计算机图形学的进展与展望
计算机科学中的图形学和虚拟现实技术
计算机科学中的图形学和虚拟现实技术图形学和虚拟现实技术是现代计算机科学中非常重要的学科,它们的发展使得计算机技术的应用范围不断扩大,为了更好的展示这两个学科的发展历程和应用场景,本文将分为四个部分讨论。
一、图形学的发展历程图形学是研究计算机图形处理技术的学科,其发展历程可以分为三个阶段。
1. 1960年代至1980年代早期,主要是关注于二维图形的处理和显示,如线性代数、几何学、扫描转换、裁剪等。
2. 1980年代至1990年代,主要是关注于三维图形的处理和显示,如照明模型、渲染技术、纹理映射和三维几何建模等。
3. 1990年代至今,主要是关注于实时图形处理技术,如游戏图形引擎、虚拟现实技术和视频处理技术等。
二、虚拟现实技术的应用场景虚拟现实技术是一种基于计算机图形学实现的技术,它可以构建虚拟的三维环境,让用户在其中进行交互,它的应用场景非常广泛。
1. 游戏娱乐:虚拟现实技术在游戏娱乐行业中的应用非常广泛,它可以为用户提供身临其境的游戏体验。
2. 医疗教育:虚拟现实技术可以用于医疗教育服务,如手术模拟、病例研究和医学学习等。
3. 建筑设计:虚拟现实技术可以用于建筑设计与模拟,可以在虚拟环境中构建建筑模型,进行设计和演示。
4. 汽车航空:虚拟现实技术可以用于汽车和航空领域,例如设计车身外形、模拟驾驶等。
三、图形学在计算机游戏中的应用计算机游戏是图形学应用最广泛的领域之一,图形学技术在游戏开发中扮演着极为重要的角色。
下面是图形学在计算机游戏中的具体应用。
1. 游戏引擎:游戏引擎是指游戏开发者使用的软件工具,旨在简化游戏开发流程。
游戏引擎中包含着大量的图形学代码,如渲染引擎、物理模拟引擎、动画引擎、碰撞检测引擎等。
2. 渲染技术:渲染可以将三维模型转换为二维图形,然后将图形显示在屏幕上。
计算机游戏中采用的渲染技术包括光栅化、光线追踪、镜面反射和阴影生成等。
3. 动画技术:动画技术可以让游戏中的角色、物品进行動態操作。
《2024年三维CAD技术研究进展及其发展趋势综述》范文
《三维CAD技术研究进展及其发展趋势综述》篇一一、引言随着科技的飞速发展,三维CAD(计算机辅助设计)技术已成为现代工业设计、制造和研发领域中不可或缺的重要工具。
三维CAD技术以其强大的建模、分析和优化功能,极大地提高了产品设计、开发和制造的效率和精度。
本文将就三维CAD技术的研究进展及其发展趋势进行综述。
二、三维CAD技术研究进展1. 技术发展概述三维CAD技术的发展主要涉及几何建模、物理特性模拟、优化设计和虚拟制造等多个方面。
从最初的基础绘图到现在的复杂产品设计,三维CAD技术已经取得了显著的进步。
其技术发展主要体现在以下几个方面:(1)建模技术:三维CAD的建模技术越来越成熟,能够支持更复杂的几何形状和更精细的细节表现。
(2)物理特性模拟:通过模拟产品的物理特性,如力学、热学、电磁学等,使产品设计更加贴近实际使用情况。
(3)优化设计:通过算法和模型优化,提高产品设计性能,降低生产成本,提高制造效率。
(4)虚拟制造:利用三维CAD技术进行虚拟制造,可在产品制造前进行预检,降低制造成本和风险。
2. 关键技术研究(1)智能化建模:利用人工智能和机器学习等技术,实现自动化建模和优化,提高设计效率。
(2)仿真与优化:通过仿真技术对产品进行性能分析和优化,提高产品性能和质量。
(3)云计算与大数据:利用云计算和大数据技术,实现三维CAD数据的存储、分析和共享,提高设计协同效率。
三、发展趋势1. 技术融合发展未来,三维CAD技术将与其他领域的技术进行深度融合,如人工智能、大数据、云计算、物联网等。
这些技术的融合将进一步推动三维CAD技术的发展,使其在产品设计、制造和研发过程中发挥更大的作用。
2. 智能化发展随着人工智能技术的不断发展,三维CAD技术将越来越智能化。
智能化建模、仿真与优化等技术将进一步提高设计效率和质量,降低制造成本和风险。
3. 协同化发展随着企业间合作和协同设计的需求不断增加,三维CAD技术将向协同化方向发展。
《2024年三维CAD技术研究进展及其发展趋势综述》范文
《三维CAD技术研究进展及其发展趋势综述》篇一一、引言随着计算机技术的迅猛发展,三维CAD(三维计算机辅助设计)技术在制造业、工程领域及设计行业中的地位愈发凸显。
本文将系统阐述三维CAD技术的核心研究进展、现有应用及其未来发展趋势,旨在为相关领域的研究人员和从业者提供参考。
二、三维CAD技术概述三维CAD技术是一种利用计算机软件进行三维模型设计的技术。
它通过精确的几何建模、材质贴图、光照渲染等功能,帮助设计师在虚拟环境中创建出真实感极强的三维模型。
该技术广泛应用于机械制造、建筑设计、游戏制作、影视特效等多个领域。
三、三维CAD技术研究进展(一)几何建模技术几何建模是三维CAD技术的核心组成部分。
近年来,研究者们不断探索更高效的建模算法和更精确的几何表示方法,以提高建模的准确性和效率。
此外,随着云计算和大数据技术的应用,云渲染和大数据建模逐渐成为几何建模技术的发展方向。
(二)材料模拟与渲染技术在三维CAD中,材质模拟和渲染是至关重要的环节。
当前研究正朝着更加真实地模拟现实世界的材质和光影效果发展,例如,利用高动态范围(HDR)技术和全局光照技术,实现更逼真的渲染效果。
(三)智能化设计技术随着人工智能技术的发展,三维CAD技术正逐渐引入智能化的设计功能。
如利用机器学习和深度学习算法,实现设计方案的自动优化和智能推荐,提高设计效率和质量。
四、三维CAD技术的应用领域(一)机械制造领域在机械制造领域,三维CAD技术被广泛应用于产品设计、制造过程仿真和优化等方面。
通过精确的三维模型,设计师可以更好地理解产品的结构和性能,从而提高产品的质量和性能。
(二)建筑设计领域在建筑设计领域,三维CAD技术能够帮助设计师实现建筑的数字化建模和仿真分析。
利用该技术,设计师可以提前预览建筑的实际效果,从而提高设计质量和效率。
(三)其他领域应用除了上述两个领域外,三维CAD技术还广泛应用于游戏制作、影视特效、医学模拟等领域。
计算机图形学的发展和应用
计算机图形学的发展和应用计算机图形学是计算机科学中一门重要的学科,它是利用计算机来创造、处理、存储和呈现图像的技术。
