155Mbps速率级0.5μm CMOS限幅放大器

155Mbps速率级0.5μm CMOS限幅放大器
155Mbps速率级0.5μm CMOS限幅放大器

低频功率放大器电路设计

参加全国大学生电子设计大赛的同学们加 油了! 低频功率放大器设计与总结报告 作者:王汉光 一、任务 设计并制作一个低频功率放大器,要求末级功放管采用分立的大功率MOS 晶体管。 二、要求 1.基本要求 (1)当输入正弦信号电压有效值为5mV时,在8Ω电阻负载(一端接地)上,输出功率≥5W,输出波形无明显失真。 (2)通频带为20Hz~20kHz。 (3)输入电阻为600Ω。 (4)输出噪声电压有效值V0N≤5mV。 (5)尽可能提高功率放大器的整机效率。 (6)具有测量并显示低频功率放大器输出功率(正弦信号输入时)、直流电源的供给功率和整机效率的功能,测量精度优于5%。

2. 发挥部分 (1)低频功率放大器通频带扩展为10Hz~50kHz。 (2)在通频带内低频功率放大器失真度小于1%。 (3)在满足输出功率≥5W、通频带为20Hz~20kHz的前提下,尽可能降低输入信号幅度。 (4)设计一个带阻滤波器,阻带频率范围为40~60Hz。在50Hz频率点输出功率衰减≥6dB。 (5)其他。 摘要: 本系统采用了NE5534p作为前级的电压放大电路来给低通功率放大电路提供输入电压,通过低通功率放大电路将功率放大,由双踪示波器对整个系统的输入输出端进行监测,调节可变电阻,使输出波形无明显失真,从而使输出功率达到指定的输出功率要求。输入的频率范围为20Hz~20kHz。 一.概述: 本系统通过信号发生器输入电压为5mV,频率在20Hz~20kHz范围内的信号,对信号进行功率放大,低通功率放大器模块由+/-15V的直流电源提供,通过前级放大电路将输入电压放大,再由低通功率放大电路进行功率放大。在此期间,用示波器监测低通功率放大模块的输入输出端,观察波形是否失真,以及测量最大最小不失真频率。 二.系统工作原理及分析: 此系统由三部分组成,分别为电源模块、前级放大模块、低频功率放大模块。 如图所示:

跨阻放大器TIA

(TIA )全称为trans-impedance amplifier,是放大器类型的一种,放大器类型是根据其输入输出信号的类型来定义的。 TIA的功能如同我们平时在养花的过程中给花施肥的一样,如果一片贫瘠的土地上要种出鲜艳的花朵,那么在给这片土地施肥的时候,杂草和花苗同样得到了滋养,这时候我们就会人为地将杂草拔掉,这样杂草没了,肥料的营养能最大程度地供养给花苗,然后花苗才能茁壮成长。TIA在系统中的作用就相当于我们人为地将杂草拔掉,而且还一定程度上抵制了杂草的重生。 在电学范畴,假设放大器增益A=Y/X,Y为输出,X为输入。由于表征一个信号不是用电压就是电流,所以组合一下就有4种放大器,当输入为电流信号,输出为电压信号时,A=Y(电压)/X(电流),具有电阻的量纲,所以一般称之为跨阻放大器,另外,我们常见的都是电压放大器,也就是输入输出都是电压的那种。 TIA由于具有高带宽的优点,一般用于高速电路,如光电传输通讯系统中普遍使用。例如PIN-TIA,PIN-TIA光接收器是用于光通信系统中将微弱的光信号转换成电信号并将信号进行一定强度低噪声放大的探测器件,其工作原理是:PIN的光敏面受探测光照射时,由于p-n结处于反向偏置,光生载流子

在电场的作用下产生漂移,在外电路产生光电流;光电流通过跨阻放大器放大输出,这样就实现了光信号转换成电信号进而将电信号初步放大的功能。在实际应用中,我们会根据TIA的要求,采用 V、 V或其它的供电形式,用不同的外围电路形式来完成封装。 我们知道在DWDM系统中,OSNR是衡量整个系统传输性能的重要指标之一,也就是信号和噪声的比值,如何将信噪比提高到一个理想的传输性能值,从上面的描述就可得知引入了TIA,它能将电信号进行一定强度的低噪放大。信号在经过光纤传输后,光功率和色散必然在一定程度上有所衰减,光放大器将光信号转化为电信号来进行放大处理时,TIA就能有效地抑制噪声信号的放大,分母变小,分子变大,这样就不难理解TIA是如何提高光信号与噪声的比值(OSNR)了。所以通俗地说,它是在同等条件下,使负面因素较低从而使正面因素较高地显现的一种技术手段而用到的器件。

