第三讲__排序不等式

合集下载

人教版高中选修4-5第三讲柯西不等式与排序不等式教学设计

人教版高中选修4-5第三讲柯西不等式与排序不等式教学设计

人教版高中选修4-5第三讲柯西不等式与排序不等式教学设计一、教学目标1.理解柯西不等式和排序不等式的概念和基本性质。

2.能够应用柯西不等式和排序不等式解决实际问题。

3.培养学生的数学思维能力、解决问题的能力和团队协作精神。

二、教学内容1.柯西不等式的定义和证明。

2.柯西不等式及其应用。

3.排序不等式的定义和证明。

4.排序不等式及其应用。

三、教学重点和难点1.理解柯西不等式和排序不等式的定义和基本性质。

2.掌握柯西不等式的证明方法,理解其应用。

3.熟练掌握排序不等式的证明方法,能够应用排序不等式解决实际问题。

四、教学方法和手段1.教师引导学生自主发现和探究柯西不等式和排序不等式。

2.采用运用举例的方法,引导学生理解和记忆柯西不等式和排序不等式,提高学生举一反三的能力。

3.推崇探究式学习方法,鼓励学生主动探究,组织学生研究、合作探讨,提升学生的团队合作能力。

五、教学流程1.柯西不等式的引入通过真实生活中的例子,引出两个变量之间的关系,小组探究两正数之积的最大值、两负数之积的最大值、正数与负数之积的最小值。

教授柯西不等式的定义和证明。

2.柯西不等式的应用通过计算题目,引出使用柯西不等式求出积分值最大值的方法,题目的复杂程度逐渐加深,教授柯西不等式在解题中的应用。

3.排序不等式引入介绍排序不等式的定义和证明过程,并从生活中的例子引出排序不等式的应用场景。

4.排序不等式的应用通过计算题目,引导学生掌握人教版高中选修4-5第三讲柯西不等式与排序不等式的解题方法,解决实际问题。

六、教学评价1.通过出题考核,检测学生掌握柯西不等式和排序不等式的基础知识和应用能力。

2.通过实际应用问题,检验学生对柯西不等式和排序不等式的理解和应用能力。

七、小组探究设计在小组合作过程中,让学生组织实验、调查等自主探究柯西不等式和排序不等式。

小组探究产生的报告可作为课后作业,让学生进行总结和讨论。

最后,本课程旨在为学生提供基本数学知识和运用能力,建立实际生活场景与知识的联系。

5.4柯西不等式与排序不等式 课件(人教A版选修4-5)

5.4柯西不等式与排序不等式 课件(人教A版选修4-5)
m n || m | | n | |
2 2 2
ac bd a b c d
2
定理2: (柯西不等式的向量形式)
| || | | |
设α,β是两个向量,则 当且仅当β是零向量,或存在实数k, 使α=kβ时,等号成立.
观 察
反序和≤乱序和≤顺序和
例1 :有10人各拿一只水桶去接水,设水 龙头注满第i(i=1,2,…,10)个人的水桶需 要ti分,假定这些ti各不相同。 问:只有一个水龙头时,应该如何安排10 人的顺序,使他们等候的总时间最少? 这个最少的总时间等于多少?
解:总时间(分)是 10t1+9t2+…+2t9+t10 根据排序不等式,当t1<t2<…<t9<t10时, 总时间取最小值。 即:按水桶的大小由小到大依次接水, 则10人等候的总时间最少。 最少的总时间是: 10t1+9t2+…+2t9+t10
即可
三 排序不等式
定理(排序不等式,又称排序定理) 设a1 a2 ... an,b1 b2 ... bn为两组 实数c1 , c2 是b1 , b2 ...bn的任一排列, 那么: a1bn a2bn 1 ... anb1 a1c1 a2 c2 ... an cn a1b1 a2b2 ... anb.n 当且仅当a1 a2 ... an或b1 b2 ... bn时, 反序和等于顺序和。
y
P1(x1,y1)
y P1(x1,y1) 0
0
P2(x2,y2) x
x P2(x2,y2)
根据两点间距离公式以及三角形的 边长关系:
x y x y ( x1 x2 ) ( y1 y2 )

第3讲柯西不等式与排序不等式复习课课件人教新课标

第3讲柯西不等式与排序不等式复习课课件人教新课标
__x_21_+__y_21+____x_22+__y_22_≥____x_1_-__x_2_2+___y_1_-__y_2_2___.
2.一般情势的柯西不等式 设 a1 , a2 , a3 , … , an , b1 , b2 , b3 , … ,(ban21+是a22实+…数+,a2n)则 _(b_21_+__b_22+ __… __+ __b_2n_)_≥(a1b1+a2b2+…+anbn)2 _______________________________________. 当 且 仅 当 bi = 0(i = 1,2 , … , n)或存在一个数k,使得ai=kbi(i=1,2,…,n)时,等号成立. 3.排序不等式 设 a1≤a2≤…≤an , b1≤b2≤…≤bn 为 两 组 实 数 , c1 , c2 , … , cn 是 b1 ,
证明 不妨设0<a≤b≤c,于是A≤B≤C.
由0<b+c-a,0<a+b-c,0<a+c-b,
有0<A(b+c-a)+C(a+b-c)+B(a+c-b)
=a(B+C-A)+b(A+C-B)+c(A+B-C)
=a(π-2A)+b(π-2B)+c(π-2C)
=(a+b+c)π-2(aA+bB+cC).
得aAa++bbB++ccC<π2.
可得
x=2209,y=2390,z=2490.
1234
解析 答案
4.设 a,b,c 都是正数,求证:bac+cba+acb≥a+b+c. 证明 不妨设a≥b≥c>0, 则1a≤1b≤1c,ab≥ac≥bc, ∵bac+abc+acb≥bcc+aac+abb=a+b+c, ∴bac+abc+acb≥a+b+c.
4.数学建模是数学学习中的一种新情势,它为学生提供了自己学习的空间, 有助于学生了解数学在实际生活中的应用,体会数学与日常生活及其他学 科的联系.