随着计算机技术的发展,计算机图形学逐渐成为计算机科学中一个重要而独立的领域,其应用范围也日益广泛。
一、计算机图形学的发展历程计算机图形学起源于20世纪60年代,当时主要应用于计算机仿真和视觉效果方面。
1963年,伊万·苏泽兰(Ivan Sutherland)发明了第一台基于交互式图形的计算机-画图程序Sketchpad,它是第一款实现计算机交互的图形软件,可以通过电路板和光笔来实现图形图像的绘制和编辑。
1969年,伊万·苏泽兰又发明了第一款基于矢量绘图的计算机图形系统,称为Sketchpad-2,它可以实现对图像的放大和缩小,旋转和平移等操作。
1970年代,计算机图形学开始应用于计算机辅助设计(CAD)和计算机辅助制造(CAM)方面,此外还应用于天文学、医学、地理信息系统(GIS)等领域。
1980年代,计算机图形学的发展速度加快,图形工具的性能大幅度提高,计算机游戏、3D动画和特效效果得以迅速发展。
1990年代,计算机图形学的发展又迈出了一个新的阶段,它开始承担起了虚拟现实(VR)和增强现实(AR)等领域的任务。
如今,随着计算机硬件和软件的不断更新和发展,计算机图形学也在不断优化和拓展,为人类社会的发展做出着重要的贡献。
二、计算机图形学的应用领域1. 游戏开发计算机图形学在游戏开发中扮演着重要的角色。
它帮助游戏开发者创造出更加真实、惟妙惟肖的游戏场景和角色形象,让游戏玩家更加沉浸于游戏世界中。
随着3D图形技术的进步,现代游戏中所展现的场景和人物已经达到了以往难以想象的高度。
2. 医学计算机图形学在医学中的应用十分广泛,例如是利用计算机图形学技术来建立人体模型,并对人体模型进行操作和分析,这样医生在为病人制定治疗方案时,可以更加准确地进行定位和操作,避免手术操作的风险。
计算机图形学的新进展
计算机图形学的新进展近年来,计算机图形学在不断推陈出新,掀起了一股技术革新的浪潮。
随着计算机硬件的发展和应用范围的不断扩大,计算机图形学已经广泛应用于游戏开发、虚拟现实、真人互动、CAD设计等多个领域,并带来了业界的巨大变革。
本文将从计算机图形学的发展历程、技术进步以及应用范围等方面进行分析和探讨。
一、计算机图形学的发展历程计算机图形学是一门研究如何在计算机上表示和处理几何形状的学科。
早在20世纪50年代,计算机图形学的开创者已经开始研究将计算机应用于几何图形的建模和显示方面,从而使得人们可以通过计算机来呈现复杂的几何形状,并产生出具有生动感和真实感的图像。
在计算机图形学的发展历程中,经历了几个重要的发展阶段:1、线框图形学时代60年代初期,最开始的计算机图形学主要是以线框图为主要表现方式。
它用数学方法描述几何物体,并将这些物体的顶点通过特殊的算法联结在一起,形成了一个个透视图。
这种方式的好处是在不同方向下,可以显示出不同的视点和效果,但生成的图像却缺乏真实感和生动感。
2、光栅图形学时代70年代初期,随着计算机硬件的发展,计算能力和储存能力有了大幅提高,人们开始尝试使用光栅图形学技术来表现复杂的图像。
光栅图形学是一种基于像素点的图形学方法,通过将几何图形划分为像素点,再通过计算对像素点进行着色、渲染和阴影等操作,最终可以呈现出非常逼真的图像。
这种方式的好处是可以产生出具有生动感和真实感的画面,但是它产生的图像却非常占用计算机的处理能力和存储空间。
3、基于物理的图形学时代80年代开始,基于物理的图形学开始得到关注,它将所有的图形处理与物理实验结合起来,通过计算物理效应和光的传播路径等等,使得硬件效果更加逼真。
这种方式的好处是能够产生出非常真实的图像,但是要求计算机的处理能力非常高。
4、深度学习时代到了21世纪,随着人工智能、深度学习等技术的发展,计算机图形学进入了全新的时代。
在深度学习的框架下,图像处理也可以自动实现,人类只需定义一个“目标函数”(例如特定的画风),深度学习就会自己探索和学习那些图像有这个特定风格,得到一个平滑的结果。
计算机图形学的新技术及其应用研究
计算机图形学的新技术及其应用研究近年来,随着计算机技术的不断发展,图形学技术也日益成熟,为我们的生活和工作提供了许多便利和乐趣。
计算机图形学是一门研究计算机生成、处理和显示图形的学科,是计算机图形学、计算机视觉和计算机图像处理三者的交叉学科。
本文将围绕计算机图形学的新技术及其应用研究展开阐述。
一、计算机图形学的新技术1.虚拟现实技术虚拟现实技术(Virtual Reality, VR)是一种能够将用户沉浸在虚拟世界中的技术。
通过头戴式显示器(Head-Mounted Display, HMD)等设备,用户可以感受到身临其境的虚拟环境,从而更加直观地理解事物、进行操作等。
虚拟现实技术已经广泛应用于游戏、教育、医疗、建筑等领域。
2.增强现实技术增强现实技术(Augmented Reality, AR)是一种可以将现实世界与虚拟信息叠加的技术。
通过摄像机捕捉到的实时图像和相关算法,将虚拟信息放置于现实场景中,使用户可以直观地感受到虚拟信息和现实环境的结合。
增强现实技术已经广泛应用于智能家居、游戏、广告等领域。
3.光线追踪技术光线追踪技术(Ray Tracing)是一种高级的图形学计算方法,基于物理学原理,模拟了光线在场景中的传播和反射,生成高质量的图像。
与传统的光栅化渲染技术不同,光线追踪技术可以实现真实的光线效果,例如自然光、阴影、反射、折射等。
随着计算机硬件的不断升级,光线追踪技术已经成为主流的图像生成技术之一。
二、计算机图形学的应用研究1.游戏领域在游戏领域中,计算机图形学技术的应用可以使游戏的效果更加逼真、炫酷。
例如,通过虚拟现实技术,玩家可以沉浸在3D虚拟世界中,感受到更加真实的游戏体验;通过光线追踪技术,游戏场景的光影效果可以更加真实自然,为玩家提供更好的游戏体验。
2.工业制造领域在工业制造领域中,计算机图形学技术的应用可以辅助设计师和工程师进行产品设计和检测。
例如,通过增强现实技术,工程师可以在真实的环境中模拟和测试产品,避免因设计不合理而导致生产成本增加;通过光线追踪技术,工程师可以更好地预测产品的光线效果和反射效果,为生产提供更加精细的工艺。
计算机图形学的发展简史
因为每年只录取大约50篇论文,在Computer Graphics杂志上发表,因此论
文的学术水平较高,基本上代表了图形学已经的主流方向。
1.2 计算机图形学的发展简史