大功率功率放大器电路的设计

大功率功率放大器电路设计 大功率功率放大器电路设计 一. 设计理念及实现方式 (1)能推4Ω、2Ω等双低音的“大食”音箱以及专业类大粗音圈的各类专业箱。 (2)要省电、噪声小,发热量小。 (3)音质要好,能适合家居使用和专业使用。 第一点的实现就是要有大的推动功率。由于目前居室客厅面积有不断扩大的趋势,100W ×2以下功放已显得有些“力不从心”,所以本功放设计为4ΩQ 时360W ×2,2Ω时720W ×2。 第二点的实现就是电路工作在静态时的乙类小电流,靠大水塘级电容和电阻进行滤波降噪,使功放级噪声极小。而电路的工作状态又决定了电路元件的发热量很小,与一般乙类电路相当。配备的大型散热系统是为了应付连续大功率、低阻抗输出时的安全、可靠。 第三点的实现是本功放板的主要目标。目前公认的是:甲类、MOS、电子管音质好,所以本功放要达到甲类、MOS、电子管的音质。 二.大功率输出的实现 要实现大功率,首先是电源容量要大。本功放配置的电源是在截面积为35mm ×60mm的环形铁心上绕制的环牛。一次侧为1.0mm线绕484圈,二次侧为1.5mm双线并绕100圈。 整流为两只40A全桥做双桥整流,滤波为4只47000 uF电容 2只2.7kΩ电阻并接在正负电源上,使电压稳定在±62V。如电压过高可减小电阻到2.2kΩ,过低可加大电阻到3kΩ,功率用3W以上的。 除电源外,要实现大功率输出,特别是驱动“大食”音箱,要求功放输出电流能力要强,本功放每声道选用6对2SD1037管做准互补输出,可驱动直流电阻低达0.5Ω的“大食”音箱。所以4Ω时360W×2、2Ω时720W×2是有保障的。 三. 甲类、MOS、电子管音质的实现 目前人们公认的甲类、MOS、电子管的音质最好,所以本功放电路设计动态时工作于甲类的最佳状态,偏流随信号大小而同步增减,所以音质是有技术保障的。而在此工作状态下,即使更换几只一般的MOS管,对音质的提高也不明显。下面给出其原理图,如图1所示。从图1上可见到本原理图相当简洁,比一般乙类或甲乙类准互补电路还节省元件。而通过在电路板上改变一只电阻的接法就可方便地在本电路与准互补乙类或甲乙类之间变换。 四.绿色环保概念的实现 对本功放来说,实现低耗电、低噪声污染、低热辐射污染是通过以下措施实现的: (1)本功放空载时只有小电流级工作,而功率管基极电压只有0.45V,基本上是截止的,所以比一般乙类耗电少,属节电型功放。

什么是压缩限幅器

功放与音箱的功率配置 在专业扩声领域里,音响器材的配置是十分考究的,其中功放与音箱的配置是最重要的,虽然,一些音箱生品使用说明中向用户推荐了所配功放的具体牌号或型号,但还是有局限性,因为用户经常面对诸多型号的功放,无从下手。 功放与音箱的配置所涉及的方面很多,例如功放牌号、功率管类型的选择及低灵敏度音箱应配置哪种功放等。功放与音箱的具体配置,一般来说与设计人员的经验、爱好、听音习惯等因素有关,很难找到一个统一的标准。有时我们会遇到一些用户或设计人员为了节省开支常给音箱配置较小功率的功放,有些用户又为了所谓的“功率储备充足”给音箱配置很大功率的功放。显然,这样做都是不合适的。重要的是,这样配置会给设备造成损坏。在功放与音箱配置中,功放功率的确是关键,也就是说,功放功率的确定原则应该是统一的。 大家都知道,在进行厅堂声学设计后,需要根据一系列计算确定音箱功率,然后再由音箱功率确定功放功率,但是究竟两者功率如何选配才能达到最佳匹配呢? 首先,在人耳听域的20Hz~20kHz内,真正集中大量能量的音乐信号一般在中、低、频段,而高频段能量仅相当于中、低频段能量的1/10。所以,一般音箱高音损失的功率比低音喇叭低得多,以求高低音平衡;而功放好比一个电流调制器,它的输入音频信号的控制下,输出大小不同的电流给音箱,使之发生大小不同的声音,在一定阻抗条件下,要想让标称功率为200W的功放达到400W或几倍的输出其实很容易,只是功放的失真(THD)将会大大地增加,这种失真主要产生在中、低频信号中的高频谐波,其失真越大,高频谐波能量就越大,而这些高频失真信号都将随高频音乐信号一同进入高音头,这就是为什么小功率功放推大音箱会发生烧高音头的原因。而在不少人的概念里,只要功放功率大,就有可能烧音箱。虽然有些功放没有失真指示,但由于设备配置已经先天不足,失真有可能在使用中时有发生,这时失真指示已失去意义。况且,由于使用者的经验和素质的限制,功放的失真往往容易被忽略。 其次,功放与音箱的功率配置与目标响度以及所使用场合也有一定的关系。在一定目标响度下,应该让音乐信号的动态在每件器材上都能得到充分的保证,如果功放功率太大,其增益设置很小时,响度已达到要求,但这时功放的增益就限制了信号的动态范围。所以,功放功率不能太大;否则,既然浪费开支,又会带来响度和音乐动态无法兼顾以及音箱负荷过重的麻烦。根据以往经验,一般语言、音乐扩音场所和大动态的迪厅等场所是有区别的。有一般扩音场所信号起伏小,不需要功放长时间或很快提供很大电流给音箱,所以功放功率应该比要求强劲有力的大动态扩音场所的功率要小;另外,所谓的“功率储备”也应该针对音箱而言,值得注意的是,功放的选定必须由音箱决定,不应该有“功率储备”的概念去配置功放。换句话说,在一定的目标响度下,音箱可以比设计值大一些,以备不同用途,而功放的功率应该严格由音箱决定,没有太大的灵活性。 总之,功放与音箱功率配置的具体标准应该是:在一定阻抗条件下,功放功率应大于音箱功率,但不能太大。在一般应用场所功放的不失真率应是音箱额定功率