人教版高中数学选修第三讲--柯西不等式与排序不等式ppt课件

人教版高中数学选修第三讲--柯西不等式与排序不等式ppt课件

补充例 3:已知 a 1 b2 b 1 a2 1, 求证: a2 b2 1 。
证明:由柯西不等式,得
a 1 b2 b 1 a2 ≤ a2 1 a2 b2 1 b2 1
当且仅当
b
1 b2 时,上式取等号,
分析: 设A
C b12
a12
b22
a
2 2


bn2,an2则 ,B不等a式 1b1就是 a2AbC2 Ba2
n
bn
构造二次函数
f ( x) (a12 a22 an2 ) x 2 2(a1b1 a 2b2 anbn ) x
(b12 b22 bn2 ) 又f ( x) (a1 x b1 )2 (a2 x b2 )2 (an x bn )2 0
思考:阅读课本第 31 页探究内容.
由 a2 b2 ≥ 2ab 两个实数的平方和与乘积 的 大小 关系 ,类 比考 虑与 下面 式子 有关 的有什 么不等关系:
设 a,b, c为, d任意实数.
(a2 b2 )(c2 d 2 )
联想
一、二维形式的柯西不等式
定 理1 (二 维 形 式 的 柯 西 不 等 式) 若a, b, c, d都 是 实 数, 则 当 且 仅 当ad bc时, 等 号 成 立.
小结:
(1)二 维 形 式 的 柯 西 不 等 式 (a2 b2 )(c2 d 2 ) (ac bd )2 (a, b, c, d R) 当且仅当ad bc时, 等号成立.
(2) a 2 b2 c 2 d 2 ac bd (3) a 2 b2 c 2 d 2 ac bd

高中数学 第三讲 柯西不等式与排序不等式 三 排序不等

高中数学 第三讲 柯西不等式与排序不等式 三 排序不等

1234
ab2+ba2≥ab+ba. 证明 由题意不妨设a≥b>0. 则 a2≥b2,1b≥1a,所以ab2≥ba2. 根据排序不等式知,ab2·1b+ba2·1a≥ab2·1a+ba2·1b, 即ab2+ba2≥ab+ba.
跟踪训练 1 c2
c+a.
已知 0<a≤b≤c,求证:a+c2 b+a+b2 c+b+a2 c≥a+a2b+b+b2 c+
证明
命题角度2 字母大小顺序不定问题 例 2 已知 a,b,c 均为正数,求证:b+a2 c+c+b2a+a+c2 b≥12(a+b+c).
证明
反思与感悟 对于排序不等式,其核心是必须有两组完全确定的数据, 所以解题的关键是构造出这样的两组数据.
跟踪训练2 设a,b,c∈R+,利用排序不等式证明:
a3+b3+c3≤b52+a2c5+c52+b2a5+a52+c2b5.
证明 不妨设0<a≤b≤c,
则 a5≤b5≤c5,c12≤b12≤a12, 所以由排序不等式可得 a3+b3+c3=aa52+bb52+cc52≤ac25+ba52+bc52, a3+b3+c3=aa52+bb52+cc52≤ab52+bc25+ac52,
=…=bn时,反序和等于顺序和.
题型探究
类型一 利用排序不等式证明不等式 命题角度1 字母已定序问题 例 1 已知 a,b,c 为正数,且 a≥b≥c, 求证:ba3c53+cb3a53+ac3b5 3≥1a+1b+1c.
证明
反思与感悟 利用排序不等式证明不等式的技巧在于仔细观察、分析所 要证明的式子的结构,从而正确地构造出不等式中所需要的带有大小顺 序的两个数组.
1234
证明
规律与方法
1.对排序不等式的理解 排序原理是对不同的两个数组来研究不同的乘积和的问题,能构造的和按 数组中的某种“搭配”的顺序被分为三种形式:顺序和、反序和、乱序和, 对这三种不同的搭配形式只需注意是怎样的“次序”,两种较为简单的是 “顺与反”,而乱序和也就是不按“常理”的顺序了. 2.排序不等式的本质 两实数序列同方向单调(同时增或同时减)时所得两两乘积之和最大,反方 向单调(一增一减)时所得两两乘积之和最小.

第三讲柯西不等式的基本方法与排序不等式(排序不等式)

第三讲柯西不等式的基本方法与排序不等式(排序不等式)
设a1 a 2 a 3 a n,b1 b2 b S1 S S 2 + a nc (乱序和) n + a nb (反序和) 1 bn + a nb (顺序和) n a n 或b1 b2 b bn , bn 为两组实数,c1,c 2,c3, ,c n 是b1 , b 2 , b, 的任一排列,那么 S = a1c1 + a 2c2 + a 3c3 + S2 = a1b1 + a 2 b2 + a 3 b3 + 当且仅当a1 a 2 a 3 时,反序和等于顺序和
S1 = a1b n + a 2 b n-1 + a 3 b n-2 +
问题:有10人各拿一只水桶去接水,设水龙头注 满第i(i = 1,2,3, ,10)个人的水桶需要ti分,假 定这些ti各不相同。 问只有一个水龙头时, 应 安排10人的顺序,使他们等候的总时间最少?这 个最少的总时间等于多少?
第三讲 不等式
柯西不等式与排序 排序不等式
ห้องสมุดไป่ตู้
一:引入概念 设 a1,a2,a3,…,an,,b1,b2,b3,…,bn∈R
且 a1≤a2 ≤ a3 ≤ … ≤ an,;
b1 ≤ b2 ≤ b3 ≤ …

bn
设 c1 ,c2 ,c3 , ,cn 是数组b1,b2,b3,…,bn的 任何一个排列。 则将 S = a1c1 + a 2c2 + a 3c3 + + a ncn
问题 : 设a1 ,a 2 , ,a n 是n个互不相同的正数, 1 1 求证1+ + 2 3 1 a2 a3 + ≤ a1 + 2 + 2 + n 2 3 an + 2 n