1950年,第一台图形显示器作为美国麻省理工学院(MIT)旋风I号(Whirl-
-wind I)计算机的附件诞生了。该显示器用一个类似于示波器的阴极射线管
(CRT) 来显示一些简单的图形。1958年美国Calcomp公司由联机的数字记录
仪发展成滚筒式绘图仪,GerBer公司把数控机床发展成为平板式绘图仪。在
的Sam Matsa发起的。全称是“the Special Interest Group on Computer
Graphics and Interactive Techniques”。1974年,在Colorado大学召开
了第一届SIGGRAPH 年会,并取得了巨大的成功,当时有大约600位来自世界
法和辐射度算法的提出,标志着真实感图形的显示算法已逐渐成熟。从80年
代中期以来,超大规模集成电路的发展,为图形学的飞速发展奠定了物质基
础。计算机的运算能力的提高,图形处理速度的加快,使得图形学的各个研
究方向得到充分发展,图形学已广泛应用于动画、科学计算可视化、CAD/
CAM、影视娱乐等各个领域。
最后,我们以SIGGRAPH会议的情况,来结束计算机图形学的历史回顾。
兴盛的时期,并开始出现实用的CAD图形系统。又因为通用、与设备无关的
图形软件的发展,图形软件功能的标准化问题被提了出来。1974年,美国国
家标准化局(ANSI)在ACM SIGGRAPH的一个与“与机器无关的图形技术”的
计算机图形学技术的应用与前景展望
计算机图形学技术的应用与前景展望计算机图形学技术是一种应用数学、物理学、计算机科学等多学科知识的领域,通过计算机生成图像,将数字信息转化为可视化的形式,实现对虚拟世界的模拟和创造。
近年来,随着计算机处理能力的不断提高,图形学技术得到了广泛的应用和发展。
一、计算机图形学技术在游戏开发中的应用在游戏开发领域,计算机图形学技术的应用十分广泛,例如可以模拟真实光照、材质、纹理和物理运动等,使游戏画面更加逼真,增强了游戏体验。
游戏开发企业还可以利用图形学技术,创造出更加庞大的游戏世界和更加复杂的游戏场景。
同时,在虚拟现实、增强现实等领域中,图形学技术也有广泛的应用,例如在立体显示、头盔显示、手势控制等方面提供技术支持。
二、计算机图形学技术在工业设计中的应用工业设计领域也成为了计算机图形学技术的重要应用领域之一。
在这一领域中,图形学技术可以帮助设计师更加方便地进行设计、绘制、渲染和模拟等工作,使得设计效率和准确度得到了显著提高。
车辆、机器设备和家具等工业设计中的产品通过计算机图形学技术,可以实现三维建模、光线追踪、动画制作、交互设计等功能,从而使得产品的外观更加美观,功能更加精确和完善,提高了企业的竞争力。
三、计算机图形学技术在数字娱乐领域中的应用随着网络文化的兴起,数字娱乐也成为了一个重要的领域。
计算机图形学技术作为数字娱乐领域的重要技术,可以应用于数字影视、数字音乐、数字艺术等各种创意作品的制作与处理中。
在数字影视制作中,计算机图形学技术可以应用于特效制作和后期处理,使得电影、电视等作品的视觉效果更加逼真和生动;在数字艺术中,计算机图形学技术可以创作出更加复杂、立体、细腻和生动的艺术作品,比如建筑设计、抽象艺术、雕塑等。
四、计算机图形学技术的发展趋势展望随着现代计算机计算能力、存储能力和传输速度等性能的提高,计算机图形学技术将继续发展和完善,预计未来的趋势主要包括以下几方面:(1)更加真实的虚拟现实技术的应用。
计算机图形学技术的应用与前景
计算机图形学技术的应用与前景计算机图形学技术是现代计算机科学中的一个分支,它主要研究如何利用计算机生成、存储、处理、显示等多方面技术来处理图像信息,从而达到各种应用目的。
随着计算机技术的快速发展,计算机图形学技术也取得了长足的进展,被广泛应用于许多领域,例如电影、游戏、虚拟现实、医学、工业等等。
一、电影产业电影是计算机图形学技术应用最为广泛,也是最为成熟的一个领域。
随着硬件和软件技术的不断进步,计算机图形学技术已经完全可以实现想象力所及的各种特效效果,例如特殊的光影效果、逼真的物体碰撞效果、超现实的场景和虚拟人物等等。
各种类型的大片都开始采用计算机图形学技术,例如《阿凡达》、《星球大战》、《美国队长》等等,这些电影都获得了广泛的好评和盈利。
可以说,计算机图形学技术已经成为电影制作中的必备技术之一,它也在推动电影技术和视觉表达方式的不断创新和发展。
二、游戏产业计算机游戏也是计算机图形学技术应用的主要领域之一。
游戏开发者普遍采用计算机图形学技术来创建虚拟世界中的场景和角色,以便为玩家提供更为逼真的游戏画面和动作。
游戏开发商可以使用计算机图形学技术来模拟各种物理效应、光影效果、粒子效果等等,这些效果可以营造出新奇、逼真的游戏场景和角色,为游戏带来更加真实的感官体验。
当前的游戏产业不仅涵盖了家用电视游戏机和电脑游戏,还包括了手机游戏和网络游戏,它已经成为全球文化娱乐产业中的主要组成部分,不断发展壮大。
三、虚拟现实随着计算机图形学技术的不断进步,虚拟现实(VR)技术也越来越成熟,成为一个独立的产业领域。
虚拟现实技术使用户能够进入虚拟的三维场景中,通过各种手段来与虚拟世界进行互动,从而获得更加真实的感觉和体验。
虚拟现实的应用非常广泛,例如军事、教育、娱乐、医学、建筑等等。
例如,建筑设计师可以使用虚拟现实技术来设计各种建筑模型,实现精度更高、更为逼真的可视化效果。
医学学生可以使用虚拟现实技术来模拟各种手术操作,在不危及真实病人安全的情况下,进行相关医学训练。
3D图形技术的最新进展和应用
3D图形技术的最新进展和应用一、前言3D图形技术是计算机图形学的重要分支,随着计算机硬件和软件技术的不断发展,3D图形技术也得到了巨大的发展。
本文将介绍3D图形技术的最新进展和应用,以及其未来的发展趋势。
二、最新进展1. 实时光线追踪光线追踪是3D图形技术的经典算法,能够实现真实感的渲染效果,但是这种算法需要消耗大量的计算资源,导致实时渲染方面的应用受到了限制。
最近,研究人员开发出了一种基于GPU的实时光线追踪技术,可以在实时性要求较高的场景中实现真实感的渲染效果。
2. 人工智能辅助建模传统的3D建模需要花费大量的时间和精力,而人工智能技术的发展为这一问题提供了解决方案。
最近,研究人员开发出了一种基于深度学习的3D建模工具,能够自动识别2D图像中的物体并将其转换为3D模型,大大降低了建模的难度和时间成本。