低噪声前置放大器电路的设计方法

低噪声前置放大器电路的设计方法 收藏此信息打印该信息添加:不详来源:未知 前置放大器在音频系统中的作用至关重要。本文首先讲解了在为家庭音响系统或PD A设计前置放大器时,工程师应如何恰当选取元件。随后,详尽分析了噪声的来源,为设计低噪声前置放大器提供了指导方针。最后,以PDA麦克风的前置放大器为例,列举了设计步骤及相关注意事项。 前置放大器是指置于信源与放大器级之间的电路或电子设备,例如置于光盘播放机与高级音响系统功率放大器之间的音频前置放大器。前置放大器是专为接收来自信源的微弱电压信号而设计的,已接收的信号先以较小的增益放大,有时甚至在传送到功率放大器级之前便先行加以调节或修正,如音频前置放大器可先将信号加以均衡及进行音调控制。无论为家庭音响系统还是PDA设计前置放大器,都要面对一个十分头疼的问题,即究竟应该采用哪些元件才恰当? 元件选择原则 由于运算放大器集成电路体积小巧、性能卓越,因此目前许多前置放大器都采用这类运算放大器芯片。我们为音响系统设计前置放大器电路时,必须清楚知道如何为运算放大器选定适当的技术规格。在设计过程中,系统设计工程师经常会面临以下问题。 是否有必要采用高精度的运算放大器? 输入信号电平振幅可能会超过运算放大器的错误容限,这并非运算放大器所能接受。若输入信号或共模电压太微弱,设计师应该采用补偿电压(Vos)极低而共模抑制比(CMRR)极高的高精度运算放大器。是否采用高精度运算放大器取决于系统设计需要达到多少倍的放大增益,增益越大,便越需要采用较高准确度的运算放大器。 运算放大器需要什么样的供电电压?

这个问题要看输入信号的动态电压范围、系统整体供电电压大小以及输出要求才可决定,但不同电源的不同电源抑制比(PSRR)会影响运算放大器的准确性,其中以采用电池供电的系统所受影响最大。此外,功耗大小也与内部电路的静态电流及供电电压有直接的关系。 输出电压是否需要满摆幅? 低供电电压设计通常都需要满摆幅的输出,以便充分利用整个动态电压范围,以扩大输出信号摆幅。至于满摆幅输入的问题,运算放大器电路的配置会有自己的解决办法。由于前置放大器一般都采用反相或非反相放大器配置,因此输入无需满摆幅,原因是共模电压(Vcm)永远小于输出范围或等于零(只有极少例外,例如设有浮动接地的单供电电压运算放大器)。增益带宽的问题是否更令人忧虑? 是的,尤其是对于音频前置放大器来说,这是一个非常令人忧虑的问题。由于人类听觉只能察觉大约由20Hz至20kHz频率范围的声音,因此部分工程师设计音频系统时会忽略或轻视这个“范围较窄”的带宽。事实上,体现音频器件性能的重要技术参数如低总谐波失真(TH D)、快速转换率(slew rate)以及低噪声等都是高增益带宽放大器所必须具备的条件。 图1,建议选用的放大器 深入了解噪声 在设计低噪声前置放大器之前,工程师必须仔细审视源自放大器的噪声,一般来说,运算放大器的噪声主要来自四个方面: 热噪声(Johnson):由于电导体内电流的电子能量不规则波动产生的具有宽带特性的热噪声,其电压均方根值的正方与带宽、电导体电阻及绝对温度有直接的关系。对于电阻及晶体