人教版高中选修4-5第三讲柯西不等式与排序不等式课程设计

人教版高中选修4-5第三讲柯西不等式与排序不等式课程设计

人教版高中选修4-5第三讲柯西不等式与排序不等式课程设计
一、课程目标
1.1 掌握柯西不等式的概念及其意义;
1.2 学会在实际问题中应用柯西不等式;
1.3 掌握排序不等式的概念及应用;
1.4 学会在实际问题中应用排序不等式。

二、教学内容
2.1 柯西不等式的概念与应用;
2.2 排序不等式的概念与应用;
2.3 利用柯西不等式、排序不等式解决实际问题。

三、教学重点与难点
3.1 教学重点:柯西不等式、排序不等式的概念及应用。

3.2 教学难点:如何在实际问题中应用柯西不等式、排序不等式。

四、教学过程设计
教学环节教学内容教学目标与要

教师活动与学生活动
1。

2019-2020学年人教版高中数学选修4-5教材用书:第三讲 柯西不等式与排序不等式 三 排序不等式 Word版含答案

2019-2020学年人教版高中数学选修4-5教材用书:第三讲 柯西不等式与排序不等式 三 排序不等式 Word版含答案

三排序不等式1.顺序和、乱序和、反序和设a1≤a2≤…≤a n,b1≤b2≤…≤b n为两组实数,c1,c2,…,c n是b1,b2,…,b n的任一排列,称a1b1+a2b2+…+a n b n为这两个实数组的顺序积之和(简称顺序和),称a1b n+a2b n-1+…+a n b1为这两个实数组的反序积之和(简称反序和),称a1c1+a2c2+…+a n c n为这两个实数组的乱序积之和(简称乱序和).2.排序不等式(排序原理)定理:(排序不等式,又称为排序原理) 设a1≤a2≤…≤a n,b1≤b2≤…≤b n为两组实数,c1,c2,…,c n是b1,b2,…,b n的任一排列,则a1b n+a2b n-1+…+a n b1≤a1c1+a2c2+…+a n c n≤a1b1+a2b2+…+a n b n,等号成立(反序和等于顺序和)⇔a1=a2=…=a n或b1=b2=…=b n.排序原理可简记作:反序和≤乱序和≤顺序和.已知a,b,c为正数,且a≥b≥c,求证:b3c3+c3a3+a3b3≥a+b+c.分析题目中已明确a≥b≥c,所以解答本题时可直接构造两个数组,再用排序不等式证明即可.∵a≥b>0,∴1a ≤1b.又c>0,从而1bc ≥1 ca.同理1ca≥1ab,从而1bc≥1ca≥1ab.又由于顺序和不小于乱序和,故可得a5 b3c3+b5c3a3+c5a3b3≥b5b3c3+c5c3a3+a5a3b3=b2c3+c2a3+a2b3⎝⎛⎭⎪⎫∵a2≥b2≥c2,1c3≥1b3≥1a3≥c2c3+a2a3+b2b3=1c+1a+1b=1a+1b+1c.∴原不等式成立.利用排序不等式证明不等式的技巧在于仔细观察、分析所要证明的式子的结构,从而正确地构造出不等式中所需要的带有大小顺序的两个数组.1.已知0<α<β<γ<π2,求证:sin αcos β+sin βcos γ+sin γcos α>12(sin 2α+sin 2β+sin 2γ).证明:∵0<α<β<γ<π2,且y =sin x 在⎝ ⎛⎭⎪⎫0,π2为增函数,y =cos x 在⎝ ⎛⎭⎪⎫0,π2为减函数,∴0<sin α<sin β<sin γ,cos α>cos β>cos γ>0.∴sin αcos β+sin βcos γ+sin γcos α>sin αcos α+sin β·cos β+sin γcos γ=12(sin2α+sin 2β+sin 2γ).2.设x ≥1,求证:1+x +x 2+…+x 2n≥(2n +1)x n. 证明:∵x ≥1,∴1≤x ≤x 2≤…≤x n.由排序原理,得12+x 2+x 4+…+x 2n≥1·x n +x ·x n -1+…+xn -1·x +x n·1,即1+x 2+x 4+…+x 2n ≥(n +1)x n.①又因为x ,x 2,…,x n,1为1,x ,x 2,…,x n的一个排列, 由排序原理,得1·x +x ·x 2+…+x n -1·x n +x n·1≥1·x n +x ·xn -1+…+xn -1·x +x n·1,得x +x 3+…+x2n -1+x n≥(n +1)x n.②将①②相加,得1+x +x 2+…+x 2n≥(2n +1)x n.在△ABC 中,试证:3≤a +b +c.可构造△ABC 的边和角的有序数列,应用排序不等式来证明. 不妨设a ≤b ≤c ,于是A ≤B ≤C . 由排序不等式,得aA +bB +cC ≥aA +bB +cC , aA +bB +cC ≥bA +cB +aC , aA +bB +cC ≥cA +aB +bC .相加,得3(aA +bB +cC )≥(a +b +c )(A +B +C )=π(a +b +c ),得aA +bB +cC a +b +c ≥π3.在排序不等式的条件中需要限定各数值的大小关系,对于没有给出大小关系的情况,要根据各字母在不等式中地位的对称性,限定一种大小关系.3.设c 1,c 2,…,c n 为正数组a 1,a 2,…,a n 的某一排列,求证:a1c1+a2c2+…+ancn ≥n .证明:不妨设0<a 1≤a 2≤…≤a n ,则1a1≥1a2≥…≥1an. 因为1c1,1c2,…,1cn 是1a1,1a2,…,1an 的一个排列,由排序原理,得a 1·1a1+a 2·1a2+…+a n ·1an ≤a 1·1c1+a 2·1c2+…+a n ·1cn ,即a1c1+a2c2+…+an cn≥n .4.设a 1,a 2,…,a n 是1,2,…,n 的一个排列, 求证:12+23+…+n -1n ≤a1a2+a2a3+…+an -1an.证明:设b 1,b 2,…,b n -1是a 1,a 2,…,a n -1的一个排列,且b 1<b 2<…<b n -1;c 1,c 2,…,c n -1是a 2,a 3,…,a n 的一个排列,且c 1<c 2<…<c n -1,则1c1>1c2>…>1cn -1且b 1≥1,b 2≥2,…,b n -1≥n -1,c 1≤2,c 2≤3,…,c n -1≤n . 利用排序不等式,有a1a2+a2a3+…+an -1an ≥b1c1+b2c2+…+bn -1cn -1≥12+23+…+n -1n . ∴原不等式成立.课时跟踪检测(十一)1.有一有序数组,其顺序和为A ,反序和为B ,乱序和为C ,则它们的大小关系为( ) A .A ≥B ≥C B .A ≥C ≥B C .A ≤B ≤CD .A ≤C ≤B解析:选B 由排序不等式,顺序和≥乱序和≥反序和知:A ≥C ≥B .2.若A =x 21+x 2+…+x 2n ,B =x 1x 2+x 2x 3+…+x n -1x n +x n x 1,其中x 1,x 2,…,x n 都是正数,则A 与B 的大小关系为( )A .A >BB .A <BC .A ≥BD .A ≤B解析:选C 序列{x n }的各项都是正数,不妨设0<x 1≤x 2≤…≤x n ,则x 2,x 3,…,x n ,x 1为序列{x n } 的一个排列.由排序原理,得x 1x 1+x 2x 2+…+x n x n ≥x 1x 2+x 2x 3+…+x n x 1,即x 21+x 2+…+x 2n ≥x 1x 2+x 2x 3+…+x n x 1.3.锐角三角形中,设P =a +b +c 2,Q =a cos C +b cos B +c cos A ,则P ,Q 的关系为( )A .P ≥QB .P =QC .P ≤QD .不能确定解析:选C 不妨设A ≥B ≥C ,则a ≥b ≥c ,cos A ≤cos B ≤cos C , 则由排序不等式有Q =a cos C +b cos B +c cos A ≥a cos B +b cos C +c cos A=R (2sin A cos B +2sin B cos C +2sin C cos A ) =R=R (sin C +sin A +sin B )=P =a +b +c2. 