或结合不等式进行求解。
这种方法能够解决一些较为困难的问题,但需要学生掌握参数方程的相关知识和技巧。
方法六:利用切线法求椭圆离心率根据椭圆的性质,椭圆的左、右焦点到相应准线的距离称为离心率;若过椭圆上某点作坐标轴的垂线,与以该点为起点的直角三角形相似,则此直角三角形的另一顶点在焦点上,此定点即为椭圆的上下顶点;而椭圆上的点到左右顶点的距离之和为定值(2a)。
求解圆锥曲线离心率问题的两种途径
思路探寻离心率是圆锥曲线的基本性质之一.圆锥曲线的离心率问题常以填空或选择题的形式出现,题目的难度适中.这类问题的常见命题形式有:(1)求椭圆、双曲线的离心率;(2)求圆锥曲线离心率的取值范围、最值.本文主要探讨一下求解圆锥曲线离心率问题的两种途径:构造齐次方程和利用离心率公式.一、构造齐次方程在求解圆锥曲线的离心率问题时,我们通常可根据已知的条件和圆锥曲线的方程,得到关于a 2、b 2、c 2或a 、b 、c 的等量关系.那么我们就可以结合椭圆、双曲线的方程中参数a 、b 、c 之间的关系a 2+b 2=c 2或a 2-b 2=c 2,将关于a 2、b 2、c 2或a 、b 、c 的等量关系进行变形,构造出关于a 、b 、c 齐次方程,将问题转化为求c 2a 2,进而求得圆锥曲线的离心率e .例1.已知点A 、B 是椭圆C :x 2a 2+y2b2=1()a >b >0长轴上的两个顶点,点P 在椭圆上(异于A 、B 两点).若直线PA 、PB 斜率之积为a -4c3a,则椭圆的离心率为().A.13B.14C.23D.34解:设点P 的坐标为()m ,n ,则m 2a 2+n 2b 2=1,m 2-a 2=-a 2n 2b 2,设A ()-a ,0,B ()a ,0,则k PA ∙k PB =n m +a ∙n m -a =n 2m 2-a 2=n 2-a 2n 2b 2=-a 2b2=-a -4c 3a ,整理得3c 2+4ac -4a 2=0,即3e 2+4e -4=0,解得e =23或e =-2(舍去),故答案为选项C .解答本题,需先根据椭圆的方程和直线的斜率公式建立关于a 、b 、c 的方程;然后根据椭圆的a 、b 、c 之间的关系a 2+b 2=c 2,将所得的关系式变形为关于a 、c 的齐次方程3c 2+4ac -4a 2=0,通过解方程求得e 的值.例2.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)与过原点的直线l 交于P 、Q 两点(P 在第一象限),过点P 作l 的垂线,与双曲线交于另一个点A ,直线QA 与x 轴交于点B ,若点B 的横坐标为点Q 横坐标的两倍,则双曲线的离心率为______.解:由题意可知,直线PQ 的斜率存在且不为零,设直线PQ :y =kx ()k ≠0,设点P ()t ,kt ,得点Q ()-t ,-kt ,点B ()-2t ,0,∵AP ⊥PQ ,∴k AP =-1k,∴直线AP :y -kt =-1k()x -t ,又∵k AQ =k BQ =kt -2t +t=-k,∴直线AQ :x =-1ky -2t ,由ìíîïïy -kt =-1k()x -t ,x =-1k y -2t ,可得ìíîïïïïx =-3k 2t +tk 2-1,y =kt ()3+k 2k 2-1,即A æèççöø÷÷-t ()3k 2+1k 2-1,kt ()k 2+3k 2-1,∵点A 在双曲线上,∴t 2()3k 2+12a 2()k 2-12-k 2t 2()k 2+32b 2()k 2-12=1,又∵P 在双曲线上,∴t 2a 2-k 2t 2b 2=1,∴t 2=a 2b 2b 2-a 2k 2,可得b 2()3k 2+12()k2-12()b 2-a 2k2-k 2a 2()k 2+32()b 2-a 2k 2()k2-12=1,化简得b 2()8k 4+8k 2=a 2k 2()8k 2+8,50思路探寻∵k≠0,∴b2=a2,∴a2=c2-a2,可得c2a2=2,即双曲线的离心率e=2.本题较为复杂,我们需首先结合直线AP、PQ的方程和双曲线的方程建立关于k、t、b、a的关系式;然后结合双曲线中a、b、c之间的关系a2+b2=c2,通过消元、代换,得到关于a、c的齐次方程,进而求得离心率e的值.二、利用公式法公式法是求解圆锥曲线离心率问题的重要方法,主要是利用离心率公式e=c a来求圆锥曲线的离心率.在解题时,可先灵活运用圆锥曲线的定义、几何性质列出关于a、b、c的关系式;然后通过移项、化简等方式,将关系式转化为关于a、c的关系式;最后根据公式e=c a求出离心率的值.例3.如图1,已知F1、F2分别是曲线C:x2a2-y2b2=1(a>0,b>0)的左右焦点,过点F2的直线与双曲线C的右支交于点P、Q两点,若PQ⊥PF1,||PQ=||PF1,则双曲线C的离心率为().图1A.6-3B.5-22C.5+22D.1+22解:因为PQ⊥PF1,||PQ=||PF1,由双曲线的定义可得||PF1-||PF2=||PQ-||PF2=||QF2=2a,||QF1-||QF2=2a,所以||QF1=4a,由∠F1QF2=π4,得||F1F2=2c,在△QF1F2中,由余弦定理可得16a2+4a2-2×4a×2a=4c2,化简得e==5-22.故答案为选项C.我们根据已知条件,利用双曲线的定义、余弦定理得到a、c等量关系式,即可根据离心率公式直接求得双曲线的离心率.例4.如图2,已知F1、F2分别为双曲线C:x2a2-y2b2=1(a>0,b>0)的左右焦点,过点F1的直线与双曲线交左支于A、B两点,且||AF1=2||BF1,以点O为圆心,OF2为半径的圆经过点B,则椭圆C的离心率为_____.图2解:由题意可得∠F1BF2=90°,设||BF1=m,||BF2=m+2a,||AF1=2m,则||AF2=2m+2a,||AB=3m,在Rt△ABF2中,由勾股定理可得()2a+m2+()3m2=()2m+2a2,解得m=23a,则||BF1=2a3,||BF2=8a3,在Rt△F1BF2中,由勾股定理可得æèöø2a32+æèöø8a32=()2c2,化简得c=,所以椭圆的离心率为e=ca=.在解答本题时,要先仔细研究图形,结合圆的几何性质以及椭圆的定义找出a、b、c之间的关系;然后利用勾股定理得到关于a、c的关系式;最后将其代入圆锥曲线的离心率公式中,就能得到椭圆的离心率.相比较而言,公式法比较直接、简单,但需灵活运用圆锥曲线的性质和定义;而齐次化法较为复杂,运用该方法解题运算量较大.同学们需反复练习,领悟其中的要义,从而高效地解答问题.(作者单位:云南省曲靖市第二中学)51。
高二数学 专题 求离心率(强化训练)(解析版)
专题求离心率题型一利用几何性质求解题型二利用坐标法求解题型三利用第一定义求解题型四利用第二定义求解题型五利用第三定义求解题型六与斜率乘积相关题型七焦点三角形双余弦定理模型题型八焦点弦与定比分点题型一利用几何性质求解1.已知椭圆C :()222210x y a b a b+=>>的上顶点为B ,两个焦点为1F ,2F ,线段2BF 的垂直平分线过点1F ,则椭圆的离心率为.【答案】12/0.5【分析】求出线段2BF 的中点坐标,根据两直线垂直斜率关系可得224a c =,再结合222a b c=+可求得离心率.【详解】如图,设2BF 的垂直平分线与2BF 交于点H ,由题,()1,0F c -,()2,0F c ,()0,B b ,则,22c b H ⎛⎫⎪⎝⎭,()10232F Hb b kc c c -∴==--,200BF b b k c c -==--,121F H BF k k ⋅=- ,13b b c c ⎛⎫∴⨯-=- ⎪⎝⎭,化简得,223b c =,由222a b c =+,解得224a c =,22214c e a ∴==,即12e =.故答案为:12.2.已知双曲线2222:1(0,0)x y C a b a b-=>>的左焦点为()1,0F c -,坐标原点为O ,若在双曲线右支上存在一点P 满足1PF =,且PO c =,则双曲线C 的离心率为.1【分析】构建焦点三角形,判断出其为直角三角形,进而可求.【详解】如图,因为12||||PO c FO F O ===,所以1122,PF O OPF PF O OPF ∠=∠∠=∠,所以1212π2OPF OPF F PF ∠+∠=∠=,则2222221212||||||,32)4PF PF F F c a c +=∴+-=,22240c a -+=,220e -+=,解得1e =.13.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F ,2F ,点P 在椭圆C 上,且212PF F F ⊥,过P 作1F P 的垂线交x 轴于点A ,若212AF c =,记椭圆的离心率为e ,则2e =.【分析】由题意可得22122PF F F AF =⋅,从而可求得2PF c =,根据勾股定理可求得1PF ,利用椭圆离心率的定义即可求得结果.【详解】如下图所示:因为212PF F F ⊥,1AP PF ⊥,所以122PF F APF ,可得22122P F F A F F PF =,即222212122P F A F c F c c F =⋅=⋅=,可得2PF c =;又在12Rt PF F 中,1PF ==,由椭圆定义可得122PF PF a +=2c a +=,所以12c e a ===,可得22e ==⎝⎭4.椭圆22221(0)x y a b a b+=>>的两个焦点为()()12,0,,0,F c F c M -是椭圆上一点,且满足120F M F M ⋅= .则椭圆离心率e 的取值范围为()A .22⎡⎢⎣⎦B .22⎛ ⎝⎭C .22⎛⎫⎪ ⎪⎝⎭D .2⎫⎪⎪⎣⎭【答案】D【分析】根据给定条件,可得12F M F M ⊥,进而得出||MO c b =≥,再求出离心率范围即得.【详解】由点M 满足120F M F M ⋅=,得12F M F M ⊥,即12F MF △是直角三角形,原点O 是斜边12F F 的中点,因此||MO c =,又点M 在椭圆上,则c b ≥,即2222c b a c ≥=-,整理得2212c a ≥,即212e ≥,而01e <<,因此212e ≤<,所以椭圆离心率e 的取值范围为22⎫⎪⎪⎣⎭.故选:D5.点P 在椭圆上,且在第一象限,过右焦点2F 作12F PF ∠的外角平分线的垂线,垂足为A ,O 为坐标原点,若OA =,则该椭圆的离心率为.【答案】3【分析】延长2F A ,交1PF 于点Q ,根据PA 是12F PF ∠的外角平分线,得到2||=AQ AF ,2||PQ PF =,再利用椭圆的定义求解.【详解】延长2F A ,交1PF 于点Q ,∵PA 是12F PF ∠的外角平分线,2||AQ AF ∴=,2||PQ PF =,又O 是12F F 的中点,1QF AO ∴∥,且12||QF OA ==.又1112||2QF PF PQ PF PF a =+=+=,2a ∴=,222233()a b a c ∴==-,则62a c =,∴离心率为c a =故答案为:36.如图,A B C ,,是椭圆()222210x y a b a b+=>>上的三个点,AB 经过原点O AC ,经过右焦点F ,若BF AC⊥且3BF CF =,则该椭圆的离心率为.【答案】2【分析】设椭圆的左焦点为()1,0F c -,连接111,,AF BF CF ,设CF m =,利用对称性得到13AF BF m ==,23AF a m =-,12CF a m =-,再根据BF AC ⊥,分别在1AF C △和1R t AF F 中,利用勾股定理求解.【详解】解:如图所示:设椭圆的左焦点为()1,0F c -,连接111,,AF BF CF ,设CF m =,由对称性知:13AF BF m ==,23AF a m =-,12CF a m =-,因为1//AF BF ,所以1AF AC ⊥,在1AF C △中,22211AF AC CF +=,即()()2229222m a m a m +-=-,解得3a m =,在1R t AF F 中,()()2229232m a m c +-=,将3a m =代入上式,得22c e a ==,故答案为:22题型二利用坐标法求解7.已知F 为双曲线C :()222210,0x y a b a b-=>>的右焦点,平行于x 轴的直线l 分别交C 的渐近线和右支于点A ,B ,且90OAF ∠=︒,OBF OFB ∠=∠,则C 的离心率为()A.2BC .32D【答案】B【分析】设(),B m n ,联立方程组求得,an A n b ⎛⎫⎪⎝⎭,根据90OAF ∠=︒,得到1AF OA k k ⋅=-,求得ab n c =,再由(),B m n 在双曲线C 上,化简得到22422a c am c+=,结合OB OF =,化简得到222a c =,进而求得双曲线的离心率.【详解】双曲线C :()222210,0x y a b a b -=>>的渐近线方程为b y x a =±.设(),B m n ,联立方程组b y x a y n ⎧=⎪⎨⎪=⎩,解得,an A n b ⎛⎫⎪⎝⎭.因为90OAF ∠=︒,所以1AF OAk k ⋅=-,即1n ban a c b⋅=--,可得ab n c=.又因为点(),B m n 在双曲线C 上,所以22221m na b-=,将ab n c =代入,可得22422a c a m c +=,由OBF OFB ∠=∠,所以OB OF =,所以222m n c +=,即22422222a c a a bc c c++=,化简得222a c =,则ce a==.故选:B.8.已知1F ,2F 是双曲线()222210,0x y a b ab-=>>的左、右焦点,若双曲线上存在点P 满足2212PF PF a ⋅=- ,则双曲线离心率的最小值为()AB C .2D【答案】D【分析】设P 的坐标,代入双曲线的方程,利用数量积的坐标表示,结合双曲线离心率的计算公式求解即得.【详解】设00(,)P x y ,双曲线的半焦距为c ,则有0||x a ≥,2200221x y a b-=,12(,0),(,0)F c F c -,于是200100(,),(,)PF c x y PF c x y =--=---,因此22222222222222220210000222(1)x c c PF PF x c y x b c x b c a b c b a a a⋅=-+=+--=⋅--≥⋅--=- ,当且仅当0||x a =时取等号,则222a b -≥-,即222b a ≥,离心率c e a ==≥,故选:D9.过双曲线22221(0,0)x y a b a b-=>>的左焦点且垂直于x 轴的直线与双曲线交于,A B 两点,D 为虚轴上的一个端点,且ADB ∠为钝角,则此双曲线离心率的取值范围为()A.(B.C.)2D.)+∞【答案】D【分析】根据双曲线的性质求出,,A B D 的坐标,写出向量,DA DB,根据∠ADB 为钝角,结合向量的数量积公式化简求解即可.【详解】设双曲线22221(0,0)x y a b a b-=>>的左焦点为1(,0)F c -,令x c =-,得2by a=±,可设22,,,b b A c B c a a ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭由对称性,不妨设(0,)D b ,可得2,b DA c b a ⎛⎫=-- ⎪⎝⎭ ,2,b DB c b a ⎛⎫=--- ⎪⎝⎭,由题意知,,A D B 三点不共线,所以∠ADB 为钝角0DA DB ⇔⋅<,即为2220b b c b b a a ⎛⎫⎛⎫-+-< ⎪⎪⎝⎭⎝⎭,将222b c a =-代入化简得4224420e a c a -+>,由ce a=,可得42420e e -+>,又1e >,解得22e >e ,综上,离心率的取值范围为)+∞.故选:D.10.已知双曲线C :()222210,0x y a b a b-=>>的左右焦点分别为1F ,2F ,过1F 作x 轴的垂线交C 于点P ﹒2OM PF ⊥于点M (其中O 为坐标原点),且有223PF MF =,则C 的离心率为.【分析】由向量垂直的坐标表示得出关于,,a b c 的齐次式后可得离心率.【详解】如图,易得2(,b P c a -,2(,0)F c ,22(2,b PF c a=- ,设(,)M x y ,2(,)MF c x y =-- ,由223PF MF = 得2(2,3(,)b c c x y a-=--,223()3c c x b y a =-⎧⎪⎨-=-⎪⎩,解得2133x c b y a ⎧=⎪⎪⎨⎪=⎪⎩,即21(,33b M c a ,21(,33b OM c a = ,又2OM PF ⊥,∴42222033b OM PF c a ⋅=-= ,ce a =,222b c a =-代入得2222(1)0e e --=,因为1e >故解得e =故答案为:622.11.已知双曲线22221()00a x y a bb >-=>,的左、右焦点分别为12F F ,,过点1F 作直线分别交双曲线左支和一条渐近线于点,A B (,A B 在同一象限内),且满足1F A AB =.联结2AF ,满足21AF BF ⊥.若该双曲线的离心率为e ,求2e 的值.【答案】12-【分析】设点()0000,()0,0A x y x y <>,由21AF BF ⊥,A 在双曲线上,1F A AB =得到B 的坐标,然后根据B在渐近线b y x a =-上列方程,解方程得到a b =,然后求离心率即可.【详解】不妨设()0000,()0,0A x y x y <>,由21AF BF ⊥得00001y y x c x c⋅=--+,化简得222000y x c +-=(1),A 在双曲线上,∴2200221x y a b -=,即2222002a y x a b =+,代入(1)解得20b y c=,1F A AB = ,()002,2B x c y ∴+,又B 在渐近线by x a=-上,()0022by x c a∴=-+,即0022bx ay bc +-=.