3. VR/AR技术的普及虚拟现实和增强现实技术正在成为3D图形技术的重要应用方向。
随着VR/AR设备市场的不断扩大,越来越多的开发者开始关注VR/AR技术的应用,如游戏、教育、医疗等领域。
三、应用范围1. 游戏行业游戏是3D图形技术的最重要应用领域。
随着3D图形技术的不断发展,游戏画面的真实感和逼真度也不断提高,给用户带来更加震撼的游戏体验。
2. 影视制作3D图形技术在影视制作中应用广泛,可以实现复杂场景和特效的制作。
最近,研究人员开发出一种基于AI的影视后期处理工具,能够自动识别物体并对其进行特效制作,提高了影视制作的效率和质量。
3. 工业制造3D图形技术在工业制造中也有广泛的应用,如刀具、汽车、飞机等领域的设计、仿真和制造。
可以通过3D建模、可视化等技术对产品进行设计、优化和调整,同时还可以进行数字化制造和智能化管理。
四、未来趋势1. 技术集成3D图形技术将会与大数据、云计算、虚拟现实等技术进行集成,形成更加完整和综合的解决方案。
2. 可持续发展未来的3D图形技术将越来越注重可持续发展,如能源效率、生态环保等方面的应用和研究。
计算机图形学的发展与应用
计算机图形学的发展与应用计算机图形学是一门研究计算机生成、显示和处理图像的学科。
它涵盖了从数学原理到图像处理算法的广泛领域,并在许多实际应用中得到了广泛的应用。
本文将探讨计算机图形学的发展历程以及它在各个领域的应用。
一、计算机图形学的历史计算机图形学的起源可以追溯到20世纪60年代,当时计算机科学家开始研究如何使用计算机生成和显示图像。
首次出现的计算机图形学算法主要集中在简单的绘图和图像编辑上,如线段绘制和填充算法。
随着计算机硬件和软件的发展,计算机图形学逐渐得到了更广泛的应用。
二、计算机图形学的技术基础计算机图形学的技术基础包括几何学、光学、物理学和计算机科学等多个学科。
其中,几何学为图形对象的表示和变换提供了数学模型,光学和物理学则用于模拟光的传播和反射,计算机科学则负责开发图形学算法和实现。
三、计算机图形学的应用领域1. 游戏开发计算机图形学在游戏开发中起着至关重要的作用。
它负责生成游戏中的虚拟场景、角色和特效。
通过计算机图形学技术,游戏开发者能够创造出逼真的图像效果,提升游戏的可玩性和观赏性。
2. 建筑设计在建筑设计领域,计算机图形学的应用越来越广泛。
使用计算机图形学技术,建筑师可以通过三维建模软件建立建筑物的虚拟模型,进行设计和可视化预览。
这样不仅能够加快设计效率,还能减少建筑过程中的错误和成本。
3. 医学影像计算机图形学技术在医学影像中有着广泛的应用。
通过将医学影像数据转化为图像,并应用图形学算法分析和处理,医生可以更好地理解疾病并作出正确的诊断。
此外,计算机图形学还可以辅助手术规划和模拟,提高手术的精确性和安全性。
4. 动画与影视特效计算机图形学技术在电影、电视和动画制作中扮演着重要角色。
通过使用计算机生成的图像和特效,制片人可以创造出逼真的动画场景和视觉效果,提升作品的观赏性。
5. 虚拟现实虚拟现实技术正日益成为计算机图形学的一个重要应用领域。
利用计算机图形学技术和头戴显示器等设备,人们可以沉浸式地体验虚拟世界,如游戏、培训和模拟等。
《2024年三维CAD技术研究进展及其发展趋势综述》范文
《三维CAD技术研究进展及其发展趋势综述》篇一一、引言随着现代科技的快速发展,计算机辅助设计(CAD)技术在工程领域的应用越来越广泛。
其中,三维CAD技术以其直观、精确、高效的特点,在产品设计、制造、分析等方面发挥着重要作用。
本文将就三维CAD技术的研究进展及其发展趋势进行综述。
二、三维CAD技术研究进展1. 技术基础三维CAD技术是基于计算机图形学、计算机视觉、人工智能等技术的综合应用。
其核心技术包括三维建模、渲染、分析、优化等。
随着计算机硬件性能的提升,三维CAD技术的建模精度和渲染效果得到了显著提高。
2. 三维建模技术三维建模是三维CAD技术的核心。
目前,研究者们已经开发出多种建模方法,如表面建模、实体建模、边界表示建模等。
这些方法在模型精度、速度、易用性等方面各有优劣,广泛应用于机械、建筑、电子等领域的产品设计。
3. 渲染与可视化技术渲染与可视化技术是提高三维CAD模型真实感的关键。
近年来,研究者们通过改进光照模型、纹理映射、抗锯齿等技术,提高了三维模型的渲染效果。
同时,虚拟现实(VR)和增强现实(AR)技术的引入,使得三维模型的可视化更加逼真。
4. 分析与优化技术三维CAD技术不仅用于产品设计,还广泛应用于产品性能分析、优化等领域。
研究者们通过开发各种算法,如有限元分析、优化算法等,提高了产品性能分析的精度和效率。
同时,基于大数据和人工智能的技术,为产品优化提供了新的思路和方法。
三、发展趋势1. 云计算与三维CAD技术融合随着云计算技术的发展,云计算与三维CAD技术的融合成为趋势。
通过云计算平台,用户可以实时共享三维模型数据,实现协同设计、异地设计等功能。
这将极大地提高设计效率,降低设计成本。
2. 人工智能与三维CAD技术融合人工智能技术为三维CAD技术提供了新的发展思路。
通过机器学习、深度学习等技术,可以实现自动建模、智能优化等功能。
这将极大地提高设计精度和效率,降低设计人员的负担。
计算机图形学的进展与应用
计算机图形学的进展与应用一、引言计算机图形学是指应用计算机及相关技术进行图形设计、图形处理和图形演示的学科领域。
随着计算机技术的不断发展和进步,计算机图形学在许多领域中得到广泛应用,如游戏、动画、建筑、医学、工程等。
本文旨在介绍计算机图形学在近年来的进展及其应用。
二、计算机图形学的发展计算机图形学自从20世纪60年代开始建立以来,经历了三个发展阶段:1.光栅图形学光栅图形学是从计算机图形学的概念开始,向含有基本方法、算法、技术的学问学科系统化发展的过程。
该阶段中研究重点在于对图形的处理方法,大量使用了光栅扫描线等技术。
2.矢量图形学矢量图形学旨在让计算机直接生成有意义的图形图像,该阶段的研究重点在于发展符号式语言,用来描述几何形状和解决诸如三角形剖分等工作,主要采用的技术有贝塞尔曲线、贝塞尔曲面等。
3.三维图形学三维图形学支持三维立体效果制作和视角变换,主要采用的技术有三维变换、透视图、光线追踪等。