4.儿子过生日要老爸买价格不同的礼品1件、2件及3件,现在选择商店中单价为13元、20元和10元的礼品,至少要花________元.( )A .76B .20C .84D .96解析:选A 设a 1=1(件),a 2=2(件),a 3=3(件),b 1=10(元),b 2=13(元),b 3=20(元),则由排序原理反序和最小知至少要花a 1b 3+a 2b 2+a 3b 1=1×20+2×13+3×10=76(元).5.已知两组数1,2,3和4,5,6,若c 1,c 2,c 3是4,5,6的一个排列,则1c 1+2c 2+3c 3的最大值是________,最小值是________.解析:由反序和≤乱序和≤顺序和知,顺序和最大,反序和最小,故最大值为32,最小值为28. 答案:32 286.有4人各拿一只水桶去接水,设水龙头注满每个人的水桶分别需要5 s 、4 s 、3 s 、7 s ,每个人接完水后就离开,则他们总的等候时间最短为________s.解析:由题意知,等候的时间最短为3×4+4×3+5×2+7=41. 答案:417.在Rt △ABC 中,∠C 为直角,A ,B 所对的边分别为a ,b ,则aA +bB 与π4(a +b )的大小关系为________.解析:不妨设a ≥b >0,则A ≥B >0,由排序不等式⎭⎪⎬⎪⎫aA +bB≥aB+bA aA +bB =aA +bB ⇒2(aA +bB )≥a (A +B )+b (A +B )=π2(a +b ), ∴aA +bB ≥π4(a +b ). 答案:aA +bB ≥π4(a +b ) 8.设a ,b ,c 都是正数,求证:a +b +c ≤a4+b4+c4abc .证明:由题意不妨设a ≥b ≥c >0.由不等式的性质,知a 2≥b 2≥c 2,ab ≥ac ≥bc . 根据排序原理,得a 2bc +ab 2c +abc 2≤a 3c +b 3a +c 3b .① 又由不等式的性质,知a 3≥b 3≥c 3,且a ≥b ≥c .再根据排序不等式,得a 3c +b 3a +c 3b ≤a 4+b 4+c 4.②由①②及不等式的传递性,得a 2bc +ab 2c +abc 2≤a 4+b 4+c 4.两边同除以abc 得证原不等式成立.9.设a ,b ,c 为任意正数,求a b +c +b c +a +ca +b 的最小值.解:不妨设a ≥b ≥c ,则a +b ≥a +c ≥b +c ,1b +c ≥1c +a ≥1a +b .由排序不等式,得a b +c +b c +a +c a +b ≥b b +c +c c +a +a a +b , a b +c +b c +a +c a +b ≥c b +c +a c +a +b a +b, 以上两式相加,得2⎝ ⎛⎭⎪⎫a b +c +b c +a +c a +b ≥3,∴a b +c +b c +a +c a +b ≥32, 即当且仅当a =b =c 时, a b +c +b c +a +c a +b 的最小值为32.10.设x ,y ,z 为正数,求证:x +y +z ≤x2+y22z +y2+z22x +z2+x22y. 证明:由于不等式关于x ,y ,z 对称, 不妨设0<x ≤y ≤z ,于是x 2≤y 2≤z 2,1z ≤1y ≤1x ,由排序原理:反序和≤乱序和,得x 2·1x +y 2·1y +z 2·1z ≤x 2·1z +y 2·1x +z 2·1y, x 2·1x+y 2·1y+z 2·1z≤x 2·1y+y 2·1z+z 2·1x,将上面两式相加,得2(x +y +z )≤x2+y2z +y2+z2x +z2+x2y ,于是x +y +z ≤x2+y22z +y2+z22x +z2+x22y.本讲高考热点解读与高频考点例析考情分析从近两年高考来看,对本部分内容还未单独考查,可也不能忽视,利用柯西不等式构造“平方和的积”与“积的和的平方”,利用排序不等式证明成“对称”形式,或两端是“齐次式”形式的不等式问题.真题体验(陕西高考)已知关于x 的不等式|x +a |<b 的解集为{x |2<x <4}. (1)求实数a ,b 的值;(2)求at +12+bt 的最大值.解:(1)由|x +a |<b ,得-b -a <x <b -a ,则⎩⎪⎨⎪⎧-b -a =2,b -a =4,解得⎩⎪⎨⎪⎧a =-3,b =1.(2)-3t +12+t =3·4-t +t ≤3+4-t+t=24-t +t =4, 当且仅当4-t 3=t1,即t =1时等号成立, 故(-3t +12+t)max =4.1122n n )2(a i ,b i ∈R ,i =1,2,…,n ),形式简洁、美观,对称性强,灵活地运用柯西不等式,可以使一些较为困难的不等式证明问题迎刃而解.已知a ,b ,c ,d 为不全相等的正数,求证:1a2+1b2+1c2+1d2>1ab +1bc +1cd +1da.由柯西不等式⎝ ⎛⎭⎪⎫1a2+1b2+1c2+1d2⎝ ⎛ 1b2+1c2+⎭⎪⎫1d2+1a2≥⎝ ⎛⎭⎪⎫1ab +1bc +1cd +1da 2, 于是1a2+1b2+1c2+1d2≥1ab +1bc +1cd +1da.①等号成立⇔1a 1b =1b 1c =1c 1d =1d 1a⇔b a =c b =d c =ad ⇔a =b =c =d .又已知a ,b ,c ,d 不全相等,则①中等号不成立. 即1a2+1b2+1c2+1d2>1ab +1bc +1cd +1da.关的不等式问题,利用排序不等式解决往往很简便.设a ,b ,c 为实数,求证:a12bc +b12ca +c12ab ≥a 10+b 10+c 10.由对称性,不妨设a ≥b ≥c , 于是a 12≥b 12≥c 12,1bc ≥1ca ≥1ab .由排序不等式:顺序和≥乱序和,得a12bc +b12ca +c12ab ≥a12ab +b12bc +c12ca =a11b +b11c +c11a .① 又因为a 11≥b 11≥c 11,1a ≤1b ≤1c,再次由排序不等式:反序和≤乱序和,得 a11a +b11b +c11c ≤a11b +b11c +c11a .② 由①②得a12bc +b12ca +c12ab≥a 10+b 10+c 10.理.在这类题目中,利用柯西不等式或排序不等式处理往往比较容易.已知5a 2+3b 2=158,求a 2+2ab +b 2的最大值.解:∵⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫552+⎝ ⎛⎭⎪⎫332 ≥⎝⎛⎭⎪⎫55×5a +33×3b 2=(a +b )2=a 2+2ab +b 2,当且仅当5a =3b ,即a =38,b =58时,等号成立.∴815×(5a 2+3b 2)≥a 2+2ab +b 2. ∴a 2+2ab +b 2≤815×(5a 2+3b 2)=815×158=1. ∴a 2+2ab +b 2的最大值为1.已知正实数x 1,x 2,…,x n 满足x 1+x 2+…+x n =P ,P 为定值,求F =x21x2+x22x3+…+x2n -1xn +x2nx1的最小值.不妨设0<x 1≤x 2≤…≤x n , 则1x1≥1x2≥…≥1xn>0,且0<x 21≤x 2≤…≤x 2n . ∵1x2,1x3,…,1xn ,1x1为序列⎩⎨⎧⎭⎬⎫1xn 的一个排列, 根据排序不等式,得F =x21x2+x22x3+…+x2n -1xn +x2nx1≥x 21·1x1+x 2·1x2+…+x 2n ·1xn=x 1+x 2+…+x n =P (定值),当且仅当x 1=x 2=…=x n =Pn 时,等号成立.即F =x21x2+x22x3+…+x2n -1xn +x2n x1的最小值为P .。