两边平方得222222000444b x a y b c abcy =++(2),将2222002a y x a b =+和20b y c =代入(2)得242422322224444a b a b b c ab a b c c++=+,化简得22340a ab b --=,解得a =或a b =(舍去),即)222a c a =-,化简得212e =-.故答案为:12-.12.已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为12,F F ,过1F 斜率为43的直线与C 的右支交于点P ,若线段1PF 与y 轴的交点恰为1PF 的中点,则C 的离心率为()A .13B C .2D .3【答案】D【分析】求得P 点坐标,根据直线1PF 的斜率列方程,化简求得双曲线的离心率.【详解】由于线段1PF 与y 轴的交点恰为1PF 的中点,且O 是12F F 的中点,所以212PF F F ⊥,由22221c y a b -=解得2P by a=,则2,b P c a ⎛⎫⎪⎝⎭,而()1,0F c -,所以1222242223PF b b c a a k c ac ac -====,2222833,3830ac c a c ac a =---=,两边除以2a 得23830e e --=,解得3e =或13e =-(舍去).故选:D13.直线2y x =与椭圆C :22221x y a b+=的交点在x 轴上的射影恰好是椭圆的焦点,则椭圆C 的离心率为()A1BC1D.12【答案】A【分析】根据A 在椭圆上和直线2y x =上列方程,整理后求得椭圆的离心率.【详解】设在第一象限的交点为A ,右焦点为(),0F c ,根据题意:AF x ⊥轴,A 在椭圆上,由22221c y a b +=解得2A b y a =,则2,b A c a ⎛⎫ ⎪⎝⎭,A 在直线2y x =上,则(),2A c c ,所以22b c a=,22b ac =,222-=a c ac ,所以()221001e e e +-=<<,解得1e =.故选:A题型三利用第一定义求解14.已知椭圆221222:1(0),,x y C a b F F a b+=>>分别是C 的左,右焦点,P 为C 上一点,若线段1PF 的中点在y 轴上,12π6PF F ∠=,则C 的离心率为()AB .23CD.2【答案】A【分析】根据中点关系可得2PF x ⊥轴,进而根据直角三角形中的边角关系,结合椭圆定义即可求解.【详解】由于线段1PF 的中点M 在y 轴上,O 是12F F 的中点,所以22//,MO PF PF x ∴⊥轴,122F F c =,12π6PF F ∠=,所以1221212112tan ,cos 32F F PF F F PF F PF PF F =∠=∠,2a a e ⇒=⇒=故选:A15.1F ,2F 是椭圆E :()222210 x y a b a b+=>>的左,右焦点,点M 为椭圆E 上一点,点N 在x 轴上,满足1245FM N F MN ∠=∠=︒,1234NF NF =,则椭圆E 的离心率为.【答案】57【分析】根据1245FM N F MN ∠=∠=︒,得到12F M F M ⊥,且MN 是12F MF ∠的角平分线,再结合1234NF NF =和角平分线定理得到1243F M F M=,然后在12Rt F MF △中,利用勾股定理求解.【详解】解:因为1245FM N F MN ∠=∠=︒,所以12F M F M ⊥,则MN 是12F MF ∠的角平分线,所以1122F M F N F MF N=,又因为1234NF NF =,所以1243F M F M=,设124,3F M F x M x ==,由椭圆定义得122F M F M a +=,即432x x a +=,解得27x a =,则1286,77F M F M a a ==,则22286477a a c ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,所以222549c a =,则57c e a ==,故答案为:5716.已知椭圆2222:1(0)x y C a b a b +=>>的左、右焦点分别为12,F F ,经过2F 的直线交椭圆C 于,P Q 两点,O 为坐标原点,且()2220,2OP OF PQ PF F Q +⋅==,则椭圆C 的离心率为.【分析】利用向量的数量积的运算律,以及椭圆的定义,利用齐次化方法求离心率.【详解】因为()2220,2OP OF PQ PF F Q +⋅== ,所以()22302OP OF PF +⋅=,即()()22302OP OF OF OP +⋅-=,所以21OP OF OF c === ,所以12π2F PF ∠=.设2F Q x =,则22PF x =,所以1122,2PF a x QF a x =-=-,由22211||PF PQ QF +=得222(22)(3)(2)a x x a x -+=-,所以3a x =,所以2124,33a PF a PF ==,在12Rt PFF △中,由2221212PF PF F F +=,得22224(2)33a a c ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,所以53c e a ==.故答案为:17.已知1F ,2F 分别是椭圆2222:1x y C a b +=(0a b >>)的左,右焦点,M ,N 是椭圆C 上两点,且112MF F N = ,20MF MN ⋅=,则椭圆C 的离心率为()A .34B .23C D 【答案】C【分析】设1NF n =,结合椭圆的定义,在2Rt MNF △中利用勾股定理求得3an =,12Rt MF F △中利用勾股定理求得223620c a =,可求椭圆C 的离心率.【详解】连接2NF ,设1NF n =,则12MF n =,222MF a n =-,22NF a n =-,在2Rt MNF △中22222N M MF NF +=,即()()()2223222n a n a n +-=-,22222948444n a an n a an n ∴+-+=-+,2124n an ∴=,3an =,123a MF ∴=,243a MF =,在12Rt MF F △中,2221212MF MF F F +=,即222416499a a c =+,223620c a ∴=,2205369e ==,又()0,1e ∈ ,e ∴=故选:C.18.已知12,F F 是双曲线C 的两个焦点,P 为C 上一点,且12120F PF ∠=,124PF PF =,则C 的离心率为()AB .215C D 【答案】A【分析】根据124PF PF =,12120F PF ∠=,利用余弦定理可得2c =,再由双曲线定义可得32m a =,由离心率定义可得c e a ==.【详解】如下图所示:根据题意可设21,4,0PF m PF m m ==>,易知122F F c =;由余弦定理可知2222112212212221741cos 24P m PF F F F P c F PF m m F PF +-∠=⋅==--⋅,可得22214c m =;即212c =,由双曲线定义可知可知1232PF PF m a -==,即32m a =;所以离心率213c e a ==.故选:A19.已知12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左,右焦点,过点1F 倾斜角为30 的直线与双曲线的左,右两支分别交于点,A B .若22AF BF =,则双曲线C 的离心率为()AB C .2D .【答案】A【分析】设22AF BF m ==,利用双曲线的定义及题中几何关系将m 用a c 、表示,再利用几何关系建立关于a c 、齐次方程,从而求出离心率.【详解】如图,过2F 作2AB F N ⊥与N,设22AF BF m ==,则12AF m a =-,12BF a m =+,∴114AB BF AF a =-=,2AN a =,1F N m =,由题意知1230BF F ︒∠=,∴在12Rt F NF 中,212sin 30F N F F c ︒==,112cos30F N F F ︒==,∴m =,在2Rt ANF 中,22222AN NF AF +=,即())2222a c +=解得c a=双曲线C.故选:A.题型四利用第二定义求解20.已知直线1y x =-与双曲线221ax by +=(0a >,0b <)的渐近线交于A ,B 两点,且过原点和线段AB中点的直线的斜率为,则a b的值为.【答案】【分析】设()11,A x y ,()22,B x y ,利用点差法可求ab的值.【详解】设()11,A x y ,()22,B x y ,AB 的中点为()00,M x y ,故2211222211ax by ax by ⎧+=⎨+=⎩,所以()()()()111122220a x y x y b x y x y -++-+=即()()1201200a x x x b y y y -+-=,所以0121200y y y a b x x x -+⨯⨯=-.因为过原点和线段AB中点的直线的斜率为002y x =-.由:1AB y x =-+可得12121y y x x -=--,所以()102a b ⎛⎫+⨯-⨯= ⎪ ⎪⎝⎭,所以2a b =-.故答案为【点睛】直线和圆锥曲线的位置关系中,如果涉及到弦的中点问题,可以考虑用点差法来简化计算.21.已知椭圆C 的左右焦点分别为1F ,2F ,P ,Q 为C 上两点,2223PF F Q =,若12PF PF ⊥ ,则C 的离心率为()A .35B .45CD【答案】D【分析】根据椭圆的焦点三角形,结合勾股定理即可求解.【详解】设23PF m =,则22QF m = ,123PF a m =- ,122QF a m =- .5PQ m =在1PQF △中得:()()222232522a m m a m -+=-,即215m a =.因此225PF a = ,185PF a = ,212F F c = ,在12PF F △中得:22264442525a a c +=,故221725a c =,所以175e =.故选:D22.设1F ,2F 分别是椭圆C 的左,右焦点,过点1F 的直线交椭圆C 于M ,N 两点,若113MF F N =,且24cos 5MNF ∠=,则椭圆C 的离心率为.【分析】如图,设1F N x =,由题意,椭圆定义结合余弦定理可得3ax =,后在12NF F △由余弦定理可得12F F ,即可得答案.【详解】如图,设1F N x =,则13MF x =,4MN x =.又由椭圆定义可得2223,2MF a x F N a x =-=-.则在2MNF 中,由余弦定理可得:()()()222222222162234425825MN NF MF x a x a x MN NF x a x +-+---=⇒=⋅-()222288410101681868253x ax a x ax ax x x ax x x a x +⇒=⇒+=-⇒=⇒=-.则125,33a aF N NF ==,则在12NF F △由余弦定理可得:12F F a=.又12222c F F c c e a =⇒=⇒==.故答案为:2223.已知椭圆22221x y a b+=的右焦点为2F ,过右焦点作倾斜角为π3的直线交椭圆于,G H 两点,且222GF F H = ,则椭圆的离心率为()A .12BC .23D【答案】C【分析】根据题意写出直线方程,与椭圆方程联立,运用韦达定理与222GF F H =构建出关于a 、b 、c 的齐次方程,根据离心率公式即可解得.【详解】设()2,0F c ,()11,G x y ,()22,H x y ,过点2F 做倾斜角为π3的直线斜率k =直线方程为)y x c =-,联立方程)22221x y a by x c ⎧+=⎪⎨⎪=-⎩,可得22224123033a b y b cy b ⎛⎫++-= ⎪⎝⎭,根据韦达定理:21222233cy y a b+=-+,4122233b y y a b =-+,因为222GF F H =,即()()1122,2,c x y x c y --=-,所以122y y =-,所以()22121242112221222323y y y y b y y y y a b⎛ +⎝⎭+=-=-=---+,即2224132c a b =+,所以22238a b c +=,联立22222238a b c a b c ⎧+=⎨=+⎩,可得2249a c =,24293e e =⇒=.故选:C.24.已知椭圆C :22221x y a b+=(0a b >>)的左焦点为1F ,过左焦点1F 作倾斜角为π6的直线交椭圆于A ,B 两点,且113AF F B =,则椭圆C 的离心率为()A .12B .23CD【答案】C【分析】联立直线与椭圆方程可得韦达定理,进而根据向量共线的坐标运算可得22239a b c +=,进而结合222a b c =+求解离心率.【详解】设()1,0F c -,()11,A x y ,()22,B x y ,过点1F 所作直线的倾斜角为π6所以直线方程可写为x c =-,联立方程22221x y a b x c ⎧+=⎪⎨⎪=-⎩,可得()2222430a b y cy b +--=,()()22422043cb a b =++>∆,根据韦达定理:12y y +=412223b y y a b =-+,因为113AF F B =,即()()1122,3,c x y x c y ---=+,所以123y y =-,所以()2222212124211222233122333c a b y y y y b y y y y a b ⎛⎫ ⎪++⎝⎭+=-=-=---+,即2223133c a b =+,所以22239a b c +=,联立22222239a b c a b c ⎧+=⎨=+⎩,可得223a c =,2133e e =⇒=.故选:C25.设12,F F 分别为椭圆22221(0)x ya b a b+=>>的左右焦点,M 为椭圆上一点,直线12,MF MF 分别交椭圆于点A ,B ,若11222,3MF F A MF F B ==,则椭圆离心率为()ABC .37D【答案】D【分析】设出()00,M x y ,根据向量的定比分点,将,A B 两点的坐标表示成含00,x y 的式子,再代入椭圆方程联立即可解得2237a c =,即可求得离心率.【详解】如下图所示:易知()()12,0,,0F c F c -,不妨设()00,M x y ,()()1122,,,A x y B x y ,易知2200221x y a b+=,由112MF F A = 可得()()01012020c x x c y y ⎧--=+⎪⎨-=-⎪⎩,即0101322c x x y y --⎧=⎪⎪⎨⎪=-⎪⎩同理由223MF F B = 可得0202433c x x y y -⎧=⎪⎪⎨⎪=-⎪⎩;将()()1122,,,A x y B x y 两点代入椭圆方程可得22002222002232214331c x y a bc x y a b ⎧--⎛⎫⎛⎫-⎪ ⎪ ⎪⎝⎭⎝⎭⎪+=⎪⎨-⎛⎫⎛⎫⎪- ⎪ ⎪⎪⎝⎭⎝⎭+=⎪⎩;即222000222220002296144168199c x cx y a bc x cx y a b ⎧+++=⎪⎪⎨+-⎪+=⎪⎩,又2200221x y a b +=,整理得220220322c cx a c cx a ⎧+=⎨-=⎩解得2237a c =,所以离心率217c e a==;故选:D26.已知椭圆()2222:10x y E a b a b +=>>,过左焦点F 且不与x 轴垂直的直线l 交E 于P 、Q 两点,若直线2a x c =-上存在点T ,使得PQT △是等边三角形,则E 的离心率的取值范围是()A.⎛ ⎝⎭B.⎫⎪⎪⎝⎭C.⎛ ⎝⎭D.⎫⎪⎪⎝⎭【答案】D【分析】设直线PQ 的方程为x my c =-,其中0m ≠,设点()11,P x y 、()22,Q x y ,将直线PQ 的方程与椭圆方程联立,列出韦达定理,求出PQ 的长以及等边PQT △的高,根据几何关系可得出a c 该椭圆离心率的取值范围.【详解】知点(),0F c -,设直线PQ 的方程为x my c =-,其中0m ≠,设点()11,P x y 、()22,Q x y,联立22221x my cx y ab =-⎧⎪⎨+=⎪⎩可得()22222420a b m y b cmy b +--=,()()422422224244410b c m b a b m a b m ∆=++=+>,由韦达定理可得2122222b cmy y a b m +=+,412222b y y a b m=-+,所以,()2222221ab m PQ a b m+=+,设线段PQ 的中点为()00,M x y ,则21202222y y b cm y a b m +==+,22200222222b cm a cx my c c a b m a b m=-=-=-++,因为PQT △为等边三角形,则TM PQ ⊥,且直线TM 的斜率为m -,所以,()32220222a b a TM x c c a b m =+=+,且πtan3TM PM ==,即TM=,即()()322222222221a b m a b m c a b m +=++,整理可得(a c =1ca<<,故选:D.题型五利用第三定义求解27.双曲线()2222:10,0x y E a b a b-=>>被斜率为4的直线截得的弦AB 的中点为()2,1,则双曲线E 的离心率为()ABC .2D【答案】B【解析】根据点差法,设出交点坐标,代入作差即可得解.【详解】设()()1122,,,A x y B x y 代入双曲线方程作差有:()()()()1112121222x x x x y y y y a b -+-+=,有2121221212()()2()()y y y y b a x x x x -+==-+,所以223c a=,e =故选:B .【点睛】本题考查了解析几何中的点差法,点差法主要描述直线和圆锥曲线相交中斜率和中点的关系,在解题中往往大大简化计算,本题属于基础题.28.