仪用放大器的应用电路设计

课程名称:电路与电子技术实验Ⅱ指导老师:成绩:__________________ 实验名称:仪用放大器的应用电路设计类型:___________________同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.学习并了解仪用放大器与运算放大器的性能区别。 2.掌握仪用放大器的电路结构及设计方法。 3.掌握仪用放大器的测试方法。 4.学习仪用放大器在电子设计中的应用。 二、实验内容和原理 1. 仪用放大器 仪用放大器是一种精密差动电压放大电路。 在实际的生产生活中,实际的信号获取单元经常需要面对强噪声背景下的微弱信号,这些强噪声将以共模的形式进入测量单元。虽然运放具有共模抑制比,但信号电压和共模电压一起被传送到输出端,将降低放大器的有效输出范围。 2.基本差动放大器与带输入缓冲的差动放大器 基本差动放大器:带输入缓冲的差动放大器: 3.标准的三运放构成的仪用放大器 造成差动放大器误差的两个主要因素为:运算放大器的参数和电阻器匹配的精确度。 若在输入运算放大器周围增加匹配电阻,把增益设臵放在前端实现,就构成了仪用放大器。 仪用放大器的传输函数为:

运放A1、A2 为同相差分输入方式。同相输入可以大幅度提高电路的输入阻抗,减小电路对微弱输入信号的衰减;差分输入可以使电路只对差模信号放大,而对共模输入信号只起跟随作用,来提高共模抑制比。 4.单片仪用放大器 5.双孔梁应变式传感器 力传感器单元是这个实验的传感器,为信号输入部分。它内部含有由4个全桥电路。

跨阻放大器输入阻抗计算

TIA Input Z: Infinite… or Zero? What is it, really? Bruce Trump - October 8, 2012 What is the input impedance of a transimpedance amplifier (TIA)? Infinite? Zero? No, what is it really? Nothing is really zero or infinite, right? The answer might surprise you—worth understanding, even if you don’t use TIAs. After all, an inverting amplifier is just a TIA with an input resistor, right? The transimpedance amplifier converts an input current to a voltage and is often used to measure small currents, (figure 1). With an ideal op amp, infinite gain and bandwidth, the input impedance of a TIA is zero. Feedback of the op amp maintains V1 at virtual ground, creating a zero impedance. Like an ammeter, an ideal current measurement circuit should have zero impedance. We’re still working on the ideal op amp, so until then, what’s the input Z with finite gain-bandwidth product? Some reasoning and 8th-grade algebra reveal an interesting result. The open-loop gain vs. frequency for the OPA314 is shown in figure 2. As with most op amps today, the gain follows a constant -20dB/decade slope through a wide frequency range—over five decades for this general purpose device. Its gain-bandwidth is 3MHz, so the gain at any frequency along this range is fapproximately 3MHz/f. Manipulating the factors that we know (shown in yellow boxes) yields the result. Z is proportional to R F and frequency and inversely proportional to GBP. But, hey… Z proportional to frequency? That feels much like a basic circuit element—an inductor. The impedance of an inductor is 2fL, so we can calculate an equivalent input inductance of the TIA.

2.5Gb 和3.125Gb 速率级CMOS 限幅放大器

2.5Gb/s和 3.125Gb/s速率级CMOS限幅放大器* 胡艳,王志功**,冯军,陶蕤 (东南大学射频与光电集成电路研究所,南京市四牌楼2号,210096) 摘要:本文采用TSMC 0.35μm CMOS工艺实现了可用于SONET/SDH 2.5Gb/s和3.125Gb/s 速率级光纤通信系统的限幅放大器。通过在芯片测试其输入动态范围超过40dB,输出摆幅为400mVp-p,功耗250mW,含信号丢失检测功能,可以满足商用化光纤通信系统的使用标准。 关键字:光纤通信,限幅放大器,CMOS工艺,SONET/SDH Design of CMOS Limiting Amplifier for SDH 2.5Gb/s and 3.125Gb/s Systems HU Yan, WANG Zhi-gong, FENG Jun, TAO Rui (Institute of RF- & OE-IC’s, Southeast University, Nanjing 210018,China) Abstract: In this paper, a limiting amplifier was realized in TSMC 0.35μm CMOS technology for the use of SDH 2.5 Gb/s and 3.125 Gb/s systems. Evaluated via on-wafer testing, this limiting amplifier offers an input dynamic range of more than 40dB, provides a constant output 400mVp-p and includes a module of loss detection. Therefore, this limiting amplifier can meet the requirement of optical communication system. Key words: optical communication; limiting amplifier; CMOS technology; SONET/SDH 1引言 随着人们对信息服务的种类和质量要求的不断提高,同步光纤网/同步数字序列(SONET/SDH)应运而生并不断发展。光纤通信具有很多其它通信方式不可比拟的优点,例如:成本低,可靠性高,通信容量大等。目前2.5Gb/s的系统已得到普遍应用。 在光纤通信系统中,限幅放大器(LA)具有广泛的应用:首先,可用于含无源滤波器的时钟恢复电路中,以抑制由于输入信号码型不同而引起的时钟信号的幅度变化;其次,可用于光接收机的主放大器;第三,可用作数据和时钟处理电路的输入输出缓冲部分。目前主要采用GaAs或双极性硅工艺生产[1]。 CMOS工艺虽不具有GaAs或双极性硅工艺的速度优势,但随着CMOS工艺的不断发展,CMOS工艺已经达到比较高的速率。根据仿真结果0.35μm、0.25μm和0.18μm 工艺的特征频率分别为13.5GHz、18.6GHz 和49GHz。因此采用CMOS工艺设计高速的限幅放大器具有良好的前景。