高中数学选修4-5第三讲排序不等式

高中数学选修4-5第三讲排序不等式

所以 a1c1+a2c2+…+a5c5 的最大值为 304,最小值为 212.
类型 3 排序不等式的实际应用
[典例 3] 某座大楼共有 n 层,在每层有一个办公室, 每个办公室的人员步行上下楼,他们的速度分别为 v1, v2,…,vn(他们各不相同),为了能使得办公室的人员上 下楼梯所用的时间总和最小,应该如何安排(假设每两层 楼的楼梯长都一样)?
利用排序不等式,有aa12+aa23+…+aan-n 1≥bc11+bc22+… +bcnn--11≥12+23+…+n-n 1.
所以原不等式成立.
归纳升华 1.在不等式的证明方法中,配凑法比较常见,如在 运用基本不等式、柯西不等式时,常常先将不等式的一侧 (或已知等式的一侧)进行配凑,使之满足基本不等式或柯 西不等式的应用条件.在运用排序不等式时,常常根据题 目条件,配凑构造出所需要的有序数组.
解析:由基本概念知(1)(2)正确,(3)不正确,因为乱 序和也可能是 35 或其他等.由排序不等式可知(4)正确.
答案:(1)√ (2)√ (3)× (4)√
2.有两组数 1,2,3 与 10,15,20,它们的顺序和、
反序和分别是( )
A.100,85
B.100,80
C.95,80
D.95,85
所以将速度快的放在高层,速度慢的放在低层,可使 上下楼的时间最短.
归纳升华 在解决一些规划预算问题时,往往只需确定最小值与 最大值,以进行合理规划与正确预算,结合排序不等式 “顺序和最大,反序和最小”,可以方便快捷地处理,方 法巧妙,步骤灵活,过程简单.
[变式训练] 某网吧的 3 台电脑同时出现了故障,对 其维修分别需要 45 min,25 min 和 30 min,每台电脑耽 误 1 min,网吧就会损失 0.05 元.在只能逐台维修的条 件下,按怎样的顺序维+a2c2+…+a5c5 的最大值 为 a1b1+a2b2+a3b3+a4b4+a5b5=2×3+7×4+8×6+9 ×10+12×11=304.