已知斜率为1的直线l 与双曲线C :22221x y a b-=(0a >,0b >)相交于B 、D 两点,且BD 的中点为3(1)M ,.则C 的离心率为()A .2BC .3D【答案】A【解析】设()()1122,,,B x y D x y ,得22112222222211x y a b x y ab ⎧-=⎪⎪⎨⎪-=⎪⎩,两式做差得到()()()()2121221212y y y y b a x x x x -+=-+,代入条件即可计算离心率.【详解】设()()1122,,,B x y D x y 22112222222211x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩,两式做差得()()()()12121212220x x x x y y y y a b -+-+-=整理得()()()()2121221212y y y y b a x x x x -+=-+,而12121BD y y k x x --==,122x x +=,126y y +=,代入有223b a =,即2223c a a -=可得2ce a==.故选:A.【点睛】直线与圆锥曲线相交所得弦中点问题,是解析几何的内容之一,也是高考的一个热点问题,其解法可以利用“点差法”.29.已知椭圆,点F 为左焦点,点P 为下顶点,平行于FP 的直线l 交椭圆于A ,B 两点,且AB 的中点为11,2M ⎛⎫⎪⎝⎭,则椭圆的离心率为()A.2B .12C .14D.2【答案】A【分析】点差法解决中点弦问题.【详解】由题意,设椭圆方程为22221x y a b+=,有(),0F c -,()0,P b -,设11(,)A x y ,22(,)B x y ,AB 的中点为11,2M ⎛⎫⎪⎝⎭,122x x ∴+=,121y y +=.//PF l ,1212PF l y y b k k c x x -∴==-=-.由2211221x y a b +=,2222221x y a b+=.两式相减得1212121222()()()()0x x x x y y y y a b +-+-+=,即1212221212()()()()x x y y a y y b x x +-=-+-,∴222a cbb =,可得:22bc a =,22244()c a c a ∴-=,化为:424410e e -+=,解得212e =,01e <<,e ∴=故选:A .30.已知F 1(﹣c ,0),F 2(c ,0)分别为双曲线C :2222x y a b-=1(a >0,b >0)的左、右焦点,直线l :x y c b +=1与C 交于M ,N 两点,线段MN 的垂直平分线与x 轴交于T (﹣5c ,0),则C 的离心率为()ABCD【答案】D【分析】设M (x 1,y 1),N (x 2,y 2),线段MN 的中点为S (x 0,y 0),运用点满足双曲线方程,作差,结合中点坐标公式和平方差公式,以及直线的斜率公式,两直线垂直的条件,以及双曲线的离心率公式,计算可得所求值.【详解】设M (x 1,y 1),N (x 2,y 2),线段MN 的中点为S (x 0,y 0),联立方程组2222221122222222b x a y a b b x a y a b ⎧-=⎨-=⎩,两式相减可得b 2(x 12﹣x 22)=a 2(y 12﹣y 22),可得b 2(x 1﹣x 2)(x 1+x 2)=a 2(y 1﹣y 2)(y 1+y 2),可得2b 2(x 1﹣x 2)x 0=2a 2(y 1﹣y 2)y 0,所以kMN 20122120b x y y b c x x a y -=-==-,即b c -2020y b x a⋅=(1),由kMN ⋅kST =-1,可得b c -⋅005y x c =-+1(2),由(1)(2)可得x 025a c =-,y 0=5b ,即S (25a c -,5b ),又S 在直线l 上,所以225a c-+5=1,解得e c a ==故选:D .【点睛】本题考查了双曲线的方程和性质,考查了点差法和方程思想、运算求解能力,属于中档题.31.(多选)已知椭圆222:12x y C m+=的焦点分别为()10,2F ,()20,2F -,设直线l 与椭圆C 交于M ,N 两点,且点11,22P ⎛⎫⎪⎝⎭为线段MN 的中点,则下列说法正确的是()A .26m =B .椭圆CC .直线l 的方程为320x y +-=D .2F MN的周长为【答案】AC【分析】先由题意求出2m 即可判断A ;再根据离心率公式即可判断B ;由点差法可以求出直线l 的斜率,由直线的点斜式化简即可判断C ;由焦点三角形的周长公式即可判断D.【详解】如图所示:根据题意,因为焦点在y 轴上,所以224m -=,则26m =,故选项A 正确;椭圆C的离心率为c e a ==,故选项B 不正确;不妨设()()1122,,,M x y N x y ,则2211126x y +=,2222126x y +=,两式相减得()()()()1212121226x x x x y y y y +-+-=-,变形得121212123y y x x x x y y -+=-⨯-+,又注意到点11,22P ⎛⎫⎪⎝⎭为线段MN 的中点,所以121212121221122P P x x x x x y y y y y ++====++,所以直线l 的斜率为121212123313l y y x k xx x y y ⨯=-+⨯--=-+=-=,所以直线l 的方程为11322y x ⎛⎫-=-- ⎪⎝⎭,即320x y +-=,故选项C 正确;因为直线l 过1F ,所以2F MN 的周长为()()222121224F M F N MN F M F M F N F N a a a ++=+++=+==,故选项D 不正确.故选:AC .32.已知椭圆()222210x y a b a b+=>>上一点M ,点F 为右焦点,点P 为下顶点,2FP MF = ,则椭圆的离心率为.【分析】过M 作MN x ⊥轴于N ,根据相似关系确定3,22c b M ⎛⎫⎪⎝⎭,代入方程计算得到答案.【详解】如图所示:过M 作MN x ⊥轴于N ,2FP MF = ,则122b MN OP ==,122c NF FO ==,故3,22c b M ⎛⎫⎪⎝⎭,则222291441c b a b+=,整理得到29344e =,故33e =.题型六与斜率乘积相关33.已知A ,B 分别是双曲线()2222:10,0x y C a b a b-=>>的左、右顶点,F 是C 的焦点,点P 为C 的右支上位于第一象限的点,且PF x ⊥轴.若直线PB 与直线PA 的斜率之比为3,则C 的离心率为()ABC .2D .3【答案】C【分析】由已知可得A ,B ,P 的坐标,求得PA ,PB 所在直线的斜率,再由直线PB 与直线PA 的斜率之比为3列式求双曲线C 的离心率.【详解】由题意可得,(,0)A a -,(,0)B a ,P 点的横坐标为c ,代入22221c y a b-=,又0P y >,所以2(,)b P c a ,2PAb a kc a =+,2PBb a kc a =-,则3PBPAk c a kc a +==-,可得2ca=.即双曲线的离心率为2.故选:C .34.设双曲线()222210,0x y a b a b-=>>的右焦点为(),0F c ,点A 满足3OA OF = ,点P 、Q 在双曲线上,且2AQ AP = .若直线PQ ,PF 的斜率之积为13,则双曲线的离心率为.【详解】如图,取P ,Q 的中点为M ,连接OM ,PF,则由题意可得,2PA PM =,2AF FO =,所以APF ,AMO 相似,所以PF MO ∥,因为直线PQ ,PF 的斜率之积为13,所以13PQ OM k k =⋅,设()11P x y ,()22,Q x y ,则1212,22x x y y M ++⎛⎫⎪⎝⎭,且22112222222211x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩,两式相减可得()()()()12121212220x x x x y y y y a b +-+--=,即()()()()2121221212y y y y b x x x x a +-=+-,即2213PQ OMb k a k ==⋅,即2213b a =,所以双曲线的离心率为233e ===.35.设椭圆()2222:10x y a b a bΓ+=>>的右焦点为(),0F c ,点()3,0A c 在椭圆外,P 、Q 在椭圆上,且P 是线段AQ 的中点.若直线PQ 、PF 的斜率之积为12-,则椭圆的离心率为.【答案】2【分析】取线段PQ 的中点M ,连接OM ,推导出//OM PF ,可得出12OM PQ PF PQ k k k k ==-,利用点差法可求得22b a的值,由此可求得椭圆Γ的离心率的值.【详解】如下图所示:由题意可知,点(),0E c -为椭圆Γ的左焦点,因为点()3,0A c 、(),0F c ,易知点F 为线段AE 的中点,又因为P 为AQ 的中点,所以,//PF QE ,取线段PQ 的中点M ,连接OM ,则2AP AF PMOF==,所以,//OM PF ,所以,OM PF k k =,故12OM PQ PF PQ k k k k ==-,设点()11,P x y 、()22,Q x y ,则点1212,22x x y y M ++⎛⎫⎪⎝⎭,所以,22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两个等式作差可得22221212220x x y y a b --+=,可得2221222212y y b x x a -=--,所以,122221212222121212012202OM PQy y y y y y b k k x x x x x x a +---=⋅==-=-+---,所以,椭圆Γ的离心率为2c e a ====.故答案为:22.36.已知椭圆C :()222210x y a b a b+=>>的焦距为2c ,左焦点为F ,直线l 与C 相交于A ,B 两点,点P 是线段AB 的中点,P 的横坐标为13c .若直线l 与直线PF 的斜率之积等于316-,则C 的离心率为.【答案】12/0.5【分析】设()()1111,,,A x y B x y ,求出PF 的斜率,利用点差法求出直线l 的斜率,在根据题意求出,,a b c 之间的关系即可得解.【详解】(),0F c -,设()()1111,,,A x y B x y ,因为点P 是线段AB 的中点,P 的横坐标为13c ,所以12122,,332y y c c x x P +⎛⎫+=⎪⎝⎭,则()121212123224832PFy y y y y y k x x c c c+++===++,由直线l 与C 相交于A ,B 两点,得2222112222221,1x y x y a b a b+=+=,两式相减得2222112222220x y x y a b a b+--=,即()()()()12121212220x x x x y y y y a b -+-++=,所以()()()()2121221212y y y y b x x x x a -+=--+,即212122l k y y x x b a⋅=++-,所以()222221211223l x x c y y b b k a y a y +=-=-⋅+⋅+,则()()2212122233623841l PFy y b b k a c y y k c a +⋅=-⋅⋅=-=-+,所以2234b a =,所以离心率12c e a ===.故答案为:12.37.双曲线C :()222210,0x y a b a b -=>>的右顶点为A ,点,M N 均在C 上,且关于y 轴对称.若直线AM ,AN的斜率之积为54-,则C 的离心率为()A .32B C .2D 【答案】A【分析】根据已知条件列方程,化简求得22b a,进而求得双曲线的离心率.【详解】依题意(),0A a -,设(),M m t ,则(),N m t -,m a >且222222222222221,m t a b t a t a m a a b b b+-===+,而22254AM ANt t t k k m a m a a m ⋅=⋅==-+-+-,()222222222225455t a t a t m a a a b b ⎛⎫=-=+-= ⎪⎝⎭,2254b a =,所以32c e a ==.故选:A38.已知椭圆()2222:10x y C a b a b+=>>的右顶点为A ,P 、Q 为C 上关于坐标原点对称的两点,若直线AP ,AQ 的斜率之积为25-,则C 的离心率为()A B C D 【答案】A【分析】根据题意结合椭圆方程整理得22AP AQ b k k a⋅=-,进而可求离心率.【详解】由题意可知:(),0A a ,设()()000,0P x y y ≠,则()00,Q x y --,可得000000,AP AQ y y y k k x a x a x a -===---+,则200022000AP AQy y y k k x a x a x a ⋅=⋅=-+-,又因为点()00,P x y 在椭圆上,则2200221x y a b +=,整理得()2222002b y a x a=-,可得()222220202222200APAQb a x y b a kk x a x a a-⋅===---,即2225b a -=-,所以C的离心率155e ===.故选:A.39.椭圆C :()222210x y a b a b+=>>的左顶点为A ,点P ,Q 是C 上的任意两点,且关于y 轴对称.若直线AP ,AQ 的斜率之积为19,则C 的离心率为()AB.3CD【答案】C【分析】设00(,)P x y ,则00(,)Q x y -,根据斜率公式结合题意可得19AP AQ k k ⋅=,再结合2200221x y a b+=可求出离心率.【详解】由题意得(,0)A a -,设00(,)P x y ,因为点P ,Q 是C 上的任意两点,且关于y 轴对称,所以00(,)Q x y -,2200221x y a b +=,所以0000,AP AQ y yk k x a a x ==+-,所以20002200019AP AQy y y k k x a a x a x ⋅=⋅==+--,因为2200221x y a b +=,所以2222002()b a x y a-=,所以2220222220()19b a x b a a x a -==-,所以离心率c e a =====,故选:C题型七焦点三角形双余弦定理模型40.已知双曲线()222210,0x y a b a b-=>>左右焦点分别为1F ,2F ,过2F 的直线在第一象限与双曲线相交于点A ,与y 轴的负半轴交于点B ,且2232AF F B =,1AF AB = ,则双曲线的离心率为.【分析】根据题意,设()230AF t t => ,利用由双曲线的定义,求得23AF a = ,22F B a = ,15AF AB a == ,分别在12AF F △和1AF B △中,由余弦定理,列出方程,求得,a c 关系式,即可求解.【详解】因为2232AF F B =且1AF AB = ,可设()230AF t t => ,则212,5F B t AF AB t === ,由双曲线的定义,可得1222AF AF t a -==,所以t a =,所以23AF a = ,22F B a = ,15AF AB a ==,分别在12AF F △和1AF B △中,可得()()()()()()222222532552cos 253255a a c a a a A a aa a+-+-==⨯⨯⨯⨯,整理得:285c a ⎛⎫= ⎪⎝⎭,所以双曲线的离心率为5..41.已知双曲线2222:1(0,0)x y a b a bΓ-=>>的左、右焦点分别为1F 、2F ,O 为坐标原点.过1F 作双曲线Γ一条渐近线的垂线,垂足为D ,若2DF OD =,则双曲线Γ的离心率为.【分析】先由已知双曲线方程得出一条渐近线方程,再利用点到直线的距离公式求出1DF ,进而求出OD ,2DF ,再利用余弦定理得出a 与c 的关系,进而求出离心率.【详解】由双曲线2222:1(0,0)x y a b a b Γ-=>>的性质可知,双曲线的一条渐近线方程为b y x a =-,焦点1(,0)F c -,2(,0)F c .由1F 作该渐近线的垂线,则由点到直线的距离公式可得1DF b =,所以OD a ==,所以2DF =,由于1FOD ∠与2F OD ∠互补,所以12cos cos 0F OD F OD ∠+∠=,即2222228022a c b a c a ac ac+-+-+=,可得225c a =,则离心率c e a ==42.已知1F ,2F 分别是双曲线Γ:()222210,0x y a b a b -=>>的左、右焦点,过1F 的直线分别交双曲线左、右两支于A ,B 两点,点C 在x 轴上,25CB F A =uu r uuu r,2BF 平分1F BC ∠,则双曲线Γ的离心率为()A B C D .83【答案】A【分析】因为25CB F A =uu r uuu r,所以12F AF ∽1F BC △,设122F F c =,则28F C c =,设1AF t =,则15BF t =,4AB t =.由角平分线的性质可得24AF t =,由双曲线的定义可得23at =,22BF t =,再结合余弦定理可得226c t =,从而可求解.【详解】因为25CB F A =uu r uuu r,则2//CB F A ,所以12F AF ∽1F BC △,设122F F c =,则28F C c =,设1AF t =,则15BF t =,4AB t =.