跨阻放大器(TIA )

跨阻放大器(TIA )全称为trans-impedance amplifier,是放大器类型的一种,放大器类型是根据其输入输出信号的类型来定义的。 TIA的功能如同我们平时在养花的过程中给花施肥的一样,如果一片贫瘠的土地上要种出鲜艳的花朵,那么在给这片土地施肥的时候,杂草和花苗同样得到了滋养,这时候我们就会人为地将杂草拔掉,这样杂草没了,肥料的营养能最大程度地供养给花苗,然后花苗才能茁壮成长。TIA在DWDM系统中的作用就相当于我们人为地将杂草拔掉,而且还一定程度上抵制了杂草的重生。 在电学范畴,假设放大器增益A=Y/X,Y为输出,X为输入。由于表征一个信号不是用电压就是电流,所以组合一下就有4种放大器,当输入为电流信号,输出为电压信号时,A=Y(电压)/X(电流),具有电阻的量纲,所以一般称之为跨阻放大器,另外,我们常见的都是电压放大器,也就是输入输出都是电压的那种。 TIA由于具有高带宽的优点,一般用于高速电路,如光电传输通讯系统中普遍使用。例如PIN-TIA,PIN-TIA光接收器是用于光通信系统中将微弱的光信号转换成电信号并将信号进行一定强度低噪声放大的探测器件,其工作原理是:PIN的光敏

面受探测光照射时,由于p-n结处于反向偏置,光生载流子在电场的作用下产生漂移,在外电路产生光电流;光电流通过跨阻放大器放大输出,这样就实现了光信号转换成电信号进而将电信号初步放大的功能。在实际应用中,我们会根据TIA的要求,采用-5.2 V、3.3 V或其它的供电形式,用不同的外围电路形式来完成封装。 我们知道在DWDM系统中,OSNR是衡量整个系统传输性能的重要指标之一,也就是信号和噪声的比值,如何将信噪比提高到一个理想的传输性能值,从上面的描述就可得知引入了TIA,它能将电信号进行一定强度的低噪放大。信号在经过光纤传输后,光功率和色散必然在一定程度上有所衰减,光放大器将光信号转化为电信号来进行放大处理时,TIA就能有效地抑制噪声信号的放大,分母变小,分子变大,这样就不难理解TIA是如何提高光信号与噪声的比值(OSNR)了。所以通俗地说,它是在同等条件下,使负面因素较低从而使正面因素较高地显现的一种技术手段而用到的器件。

限幅器的作用

什么是限幅器 微波限幅器是一种自控衰减器, 是一种功率调制器件。当信号输入功率较小时无衰减通过,当输入功率增大到超过某一值时,衰减会迅速增大,这一功率值称为门限电平,输入功率超过门限电平后,输出功率不再增加。实际工作中,限幅器基本上都是为整机需要而专门设计的。常用于微波扫频信号源或相位检测系统中,使输出信号幅度保持稳定。功率限幅器设计用于通信、遥感、雷达系统和高频仪器领域电子元件的输入保护。它针对不同的工作频率、需承受的微波功率、微波脉冲宽度、占空比等要求进行设计.微波限幅器通常用在接收机的放大器或混频器的前面保护它们,免受强信号的影响而烧毁。在扫频仪或测相系统中可使输出幅度保持恒定。限幅器一般由输入端口和输出端口上的隔直流电容器和集成式二极管限幅器电路组成。集成电路包含着透过50欧姆传输线并联的平面掺杂阻挡层(PDB)或Schottky二极管。限幅器在低输入电平时有很低的插入损耗和线性特性,可提供对瞬态或短时间过载的保护。它们有很低的插入损耗和回波损耗,可为您的设备提供安全保护,避免因过大射频功率、直流电压瞬变或静电放电(ESD)导致损坏。 微波限幅器主要参数定义 1.限幅电平:限幅器开始限幅时的功率值。 2.插入损耗:输入电平低于门限电平时输入信号损耗,一般在-10dBm 下测试。 3.承受功率:能承受的最大输入功率(脉冲功率,脉冲平均功率,连续波功率)。 4.恢复时间:以输入脉冲终止开始,到限幅器损耗比插入损耗大3dB为止的时间。