人教版高中数学选修4-5《第三讲柯西不等式与排序不等式一般形式的柯西不等式》

人教版高中数学选修4-5《第三讲柯西不等式与排序不等式一般形式的柯西不等式》
2 2 2 2
3 3 =3 ( x 0)
6
复习引入
设<m, n , 则m n | m | | n | cos | m n || m | | n | | cos || m | | n | | m n || m | | n | 当且仅当m // n时,等号成立. m (a, b, c), n (d , e, f ) m n ad be cf
2 2
1 1 2 (1 x 2 y ) 5 5
1 2 (当 x , y ) 5 5
4
复习引入 下面我们来做几个巩固练习: 1 2 3.设 x, y R ,且 x+2y=36,求 的最小值. x y
1 2 1 1 2 ( )( x 2 y) x y 36 x y 1 2 y 2x (1 4 ) 36 x y 1 2 y 2x (5 2 ) 36 x y
(a b c d ) (a b c d )(b c d a )
2 2 2 2 2 2 2 2 2 2 2 2
(ab bc cd da )
2 2 2 2
2
(ab bc cd da )
即 a b c d ab bc cd da
同样这个不等式也有着向量(n维向量)及几何背景, 其应用广泛。
9
一般形式的柯西不等式示例源自例 1 已知 a1 , a2 , , an 都是实数,求证: 1 2 2 2 2 (a1 a2 an ) ≤ a1 a2 an n 1 1 2 2 ( a a a ) (1 a 1 a 1 a ) 证明: 1 2 n 1 2 n n n 1 2 2 2 2 2 (1 1 12 )(a1 a2 an ) n

高中数学第3讲柯西不等式与排序不等式3排序不等式人教A版选修4_5

高中数学第3讲柯西不等式与排序不等式3排序不等式人教A版选修4_5
[精彩点拨] (1)题目涉及到与排序有关的不等式; (2)题目中没有给出 a,b,c 的大小顺序.解答本题时不妨先设 定 a≤b≤c,再利用排序不等式加以证明.
[自主解答] 不妨设 0<a≤b≤c,则 a3≤b3≤c3, 0<b1c≤c1a≤a1b, 由排序原理:乱序和≤顺序和,得 a3·c1a+b3·a1b+c3·b1c≤a3·b1c+b3·c1a+c3·a1b, a3·a1b+b3·b1c+c3·c1a≤a3·b1c+b3·c1a+c3·a1b.
将上面两式相加得 a2+c b2+b2+a c2+c2+b a2≤2bac3+cba3+acb3 , 将不等式两边除以 2, 得a2+2cb2+b22+ac2+c2+2ba2≤bac3+cba3+acb3 .
在排序不等式的条件中需要限定各数值的大小关系,对于没有给 出大小关系的情况:(1)要根据各字母在不等式中地位的对称性,限 定一种大小关系.(2)若给出的字母不具有对称性,一定不能直接限 定字母的大小顺序,而要根据具体环境分类讨论.
合作探究 提素养
用排序不等式证明不等式(字母大小已定) 【例 1】 已知 a,b,c 为正数,a≥b≥c,求证: (1)b1c≥c1a≥a1b; (2)ba2c22+cb2a22+ac2b2 2≥a12+b12+c12.
[精彩点拨] 由于题目条件中已明确 a≥b≥c,故可以直接构造 两个数组.
[自主解答] (1)∵a≥b>0,于是1a≤1b. 又 c>0,∴1c>0,从而b1c≥c1a, 同理,∵b≥c>0,于是1b≤1c, ∴a>0,∴1a>0,于是得c1a≥a1b, 从而b1c≥c1a≥a1b.
即按注满时间为 4 min,5 min,6 min,8 min,10 min 依次等水,等待 的总时间最少.

第三讲.柯西不等式与排序不等式

第三讲.柯西不等式与排序不等式
2
三.排序不等式
探 究 如 图3.3 1,设AOB ,
自 点O沿OA边 依 次 取n个 点A1, A2,
B
Bn
, An,沿OB 边 也 依 次 取 点B1 , B2 ,
Bj
, Bn.选 取 某 个 点Ai i 1,2, n与 B2
某 个 点Bj j 1,2, , n连 结,得 到
定理 设 a1, a2 , a3,..., an ,b1,b2 ,b3,..., bn 是实数,则
(a12 a22 ... an2 ) (b12 b22 ... bn2 ) (a1b1 a2b2 ... anbn )2
当且仅当 bi 0 (i=1,2,…,n) 或 存在一个
例3.设a,b∈R+,a+b=1,求证
11 4 ab
注意应用公式: (a b)( 1 1 ) 4
ab
练习:
1.已知2x2 3y2 6, 求证x 2 y 11
2.已知a2 b2 1,
求证|a cos b sin | 1
作业
第37页,第1,5,6题
定理3(二维形式的三角不等式)

x1,
y, 1
x
,
22 x22 y22 (x1 x2 )2 ( y1 y2 )2
例题
例1.已知a,b为实数,证明: (a4+b4) (a2+b2)≥ (a3+b3)2
例2.求函数y 5 x 1 10 2x的最大值.
例1 已知 a1, a2 , a3,..., an 都是实数,求证:
1 n
(a1

a2
...