因为2BF 平分1F BC ∠,由角平分线定理可知,11222841BF F F c BCF Cc ===,所以1420BC BF t ==,所以2145AF BC t ==,由双曲线定义知212AF AF a -=,即42t t a -=,23at =,①又由122BF BF a -=得2522BF t a t =-=,在2ABF △中,由余弦定理知2222222222164161cos 22424AB BF AF t t t ABF AB BF t t +-+-∠===⋅⋅⨯⨯,在12F BF 中,由余弦定理知22212121212cos 2BF BF F F F BF BF BF +-∠=⋅⋅,即222125444252t t c t t +-=⨯⨯,化简得226c t =,把①代入上式得22249a c =,解得c e a ==故选:A .43.已知双曲线E :2222x y a b-=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与E 交于A ,B两点(B 在x 轴的上方),且满足1117AF F B =.若直线的倾斜角为120°,则双曲线的离心率为()A .2B .72C .52D .32【答案】D【解析】设1,F B k = 则117AF k = ,由双曲线的定义知,2212,27F A a k F B a k =+=+,在12AF F ∆和12BF F ∆中分别利用余弦定理,然后两式相减即可求解.【详解】设1,F B k = 则117AF k = ,则122F F c =,由双曲线的定义知,2212,27F A a k F B a k =+=+,在12AF F ∆中,由余弦定理可得,22221121122cos 60AF AF F F AF F F =+-⋅⋅ ,即()222111122227772a k k c k c ⎛⎫⎛⎫+=+-⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭,在12BF F ∆中,由余弦定理可得,22221121122cos120BF BF F F BF F F =+-⋅⋅即()()222122222a k k c k c ⎛⎫+=+-⨯⨯⨯- ⎪⎝⎭两式相减可得,843a c =,所以离心率32c e a ==.故选:D【点睛】本题考查双曲线及其性质、直线与双曲线的位置关系,及三角形中的余弦定理;考查运算求解能力和转化与化归能力;双曲线定义的灵活运用是求解本题的关键;属于中档题、常考题型.44.已知12,F F 分别为双曲线()2222100x yC a b a b-=>>:,的左、右焦点,过1F 的直线与双曲线左支交于,A B 两点,且113AF BF =,以O 为圆心,2OF 为半径的圆经过点B ,则C 的离心率为()A .3B .2CD 【答案】B【分析】设1BF m =,利用双曲线定义表示出22,BF AF 的长,再利用勾股定理可得()()22222m m a c ++=,在12BF F △和12AF F △中,分别利用余弦定理可得223b m a =,联立两式即可得离心率e ==【详解】如下图所示,连接22,BF AF ,易知以O 为圆心,2OF 为半径的圆经过点1F ,即12F F 为圆O 的直径,所以12BF BF ⊥;不妨设()1,0BF m m =>,则13AF m =,由双曲线定义可得222,32,BF m a AF m a =+=+所以2221212||||BF BF F F +=,即()()22222m m a c ++=,整理得2222m am b +=⋅⋅⋅⋅⋅⋅①在12BF F △中可得,()2222124244cos 224m c m a b am BF F m c mc+-+-∠==⋅;在12AF F △中可得,()2222129432412cos 23212m c m a b am AF F m c mc+-+-∠==⋅⋅;又易知1212cos cos 0BF F AF F ∠+∠=,可得223b m a=⋅⋅⋅⋅⋅⋅②联立①②可得,2232a b =,则双曲线的离心率为e ==故选:B45.已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为1F ,2F ,直线3y x =与双曲线C 交于A ,B两点(点A 在第二象限),且12AB F =.则双曲线C 的离心率为()A BC .13+D 【答案】A【分析】根据直线斜率可得倾斜角,作焦点三角形,利用余弦定理,结合双曲线的定义,可得答案.【详解】因为12AB F F =,所以OA =因为AB k =130AOF ∠=︒.所以。
高中数学《圆锥曲线的离心率问题》基础知识与练习题(含答案解析)
高中数学《圆锥曲线的离心率问题》基础知识与练习题(含答案解析)离心率是圆锥曲线的一个重要几何性质,一方面刻画了椭圆,双曲线的形状,另一方面也体现了参数,a c 之间的联系。
一、基础知识: 1、离心率公式:ce a=(其中c 为圆锥曲线的半焦距) (1)椭圆:()0,1e ∈ (2)双曲线:()1,+e ∈∞2、圆锥曲线中,,a b c 的几何性质及联系 (1)椭圆:222a b c =+,① 2a :长轴长,也是同一点的焦半径的和:122PF PF a += ② 2b :短轴长 ③ 2:c 椭圆的焦距 (2)双曲线:222c b a =+① 2a :实轴长,也是同一点的焦半径差的绝对值:122PF PF a −=② 2b :虚轴长 ③ 2:c 椭圆的焦距3、求离心率的方法:求椭圆和双曲线的离心率主要围绕寻找参数,,a b c 的比例关系(只需找出其中两个参数的关系即可),方法通常有两个方向:(1)利用几何性质:如果题目中存在焦点三角形(曲线上的点与两焦点连线组成的三角形),那么可考虑寻求焦点三角形三边的比例关系,进而两条焦半径与a 有关,另一条边为焦距。
从而可求解 (2)利用坐标运算:如果题目中的条件难以发掘几何关系,那么可考虑将点的坐标用,,a b c 进行表示,再利用条件列出等式求解2、离心率的范围问题:在寻找不等关系时通常可从以下几个方面考虑:(1)题目中某点的横坐标(或纵坐标)是否有范围要求:例如椭圆与双曲线对横坐标的范围有要求。
如果问题围绕在“曲线上存在一点”,则可考虑该点坐标用,,a b c 表示,且点坐标的范围就是求离心率范围的突破口(2)若题目中有一个核心变量,则可以考虑离心率表示为某个变量的函数,从而求该函数的值域即可(3)通过一些不等关系得到关于,,a b c 的不等式,进而解出离心率注:在求解离心率范围时要注意圆锥曲线中对离心率范围的初始要求:椭圆:()0,1e ∈,双曲线:()1,+e ∈∞ 二、典型例题:例1:设12,F F 分别是椭圆()2222:10x y C a b a b +=>>的左、右焦点,点P 在椭圆C 上,线段1PF 的中点在y 轴上,若1230PF F ∠=,则椭圆的离心率为( ) A .33 B .36C .13D .16思路:本题存在焦点三角形12PF F ,由线段1PF 的中点在y 轴上,O 为12F F 中点可得2PF y ∥轴,从而212PF F F ⊥,又因为1230PF F ∠=,则直角三角形12PF F 中,1212::2:1:3PF PF F F =,且12122,2a PF PF c F F =+=,所以12122323F F c c e a a PF PF ∴====+ 答案:A小炼有话说:在圆锥曲线中,要注意O 为12F F 中点是一个隐含条件,如果图中存在其它中点,则有可能与O 搭配形成三角形的中位线。
关于高中数学离心率题型解法的有效解决技巧
关于高中数学离心率题型解法的有效解决技巧离心率是描述椭圆或者双曲线形状的一个重要参数,在高中数学中是一个常见的题型。
解决离心率题型需要掌握一些有效的解决技巧,以下是一些常用的解题方法:1. 确定椭圆或双曲线的方程类型:首先要根据题目中的给定信息确定椭圆或双曲线的方程类型,例如椭圆的方程一般形式为\dfrac{x^2}{a^2}+ \dfrac{y^2}{b^2} = 1,双曲线的方程一般形式为\dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1。
2. 求取离心率:当已知椭圆或双曲线的方程时,可以利用离心率的定义求取离心率。
椭圆的离心率为e = \sqrt{1 - \dfrac{b^2}{a^2}},双曲线的离心率为e =\sqrt{\dfrac{b^2}{a^2} + 1}。
3. 利用离心率性质解题:离心率有许多有用的性质可以用来解决题目。
椭圆的离心率e满足0 < e < 1,即离心率是大于0小于1的实数。
双曲线的离心率e满足e > 1,即离心率是大于1的实数。
4. 求取椭圆或双曲线的焦点:椭圆的焦点可以通过离心率来求取,焦点的坐标为(\pm ae, 0)。
双曲线的焦点的坐标为(\pm ae, 0)和(0, \pm b)。
5. 利用焦点和离心率的性质求取题目所需要的信息:有时候题目会给出椭圆或双曲线的焦点和离心率,需要求取其他相关信息。
可以根据离心率和焦点的坐标来求取椭圆的长轴、短轴长度,以及双曲线的极限。
6. 综合运用多种方法解题:有些题目可能需要综合运用离心率的性质、椭圆、双曲线的方程以及焦点、长轴、短轴等信息来解决。
在解决离心率题型时,需要熟练掌握椭圆和双曲线的基本概念和公式,同时运用离心率的性质来推导和求解。
多做一些题目,加深对离心率和椭圆、双曲线的理解,掌握常见的解决技巧,就能够更有效地解决高中数学离心率题型。
妙解离心率问题(学生版)-高中数学
妙解离心率问题【目录】考点一:顶角为直角的焦点三角形求解离心率的取值范围问题考点二:焦点三角形顶角范围与离心率考点三:共焦点的椭圆与双曲线问题考点四:椭圆与双曲线的4a 通径体考点五:椭圆与双曲线的4a 直角体考点六:椭圆与双曲线的等腰三角形问题考点七:双曲线的4a 底边等腰三角形考点八:焦点到渐近线距离为b考点九:焦点到渐近线垂线构造的直角三角形考点十:以两焦点为直径的圆与渐近线相交问题考点十一:渐近线平行线与面积问题考点十二:数形结合转化长度角度求椭圆或双曲线的离心率、与双曲线的渐近线有关的问题,多以选择、填空题的形式考查,难度中等.考点要求考题统计考情分析离心率2023年新高考I 卷第5、16题,10分2023年甲卷第9题,5分2022年甲卷第10题,5分2022年浙江卷第16题,4分2021年甲卷第5题,5分2021年天津卷第8题,5分离心率问题一直是高考每年必考,对圆锥曲线概念和几何性质的考查为主,一般不会出太难,二轮复习我们需要掌握一些基本的性质和常规的处理方法,挖掘椭圆双曲线的几何性质下手.求离心率范围的方法一、建立不等式法:1.利用曲线的范围建立不等关系.2.利用线段长度的大小建立不等关系.F1,F2为椭圆x2a2+y2b2=1(a>b>0)的左、右焦点,P为椭圆上的任意一点,PF1∈a-c,a+c;F1,F2为双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点,P为双曲线上的任一点,PF1≥c-a.3.利用角度长度的大小建立不等关系.F1,F2为椭圆x2a2+y2b2=1的左、右焦点,P为椭圆上的动点,若∠F1PF2=θ,则椭圆离心率e的取值范围为sinθ2≤e<1.4.利用题目不等关系建立不等关系.5.利用判别式建立不等关系.6.利用与双曲线渐近线的斜率比较建立不等关系.7.利用基本不等式,建立不等关系.1(2023•新高考Ⅰ)设椭圆C1:x2a2+y2=1(a>1),C2:x24+y2=1的离心率分别为e1,e2.若e2=3e1,则a=()A.233B.2C.3D.62(2023•甲卷)已知双曲线C:x2a2-y2b2=1(a>0,b>0)的离心率为5,C的一条渐近线与圆(x-2)2+(y-3)2=1交于A,B两点,则|AB|=()A.55B.255C.355D.4553(2022•甲卷)椭圆C:x2a2+y2b2=1(a>b>0)的左顶点为A,点P,Q均在C上,且关于y轴对称.若直线AP,AQ的斜率之积为14,则C的离心率为()A.32B.22C.12D.134(2021•甲卷)已知F1,F2是双曲线C的两个焦点,P为C上一点,且∠F1PF2=60°,|PF1|=3|PF2|,则C的离心率为()A.7B.13C.72D.1325(2021•天津)已知双曲线x2a2-y2b2=1(a>0,b>0)的右焦点与抛物线y2=2px(p>0)的焦点重合,抛物线的准线交双曲线于A,B两点,交双曲线的渐近线于C,D两点,若|CD|=2|AB|,则双曲线的离心率为()A.2B.3C.2D.36(2022•甲卷)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为13,A 1,A 2分别为C 的左、右顶点,B 为C 的上顶点.若BA 1 ⋅BA 2=-1,则C 的方程为()A.x 218+y 216=1B.x 29+y 28=1C.x 23+y 22=1D.x 22+y 2=17(2022•全国)若双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线与直线y =2x +1垂直,则C 的离心率为()A.5B.5C.54D.528(多选题)(2022•乙卷)双曲线C 的两个焦点为F 1,F 2,以C 的实轴为直径的圆记为D ,过F 1作D 的切线与C 交于M ,N 两点,且cos ∠F 1NF 2=35,则C 的离心率为()A.52B.32C.132D.1729(2023•新高考Ⅰ)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2.点A 在C 上,点B 在y 轴上,F 1A ⊥F 1B ,F 2A =-23F 2B,则C 的离心率为.10(2022•浙江)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点为F ,过F 且斜率为b4a 的直线交双曲线于点A (x 1,y 1),交双曲线的渐近线于点B (x 2,y 2)且x 1<0<x 2.若|FB |=3|FA |,则双曲线的离心率是.考点一:顶角为直角的焦点三角形求解离心率的取值范围问题顶角为直角的焦点三角形求解离心率的取值范围问题,如图所示:椭圆:e =1sin α+cos α=12sin α+π4,根据α范围求解值域.双曲线:e =1cos α−sin α=12cos α+π4,根据α范围求解值域.1(2024·重庆沙坪坝·高三重庆八中校考阶段练习)已知椭圆x 2a 2+y 2b2=1a >b >0 上一点A ,它关于原点的对称点为B ,点F 为椭圆右焦点,且满足AF ⊥BF ,设∠ABF =α,且α∈π12,π3 ,则该椭圆的离心率e 的取值范围是()A.22,3-1 B.22,63C.3-1,63D.63,621(2024·高三单元测试)已知椭圆x 2a 2+y 2b2=1(a >b >0)上有一点A ,它关于原点的对称点为B ,点F 为椭圆的右焦点,且AF ⊥BF ,设∠ABF =α,且α∈π12,π6,则该椭圆的离心率e 的取值范围为()A.3-1,63B.3-1,32C.64,63D.0,632(2024·宁夏银川·高三银川二中校考阶段练习)已知椭圆x 2a 2+y 2b2=1(a >b >0)上有一点A ,它关于原点的对称点为B ,点F 为椭圆的右焦点,且满足AF ⊥BF ,设∠ABF =α,且α∈π12,π4,则该椭圆的离心率e 的取值范围为()A.22,63B.3-12,32C.3-1,63D.22,323(2024·河南驻马店·高三统考期末)已知双曲线C :x 2a 2-y 2b2(a >b >0)右支上非顶点的一点A 关于原点O 的对称点为B ,F 为其右焦点,若AF ⋅BF =0,设∠BAF =θ且θ∈π4,5π12,则双曲线C 离心率的取值范围是()A.(2,2]B.[2,+∞)C.(2,+∞)D.(2,+∞)考点二:焦点三角形顶角范围与离心率F 1,F 2是椭圆x 2a 2+y 2b2=1(a >b >0)的焦点,点P 在椭圆上,∠F 1PF 2=θ,则cos θ≥1−2e 2(当且仅当动点为短轴端点时取等号).1(2024·辽宁葫芦岛·高三统考期末)已知点F 1,F 2分别是椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点,点P 是椭圆上的一个动点,若使得满足ΔPF 1F 2是直角三角形的动点P 恰好有6个,则该椭圆的离心率为() A.12B.32C.22D.331(2024·江西抚州·高三统考期末)设F 1,F 2是椭圆的两个焦点,若椭圆上存在点p ,使∠F 1PF 2=120°,则椭圆离心率的取值范围是()A.0,32B.0,32C.32,1D.32,1 2(2024·宁夏·高三校联考阶段练习)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,若椭圆C 上存在点P ,使得PF 1⊥PF 2,则椭圆的离心率的取值范围为()A.12,22B.22,1 C.0,22D.12,223(2024·高三课时练习)已知椭圆x 2a 2+y 2b2=1(a >b >0)的两个焦点分别为F 1、F 2,若椭圆上存在点P 使得∠F 1PF 2是钝角,则椭圆离心率的取值范围是()A.0,22B.22,1C.0,12D.12,1考点三:共焦点的椭圆与双曲线问题sin 2α2e 椭2+cos 2α2e 双2=1,与基本不等式联姻求解离心率的取值范围1(2024·全国·高三专题练习)已知椭圆和双曲线有共同的焦点F 1,F 2,P 是它们的一个交点,且∠F 1PF 2=π3,记椭圆和双曲线的离心率分别为e 1,e 2,则当1e 1e 2取最大值时,e 1,e 2的值分别是()A.22,62B.12,52C.33,6 D.24,31(2024·湖南·高三校联考期末)已知椭圆和双曲线有共同的焦点F 1,F 2,P ,Q 分别是它们在第一象限和第三象限的交点,且QF 2⊥F 2P ,记椭圆和双曲线的离心率分别为e 1,e 2,则4e 21+e 22最小值等于.2(2024·湖北咸宁·校考模拟预测)已知中心在原点的椭圆与双曲线有公共焦点,左右焦点分别为F 1,F 2,且两条曲线在第一象限的交点为P ,△PF 1F 2是以PF 1为底边的等腰三角形,若PF 1 =24,椭圆与双曲线的离心率分别为e 1,e 2,则3e 1e 2的取值范围是()A.19,+∞B.1,+∞C.13,+∞D.12,+∞考点四:椭圆与双曲线的4a 通径体椭圆与双曲线的4a 通径体如图,若AF 2⊥F 1F 2,易知AF 2 =b 2a ,若AF 1 =λF 1B (λ>1),则一定有AF 1 =λ+12⋅b 2a,根据AF 1 +AF 2 =2a 可得λ+32⋅b 2a =2a ,即λ+34⋅(1-e 2)=1⇒e =λ-1λ+31(2024·河南新乡·高三统考期末)设双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别是F 1、F 2,过F 1的直线交双曲线C 的左支于M 、N 两点,若MF 2 =F 1F 2 ,且2MF 1 =NF 1 ,则双曲线C 的离心率是() A.43B.53C.52D.321(2024·甘肃庆阳·高三校联考阶段练习)已知F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点,过点F 1的直线交椭圆C 于M ,N 两点.