限幅器原理是什么? 理想限幅器是一个无记忆的非线性电路。理想限幅器应具有放大和限幅的双重功能,且要求其放大量为无穷大、限幅是瞬时的。通常限幅器是由非线性限幅器件和一个带通滤波器组成,调频波通过它时,首先由非线性器件将其超过限幅电平E的那部分幅度切去,然后经带通滤波器滤出其基波分量,以使输出电压的频率仍和输入的频率一致。实际设计中,我们采用在一个近似中频带宽的限幅器中加入适量的正反馈,就能够明显地改善它的削弱比,起到几级无正反馈但其它结构相同的限幅器的作用。 限幅器常用在接收设备的前级,对超过门限的大功率输入信号限幅,起到保护后级敏感电路和器件的作用。限幅器的峰值输入功率是在脉冲调制占空比为1%(脉宽10μS,6GHz 以下;脉宽1μS,6GHz 以上)的条件下测试的结果。插损和驻波比是在输入连续波功率-10dBm的条件下测试的结果。 压缩/限幅器的调整及应用 人类的听感动态范围能承受的最大响度和能感受的最安静声音响度的范围可达100万:1(即106倍)听感的动态范围达120dB。扩声系统声音重放的动态范围由于受电子设备的限制,远比人耳的动态范围小很多。最低声音的响受系统中不相关噪声的限制,使小的声音信号淹没在噪声中而无法听到;最大声音的响度受信号削波的限制,使音乐信号中的特大峰值被“砍头”(削波),不仅

实用功放电路设计

题目五:实用低频功率放大器 一、设计任务与要求: (一)、任务: 设计并制作具有弱信号放大能力的低频功率放大器。 其原理示意图如下: (二)、要求: 1.在放大通道在正弦信号输入电压幅度为(5-700)mV,等效负值载电阻R1。:812下,放大通道应满足: a、额定输出功率P oK≥10W; b、带宽BW≥(50-1000)HZ; c、在P oK下和BW内的非线性失真系数≤3%; d、在P oK下的效率≥55%; e、在前置放大级输人端交流短路接地时,R L=8Ω上的交流声功率≤10mV。 2。自行设计并制作满足设计要求的稳压电源。 (三)、发挥部分(选作部分): 1. 测放大器的时间响应: a、方波发生器:由外供正弦信号源经变换电路产生正、负极性的对称方波。频率为1000HZ;上升和下降时间1≤uS;峰一峰值电压为200mV b、用上述方波激励放大通道时,在R8下,放大通道应满足 (1)、额定验出功率P ok≥10W; (2)、P oK下,输出波形上升或下降时间12≤uS; (3)、在P oK下,输出波形顶部斜降≤2% (4)、在P oK下,输出波形过冲电压≤5% (四)、设计电路、画布线图、编写调试步骤以及调试方法:根据任务要求,设计该低频功率 放大电路及电源电路,要求有电路、有参数及设计过程,画出布线图,并在面包板上插接、调试。 (五) 答辨: 答辨前必须完成下列资料 1.设计说明书:方案选择、设计过程、原理图、布线图及说明; 2.总结调试方法、测试技术指标: 整理原始记录数据 故障处理、(出现何现象、原因及解决办法)。 (六)、参考元器件型号: STK465 集成功率放大电路 uA741 0P-27/0P-37 电阻、电容、电位器、稳压块等。

跨阻型放大器应用中关注的指标

跨阻型放大器应用中关注的指标 1 引言 TIA 全称为trans-impedance amplifier. 也就是跨阻型放大器。 在需要电流转电压的应用场合,如检测微弱光电流信号的场合,通常需要用到跨阻型放大器。TI有一系列的跨阻放大器,如OPA656,OPA657,OPA843,OPA84,LMH6629 等等。TI 该产品系列主要的优势在于低噪声,能支持反馈高增益下宽带应用。这些特点在微弱光检测的场合是非常关键的。另外TI 的产品是一系列的,在不同的指标要求如带宽升级时可以很方便地找到pin-pin 兼容的产品。 本文介绍了高速TIA 应用中关注的指标及计算过程。另外介绍了在光检测应用下常见问题的解决。 2 TIA 应用概论 在TIA 应用时,由于输入信号是电流,能够应用于这种场合的跨阻放大通常需要具备较低的电流噪声和电压噪声。比较典型的两个器件是:OPA657(1.6GHz,输入电流噪声1.8 fA/rtHz, 输入电压噪声4.8nV/rtHz),OPA847(3.9GHz, 输入电流噪声 2.5pA/rtHz, 输入电压噪声0.85nV/rtHz)。这两款都是Decompensated 放大器。 Decompensated 放大器特点如下: Decompensated 放大器指的是非单位增益稳定的放大器,如OPA657 最小稳定增益是7V/V,OPA847 则为12V/V. 其波特图和普通放大器比较如下:

和单位稳定放大器相比,其特点如下: 带宽更宽,尤其是小信号下的带宽更宽,Slew rate 更快,以及更大的GBW. 另外一般来讲,decompensated 的放大器能够提供更好的电压噪声。 所以在大增益的跨阻放大且要求一定带宽的场合,使用decompensated 放大器要比单位增益稳定放大器有优势。 3 TIA 应用指标分析 3.1 带宽计算 一个用于光电流检测的常规的跨阻型运放的工作电路一般简化如