高考数学(文)一轮复习文档:选修4-5 不等式选讲 第3讲柯西不等式与排序不等式 Word版含答案

高考数学(文)一轮复习文档:选修4-5 不等式选讲 第3讲柯西不等式与排序不等式 Word版含答案

第3讲柯西不等式与排序不等式,)1.二维形式的柯西不等式(1)定理1(二维形式的柯西不等式)若a,b,c,d都是实数,则(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc时,等号成立.(2)(二维变式)a2+b2·c2+d2≥|ac+bd|,a2+b2·c2+d2≥|ac|+|bd|.(3)定理2(柯西不等式的向量形式)设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k,使α=kβ时,等号成立.(4)定理3(二维形式的三角不等式)设x1,y1,x2,y2∈R,那么x21+y21+x22+y22(5)(三角变式)设x1,y1,x2,y2,x3,y3∈R,则(x1-x3)2+(y1-y3)2+(x2-x3)2+(y2-y3)22.柯西不等式的一般形式设a1,a2,a3,…,a n,b1,b2,b3,…,b n是实数,则(a21+a22+…+a2n)(b21+b22+…+b2n)≥(a1b1+a2b2+…+a n b n)2,当且仅当b i=0(i=1,2,…,n)或存在一个数k,使得a i=kb i(i=1,2,…,n)时,等号成立.3.排序不等式设a1≤a2≤…≤a n,b1≤b2≤…≤b n为两组实数,c1,c2,…,c n为b1,b2,…,b n的任一排列,则有:a1b n+a2b n-1+…+a n b1≤a1c1+a2c2+…+a n c n≤a1b1+a2b2+…+a n b n,当且仅当a1=a2=…=a n或b1=b2=…=b n时,反序和等于顺序和.排序原理可简记作:反序和≤乱序和≤顺序和.柯西不等式的证明若a,b,c,d都是实数,求证(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc 时,等号成立.【证明】因为(a2+b2)(c2+d2)-(ac+bd)2=a2c2+a2d2+b2c2+b2d2-a2c2-b2d2-2acbd=a2d2+b2c2-2adbc=(ad-bc)2≥0,当且仅当ad=bc时,等号成立.即(a2+b2)(c2+d2)-(ac+bd)2≥0,所以(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc时,等号成立.设α,β是两个向量,求证|α·β|≤|α||β|,当且仅当β为零向量或存在实数k,使α=kβ时等号成立.如图,设在平面直角坐标系xOy中有向量α=(a,b),β=(c,d),α与β之间的夹角为θ,0≤θ≤π.根据向量数量积(内积)的定义,有α·β=|α||β|cos θ,所以|α·β|=|α||β||cos θ|.因为|cos θ|≤1,所以|α·β|≤|α||β|.如果向量α和β中有零向量,则ad-bc=0,不等式取等号.如果向量α和β都不是零向量,则当且仅当|cos θ|=1,即向量α和β共线时,不等式取等号.柯西不等式的证明可利用已学过的比较法,也可利用向量法,柯西三角不等式还可利用几何法证明.如下:设x 1,y 1,x 2,y 2,x 3,y 3∈R ,则(x 1-x 3)2+(y 1-y 3)2+(x 2-x 3)2+(y 2-y 3)2≥(x 1-x 2)2+(y 1-y 2)2. 证明:设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3).由|CA |+|CB |≥|BA |与两点间的距离公式得(x 1-x 3)2+(y 1-y 3)2+(x 2-x 3)2+(y 2-y 3)2≥(x 1-x 2)2+(y 1-y 2)2. 当且仅当点C 位于线段BA 上时取等号.设a 1,a 2,b 1,b 2为实数,求证:a 21+a 22+b 21+b 22≥(a 1-b 1)2+(a 2-b 2)2. (a 21+a 22+b 21+b 22)2=a 21+a 22+2a 21+a 22b 21+b 22+b 21+b 22 ≥a 21+a 22+2|a 1b 1+a 2b 2|+b 21+b 22 ≥a 21+a 22-2(a 1b 1+a 2b 2)+b 21+b 22 =(a 21-2a 1b 1+b 21)+(a 22-2a 2b 2+b 22) =(a 1-b 1)2+(a 2-b 2)2,所以a 21+a 22+b 21+b 22≥(a 1-b 1)2+(a 2-b 2)2.利用柯西不等式求最值已知正实数u ,v ,w 满足u 2+v 2+w 2=8,求u 49+v 416+w 425的最小值.【解】 因为u 2+v 2+w 2=8.所以82=(u 2+v 2+w 2)2=⎝ ⎛⎭⎪⎫u 23·3+v 24·4+w 25·52≤⎝ ⎛⎭⎪⎫u 49+v 416+w 425(9+16+25),所以u 49+v 416+w 425≥6450=3225.当且仅当u 23÷3=v 24÷4=w 25÷5,即u =65,v =85,w =2时取到“=”,所以当u =65,v =85,w =2时u 49+v 416+w 425的最小值为3225.利用柯西不等式求最值的一般结构为:(a 21+a 22+…+a 2n )⎝ ⎛⎭⎪⎫1a 21+1a 22+…+1a 2n ≥(1+1+…+1)2=n 2.在使用柯西不等式时,要注意右边为常数且应注意等号成立的条件.1.设x ,y ,z ∈R ,2x -y -2z =6,试求x 2+y 2+z 2的最小值. 考虑以下两组向量u =(2,-1,-2),v =(x ,y ,z ),根据柯西不等式(u ·v )2≤|u |2·|v |2, 得2≤(x 2+y 2+z 2),即(2x -y -2z )2≤9(x 2+y 2+z 2), 将2x -y -2z =6代入其中, 得36≤9(x 2+y 2+z 2), 即x 2+y 2+z 2≥4, 故x 2+y 2+z 2的最小值为4.2.设x ,y ,z ∈R ,x 2+y 2+z 2=25,试求x -2y +2z 的最大值与最小值. 根据柯西不等式,有(1·x -2·y +2·z )2≤(x 2+y 2+z 2), 即(x -2y +2z )2≤9×25, 所以-15≤x -2y +2z ≤15,故x -2y +2z 的最大值为15,最小值为-15.利用柯西不等式证明不等式设a ,b ,c 为正数,且a +b +c =1,求证:⎝ ⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2+⎝ ⎛⎭⎪⎫c +1c 2≥1003.