该阶段是计算机图形学发展的最高阶段,它为计算机图形技术在工业、军事、建筑、制造、电影、游戏等方面的应用奠定了基础。
三、计算机图形学的应用1.影视制作计算机图形学在影视制作中的应用已经非常广泛。
例如,电影《阿凡达》中的大量场景和角色都是通过计算机图形学生成的,这一技术使得电影的制作更加自然、更加真实。
此外,在动画制作和电视广告制作过程中,计算机图形学也被广泛应用。
2.游戏开发计算机图形学在游戏开发中的应用更加深入。
通过将三维模型和动画效果应用于游戏中,游戏画面更加精美、更加生动。
游戏中的人物模型、角色动作、背景等大部分都是通过计算机图形技术生成的。
3.医学领域在医学领域中,计算机图形学被广泛应用于医学影像的处理和诊断。
例如,在CT和MRI扫描中,计算机图形技术可以通过对医学影像进行3D重建和可视化,协助医师进行更加准确的诊断。
4.建筑和工程领域在建筑和工程领域中,计算机图形学被用于建筑设计、仿真和可视化。
计算机图形学
3 计算机动画艺术
3.1 历史的回顾
计算机动画技术的发展是和许多其它学科的发展密切相关的。计算机图形学、计算机绘画、计算机音乐、计算机辅助设计、电影技术、电视技术、计算机软件和硬件技术等众多学科的最新成果都对计算机动画技术的研究和发展起着十分重要的推动作用50年代到60年代之间,大部分的计算机绘画艺术作品都是在打印机和绘图仪上产生的。一直到60年代后期,才出现利用计算机显示点阵的特性,通过精心地设计图案来进行计算机艺术创造的活动。
2 计算机美术与设计
2.1 计算机美术的发展
1952年.美国的Ben .Laposke用模拟计算机做的波型图《电子抽象画》预示着电脑美术的开始(比计算机图形学的正式确立还要早)。计算机美术的发展可分为三个阶段:
(1)早期探索阶段(1952 1968年)主创人员大部分为科学家和工程师,作品以平面几何图形为主。1963年美国《计算机与自动化》杂志开始举办年度“计算机美术比赛”。
(3)应用与普及阶段(1984年~现在)以微机和工作站为平台的个人计算机图形系统逐渐走向成熟, 大批商业性美术(设计)软件面市; 以苹果公司的MAC 机和图形化系统软件为代表的桌面创意系统被广泛接受,CAD成为美术设计领域的重要组成部分。代表作品:1990年Jefrey Shaw的交互图形作品“易读的城市f The legible city) 。
计算机动画的应用领域十分宽广 除了用来制作影视作品外, 在科学研究、视觉模拟、电子游戏、工业设计、教学训练、写真仿真、过程控制、平面绘画、建筑设计等许多方面都有重要应用,如军事战术模拟
Байду номын сангаас 科学计算可视化
科学计算的可视化是发达国家八十年代后期提出并发展起来的一门新兴技术,它将科学计算过程中及计算结果的数据转换为几何图形及图象信息在屏幕上显示出来并进行交互处理,成为发现和理解科学计算过程中各种现象的有力工具。
计算机图形学
1.2计算机图形系统的组成和功能
图形系统 形专
图形硬件 图形软件
基础设备:主机、内存、外存等 基本图形设备:图形显示器、 图形适器、键盘等
专用图形设备:数字化仪、绘图仪、图形打印机等
图形语言:程序设计语言、数据库管理语言、图
用语言 图形数据库:图形对象库、操作方法库、模型库
图形程序:图形系统程序、应用程序、图形工具
组网技术
计算机图形学
计算机的应用越来越广泛,应用计算机 进行复杂的科学计算、产品设计等,都需要计 算机能呈现出直观形象的图形来降低操作的复 杂性。
图形软件设计理论和应用技术成了计算 学科的重要课题,计算机图形学成为许多重要 应用领域的必备知识。
计算机图形学,就是研究怎样用计算机 生成、处理和显示图形的学科。
20世纪60年代中期 随机扫描的显示器 虽具有较高的分辨率、较高的对比度以及
良好的动态性能,但要有一个高速处理器。 20世纪70年代中期 光栅图形显示器 被显示的图形都按像素存放。图形处理
和图像处理相渗透,使得算机生成的图形逼 真、形象。
图形系统软件
▪ 最基本的图形系统软件是用某种计算机语言写成 的子程序包,如GKS、PHIGS、GL等,在这类程 序包基础上开发的图形程序便于移植和推广,但 相对来说执行速度慢、效率低。
坐标数字化仪(Dig,如跟踪球(Trackball)
图形输入设备还有键盘(Keyboard)和按键 (Button)。
常用的图形输出设备
除了图形显示器外,主要的图形输 出 设备是图形打印机和绘图仪。
绘图输出设备还有热转换打印机、 热 化染色转换打印机、摄像机和扫描仪等。
1.7计算机图形学的进展与展望
计算机图形学主要是研究图形(图像)的计算机生成, 在图形基础研究方面可归纳为两个主要方向,即建模 (Modeling)技术(又称“造型技术”)和绘制(Rendering) 技术。
计算机图形学研究报告
计算机图形学研究报告计算机图形学是一门新兴的计算机科学,它以复杂而多变的运算和图形技术为基础,应用于电影制作、游戏开发、科学计算和虚拟环境等几乎所有领域。
如今,计算机图形学技术在计算机领域中发挥着越来越重要的作用,成为计算机科学研究的重要领域。
本文将简要介绍计算机图形学研究的现状,分析其最新研究成果,并提出未来可能的研究方向。
一、计算机图形学的研究进展计算机图形学是一门以图形处理为中心的计算机科学,它应用于各类现代计算机系统,包括虚拟现实系统、图形用户界面、图形编辑器等等,也是计算机视觉和人工智能研究中重要的一个组成部分。
在过去的几十年里,计算机图形学的研究取得了巨大的成就,主要表现在三方面:(1)图形系统的构建。
对图形技术的研究,取得了令人瞩目的成果,计算机技术得以不断拓展,形成了一种复杂而全面的图形系统,这使得计算机图形学的应用变得更加广泛。
(2)图形处理技术取得重大突破。
近些年来,研究开发出了一系列新的图形处理技术,其中包括三维重建、图像识别和实时渲染等,这些技术已经广泛应用于计算机图形学的应用开发中。
(3)虚拟现实技术的发展。
近年来,随着虚拟现实系统的发展,计算机图形学在虚拟现实领域也发挥了重要作用,如虚拟现实中的三维场景和动画制作等等。
二、计算机图形学的最新研究成果近年来,计算机图形学取得了许多有益的研究成果,其中包括:(1)图形建模技术的发展。
图形建模技术可以将真实世界中的物体和现象精确的仿真,进而进行分析和计算,从而获得精确的结果。