限幅电路

你问的是这个问题吗? 下图:是二极管限幅电路,电路(a)是并联单向限同上电路,电路(b)是串联单向限幅电路;电路(C)是双向限幅电路,三种电路的工作原理相同,现以电路(C)说明:分析电路原理时认为二极管的正向电阻Rf为零反向电阻Rr为无限大,当Ui>E1时,D1导通,则Uo=E1;反之,当Ui

导通,u O s=E;当ui低于E时,D截止,u O=ui。它的限幅特性如图Z1610所示。显然,这是一个上限幅器。 将上、下限幅器组合在一起,就组成了如图Z1611所示的双向限幅电路,它的限幅特性如图Z1612所示。当输入一个振幅较大的正弦信号时,输出波形见图Z1613。 2.三极管限幅器 利用三极管的截止和饱和特性也可构成限幅电路(如图Z1614所示),这类电路还兼有放大作用。为了满足一些较高的技术要求,还可以用集成运放构成限幅电路。 备做一个限幅电路的整理,在学校内学的如下图:

测量放大电路的设计

测量放大电路的设计 作者: 【摘要】:测量放大器能够将微弱的电信号进行放大,在生活中应用也十分广泛,如在自动控制领域,往往需要用电压信号进行控制,也就必然离不开电压测量放大器,由于测量放大器应用十分广泛,因而现在已经有集成的测量放大器供使用了。本次设计就是围绕测量放大器展开的,测量放大器主要是通过运用集成运放将所测量的信号进行不失真的放大,并且不对所测量的电路产生影响,这就是需要放大器有高的输入电阻和较高的共模抑制比。 【关键字】:放大电路二阶高通有源滤波器二级低通有源滤波器 一、设计技术与要求: 如图所示,测量放大器由基本测量放大器、二阶高通有源滤波器、二阶 低通有源滤波器三部分组成。 1、性能技术指标: (1)输入阻抗Ri>1m? (2)电压放大倍数Au≥1000(即输入信号Ui-p=1mv时,输出信号Uop-p>1v (3)频带宽度B=10?10KHZ (4)共模抑制比Kcmr>80dB 二:基本测量放大电路 如下图:放大器电路有两个同相放大器和一个基本差动放大电路组合而成;该电路具有输入阻抗高、电压增益容易调节,输出不包含共模信号等优点。若不接R时,该电路由于引入了串联负反馈,所以其差模输入电阻Rid和共模输入电阻Ric都很大;当接入电阻R后,由于R很小,则R与Rid(或Ric)并联后,该电路的差模输入电阻Rid≈2R,共模输入电阻Ric≈R/2。其中RL是负载电阻。 基本放大电路有(前置放大电路组成)下:

图(1) 1其中放大倍数: Aud1==1+2R2/R1=81 Aud1’==1+2R2/R1=31

2其中放大倍为: Aud2==Rf/R3=20 由上可知在前置放大电路中,总的放大倍数为: Aud==Aud1·Aud2=81·20=1620 Aud==Aud1’·Aud2=31·20=620 由以上电路图(2)可观察到,Ri1是一个高输入阻抗的模块的组合放大电路,即输入电阻 Ri1=∞Ω>1MΩ 但由于引入了电阻R,因此,其引入的R达到要求的指标,两个R串联电阻之和2R满足: R>0.5MΩ 为了有更好显示效果,取标称值R=1.2MΩ。 同时,共模抑制比K CMR ,由于放大电路由两级放大电路组成,K CM R1 表示第 一级放大电路的共模抑制比, K CMR2 表示第二级放大电路的共模抑制比,即该型运放的共模抑制比,则 K CMR = K CM R1 ·K CMR2 其中,K CM R1=Aud1/Auc1,K CMR2 = Aud2/Auc2。 又Aud1≥1,K CM R1 ≥1,因此有; Aud1≈1+2R2/R1=81,Aud1==1+2R2/R1=31, Auc1≈1 则有K CM R1=Aud1/Auc1≈Aud1≈81,K CM R1 =Aud1/Auc1≈Aud1≈31,