若MN +NF 2 =2MF 2 ,且MF 2⊥NF 2,则椭圆C 的离心率为() A.33B.55C.22D.662(2024·湖南衡阳·校联考模拟预测)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,过F 1作直线l 与椭圆相交于M 、N 两点,∠MF 2N =90°,且4F 2N =3F 2M ,则椭圆的离心率为()A.13B.12C.33D.55考点五:椭圆与双曲线的4a 直角体如左图,若AF 2⊥AB ,AB 过原点,且AF 1=λF 1B ,∠AF 1F 2=α,则e cos α=λ−1λ+1可得离心率.如右图,若BF 2⊥AC ,AB 过原点,且AF 2=λF 2C(0<λ<1),通过补全矩形,可得AF 1⊥AC ,AF 2 =λ+12⋅b 2a ,借助公式e cos α=λ−1 λ+1可得离心率.1(2024·山东济南·校联考)设F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过F 2的直线交椭圆于A ,B 两点,且AF 1 ⋅AF 2 =0,AF 2 =2F 2B,则椭圆E 的离心率为()A.23B.34C.53D.741(2024·安徽池州·高三统考期末)设F 1、F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过点F 1-c ,0 的直线交椭圆E 于A ,B 两点,若AF 1=3 F 1B ,且AB ⊥AF 2,则椭圆E 的离心率是()A.12B.52C.32D.222(2024·湖北黄冈·高三统考期末)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆于A ,B 两点,AF 2 =λF 2B ,且AF 1 ⋅AF 2 =0,椭圆C 的离心率为22,则实数λ=()A.23B.2C.13D.3考点六:椭圆与双曲线的等腰三角形问题同角余弦定理使用两次1已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若│AF 2 =2F 2B ,AB │=BF 1 ,则C 的方程为()A.x 22+y 2=1B.x 23+y 22=1C.x 24+y 23=1D.x 25+y 24=11(2024·江西九江·高三九江一中校考期末)已知双曲线x 2a 2-y 2b2=1a >0,b >0 左右焦点为F 1,F 2,过F 2的直线与双曲线的右支交于P ,Q 两点,且PF 2=2F 2Q,若△PQF 1为以Q 为顶角的等腰三角形,则双曲线的离心率为()A.7B.2C.213D.32(2024·辽宁沈阳·高三沈阳二中校考阶段练习)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)左右焦点为F 1,F 2,过F 2的直线与双曲线的右支交于P ,Q 两点,且PF 2=3F 2Q,若△PQF 1为以Q 为顶角的等腰三角形,则双曲线的离心率为()A.3B.2C.2D.3考点七:双曲线的4a 底边等腰三角形当F 2A =F 2B 或者AB =4a 时,令∠AF 1F 2=α,则一定存在①F 1M =F 2B ,②e =1cos2α1(2024·河南·高三校联考阶段练习)设F 2为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,直线l :x -3y +c =0(其中c 为双曲线C 的半焦距)与双曲线C 的左、右两支分别交于M ,N 两点,若MN⋅F 2M +F 2N=0,则双曲线C 的离心率是()A.153B.53C.13D.521(2024·贵州·校联考模拟预测)设F 2为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,直线l :x -2y +c =0(其中c 为双曲线C 的半焦距)与双曲线C 的左、右两支分别交于M ,N 两点,若MN ⋅F 2M +F 2N=0,则双曲线C 的离心率是()A.53B.43C.153D.2332(2024·全国·高三长垣市第一中学校联考开学考试)设双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过点F 1作斜率为33的直线l 与双曲线C 的左、右两支分别交于M ,N 两点,且F 2M +F 2N ⋅MN =0,则双曲线C 的离心率为()A.2B.3C.5D.23(2024·全国·模拟预测)已知F 1,F 2分别为双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点,过F 1的直线与双曲线C 的左支交于A ,B 两点,连接AF 2,BF 2,在△ABF 2中,sin ∠ABF 22=14,AB =BF 2 ,则双曲线C 的离心率为()A.3B.2C.3D.2考点八:焦点到渐近线距离为b双曲线的特征三角形,如图所示,设渐近线l 1:y =b a x ,l 2:y =-bax ,过右焦点作FM ⊥l 1,FN ⊥l 2,由于渐近线方程为y =±b a x ,故MF 2 OM =NF 2 ON =b a ,且斜边OF 2 =c ,故MF 2 OF 2 =NF 2 OF 2=bc ,故OM =ON =a ,MF 2=NF 2 =b .1(2024·河南新乡·高三校联考阶段练习)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 2作双曲线C 的一条渐近线的垂线l ,垂足为H ,直线l 与双曲线C 的左支交于E 点,且H 恰为线段EF 2的中点,则双曲线C 的离心率为()A.2B.3C.2D.51(2024·吉林白山·高三校联考阶段练习)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左右焦点分别为F 1,F 2,以OF 1为直径的圆与双曲线的一条渐近线交于点M (异于坐标原点O ),若线段MF 1交双曲线于点P ,且MF 2⎳OP 则该双曲线的离心率为()A.2B.3C.52D.62(2024·山西运城·高三统考期末)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,以OF 1为直径的圆与双曲线的一条渐近线交于点M ,若线段MF 1交双曲线于点P ,且PF 2 =5PF 1 ,则双曲线的离心率为()A.264B.344C.2D.33(2024·辽宁·统考模拟预测)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一个焦点为F ,过F 作双曲线C 的一条渐近线的垂线,垂足为A .若△OFA (O 为坐标原点)的面积等于14c 2(c 为双曲线C 的半焦距),则双曲线C 的离心率为()A.2B.3C.2D.54(2024·广西南宁·统考)已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的左焦点为F 1,过点F 1的直线与两条渐近线的交点分别为M 、N 两点(点F 1位于点M 与点N 之间),且MF 1 =2F 1N,又过点F 1作F 1P ⊥OM 于P (点O 为坐标原点),且|ON |=|OP |,则双曲线E 的离心率e =()A.5B.3C.233D.62考点九:焦点到渐近线垂线构造的直角三角形利用几何法转化1(2024·江西九江·高三九江一中校考阶段练习)F 是双曲线x 2a 2-y 2b2=1a >0,b >0 的左焦点,过点F 作双曲线的一条渐近线的垂线,垂足为A ,交另一条渐近线于点B .若3FA =FB,则此双曲线的离心率为()A.2B.53C.233D.31(2024·广西玉林·校考模拟预测)过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点F 引一条渐近线的垂线,与另一条渐近线相交于第二象限,则双曲线C 的离心率的取值范围是()A.(2,+∞)B.(3,+∞)C.(2,+∞)D.(3,+∞)2(2024·江西新余·统考)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 ,过右焦点F 作C 的一条渐近线的垂线l ,垂足为点A ,l 与C 的另一条渐近线交于点B ,若AF =25AB,则C 的离心率为()A.305B.2C.233D.52考点十:以两焦点为直径的圆与渐近线相交问题以F 1F 2为直径作圆,交一条渐近线y =bax 于点B ,BF 1交另一条渐近线于点A ,则令∠BOF 2=α,则∠BF 1F 2=α2,e =1+tan 2α1(2024·全国·校联考)过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点F 作x 轴的垂线,与双曲线C 及其一条渐近线在第一象限分别交于A ,B 两点,且OF =2OA -OB(O 为坐标原点),则该双曲线的离心率是()A.2.B.3C.322D.2331(2024·山西晋城·统考)设F 1,F 2是双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点,以线段F 1F 2为直径的圆与直线bx -ay =0在第一象限交于点A ,若tan ∠AF 2O =2,则双曲线C 的离心率为()A.53B.32C.3D.22(2024·河北衡水·高三河北衡水中学校考阶段练习)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左,右焦点分别为F 1,F 2,若以F 1F 2为直径的圆和曲线C 在第一象限交于点P ,且△POF 2恰好为正三角形,则双曲线C 的离心率为()A.1+32B.1+52C.1+3D.1+53(2024·陕西宝鸡·统考)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,且以F 1F 2为直径的圆与双曲线C 的渐近线在第四象限交点为P ,PF 1交双曲线左支于Q ,若2F 1Q =QP,则双曲线的离心率为()A.10+12B.10C.5+12D.5考点十一:渐近线平行线与面积问题①双曲线C :x 2a 2-y 2b2=1上的任意点P 到双曲线C 的两条渐近线的距离的乘积是一个常数a 2b 2c 2②双曲线C :x 2a 2-y 2b2=1上的任意点P 作双曲线C 的两条渐近线的平行线,分别交于A ,B 两点,则PA PB 是一个常数c 24,S AOBP =ab 2,OA ⋅OB =a 2−b 241(2024·北京·人大附中校考)已知F 1,F 2分别为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过F 2作C 的两条渐近线的平行线,与渐近线交于M ,N 两点.若cos ∠MF 1N =513,则C 的离心率为()A.2B.852C.5D.531(2024·山东潍坊·高三统考期末)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)上一点P 坐标为(5,m )(m >0),F 为双曲线C 的右焦点,且PF 垂直于x 轴.过点P 分别作双曲线C 的两条渐近线的平行线,它们与两条渐近线围成的图形面积等于1,则该双曲线的离心率是.2(2024·重庆沙坪坝·高三重庆八中校考阶段练习)过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)右支上一点P 作两条渐近线的平行线分别与另一渐近线交于点M ,N ,O 为坐标原点,设△OMN 的面积为S ,若S ≥b 22,则双曲线C 的离心率取值范围为.(用区间作答)考点十二:数形结合转化长度角度数形结合1(2024·四川泸州·高三四川省泸县第一中学校考阶段练习)已知F 1,F 2分别为双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点,P 是C 左支上一点,PF 2 =2PF 1 ,若存在点M 满足F 1P =2MP ,OM ⋅FP 1=0,则C 的离心率为.1(2024·内蒙古赤峰·高三校考期末)已知双曲线Γ:x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,点A 在Γ上,且AF 1 ⋅AF 2=0,射线AO ,AF 2分别交Γ于B ,C 两点(O 为坐标原点),若F 2B =F 2C ,则Γ的离心率为.2(2024·福建龙岩·高三福建省连城县第一中学校考期末)如图,已知双曲线C :x 2a2-y 2a +2=1的左、右焦点分别为F 1,F 2,M 是C 上位于第一象限内的一点,且直线F 2M 与y 轴的正半轴交于A 点,△AMF 1的内切圆在边MF 1上的切点为N ,若MN =2,则双曲线C 的离心率为.。
关于高中数学离心率题型解法的有效解决技巧
关于高中数学离心率题型解法的有效解决技巧高中数学中,离心率是一个常见的题型,解题时需要掌握一些有效的解决技巧。
下面将介绍几种常见的离心率题型及解法。
一、求离心率的大小对于给定的椭圆方程或双曲线方程,要求其离心率的大小,可以通过以下步骤进行解题:1.找到椭圆(或双曲线)的焦点坐标(a,0)和(-a,0),及顶点的坐标(c,0)和(-c,0)。
2.根据离心率的定义,离心率e等于焦点到顶点的距离与长轴的一半的比值,即e=c/a。
3.计算离心率的大小。
二、已知离心率和焦点坐标求椭圆(或双曲线)方程对于给定的离心率e和焦点坐标(a,0)和(-a,0),要求方程的解,可以按照以下步骤进行:2.由于离心率与顶点的坐标有关,可以令顶点的坐标为(c,0)和(-c,0)。
3.根据顶点坐标和离心率的定义,可以得到方程的表达式。
4.化简方程,得到标准形式的方程。
2.根据标准形式可以得到椭圆(或双曲线)的中心坐标(h,k),椭圆(或双曲线)的焦点公式为(h ± ae,k),离心率为e。
四、已知椭圆(或双曲线)方程及一点求与该点相切的切线方程3.通过求导可得到椭圆(或双曲线)的斜率k1。
4.由于切线与椭圆(或双曲线)相切,切线的斜率与椭圆(或双曲线)的斜率k1相等。
5.利用点斜式得到切线方程。
五、已知圆心和两个点的坐标求圆方程1.根据圆的定义,圆的半径r等于圆心到任意一点的距离,即r=sqrt((x1-h)^2+(y1-k)^2)。
六、已知圆的方程求切线方程总结:在解决高中数学离心率题型时,需要熟悉椭圆和双曲线的基本概念和性质,掌握离心率的定义和求解方法。
通过对给定的条件进行分析和计算,可以得到离心率的大小、椭圆(或双曲线)的方程、焦点的坐标及离心率的大小、与给定点相切的切线方程等信息。
掌握了这些解题技巧,就能够快速、准确地解决高中数学离心率题型。
抓住关键__掌握方法_双曲线离心率的求法_王泽龙
,
∴ kAB ·kOP
=-
b2 a2
(值范围
例 7 如图 2,在直角 DEF 中,∠DEF
=
90°,| E→F |
= 2,| E→F + E→D |
=
5 2
,椭圆
C:
x2 a2
+
y2 b2
= 1,以 E、F 为焦点,且过点 D,点 O 为
坐标原点.
( 1) 求椭圆 C 的标准方程;
为 60°,则双曲线的离心率为
.
分析 先 确 定 双 曲 线 的 图 形,结 合
RtB1 OF1 中边角之间几何特征,建立相应的 关系式,进而求解对应的离心率,利用几何法
求解双曲线的离心率关键是应用几何图形的
性质.
解 如图 1,不失一般性,假设双曲线的
焦点在 x 轴上. 由于 c > b,所以
∠B1 F1 B2 = 60°,∠B1 F1 O = 30°. 在 RtB1 OF1 中,
设 MN 的中点为 H,则 KH ⊥ MN,此条件涉及
到弦 MN 的中点及弦 MN 的斜率,故用“点差
法”. 解
( ) ( 1)
x2 + y2 43
= 1,K 0,12
. ( 过程
略)
设 M( x1 ,y1 ) ,N( x2 ,y2 ) ,H( x0 ,y0 ) ,直线 l
的斜率为 k( k ≠ 0) ,则
2a = | PF1 | - | PF2 | = ( 槡3 - 1) m.
而 2c = 2m,
所以根据离心率的定义,有
e=
c a
=
2c 2a
=2 槡3 - 1
=
槡3
+ 1.
圆锥曲线:离心率问题 高考数学
C. 2
√
B. 3
1
2
3
4
5
6
D. 5 − 1
7
8
9
10
)
试卷讲评课件
【详解】令双曲线的焦距为,依题意,
∣ ∣−∣ ∣=
,解得
∣ ∣+∣ ∣= −
∣ ∣= −
,
∣ ∣= −
在△ 中,∠ = ∘ ,由余弦定理得
故 ⋅ =
⋅
= = ①,
+ −
−
−
∵ + = ,即 =
②,
②代入①整理得:
= =
−
=
=
,
.
故选:.
【点评】本题考查椭圆的简单几何性质,是基础题.
1
2
3
4
5
6
(1)表示边:圆锥曲线的定义、正弦定理、余弦定理、勾股定理、成比
例线段.
(2)表示坐标的方法:向量、函数解析式、曲线解析式,点差法.
(3)常见角度关系:公共角、补角、余角.