(2)图形处理器的研究。
图形处理器的研究已经取得了一定的成果,它们可以提高图形处理的速度和效率,有助于提升图形技术的性能。
(3)计算机视觉的发展。
计算机视觉技术的发展,使得计算机可以分析和处理图像信息,从而实现计算机自动化。
三、未来计算机图形学可能研究方向计算机图形学是一门年轻而发展迅速的研究领域,未来可能的研究方向有:(1)计算机虚拟环境技术的进一步发展。
计算机图形学领域的前沿技术研究
计算机图形学领域的前沿技术研究计算机图形学是计算机科学的分支,也是一个交叉学科,借助数学、物理学、工程学等多个学科的理论与方法,从研究和实现图形显示、图像处理、虚拟现实、三维建模等多个方面来研究计算机图形。
如今,计算机图形学已经成为现代信息技术领域的一个重要方向之一。
计算机图形学领域的前沿技术研究,主要涉及到如何让计算机更好的模拟和生成人类感知的视觉效果。
它探究了图形学的理论与方法,搜集、处理和管理图像、视频以及三维形状的技能。
其中最重要的技术包括计算机视觉、虚拟现实、计算机图像处理、三维建模和动画等领域。
一. 计算机视觉计算机视觉,是通过计算机对图像和视频进行分析和解译从而识别并处理图像信息的一项科技。
随着人工智能和物联网的快速发展,计算机视觉的研究已经成为一个重要的前沿研究领域。
它应用于自然图像和视频分析、行人检测、人脸识别、工业视觉、自动驾驶以及医学诊断等多个方面。
计算机视觉的研究需要解决如何提高识别速度和准确性的问题。
近年来,深度学习技术在计算机视觉中的应用,显著提高了图像处理的准确性和速度。
在计算机视觉领域中有两个重要的深度神经网络,即卷积神经网络和循环神经网络。
卷积神经网络(CNN)是一种能够对输入数据(图像、文档等)进行学习的深度神经网络。
它通过多层感知机(MLP)实现对多维数据的处理,从而优化视觉和其他模式识别任务。
如今,CNN已经成为计算机视觉领域的重要工具之一。
循环神经网络(RNN)是一种神经网络,能够从序列中学习和推荐信息。
它主要用于文本生成、语音识别、语言翻译、图像描述以及视频解析等领域。
二、虚拟现实虚拟现实是将计算机技术和图形学技术应用在可以模拟现实环境、产生身临其境感觉的包装中的技术。
它包括计算机模拟三维环境中的物理空间和真实对象以及物理空间中的感官反应,使观察者产生身临其境的体验。
未来,虚拟现实将成为娱乐和游戏行业中的重要应用。
虚拟现实可以分为三个层次:虚拟现实环境、虚拟现实装置和虚拟现实应用。
计算机图形学技术的新发展与应用前景
计算机图形学技术的新发展与应用前景计算机图形学技术的新发展:1.虚拟现实(Virtual Reality,VR):通过计算机技术模拟出的虚拟世界,用户可以与之互动,感受身临其境的体验。
2.增强现实(Augmented Reality,AR):在现实世界中,通过计算机技术增加虚拟元素,用户可以与之互动。
3.3D打印:利用计算机图形学技术,将虚拟模型转化为实体模型,广泛应用于制造业、医疗、建筑等领域。
4.计算机辅助设计(Computer-Aided Design,CAD):利用计算机图形学技术进行产品设计,提高设计效率,降低成本。
5.计算机辅助制造(Computer-Aided Manufacturing,CAM):利用计算机图形学技术,实现制造过程的自动化、智能化。
6.数字图像处理:利用计算机图形学技术对图像进行处理,提高图像质量,实现图像识别、分析等功能。
7.计算机动画:利用计算机图形学技术制作动画,包括二维动画和三维动画。
8.图形用户界面(Graphical User Interface,GUI):利用计算机图形学技术,设计友好的用户界面,提高用户体验。
9.教育:虚拟现实、增强现实等技术在教育领域的应用,可以为学生提供更加生动、直观的学习体验。
10.医疗:计算机图形学技术在医学领域的应用,如三维影像重建、虚拟手术等,可以提高诊断和治疗效果。
11.娱乐:计算机图形学技术在游戏、电影、音乐等娱乐领域的应用,可以提供更加丰富、立体的娱乐体验。
12.制造业:计算机辅助设计、计算机辅助制造等技术在制造业的应用,可以提高生产效率,降低成本。
13.建筑:计算机图形学技术在建筑领域的应用,如三维建模、虚拟现实等,可以提高设计效果,降低建筑成本。
14.交通:计算机图形学技术在交通领域的应用,如智能导航、三维地图等,可以提高出行效率,降低交通事故。
15.环境保护:计算机图形学技术在环保领域的应用,如三维仿真、数据分析等,可以提高环保监测效果。
计算机图形学的发展现状与未来趋势
计算机图形学的发展现状与未来趋势一、计算机图形学的发展现状计算机图形学是研究计算机对图像的生成、处理和显示的学科,它已经成为现代计算机科学中不可或缺的一部分。
随着计算机技术的飞速发展,计算机图形学也取得了巨大的进步。
首先,计算机图形学在计算机游戏行业中发挥着重要作用。
如今,电子游戏已经成为年轻人娱乐和消遣的重要方式。
计算机图形学的应用使得游戏画面更加逼真,场景更加精细,为玩家提供了更好的游戏体验。
其次,计算机动画的发展也是计算机图形学的重要应用领域之一。
随着计算机处理能力的提升,动画制作变得越来越精细和真实。
电影工业中的特效和动画效果大都依赖于计算机图形学的技术。
例如,好莱坞大片《阿凡达》使用了先进的计算机图形学技术,呈现出了炫目的视觉效果。
另外,计算机辅助设计(CAD)也是计算机图形学的应用领域之一。
在建筑、汽车、航空航天等各个工业领域,CAD已经成为设计和生产的重要工具。
计算机图形学的技术使得设计人员可以通过计算机生成三维模型,实现更高效、更精确的设计。
二、计算机图形学的未来趋势随着科技的不断进步和人们对更好图像质量的需求,计算机图形学也将继续发展。
未来的计算机图形学有以下几个可能的趋势。
首先,虚拟现实技术将成为计算机图形学的重要方向。
虚拟现实技术使用户可以沉浸到虚拟的三维环境中,与环境进行交互。
这需要计算机图形学技术能够实时生成高逼真度的图像,并实现低延迟的交互。
随着计算机图形学技术的不断发展,虚拟现实技术将在娱乐、教育、医疗等领域得到广泛应用。
其次,计算机图形学将与人工智能相结合,实现更智能化的图像生成和处理。
通过深度学习等技术,计算机可以理解图像内容,实现图像的自动分割、修复和增强。
这将使得图像处理变得更加高效和智能化,促进计算机图形学的发展。