TD2072限幅放大器和激光驱动器的收发器_CN

?单片全集成限幅放大器(LA )和激光二极管驱动器(LD )的收发器3.3V 单电源供电 工作速率155Mbps ~1.25Gbps 集成自动功率控制(APC )电路调制电流 (IMOD) 可达80mA 偏置电流 (IBIAS) 可达80mA 1.2mV LA 输入幅度(BER=10 )可编程 LOS 电平和 LOS 释放时间无噪音信号丢失(LOS )输出–≤ 2.0dB 电学回滞 –内部 5kΩ 上拉电阻的 OC-TTL 输出–LVPECL 输出 可根据客户需求提供 24-pin QFN(4mmx4mm),28-pin QFN(5mm x 5mm) 或者 LQFP32L 封装 ??????? ? ?EP = Exposed pad is cnnected to GND +3.3V,155Mbps ~ 1.25Gbps 集成限幅放大器和激光驱动器的收发器 TD2072 是一款集成了限幅放大器(LA )和激光二极管驱动器(LD )的收发器芯片,应用于光纤通信系统,工作速率为155Mbps ~1.25Gbps 。 TD2072 封装形式为小型, 24-pin, 4mmx4mm thin QFN24L ,这在行业中尚属先例,比其它典型的 LA 和 LD 空间可节省50%。 TD2072 为+3.3V±10%单电源供电,环境温度-40°C~+85°C ,排除LD 的偏置和调制电流及LA 输出负载,其典型功耗仅170mW 。 限幅放大器(LA )可检测信号幅度可低至4mV PP ,TD2072 将这些信号进行放大,输出典型800mVPP 的电压限幅波形。 TD2072 包含两个信号丢失(LOS)输出,一 个为内置5kΩ 上拉电阻的开路集电极LVTTL 输出,另一个是LVPECL 输出。可编程信号丢失电平设置管脚(LOSLVL) 设置跨阻放大器输入幅度的灵敏度。 激光二极管驱动器(LD )可以实现的调制电流和偏置电流可达80mA 。 管脚布局专门进行优化应用在1X9 光收发模块和SFP/SFF 模块。 -12

o放大器电路图设计

op07的功能介绍:Op07芯片是一种低噪声,非斩波稳零的双极性运算放大器集成电路。由于OP07具有非常低的输入失调电压(对于OP07A最大为25μV),所以OP07在很多应用场合不需要额外的调零措施。OP07同时具有输入偏置电流低(OP07A 为±2nA)和开环增益高(对于OP07A为300V/mV)的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放大传感器的微弱信号等方面。 特点: 超低偏移:150μV最大。 低输入偏置电流:。 低失调电压漂移:μV/℃ 。 超稳定,时间:2μV/month最大 高电源电压范围:±3V至±22V 图1 OP07外型图片

图2 OP07 管脚图 OP07芯片功能说明: 1和8为偏置平衡(调零端),2为反向输入端,3为正向输入端,4接地,5空脚 6为输出,7接电源+ 图3 OP07内部电路图

ABSOLUTE MAXIMUM RATINGS 最大额定值Symb ol符号Parameter参数 Value数 值 Unit 单 位 VCC Supply Voltage 电源电压±22V Vid Differential Input Voltage差分输入电压±30V Vi Input Voltage 输入电压±22V Tope r Operating Temperature 工作温度 -40 to +105 ℃ Tstg Storage Temperature 贮藏温度-65 to +150 ℃ 电气特性 虚拟通道连接= ± 15V ,Tamb = 25 ℃(除非另有说明)Symb ol 符号Parameter 参数及测试条件最小 典 型 最 大 Unit 单位 Vio Input Offset Voltage 输入失调电压0℃ ≤ Tamb -6015 μV

TI跨阻型放大器应用指南

Application Report ZHCA479 – September 2012 1 跨阻型放大器应用指南 毛华平 德州仪器公司 (TI) 高速应用工程师 摘 要 本文简要介绍了Decompensate 型跨阻型放大器的应用常见问题. Abstract: this article simply introduce the normal application of unity gain stable TIA and decompensated TIA, and the normal issue met in the real application. Key words: GBP (Gain bandwidth product), decompensated, stability, noise, CF(feedback capacitor), overshoot. Contents 1 引言 .................................................................................................................................. 2 2 TIA 应用概论 ..................................................................................................................... 2 3 TIA 应用指标分析 .............................................................................................................. 3 3.1 带宽计算 3 3.2 噪声计算 6 4 实际应用中的常见问题 ...................................................................................................... 6 4.1 振荡 6 4.2 overshoot 9 5 总结 .................................................................................................................................. 11 6. 参考资料 (11) Figures Figure 1 decomp 和单位增益稳定运放波特图 .................................................................................... 2 Figure2 TIA 光电检测电路 .................................................................................................................. 3 Figure3 TIA 用于DAC 输出电流检测电路 ........................................................................................... 3 Figure4 未补偿时的波特图 ................................................................................................................... 4 Figure5 补偿后的波特图 ....................................................................................................................... 5 Figure6 常用TIA 增益与带宽关系 ........................................................................................................ 6 Figure7 未加补偿的20k 放大电路 ........................................................................................................ 7 Figure8 原始输出响应 .......................................................................................................................... 7 Figure9 加补偿后的电路 ....................................................................................................................... 8 Figure10 加补偿后的脉冲响应 .............................................................................................................. 8 Figure11 原始补偿的频响 ..................................................................................................................... 9 Figure12 增大补偿的电路 ................................................................................................................... 10 Figure13 增大补偿后的脉冲响应 ........................................................................................................ 10 Figure14 增大补偿后的频响 (11)

相关文档
最新文档