【例题分析】
考向一 直接求、的值或利用、的关系求离心率
试卷讲评课件
x2
例1.( ⋅湖北·二模)已知椭圆C:
m
2
试卷讲评课件
2.双曲线
(1)
x2
双曲线的标准方程: 2
a
y2
− 2
b
=
y2
1或 2
a
−
x2
2023年新高考数学大一轮复习专题28 轻松搞定圆锥曲线离心率十九大模型(原卷版)
专题28 轻松搞定圆锥曲线离心率十九大模型【考点预测】 求离心率范围的方法 一、建立不等式法:1、利用曲线的范围建立不等关系.2、利用线段长度的大小建立不等关系.12,F F 为椭圆22221(0)x y a b a b +=>>的左、右焦点,P 为椭圆上的任意一点,[]1,PF a c a c ∈-+;12,F F 为双曲线22221(0,0)x y a b a b -=>>的左、右焦点,P 为双曲线上的任一点,1PF c a ≥-.3、利用角度长度的大小建立不等关系.12,F F 为椭圆22221x y a b +=的左、右焦点,P 为椭圆上的动点,若12F PF θ∠=,则椭圆离心率e 的取值范围为sin12e θ≤<.4、利用题目不等关系建立不等关系.5、利用判别式建立不等关系.6、利用与双曲线渐近线的斜率比较建立不等关系.7、利用基本不等式,建立不等关系. 二、函数法:1、根据题设条件,如曲线的定义、等量关系等条件建立离心率和其他一个变量的函数关系式;2、通过确定函数的定义域;3、利用函数求值域的方法求解离心率的范围. 三、坐标法:由条件求出坐标代入曲线方程建立等量关系. 【题型归纳目录】题型一:建立关于a 和c 的一次或二次方程与不等式 题型二:圆锥曲线第一定义 题型三:圆锥曲线第二定义题型四:圆锥曲线第三定义(斜率之积) 题型五:利用数形结合求解 题型六:利用正弦定理 题型七:利用余弦定理 题型八:内切圆问题 题型九:椭圆与双曲线共焦点题型十:利用最大顶角θ 题型十一:基本不等式 题型十二:已知12PF PF ⋅范围 题型十三:12=PF PF λ 题型十四:中点弦题型十五:已知焦点三角形两底角 题型十六:利用渐近线的斜率 题型十七:坐标法题型十八:利用焦半径的取值范围 题型十九:四心问题 【典例例题】题型一:建立关于a 和c 的一次或二次方程与不等式例1.(2022·全国·高三专题练习)如图所示,已知双曲线()2222:10,0x y C a b a b-=>>的右焦点为F ,双曲线C 的右支上一点A ,它关于原点O 的对称点为B ,满足120AFB ∠=︒,且2BF AF =,则双曲线C 的离心率是________.例2.(2022·四川·高三阶段练习(理))已知双曲线C :22221x y a b-=(0a >,0b >)的左、右焦点分别是1F ,2F ,过右焦点2F 且不与x 轴垂直的直线交C 的右支于A ,B 两点,若1AF AB ⊥,且12AB AF =,则C 的离心率为( )AB .1CD .1例3.(2022·湖北·高三开学考试)已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为12,F F ,过1F 作直线l 与C 的左、右两支分别交于,M N 两点,且2MNF 是以2MNF ∠为顶角的等腰直角三角形,若C 的离心率为e ,则2e =( )A.533B .5+C .5+D .5+例4.(2022·甘肃·瓜州一中高三期中(文))若m 是2和8的等比中项,则圆锥曲线221y x m+=的离心率是( )A B C D例5.(2022·江西·高三开学考试(文))设椭圆()2222:10x y C a b a b +=>>的左、右焦点分别为1F ,2F ,点M ,N 在C 上(M 位于第一象限),且点M ,N 关于原点O 对称,若12MN F F =,22NF =,则C 的离心率为( )A B .12C D题型二:圆锥曲线第一定义例6.(2022·重庆八中高三开学考试(理))设椭圆E :2222x y a b+=1(a >b >0)的一个焦点为F (c ,0)(c >0),点A (﹣c ,c )为椭圆E 内一点,若椭圆E 上存在一点P ,使得|P A |+|PF |=9c ,则椭圆E 的离心率取值范围为( ) A .[12,1)B .[13,12]C .[12,23]D .[15,14]例7.(2022·浙江·高三开学考试)已知12,F F 分别为椭圆2222:1(0)x yC a b a b+=>>的左、右焦点,过1F 的直线与C 交于,P Q 两点,若12125PF PF FQ ==,则C 的离心率是( )A B C D例8.(2022·江苏·南京市金陵中学河西分校高三阶段练习)设双曲线222:1y C x b-=的左、右焦点分别为F 1,F 2,P 是C 上一点,且12F P F P ⊥,若12PF F △的面积为4,则双曲线C 的离心率为( )A B .2 C .3 D例9.(2022·贵州贵阳·高三开学考试(理))已知双曲线222:1(0)5x y C a a -=>的左焦点为(,0)F c -, 点P 在双曲线C 的右支上, (0,4)A .若 ||||PA PF +的最小值是 9 , 则双曲线C 的离心率是_____.例10.(2022·全国·高三专题练习)已知1F ,2F 分别是双曲线2222:1(0,0)x yC a b ab-=>>的左、右焦点,以12F F 为直径的圆与双曲线C 有一个交点P ,设12PF F △的面积为S ,若()21212PF PF S +=,则双曲线C 的离心率为( )A.2 B C D .题型三:圆锥曲线第二定义例11.(2022·全国·高三专题练习(文))古希腊数学家欧几里得在《几何原本》中描述了圆锥曲线的共性,并给出了圆锥曲线的统一定义,他指出,平面内到定点的距离与到定直线的距离的比是常数e 的点的轨迹叫做圆锥曲线;当01e <<时,轨迹为椭圆;当1e =时,轨迹为抛物线;当1e >时,轨迹为双曲线.则15=表示的圆锥曲线的离心率e 等于( ) A .15B .45C .54D .5例12.(2022·北京石景山·高三专题练习)已知双曲线22221(,0)x y a b a b-=>的左、右焦点分别为12F F ,P 为左支上一点,P 到左准线的距离为d ,若d 、1||PF 、2||PF 成等比数列,则其离心率的取值范围是( )A.)+∞ B .(1C .[1)+∞D .(1,1例13.(2022·全国·高三专题练习)已知双曲线()2222:10,0x y C a b a b-=>>的右焦点为F ,过F 的直线交C 于A 、B 两点,若4AF FB =,则C 的离心率为( ) A .58B .65C .75D .95例14.(2022·四川遂宁·二模(理))已知双曲线22221x y a b -=(0,0a b >> )的离心率为4,过右焦点F 作直线交该双曲线的右支于M,N 两点,弦MN 的垂直平分线交x 轴于点H ,若10MN =,则HF =( ) A .14 B .16 C .18 D .20例15.(2022·全国·高三专题练习)已知双曲线C :22x a -22y b=1(a >0,b >0)的右焦点为F ,过F 且斜率为C 于A 、B 两点,若5AF FB =,则C 的离心率为( )A .43B .53C .2D .85题型四:圆锥曲线第三定义(斜率之积)例16.(2022·全国·高三专题练习)已知椭圆C :22221x y a b +=(0a b >>),点A ,B 为长轴的两个端点,若在椭圆上存在点P ,使1,03AP BP k k ⎛⎫⋅∈- ⎪⎝⎭,则椭圆的离心率e 的取值范围是______.例17.(2022·全国·高三专题练习)已知点A 、B 为椭圆2222:1(0)x y E a b a b +=>>的长轴顶点,P 为椭圆上一点,若直线P A ,PB 的斜率之积的范围为32,43⎛⎫-- ⎪⎝⎭,则椭圆E 的离心率的取值范围是( )A .12⎛ ⎝⎭B .2⎝⎭C .41⎛ ⎝⎭D .11,43⎛⎫ ⎪⎝⎭例18.(2022·全国·高三专题练习(理))椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为( )A B C .12D .13例19.(2022·湖南郴州·高二期末)双曲线()2222:1,0x y C a b a b-=>的左右顶点为,A B ,过原点的直线l 与双曲线C 交于,M N 两点,若,AM AN 的斜率满足2AM AN k k ⋅=,则双曲线C 的离心率为_________.例20.(2022·云南·罗平县第一中学高二开学考试)已知双曲线()222210,0x y a b a b-=>>的两个顶点分别为A ,B ,点P 为双曲线上除A ,B 外任意一点,且点P 与点A ,B 连线的斜率为1k ,2k ,若128k k ⋅=,则双曲线的离心率为( )AB C .2D .3例21.(2022·全国·高二课时练习)已知A ,B ,P 是双曲线22221x y a b-=(0a >,0b >)上不同的三点,且点A ,B 连线经过坐标原点,若直线P A ,PB 的斜率乘积为43,则该双曲线的离心率为( )A B C D题型五:利用数形结合求解例22.(2022·广西·模拟预测(文))如图1所示,双曲线具有光学性质:从双曲线右焦点发出的光线经过双曲线镜面反射,其反射光线的反向延长线经过双曲线的左焦点.若双曲线2222:1(0,0)x y E a b a b-=>>的左、右焦点分别为12,F F ,从2F 发出的光线经过图2中的,A B 两点反射后,分别经过点C 和D ,且12tan 5CAB ∠=-,2||?BD AD BD =,则双曲线E 的离心率为( )A .65B C D .3例23.(2022·广西柳州·模拟预测(理))如图1所示,双曲线具有光学性质;从双曲线右焦点发出的光线经过双曲线镜面反射,其反射光线的反向延长线经过双曲线的左焦点.若双曲线E :22221(0,0)x y a b a b-=>>的左、右焦点分别为1F ,2F ,从2F 发出的光线经过图2中的A ,B 两点反射后,分别经过点C 和D ,且3cos 5BAC ∠=-,AB BD ⊥,则E 的离心率为( )ABCD例24.(2022·四川·成都七中模拟预测(理))已知双曲线22221x y C a b-=:(0a >,0b >)的左,右焦点分别是1F ,2F ,点P 是双曲线C 右支上异于顶点的点,点H 在直线x a =上,且满足1212PF PF PH PF PF λ⎛⎫⎪=+ ⎪⎝⎭,R λ∈.若215430HP HF HF ++=,则双曲线C 的离心率为( )A .3B .4C .5D .6例25.(2022·全国·二模(理))已知双曲线()2222:10,0x y C a b a b-=>>与椭圆22143x y +=.过椭圆上一点31,2P ⎛⎫- ⎪⎝⎭作椭圆的切线l ,l 与x 轴交于M 点,l与双曲线C 的两条渐近线分别交于N 、Q ,且N 为MQ 的中点,则双曲线C 的离心率为( ) ABC D例26.(2022·全国·模拟预测(文))已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别是1F ,2F ,过2F 的直线l 交双曲线C 于P ,Q 两点且使得()2201PF F Q λλ=<<.A 为左支上一点且满足120F A F P +=,1222133F F AFAQ =+,2AF P △的面积为2b ,则双曲线C 的离心率为( ) ABC D例27.(2022·山东潍坊·三模)已知双曲线()2222:10,0x y C a b a b -=>>的左,右顶点分别是1A ,2A ,圆222x y a +=与C 的渐近线在第一象限的交点为M ,直线1A M 交C 的右支于点P ,若△2MPA 是等腰三角形,且2PA M ∠的内角平分线与y 轴平行,则C 的离心率为( )A .2 BC D例28.(2022·浙江·赫威斯育才高中模拟预测)已知1F ,2F 分别是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过1F 的直线l 与双曲线C 左、右支分别交于A ,B 两点,若2||AB BF =,12BF F △2,双曲线C 的离心率为e ,则2e =( ) AB .2C .2+D .5+题型六:利用正弦定理例29.(2022·全国·高三专题练习)已知1F ,2F 分别为椭圆()2222:10x yE a b a b+=>>的两个焦点,P 是椭圆E 上的点,12PF PF ⊥,且2112sin 3sin PF F PF F ,则椭圆E 的离心率为( )A B CD例30.(2022·全国·高三专题练习)过椭圆()222210x y a b a b+=>>的左、右焦点1F ,2F 作倾斜角分别为6π和3π的两条直线1l ,2l .若两条直线的交点P 恰好在椭圆上,则椭圆的离心率为( )A B 1C D例31.(2022·江苏·扬州中学高三开学考试)已知椭圆()222210,0x y a b a b+=>>的左、右焦点分别为()1,0F c -,()2,0F c ,若椭圆上存在点P (异于长轴的端点),使得1221sin sin c PF F a PF F ∠=∠,则该椭圆离心率e 的取值范围是______.例32.(2022·全国·高三专题练习)过椭圆()222210x y a b a b+=>>的左、右焦点1F ,2F 作倾斜角分别为6π和3π的两条直线1l ,2l .若两条直线的交点P 恰好在椭圆上,则椭圆的离心率为( )A B 1C D题型七:利用余弦定理例33.(2022·全国·高三专题练习)椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,过点1F 的直线l 交椭圆C 于A ,B 两点,若122||||F F AF =,112AF F B =,则椭圆C 的离心率为( )A .57B 2C D .13例34.(2022·河北廊坊·高三开学考试)已知椭圆()2222:10x y C a b a b +=>>的左、右焦点分别为1F ,2F ,P为C 上一点,且127cos 9F PF ∠=,若1F 关于12F PF ∠平分线的对称点Q 在C 上,则C 的离心率为________.例35.(2022·全国·高三专题练习)椭圆2222:1(0)x y C a b a b +=>>的左、右焦点分别为1F ,2F ,过点1F 的直线l 交椭圆C 于A ,B 两点,若122||||F F AF =,112AF F B =,则椭圆C 的离心率为( )A .57B C D .13例36.(2022·全国·高三专题练习)已知1F ,2F 分别是双曲线2222:1(0,0)x yC a b ab-=>>的左、右焦点,过1F的直线l 与双曲线C 左、右支分别交于A ,B 两点,若2||AB BF =,12BF F △2,双曲线C 的离心率为e ,则2e =( ) AB .2C .2+D .5+例37.(2022·河南·通许县第一高级中学模拟预测(文))已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为12,F F ,过点1F 的直线l 与C 的左、右两支分别交于点,A B ,若2ABF 是边长为4的等边三角形,则C 的离心率为( )A .3BCD .2题型八:内切圆问题例38.(2022·河南·平顶山市第一高级中学模拟预测(理))已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为1F ,2F ,P 是双曲线上一点,且22()0OP OF F P +⋅=(O 为坐标原点),若12PF F △内切圆的半径为2a,则C 的离心率是( )A 1BCD 1例39.(2022·陕西·西北工业大学附属中学模拟预测(理))已知椭圆()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,经过1F 的直线交椭圆于A ,B ,2ABF 的内切圆的圆心为I ,若23450++=IB IA IF ,则该椭圆的离心率是( )A B .23C D .12例40.(2022·江苏苏州·模拟预测)已知12,F F 是椭圆221(1)1x y m m m +=>-的左、右焦点,点A 是椭圆上的一个动点,若12AF F △ )A 1B .12C D 1例41.(2022·湖北武汉·模拟预测)已知双曲线C :()222104x y a a -=>的左,右焦点分别为1F ,2F ,点P 在双曲线右支上运动(不与顶点重合),设1PF 与双曲线的左支交于点Q ,2PQF 的内切圆与2QF 相切于点M .若4QM =,则双曲线C 的离心率为( )AB C .2D例42.(2022·浙江·模拟预测)已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12,F F ,M 为右支上一点,2112120,MF F MF F ∠=︒的内切圆圆心为Q ,直线MQ 交x 轴于点N ,||2||MQ QN =,则双曲线的离心率为( ) A.54B .43C D例43.(2022·内蒙古·赤峰二中模拟预测(文))已知1F 、2F 分别为双曲线()222210,0x y a b a b-=>>的左、右焦点,12F F P 是y 轴正半轴上一点,线段1PF 交双曲线左支于点A ,若21AF PF ⊥,且2APF 的内切圆半径为1,则双曲线的离心率是( )A B C D例44.(2022·辽宁·鞍山一中模拟预测)已知点P 为双曲线()222210,0x y a b a b-=>>一点(点P 在第一象限),点12,F F 分别为双曲线的左,右焦点,12PF F △的内切圆的半径为1.圆心为点I ,若123,4F O F I I π∠== )AB C D例45.