另外,计算机图形学在数字艺术和创意产业中也有广阔的发展前景。
随着数码绘画和数码雕塑等新兴艺术形式的兴起,计算机图形学的技术将成为艺术家们表现创意的重要工具。
浅析计算机图形学的应用状况
浅析计算机图形学的应用状况摘要:计算机图形学作为一种重要的学科和技术,在现代社会得到了广泛的应用和发展。
本文从三个方面对计算机图形学的应用状况进行了浅析:游戏和娱乐、虚拟现实和工业设计等领域的应用。
随着信息技术的不断发展和人们对生活质量的不断提高,计算机图形学在未来的发展空间也将越来越广阔。
关键词:计算机图形学;应用状况;游戏和娱乐;虚拟现实;工业设计正文:一、游戏和娱乐计算机图形学在游戏和娱乐领域的应用最为广泛。
通过计算机图形学技术,游戏开发人员可以创造出逼真的游戏场景、人物角色和各种特效,为玩家带来更加真实的沉浸式体验。
例如,著名的游戏《使命召唤》和《战争机器》等游戏,在游戏场景、人物模型和特效等方面,均采用了先进的计算机图形学技术,为玩家带来了更加逼真的游戏体验。
另外,在娱乐领域,计算机图形学也得到了广泛应用。
例如,电影制作中常常需要使用计算机图形学技术制作出特殊效果,如《阿凡达》、《变形金刚》等电影,都采用了计算机图形学技术。
此外,现代艺术中也出现了许多使用计算机图形学技术制作的艺术作品,这些作品为我们呈现出了异于常规的艺术表现形式。
因此,可以说,计算机图形学已经成为了游戏和娱乐领域中不可或缺的一部分。
二、虚拟现实虚拟现实技术是一种基于计算机图形学的技术,它可以模拟出逼真的虚拟场景,使用户可以在虚拟世界中进行交互式体验。
虚拟现实技术应用广泛,包括游戏、教育、医疗、军事等领域。
例如,在医疗领域,虚拟现实技术可以用来模拟手术过程、进行医学培训等;在军事领域,虚拟现实技术可以用来进行战术演习、实战模拟等。
三、工业设计计算机图形学在工业设计领域的应用也十分重要。
工业设计师可以利用计算机图形学技术,快速地建立出3D模型,进行产品设计和改进。
同时,计算机图形学还可以帮助工业设计师进行产品展示和宣传。
例如,在汽车工业中,计算机图形学被广泛应用于汽车设计和展示。
通过计算机图形学技术,工业设计师可以创建出逼真的汽车模型,展示产品外观和内部结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机图形学的进展与展望浙江大学计算机辅助设计与图形学国家重点实验室主任石教英一、前言计算机图形学作为计算机科学与技术学科的一个独立分支已经历了近40年的发展历程。
一方面,作为一个学科,计算机图形学在图形基础算法、图形软件与图形硬件三方面取得了长足的进步,成为当代几乎所有科学和工程技术领域用来加强信息理解和传递的技术和工具。
另一方面,计算机图形学的硬件和软件本身已发展成为一个巨大的产业,1996年总产值达500亿美元,预计到2000年将达到1000亿美元。
因此,当前全世界从事计算机图形学研究、应用和产业的队伍十分庞大,这也是为什么每年参加SIG-GRAPH年会的人数多达3~4万人的理由。
计算机图形学在我国虽然起步较晚,然而它的发展却十分迅速。
我国的主要高校都开设了多门计算机图形学的课程,并有一批从事图形学基础和应用研究的研究所。
在浙江大学建立的计算机辅助与图形学国家重点实验室,已成为我国从事计算机图形学研究的重要基地之一。
我国学者的论文从80年代后期开始进入国际一流的SIGGRAPH和Eurographics等学术会议和重要的学术刊物,标志着我国在这一领域的研究水平已接近或部分达到国际先进水平。
去年8月,作者应美国SIGGRAPH教育委员会主席J.Brown教授的邀请,作为中国代表出席了SIG-G RAPH’96大会,并得到了部分资助。
二、计算机图形学基础研究的发展趋向计算机图形学主要是研究图形(图像)的计算机生成,其研究方向众多。
在图形基础研究方面可归纳为两个主要方向,即建模(modeling)技术(又称"造型技术")和绘制(rendering)技术。
建模技术又可分为两大分支,即计算机辅助几何设计和自然景物建模。
计算机辅助几何设计追求建模的精确度、可靠性和建模的速度;自然景物建模追求建模的逼真度和速度。
计算机图形学中的绘制技术是指基于光栅图形显示技术的"真实感图形"绘制技术,包括各种光照模型、明暗(shading)处理和纹理生成等内容。
绘制技术追求的是真实感(逼真度)和绘制速度。
综合上述两大研究方向的追求目标可以看出,计算机图形学研究水平的高低就是反映在"真实感"和"速度"的高低以及两者的结合上,也就是既要逼真地反映客观世界的对象,又能高速地、通常又称"实时"地绘制它们。
众所周知,"真实感"与"实时性"是一对尖锐的矛盾,如何解决这一矛盾是当代计算机图形学工作者奋斗的目标。
综观SIGGRAPH ’96的大会论文报告、专题讨论会内容及产品展览会,明显感到计算机图形学的主攻方向不再是孤立地追求图形的真实感和绘制的实时性,而是把重点转移到如何把两者结合在一起,即向更高的目标迈进。
体现这一重点转移的研究方向有以下三方面:1.基于图像的建模与绘制技术成为研究热点"基于图像的建模与绘制技术"是SIGGRAPH’96大会首场论文报告会的标题。
应用图像处理方法来加速图形学的建模和绘制的研究工作可追溯到早期的纹理映射工作。
进入90年代后,这一方向发展迅速,然而在SIG-GRAPH会议上,如此明确地以基于图像的建模和绘制作为报告会主题还是第一次。
首场报告会上的四篇论文均成为与会者讨论的热点。
由加州大学伯克利分校Pabul E.Dalevec等撰写的论文"Modeling and Rendering Architecture from Photographs:A hybrid Geometry-based and image-based approach"中,介绍了利用几张已有建筑的照片,对该建筑进行建模和绘制的方法。
正如该文副标题所指出的那样,该方法是基于几何和基于图像两种建模方法的混合方法,包括利用摄影测量学原理提取照片建筑的基本几何模型,利用基于模型的立体视图方法提取建筑立面的细节,利用视点无关的纹理映射方法绘制建筑的多种视图。
该方法较其它基于几何或基于图像的建模和绘制方法更方便、更精确、更像真实的照片。
该方法与基于图像的实时绘制系统相结合,实现实时边走边看(Walkthrough),这是一个诱人的应用方向。