(2022·江苏南通·模拟预测)在平面直角坐标系xoy 中,12,F F 分别是双曲线C :22221(0,0)x y a b ab-=>>的左,右焦点,过1F 的直线l 与双曲线的左,右两支分别交于点,A B ,点T 在x 轴上,满足23BT AF =,且2BF 经过1BFT 的内切圆圆心,则双曲线C 的离心率为( )AB .2C D题型九:椭圆与双曲线共焦点例46.(2022·甘肃省民乐县第一中学三模(理))设1F ,2F 为椭圆1C 与双曲线2C 的公共焦点,1F ,2F 分别为左、右焦点,1C 与2C 在第一象限的交点为M .若12MF F △是以线段1MF 为底边的等腰三角形,且双曲线2C 的离心率72,2e ⎡⎤∈⎢⎥⎣⎦,则椭圆1C 离心率的取值范围是( )A .45,99⎡⎤⎢⎥⎣⎦B .70,16⎡⎤⎢⎥⎣⎦C .27,516⎡⎤⎢⎥⎣⎦D .2,17⎡⎤⎢⎥⎣⎦例47.(2022·重庆·模拟预测)如图,F 1,F 2是椭圆C 1与双曲线C 2的公共焦点,A ,B 分别是C 1与C 2在第二、四象限的公共点,若AF 1⊥BF 1,设C 1与C 2的离心率分别为e 1,e 2,则8e 1+e 2的最小值为( )A .6+2B .C D例48.(2022·湖南·长沙一中模拟预测)已知椭圆1C 与双曲线2C 的焦点相同,离心率分别为1e ,2e ,且满足21e =,1F ,2F 是它们的公共焦点,P 是椭圆和双曲线在第一象限的交点,若12120F PF ∠=︒,则双曲线2C 的离心率为( )AB C .2 D例49.(2022·河南郑州·一模(文))已知12,F F 知是椭圆221:14x C y +=与双曲线2C 的公共焦点,A 是12,C C 在第二象限的公共点.若12AF AF ⊥,则双曲线2C 的离心率为( )A .65B C D例50.(2022·河南郑州·一模(理))已知 12,F F 是椭圆与双曲线的公共焦点,P 是它们的一个公共点,且| PF 2 |>| PF 1 |,椭圆的离心率为1e ,双曲线的离心率为2e ,112||||PF F F =,则2133e e +的最小值为( ) A .4 B .6C.D .8例51.(2022·江西·模拟预测(理))已知12,F F 为椭圆和双曲线的公共焦点,P 是它们的公共点,且1212,,3F PF e e π∠=的值为( )A .1B .2C .3D .4例52.(2022·云南·一模(理))已知1F 、2F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且123F PF π∠=,记椭圆和双曲线的离心率分别为1e ,2e ,则1212e e 的最大值为( ) A .32BCD .1例53.(2022·甘肃白银·模拟预测(理))已知1F ,2F 是椭圆221:14x C y +=与双曲线2C 的公共焦点,A 是1C ,2C 在第二象限的公共点.若12AF AF ⊥,则2C 的离心率为 A .45BCD例54.(2022·山东日照·二模)已知1F ,2F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且123F PF π∠=,记椭圆和双曲线的离心率分别为1e ,2e ,则221213e e +的值为( ) A .1 B .2512C .4D .16例55.(2022·陕西省榆林中学三模(理))椭圆与双曲线共焦点1F ,2F ,它们在第一象限的交点为P ,设122F PF θ∠=,椭圆与双曲线的离心率分别为1e ,2e ,则( )A .222212cos sin 1e e θθ+= B .222212sin cos 1e e θθ+= C .2212221cos sin e e θθ+=D .2212221sin cos e e θθ+=题型十:利用最大顶角θ例56.(2022·全国·高二课时练习)已知椭圆C :22221(0)x y a b a b+=>>,点A ,B 是长轴的两个端点,若椭圆上存在点P ,使得120APB ∠=︒,则该椭圆的离心率的取值范围是( )A .⎫⎪⎪⎣⎭B .⎫⎪⎪⎣⎭C .⎛ ⎝⎦D .30,4⎛⎤ ⎥⎝⎦例57.(2022·全国·高二专题练习)设A ,B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则椭圆C 的离心率的取值范围是( )A .B .1)C .D .例58.(2022·全国·模拟预测)已知椭圆()2222:10x y C a b a b +=>>,点P 是C 上任意一点,若圆222:O x y b +=上存在点M 、N ,使得120MPN ∠=︒,则C 的离心率的取值范围是( )A .⎛ ⎝⎦B .⎫⎪⎪⎣⎭C .10,2⎛⎤⎥⎝⎦D .1,12⎡⎫⎪⎢⎣⎭例59.(2022·全国·高三专题练习)设1F 、2F 是椭圆()222210x y a b a b +=>>的左、右焦点,若椭圆外存在点P 使得120PF PF ⋅=,则椭圆的离心率的取值范围______.例60.(2022·北京丰台二中高三阶段练习)已知1F ,2F 分别是某椭圆的两个焦点,若该椭圆上存在点P 使得122F PF θ∠=(02πθ<<,θ是已知数),则该椭圆离心率的取值范围是________.例61.(2022·广东·广州市真光中学高三开学考试)已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,若椭圆上存在一点P 使得122π3F PF ∠=,则该椭圆离心率的取值范围是________.题型十一:基本不等式例62.(2022·全国·高三专题练习)设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,椭圆C 上的两点A ,B关于原点对你,且满足0FA FB ⋅=,FB FA ≤,则椭圆C 的离心率的取值范围为( )A .⎫⎪⎪⎣⎭B .1⎤⎥⎣⎦C .)1,1D .⎣⎦例63.(2022·江苏南京·高三阶段练习)设1F 、2F 分别是椭圆E :()222210x y a b a b+=>>的左、右焦点,M是椭圆E 准线上一点,12F MF ∠的最大值为60°,则椭圆E 的离心率为( )A 2B C 2D例64.(2022·山西运城·高三期末(理))已知点A 为椭圆()222210x y a b a b+=>>的左顶点,O 为坐标原点,过椭圆的右焦点F 作垂直于x 轴的直线l ,若直线l 上存在点P 满足30APO ∠=︒,则椭圆离心率的最大值______________.例65.(2022·四川成都·高三开学考试(文))已知双曲线()2222:10,0x y C a b a b-=>>,F 为右焦点,过点F作FA x ⊥轴交双曲线于第一象限内的点A ,点B 与点A 关于原点对称,连接AB ,BF ,当ABF ∠取得最大值时,双曲线的离心率为______.例66.(2022·全国·高三专题练习)在平面直角坐标系xOy 中,已知双曲线()222210,0x y a b a b-=>>的左、右顶点为A 、B ,若该双曲线上存在点P ,使得直线PA 、PB 的斜率之和为1,则该双曲线离心率的取值范围为__________.题型十二:已知12PF PF ⋅范围例67.(2022·四川省南充市白塔中学高三开学考试(理))已知1F 、2F 分别为椭圆()2222:10x y C a b a b +=>>的左、右焦点,A 为右顶点,B 为上顶点,若在线段AB 上(不含端点)存在不同的两点()1,2i P i =,使得2123i i c PF PF ⋅=-,则椭圆C 的离心率的取值范围为( )A .⎛ ⎝⎭B .⎫⎪⎪⎝⎭C .⎛ ⎝⎭D .⎝⎭例68.(2022·全国·高二专题练习)已知1()0F c -,,2(0)F c ,是椭圆C :22221(0)x y a b a b+=>>的左右焦点,若椭圆上存在一点P 使得212PF PF c ⋅=,则椭圆C 的离心率的取值范围为( ) A. B. C.1D.1)例69.(2022·全国·高三开学考试(理))设1F ,2F 分别是椭圆()2222:10x y E a b a b+=>>的左、右焦点,若椭圆E 上存在点P 满足2122a PF PF ⋅=,则椭圆E 离心率的取值范围( )A.12⎛ ⎝⎭B.12⎡⎢⎣⎦ C .10,2⎛⎫⎪⎝⎭D .10,2⎛⎤ ⎥⎝⎦例70.(2022·四川·高二期末(文))设1F ,2F 是椭圆C :()222210x y a b a b +=>>的左、右焦点,若椭圆C 上存在一点P ,使得2122c PF PF ⋅=,则椭圆C 的离心率e 的取值范围为( )A.2⎣⎦B.⎣⎦ C.⎣⎦ D.⎣⎦例71.(2022·吉林·长春市第二实验中学高二阶段练习)已知()1,0F c -、()2,0F c 是椭圆()2222:10x y C a b a b+=>>的左、右焦点,若椭圆C 上存在一点P 使得2123PF PF c ⋅=,则椭圆C 的离心率e 的取值范围是______.题型十三:12=PF PF λ例72.(2022·江苏·海安县实验中学高二阶段练习)已知椭圆C :()222210x y a b a b+=>>的左、右焦点分别为()1,0F c -,()2,0F c ,若椭圆C 上存在一点P ,使得2112sin sin PF F cPF F a∠=∠,则椭圆C 的离心率的取值范围为( ) A.⎛ ⎝⎭B.()1C.)1,1D.⎫⎪⎪⎝⎭例73.(2022·浙江湖州·高二期中)已知椭圆()222210x y a b a b+=>>的左右焦点分别为F 1,F 2,离心率为e ,若椭圆上存在点P ,使得12PF e PF =,则该离心率e 的取值范围是( ) A.)1,1 B.⎫⎪⎪⎣⎭C.(1⎤⎦D.⎛ ⎝⎦例74.(2022·全国·高二课时练习)已知椭圆()222210x y a b a b+=>>上存在点P ,使得213PF PF =,其中1F ,2F 分别为椭圆的左、右焦点,则该椭圆的离心率的取值范围是( )A .10,4⎛⎤⎥⎝⎦B .1,14⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .1,12⎡⎫⎪⎢⎣⎭题型十四:中点弦例75.(2022·全国·高三开学考试(理))已知双曲线2222:1(0,0)x y C a b a b -=>>与斜率为1的直线交于A ,B 两点,若线段AB 的中点为(4,1),则C 的离心率e =( ) ABCD例76.(2022·福建·晋江市第一中学高三阶段练习)已知椭圆()222210x y a b a b+=>>,()0,2P ,()0,2Q -过点P 的直线1l 与椭圆交于A ,B ,过点Q 的直线2l 与椭圆交于C ,D ,且满足12l l ∕∕,设AB 和CD 的中点分别为M ,N ,若四边形PMQN为矩形,且面积为 ) A .13B .23CD例77.(2022·全国·高三开学考试(理))以原点为对称中心的椭圆12,C C 焦点分别在x 轴,y 轴,离心率分别为12,e e ,直线l 交12,C C 所得的弦中点分别为11(,)M x y ,22(,)N x y ,若121220x x y y =≠,221221e e -=,则直线l 的斜率为( ) A .±1 B.C .2± D.±例78.(2022·全国·高三专题练习)已知椭圆C :()222210x y a b a b+=>>的左焦点为F ,过F 作一条倾斜角为60︒的直线与椭圆C 交于A ,B 两点,M 为线段AB 的中点,若3FM OF =(O 为坐标原点),则椭圆C 的离心率为( )A B C D .2例79.(2022·全国·高三专题练习)已知椭圆22221x y a b +=(0a b >>)的右焦点为F F的直线l 交椭圆于A ,B 两点,若AB 的中点为()1,1,则直线l 的斜率为( ) A .14-B .34-C .12-D .1例80.(2022·全国·高三专题练习)过双曲线C :22221x y a b -=(0a >,0b >)的焦点且斜率不为0的直线交C 于A ,B 两点,D 为AB 中点,若12AB OD k k ⋅=,则C 的离心率为( )A B .2 CD例81.(2022·全国·高三专题练习)已知双曲线C 的中心在坐标原点,其中一个焦点为()2,0F -,过F 的直线l 与双曲线C 交于A 、B 两点,且AB 的中点为()3,1N --,则C 的离心率为( )AB CD例82.(2022·广西·高三阶段练习(理))已知双曲线2222:1x y C a b -=的左、右焦点分别为()1,0F c -,()2,0F c ,过1F 的直线l 交双曲线C 的渐近线于A ,B 两点,若22F A F B =,1212285AF F BF F S S c +=△△(12AF F S表示12AF F △的面积),则双曲线C 的离心率的值为( )AB C D例83.(2022·全国·高三专题练习)设直线l 与双曲线2222:1(0,0)x y C a b a b-=>>交于A ,B 两点,若M 是线段AB 的中点,直线l 与直线OM (O 是坐标原点)的斜率的乘积等于2,则双曲线C 的离心率为( )A .2B .3 CD题型十五:已知焦点三角形两底角例84.(2022·广西·江南中学高二阶段练习(文))已知1F ,2F 分别是椭圆D :()222210x y a b a b +=>>的左右两个焦点,若在D 上存在点P 使1290F PF ∠=︒,且满足12212PF F PF F ∠=∠,则椭圆的离心率为( ) AB1CD例85.(多选题)(2022·湖南·高二期末)已知双曲线()2222:10x y C b a a b-=>>的左、右焦点分别为12,F F ,双曲线上存在点P (点P 不与左、右顶点重合),使得21123PF F PF F ∠∠=,则双曲线C 的离心率的可能取值为 ( ) ABCD .2例86.(2022·全国·高三专题练习(理))已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12,F F ,M为双曲线右支上的一点,若M 在以12F F 为直径的圆上,且215,312MF F ππ⎡⎤∠∈⎢⎥⎣⎦,则该双曲线离心率的取值范围为( ) A.(B.)+∞C.()1D.1⎤⎦例87.(2022·河南·商丘市第一高级中学高三开学考试(文))已知1F 、2F 分别为双曲线C :()222210,0x y a b a b -=>>的左、右焦点,O 为原点,双曲线上的点P 满足OP b =,且1221sin 3sin PF F PF F ∠=∠,则该双曲线C 的离心率为( ) AB2C .2 D例88.(2022·全国·高三专题练习(理))已知椭圆2222x y a b+=1(a >b >0)的左、右焦点分别为F 1,F 2,且|F 1F 2|=2c ,若椭圆上存在点M 使得12MF F △中,1221sin sin MF F MF F a c∠∠=,则该椭圆离心率的取值范围为( )A .(01) B.⎫⎪⎪⎝⎭C.⎛ ⎝⎭D .1,1)题型十六:利用渐近线的斜率例89.(2022·青海·海东市第一中学模拟预测(理))已知点P 是双曲线22221x y a b -=(a >0,b >0)的渐近线上一点,F 是双曲线的右焦点,若|PF |的最小值为2a ,则该双曲线的离心率为( )AB CD例90.(2022·河南·开封市东信学校模拟预测(文))定义:双曲线22221x y a b-=为椭圆2222:1(0)x y C a b a b +=>>的“伴随曲线”.已知点2-⎭在椭圆C 上,且椭圆C 的伴随曲线的渐近线方程为12y x =±,则椭圆C 的离心率为( )A B 2C .12D .3例91.(2022·天津市新华中学模拟预测)已知双曲线22122:1(0,0)x y C a b a b-=>>,抛物线22:2(0)C y px p =>的准线经过1C 的焦点且与1C 交,A B 两点,8AB =,若抛物线2C 的焦点到1C 的渐近线的距离为2,则双曲线1C 的离心率是( )A BCD例92.(2022·江西·赣州市第三中学模拟预测(文))已知椭圆()222104x y b b +=>与双曲线()22210x y a a-=>有公共的焦点,F 为右焦点,O 为坐标原点,双曲线的一条渐近线交椭圆于P 点,且点P 在第一象限,若OP FP ⊥,则椭圆的离心率等于( )A .12B C D例93.(2022·吉林长春·模拟预测(文))已知点1F 和2F 是双曲线C :()222210,0x y a b a b-=>>的两个焦点,过点1F 作双曲线C 的渐近线的垂线,垂足为H ,且213F H F H =,则双曲线C 的离心率为( )AB C D例94.(2022·四川·宜宾市叙州区第二中学校三模(文))已知双曲线22122:1y x C a b-=及双曲线()22222:10,0x y C a b b a-=>>,且1C ()0y kx k =>与双曲线1C 、2C 都无交点,则k 的值是( )A .2B .12C D .1例95.(2022·江西·二模(文))已知双曲线C :()222210,0x y a b a b-=>>的左焦点为(),0F c -,点P 在圆F ':2220x y cx +-=上,若C 的一条渐近线恰为线段FP 的垂直平分线,则C 的离心率为( )A .3B .2C D例96.(2022·山西吕梁·模拟预测(文))已知双曲线2222:1(0,0)y x C a b a b-=>>的上顶点为P ,3OQ OP=(O 为坐标原点),若在双曲线的渐近线上存在点M ,使得90PMQ ∠=︒,则双曲线C 的离心率的取值范围为( )A .⎛ ⎝⎦B .⎛ ⎝⎦C .⎫+∞⎪⎪⎣⎭D .⎫+∞⎪⎣⎭例97.(2022·新疆·二模(理))如图.已知椭圆221:110x C y +=,双曲线()22222:10,0x y C a b a b-=>>,若以椭圆1C 的长轴为直径的圆与双曲线2C 的一条渐近线交于A ,B 两点,且椭圆1C 与该渐近线的两交点将线段AB 三等分,则双曲线2C 的离心率为( )A .3BC .2 D题型十七:坐标法例98.