计算机图形学长期研究的几何造型和物体表面属性仿真技术,能够绘制出逼真的图形(图像)。
然而,计算机生成的图形与真实世界所创造的复杂的几何形体和细微的光照效果相比仍有巨大的差距。
如果能从真实世界中直接获取几何信息和物质属性(如照片),并以此为基础进行绘制,就可以避开造型问题而获得逼真度更高的图形。
这就是所谓基于图像的绘制问题。
SIG-GRAPH’96论文集中有两篇论文从不同的角度研究了基于图像绘制技术的热点—————应用全视函数(plenoptic function)的绘制技术。
全视函数P是针对某一对象或场景,从空间任意一点(Vx,Vy,Vz)、任意视角(θ,φ)、任一时刻(t),针对某一波长范围(λ)的可见光线的描述。
因此,我们通常所拍的照片可以看作是全视函数的一个样本。
对于静止对象,在固定照明条件下,可忽略参数t和λ,则全视函数P 本质上是一个5维(5D)函数。
如果我们已知某一对象的全视函数P,则只要给出某一视点(Vx, Vy,Vz)和某一视角(θ,φ),将它们代入P,就可以得到一个视图。
应用全视函数基于图像绘制的问题可定义为:已知某全视函数的一组离散样本,求该全视函数的连续表示,换句话说,即根据某全视函数的一组样本重构该全视函数。
论文集中的两篇论文首次将全视函数由5D降到4 D。
2.PC机图形硬件的三维化及高档图形硬件结构与图像处理硬件相结合的趋向图形硬件、图形软件及图形基础算法三者的有机结合和相互影响形成了计算机图形学辉煌的今天。
历史上,由于图形显示技术的进步,由早期矢量式图形显示器向光栅图形显示器的发展,曾促进了真实感图形的形成;图形实时绘制的需求,推动了图形专用加速部件及图形专用芯片技术的蓬勃发展。
计算机图形硬件历来是国际上重大计算机图形学会议的重要议题之一。
美国的SIGGRAPH和欧洲的Eurographics通常均包括图形硬件论文的报告,后者还同时举行系列的"计算机图形硬件研讨会",并成为计算机图形硬件工作者最重要的交流场合。
我国在这方面的工作与国际差距较大。
SIGGRAPH ’96大会专门有一场关于图形硬件体系结构的论文报告,共四篇。
同时还有两场专题讨论会,专门研讨图形硬件的发展方向。
一场的主题为"Graphics PCs Will Put Wor kstation Graphics in the Smithsonian",另一场的主题为"Imaging Features in Advanc ed Graphics Architectures"。
展览会上,高档图形硬件仍以SGI公司独领风骚,PC机上各种3D图形加速卡纷纷涌现,整个展览会五彩缤纷,热闹非凡,计算机图形软硬件产业呈现出一片蓬勃生机。
由此可见,图形硬件,特别是PC机上图形硬件的进展已成为人们关心的重点。
在四篇图形硬件体系结构学术论文中最引人注目的是由微软公司Jay Torborg和JamesT.Kajiye报告的"Talisman:Commodity Real Time 3D Graphics for the PC"。
微软公司聚集了计算机图形学界的一批优秀人才,该论文的发表表明了微软公司将不仅积极介入微机图形软件,而且也将介入微机图形硬件,特别是在微机3D图形专用芯片领域,将与众多的从事微机图形硬件多年的小公司进行竞争。
同时,这篇论文也表明:微机图形硬件的确已进入3D时代。
3D图形要成为PC机不可缺少的一种媒体,首先,成本要低,并满足实时动态性能以及与其它媒体(如声音、视频信号)的同步性能,而不是追求高精度几何造型性能。
Talisman 3D图形处理硬件的设计思想抛弃了传统图形处理流水线的概念,充分利用3D图形处理过程的时间连贯性和空间连贯性,同时采用图像处理技术来代替图像综合方法,以达到降低存储器带宽和容量的目的。
参加专题讨论会"图形PC机将把图形工作站送进博物馆"的四位专家中,来自微机软硬件厂家的两位专家对此持赞成意见,另两位来自工作站厂家的专家持反对意见。
从目前来看,P C的图形性能仍然无法满足航空、航天、汽车等大工业CAD的需求。
专题讨论会"高档图形体系结构中的图像特征"的命题得到了与会专家的一致肯定。
从原理上讲,当图形的绘制速度足够高,使所绘制的多边形中仅含几个像素(如3个)的时候,基于多边形的3D图形系统就失去了意义(因为插值运算已没有意义)。
这时,基于图像的建模和绘制就成为当然的选择。
从上述介绍中已可明显感到图形学与图像处理相结合的发展趋向。
3.细节的分层表示、层次化绘制以及小波理论在图形学中的应用继续成为热点90年代初提出的图形学的限时计算概念,有力地促进了建模精确度与绘制实时性的辨证结合,开辟了基于几何建模的复杂性、细节的分层表示以及层次化绘制技术等新的研究方向。
小波理论在计算机图形学中的应用已成为上述研究方向的有效工具。
在SIGGRAPH ’96大会上,第二、第三两场论文报告会的标题分别为"Hierarchical Rendering Techniques"和" Level of Detail",反映了在上述方向上的最新进展。
课程"Wavelets in Computer Graphi cs"中既介绍了小波理论的基础,又介绍了小波理论在图形学中的应用算法,如多分辨率曲线与曲面造型、图像压缩与处理等,受到与会者欢迎。
感兴趣的读者可进一步参考会议论文集和课程讲义。
我国学者在上述研究方向上已有一定的工作积累。
三、计算机图形学应用的发展方向综观SIGGRAPH ’96大会的各项活动,感受到计算机图形学的应用范围和深度又有了新的发展。
1.计算机动画和虚拟现实是当前计算机图形学的应用热点关于计算机动画的论文报告有两场,即第四场"Animation"和第六场"Storytelling",共有八篇论文,占全部论文总数的弱。
会议提供的讲座中有五门课程与计算机动画技术有关。
包括以计算机动画"Toy Story"为例介绍动画制作全过程、动画技术中的过程建模、动画的视频录制技术以及Open Inventor工具在场景建模和动画程序设计中的应用。
大会专题讨论会"Live Computer Animation",讨论了在电视广播这一通常大量应用专用视频处理硬件的领域里,如何应用通用图形工作站,来生成高质量的实时动画以及特技图形效果的优点、难点和今后的发展方向。