(2022·全国·高三专题练习)双曲线C :()222210,0x y a b a b-=>>的左顶点为A ,右焦点为F ,动点B 在C 上.当BF AF ⊥时,AF BF =.求双曲线C 的离心率.例99.(2022·全国·高三专题练习)已知12,F F 是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,A 是其左顶点.若双曲线上存在点P 满足1232PA PF PF =+,则该双曲线的离心率为___________.例100.(2022·河南·宝丰县第一高级中学高三开学考试(理))已知双曲线()2222:10,0x y C a b a b-=>>的右焦点为F ,P 为C 右支上一点,P 与x 轴切于点F ,与y 轴交于A ,B 两点,若APB △为直角三角形,则C 的离心率为______.例101.(2022·山东青岛·高三开学考试)已知双曲线2222:1(0,0)x y E a b a b-=>>的左、右焦点分别为1212,,4F F F F =,若线段()4028x y x -+=-≤≤上存在点M ,使得线段2MF 与E 的一条渐近线的交点N 满足:2214F N F M =,则E 的离心率的取值范围是___________.例102.(2022·全国·高三专题练习)已知椭圆()2222:10x y C a b a b+=>>,直线3a x =与椭圆C 交于A ,B 两点,O 为原点,若三角形AOB 是等腰直角三角形,则椭圆C 的离心率为( ) ABCD例103.(2022·河南洛阳·三模(文))已知椭圆()222210x y a b a b+=>>的左、右焦点分别为()1,0F c -,()2,0F c ,过2F 且垂直于x 轴的直线与椭圆在第一象限的交点为M ,12F MF ∠的平分线与y 轴交于点P ,若四边形12MF PF2,则椭圆的离心率e =___________.题型十八:利用焦半径的取值范围例104.(2022·全国·高三专题练习)已知双曲线2222:1(0,0)x y M a b a b-=>>的左、右焦点分别为1212,,2F F F F c =.若双曲线M 的右支上存在点P ,使12213sin sin a cPF F PF F =∠∠,则双曲线M 的离心率的取值范围为___________.例105.(2022·吉林长春·二模(文))已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F ,2F ,点P 在双曲线的右支上,且124PF PF =,则双曲线离心率的取值范围是( ) A .5,23⎛⎤⎥⎝⎦B .51,3⎛⎤ ⎥⎝⎦C .(]1,2D .5,3⎡⎫+∞⎪⎢⎣⎭例106.(2022·江苏·金沙中学高二阶段练习)设双曲线2222:1(0,0)x y C a b a b-=>>的焦距为2(0)c c >,左、右焦点分别是1F ,2F ,点P 在C 的右支上,且21c PF a PF =,则C 的离心率的取值范围是( )A .(B .)+∞C .(1,1D .)1⎡+∞⎣例107.(2022·全国·高三专题练习)在平面直角坐标系xOy 中,椭圆()222210x y a b a b+=>>上存在点P ,使得213PF PF =,其中1F 、2F 分别为椭圆的左、右焦点,则该椭圆的离心率取值范围是________.例108.(2022·河南·信阳高中高三期末(文))若椭圆()2222:10x y C a b a b+=>>上存在一点P ,使得128PF PF =,其中12,F F 分别C 是的左、右焦点,则C 的离心率的取值范围为______.例109.(2022·四川省泸县第二中学模拟预测(文))已知椭圆2222:1(0)x y C a b a b +=>>的左右焦点为12,F F ,若椭圆C 上恰好有6个不同的点P ,使得12F F P 为等腰三角形,则椭圆C 的离心率的取值范围是( )A .111,,1322⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭B .110,,132⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭C .1,13⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭题型十九:四心问题例110.(2022·全国·高三专题练习)已知椭圆()2222:10x y C a b a b +=>>)的左、右焦点分别为()1,0F c -和()212,0,,b F c M x c ⎛⎫⎪⎝⎭为C 上一点,且12MF F △的内心为()2,1I x ,则椭圆C 的离心率为( )A .13B .25C .12D .35例111.(2022·河北衡水·高三阶段练习(理))已知坐标平面xOy 中,点1F ,2F 分别为双曲线222:1x C y a-=(0a >)的左、右焦点,点M 在双曲线C 的左支上,2MF 与双曲线C 的一条渐近线交于点D ,且D 为2MF 的中点,点I 为2OMF △的外心,若O 、I 、D 三点共线,则双曲线C 的离心率为( )AB .3CD .5例112.(2022·江苏·高二单元测试)设(),0F c 为双曲线2222:1(0,0)x y E a b a b-=>>的右焦点,以F 为圆心,b 为半径的圆与双曲线在第一象限的交点为P ,线段FP 的中点为D ,∆POF 的外心为I ,且满足()0OD OI λλ=≠,则双曲线E 的离心率为( )AB C .2 D例113.(2022·江西南昌·三模(理))已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别是1F ,2F ,P是双曲线右支上一点,且212PF F F ⊥,I 和G 分别是12PF F △的内心和重心,若IG 与x 轴平行,则双曲线的离心率为( ) AB .2C .3D .4例114.(2022·甘肃酒泉·模拟预测(理))已知双曲线222:1(0)2x y C a a -=>的左、右焦点分别为1F ,2F ,P为C 右支上一点,若12PF F △的重心为11,33G ⎛⎫⎪⎝⎭,则C 的离心率为( )AB .2CD .3例115.(2022·全国·高三专题练习(理))已知椭圆C :22221(0)x y a b a b +=>>的左、右焦点分别是1F ,2F ,P 是椭圆上的动点,I 和G 分别是12PF F △的内心和重心,若IG 与x 轴平行,则椭圆的离心率为( )A .12B C D例116.(2022·重庆·西南大学附中模拟预测)已知1F ,2F 分别为椭圆2222:1(0)x yC a b a b+=>>的左、右焦点,点P 在第一象限内,2PF a =,G 为12PF F △重心,且满足11112GF F P GF F F ⋅=⋅,线段2PF 交椭圆C 于点M ,若24F M MP =,则椭圆C 的离心率为( )。
离心率题型总结
离心率题型总结离心率题型是高中数学中的一种常见题型,考察学生对离心率的理解和计算能力。
离心率是椭圆和双曲线的一个重要参数,能够描述曲线的瘦胖程度。
本文将对离心率题型进行总结,并给出相关的参考内容。
一、离心率的定义和性质:离心率(eccentricity)是一个与椭圆和双曲线有关的数值,可以描述曲线的瘦胖程度。
对于椭圆,离心率的取值范围是0到1之间,离心率为0时,曲线为圆形;离心率为1时,曲线为线段。
对于双曲线,离心率的取值范围大于1,离心率越大,曲线越瘦长。
离心率的计算公式如下:对于椭圆:离心率e = √(1 - (b²/a²)),其中a为长轴的长度,b 为短轴的长度。
对于双曲线:离心率e = √(1 + (b²/a²)),其中a为长轴的长度,b为短轴的长度。
二、离心率题型的解题方法:1. 已知长轴和短轴长度,求离心率:根据离心率的计算公式,直接代入长轴和短轴的长度即可计算得到离心率。
2. 已知曲线上一点的坐标,求离心率:根据椭圆和双曲线的定义,对于椭圆,任意一点到两个焦点的距离之和等于两个焦点的距离;对于双曲线,任意一点到两个焦点的距离之差等于两个焦点的距离。
利用这个性质,可以通过已知点的坐标和两个焦点的坐标来求离心率。
3. 已知离心率和焦点的坐标,求曲线方程或者曲线的其他相关参数:根据离心率的定义,可以根据已知的离心率和焦点的坐标来推导曲线的方程。
例如,已知离心率和焦点的坐标,可以先求出a或b的值,然后代入椭圆或双曲线的标准方程,从而得到曲线的方程。
三、离心率题型的解题技巧:1. 注意单位的转换:在计算离心率时,要注意长度的单位一致,需要进行单位的转换。
2. 注意计算中的精度:在计算离心率时,要注意计算的精度,尤其是对于平方根的运算,需要注意书写方式,避免计算错误。
4. 熟练掌握椭圆和双曲线的性质:掌握椭圆和双曲线的性质,对于解题过程中的推导和计算是至关重要的。
高中数学常见题型解法归纳 - 离心率取值范围的常见求法
高中数学常见题型解法归纳 - 离心率取值范围的常见求法高中数学常见题型解法归纳——离心率取值范围的常见求法求圆锥曲线离心率的取值范围是高考中的一个热点和难点。
对于椭圆、双曲线和抛物线,我们需要清楚它们的离心率取值范围,并且自己求出的离心率的范围必须和这个范围求交集。
求离心率的取值范围常用的方法有以下三种:方法一:利用圆锥曲线的变量的范围,建立不等关系。
先求出曲线的变量,然后利用它们的范围建立离心率的不等式,解不等式即可得到离心率的取值范围。
例如,对于椭圆的左右焦点分别为$(\pm c,0)$,如果椭圆上存在点$P(x,y)$,使得$PF_1+PF_2=2a$,其中$F_1,F_2$为焦点,$2a$为长轴长度,则求离心率的取值范围为$\frac{c}{a}<e<1$。
方法二:直接根据已知中的不等关系,建立关于离心率的不等式。
根据已知中的不等关系,得到关于离心率的不等关系,再转化为离心率的不等式,解不等式即可得到离心率的取值范围。
例如,已知双曲线的右焦点为$(c,0)$,若过点$P(2\cos\theta,\sin\theta)$且倾斜角为$\alpha$的直线与双曲线的右支有且只有一个交点,则此双曲线的离心率的取值范围是$e>\sec\alpha$。
方法三:利用函数的思想分析解答。
根据题意,建立关于离心率的函数表达式,再利用函数来分析离心率函数的值域,即得离心率的取值范围。
例如,设$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,其中$a>b>0$,则此双曲线的离心率的取值范围是$e>\frac{a}{b}$。
需要注意的是,对于椭圆的离心率、双曲线的离心率和抛物线的离心率,求出离心率的取值范围后,必须和它本身的范围求交集,以免扩大范围,出现错解。
高中数学专题——圆锥曲线--离心率
V 0 (4)两个交点在双曲线的右支: x1 x2 0
x1x2 0
三.焦点弦与离心率关系
AF
BF ,则有 e cos
1 1
(
为直线与焦点所在轴的夹角)。
例题举证
技巧 1 焦点三角形中的离心率
【例
1】(1).已知 F1 , F2 是双曲线 E :
x2 a2
y2 b2
1 的左、右焦点,点 M
点坐标为 1,1 ,则双曲线 C 的离心率为( )
A.2
B. 3
C. 2
D.3
【答案】B
【解析】设 A(x1, y1) 、 B(x2 , y2 ) ,
则
x12 a2
y12 b2
1
,
x22 a2
y22 b2
1,
所以
x12 x22 a2
y12 y22 b2
,所以
y1 y2 x1 x2
b2 x1 x2 a 2 y1 x2
根据余弦定理: cosF1PF2
PF12 PF22 F1F22 2PF1 PF2
PF1 PF2 2 2PF1 PF F1F22 2PF1 PF2
4a2 4c2 2PF1 PF2
1
4a2 4c2 2a 2
1
1 3
.故选:
A.
技巧 2 点差法中的离心率
【例 2】(1)(2020·四川外国语大学附属外国语学校)过点 M 1, 2 作直线 y 1 x m 与椭圆
【答案】A
【解析】已知双曲线
x2 a2
y2 b2
1(a
0,b 0)
的右焦点为 F
,
若过点 F 且倾斜角为 3 的直线与双曲线的右支有且只有一个交点,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求离心率的方法通常有以下两种:
(1)定义法:设法求出a,c 的值,由定义确定离心率的大小
(2)方程法:先由已知条件构造关于离心率的方程,然后解方程确定离心率的大小,(注意e 的大小范围)
双曲线离心率
一、选择题
1.设a>1,则双曲线 x 2
a 2 - y 2(a+1)2=1的离心率e 的取值范围( )
A 、(√2,2)
B 、(√2,√5)
C 、(2,5)
D 、(2,√5)
2、双曲线x 2 4 +y 2k =1的离心率e ∈(1,2)则k 的的取值范围
A 、(-∞,0)
B 、(-3,0)
C 、(-12,0)
D 、(-60,-12)
3、设∆ABC 是等腰三角形,∠ABC=120∘,则以A,B 为焦点且过点C 的双曲线的离心率为( )
A 、1+√22
B 、1+√32
C 、1+√2
D 、1+√3
4、设F 1 ,F 2分别是双曲线 x 2 a 2 - y 2b 2=1(a>0,b>0)的左、右焦点,若双曲线上存在点A ,
使∠F 1 A F 2=90°且|A F 1|=3|A F 2|,则双曲线的离心率( )
5、设F 1 ,F 2分别是双曲线 x 2 a 2 - y 2b 2=1(a>0,b>0)的左、右焦点,若P 为其上一点,且
|P F 1|=2|P F 2|,则该双曲线的离心率的取值范围( )
A 、(1,3)
B 、(1,3]
C 、(3,+∞)
D 、[3,+∞)
6、双曲线 x 2 a - y 29=1(a>0)的中心在原点,右焦点与抛物线y 2=16x 的焦点重合,则该双曲线的离心率等于( )
A 、45
B 、8√5555
C 、54
D 、4√77
7、设F 1 ,F 2分别是双曲线 x 2 a - y 2b =1(a>0,b>0)的左、右焦点,过F 1做垂直于x 轴的直线与双曲
线交于A 、B 两点,若∆AB F 2 是锐角三角形,则该双曲线的离心率的取值范围( )
A 、(1,+∞)
B 、(1,√3))
C 、(1,2)
D 、(1,1+√2)
8. 设F 1 ,F 2分别是双曲线 x 2 a 2 - y 2
b 2=1(a>0,b>0)的左、右焦点,过F 1作倾斜角为30°的直线交双曲
线的右支于M 点,若M ,F 2垂直于x 轴,则双曲线的离心率( )
A 、√6
B 、√3
C 、√2
D 、√33
9.设双曲线的一个焦点为F,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率( )(用第二种方法)
A 、√3 2+12
B 、√3
C 、√2
D 、√52 +12
10. 设F 1 ,F 2分别是双曲线
x 2
a - y 2
b =1(a>0,b>0)的左、右焦点,点A 在双曲线上,且AF 2与x 轴垂直,若|AF 1
||AF 2|=53,则双曲线的离心率( )
A 、2
B 、√3
C 、√2
D 、3 11、设,F 是双曲线 x 2 a 2 - y 2b 2=1(a>0,b>0)的右焦点,若过点F 且倾斜角为60°的直线与双曲线的右
支有且只有一个交点,则此双曲线离心率的取值范围( )
A 、(1,2)
B 、(1,2]
C 、(2,+∞)
D 、[2,+∞)
12、若点P(2,0)到双曲线双曲线 x 2 a 2 - y 2
b 2=1(a>0,b>0)的一条渐近线的距离为√2,则双曲线的离心率( )(画图,利用对称性,点到直线距离)
A 、√2
B 、√3
C 、2 √2
D 、2√3
13、过双曲线 x 2 a - y 2b =1(a>0,b>0)的右顶点A 作斜率为-1的直线,该直线与双曲线的两条渐近线的交点分别为B 、C ,若AB= 12 BC ,则双曲线的离心率( ) A 、√2 B 、√3 C 、 √5 D 、√10
14、过双曲线 x 2 a 2 - y 2
b 2=1(a>0,b>0)的右顶点A 作斜率为-1的直线,该直线与双曲线的两条渐近线的交点分别为B 、C ,若A,B,C 三点的横坐标成等比数列,则双曲线的离心率( )
A 、√13
B 、√3
C 、 √5
D 、√10 15、如图, 在等腰梯形ABCD 中, AB//CD, 且AB="2CD," 设∠DAB=, ∈(0,
), 以A, B 为焦点且过点D 的双曲线的离心率为e 1, 以C, D 为焦点且过点A 的椭圆的离心率为e 2, 设
的大致图像是( )
(2)则e 1•e 2
=______. (3) A 、随着角度的增大,e 1增大,e 1 e 2定值
B 、随着角度的增大,e 1减小,e 1 e 2定值
C 、 随着角度的增大,e1增大,e1 e2也增大
D 、随着角度的增大,e 1减小,e 1 e 2也减小
16.已知椭圆2241mx y +=,则实数m 等于( )
A .2
B .2或83
C .2或6
D .2或8
17.设双曲线22
221x y a b
-=(0a >,0b >)的右焦点为F ,过点F 作与x 轴垂直的直线l 交两渐近线于A ,B 两点,且与双曲线在第一象限的交点为P ,设O 为坐标原点,若OP OA OB λμ=+(λ,R μ∈),3
16λμ=,则该双曲线的离心率为( )
A B C .2 D .9
8
1、B
2、C
3、B
4、√102
5、B 6.D 7.D 8.B 9.D 10.A 11
、D 12、A 13、C 14、 D 15 (1)D (2) 16. D 17.A。