【证明】 ⎝ ⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2+⎝ ⎛⎭⎪⎫c +1c 2=13(12+12+12)⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2+⎝ ⎛⎭⎪⎫c +1c 2 ≥13⎣⎢⎡⎦⎥⎤1×⎝ ⎛⎭⎪⎫a +1a +1×⎝ ⎛⎭⎪⎫b +1b +1×⎝ ⎛⎭⎪⎫c +1c 2=13⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫1a +1b +1c 2 =13⎣⎢⎡⎦⎥⎤1+(a +b +c )⎝ ⎛⎭⎪⎫1a +1b +1c 2≥13×(1+9)2=1003,当且仅当a =b =c 时等号成立, 所以所求证的不等式成立.利用柯西不等式证明的关键是恰当构造变形,化为符合它的结构形式,当一个式子与柯西不等式的左边或右边具有一致形式时,就可使用柯西不等式进行证明.注意等号成立的条件.1.已知a ,b 为正数,求证1a +4b ≥9a +b .因为a >0,b >0,所以由柯西不等式,得(a +b )⎝ ⎛⎭⎪⎫1a +4b=·⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫1a 2+⎝⎛⎭⎪⎫4b 2≥⎝⎛⎭⎪⎫a ·1a+b ·4b 2=9,当且仅当a =12b 时取等号, 所以1a +4b ≥9a +b.2.设a ,b >0,且a +b =1,求证:⎝ ⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥252.因为(12+12)⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +1a +⎝ ⎛⎭⎪⎫b +1b 2=⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫1a +1b 2=⎝ ⎛⎭⎪⎫1+1ab 2≥25⎝⎛⎭⎪⎫因为ab ≤14,当且仅当a =b =12时取等号,所以⎝ ⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥252.利用排序不等式求最值设a ,b ,c 为任意正数,求ab +c +bc +a +ca +b的最小值.【证明】 不妨设a ≥b ≥c , 则a +b ≥a +c ≥b +c ,1b +c ≥1c +a ≥1a +b, 由排序不等式得,a b +c +b c +a +c a +b ≥b b +c +c c +a +a a +b , ab +c +bc +a +ca +b ≥cb +c +ac +a +ba +b,上述两式相加得: 2⎝⎛⎭⎪⎫a b +c +b c +a +c a +b ≥3,即a b +c +b c +a +ca +b ≥32.当且仅当a =b =c 时,ab +c+b c +a +ca +b 取最小值32.求最小(大)值时,往往所给式子是顺(反)序和式.然后利用顺(反)序和不小(大)于乱序和的原理构造出适当的一个或两个乱序和,从而求出其最小(大)值.设0<a ≤b ≤c 且abc =1.试求1a 3(b +c )+1b 3(a +c )+1c 3(a +b )的最小值.令S =1a 3(b +c )+1b 3(a +c )+1c 3(a +b ),则S =(abc )2a 3(b +c )+(abc )2b 3(a +c )+(abc )2c 3(a +b )=bc a (b +c )·bc +ac b (a +c )·ac +abc (a +b )·ab .由已知可得:1a (b +c )≥1b (a +c )≥1c (a +b ),ab ≤ac ≤bc .所以S ≥bc a (b +c )·ac +ac b (a +c )·ab +abc (a +b )·bc=c a (b +c )+a b (a +c )+bc (a +b ).又S ≥bc a (b +c )·ab +ac b (a +c )·bc +abc (a +b )·ac=b a (b +c )+c b (a +c )+ac (a +b ),两式相加得:2S ≥1a +1b +1c ≥331abc=3.所以S ≥32,即1a 3(b +c )+1b 3(a +c )+1c 3(a +b )的最小值为32., )1.设a ,b ∈(0,+∞),若a +b =2,求1a +1b的最小值.因为(a +b )⎝ ⎛⎭⎪⎫1a +1b=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1a 2+⎝ ⎛⎭⎪⎫1b 2 ≥⎝⎛⎭⎪⎫a ·1a +b ·1b 2=(1+1)2=4.所以2⎝ ⎛⎭⎪⎫1a +1b≥4,即1a +1b≥2. 当且仅当a ·1b=b ·1a,即a =b 时取等号,所以当a =b =1时,1a +1b的最小值为2.2.设a 、b 、c 是正实数,且a +b +c =9,求2a +2b +2c的最小值.因为(a +b +c )⎝ ⎛⎭⎪⎫2a +2b +2c=·⎣⎢⎡⎝⎛⎭⎪⎫2a 2+⎝⎛⎭⎪⎫2b 2+⎦⎥⎤⎝⎛⎭⎪⎫2c 2≥⎝⎛⎭⎪⎫a ·2a+b ·2b+c ·2c 2=18.所以2a +2b +2c ≥2.当且仅当a =b =c 时取等号,所以2a +2b +2c的最小值为2.3.设a 1,a 2,…,a n 是1,2,…,n (n ≥2,n ∈N *)的一个排列,求证:12+23+…+n -1n ≤a 1a 2+a 2a 3+…+a n -1a n. 设b 1,b 2,…,b n -1是a 1,a 2,…,a n -1的一个排列,且b 1<b 2<…<b n -1;c 1,c 2,…,c n-1是a 2,a 3,…,a n 的一个排列,且c 1<c 2<…<c n -1, 则1c 1 >1c 2>…>1c n -1,且b 1≥1,b 2≥2,…,b n -1≥n -1,c 1≤2,c 2≤3,…,c n -1≤n . 利用排序不等式,有a 1a 2+a 2a 3+…+a n -1a n ≥b 1c 1+b 2c 2+…+b n -1c n -1≥12+23+…+n -1n. 故原不等式成立.4.已知大于1的正数x ,y ,z 满足x +y +z =3 3.求证:x 2x +2y +3z +y 2y +2z +3x +z 2z +2x +3y ≥32.由柯西不等式及题意得,⎝ ⎛⎭⎪⎫x 2x +2y +3z +y 2y +2z +3x +z 2z +2x +3y ·≥(x +y +z )2=27. 又(x +2y +3z )+(y +2z +3x )+(z +2x +3y )=6(x +y +z )=183,所以x 2x +2y +3z +y 2y +2z +3x +z 2z +2x +3y ≥27183=32,当且仅当x =y =z =3时,等号成立.5.设x ,y ,z ∈R ,且满足:x 2+y 2+z 2=1,x +2y +3z =14,求x +y +z 的值.由柯西不等式可得(x 2+y 2+z 2)(12+22+32)≥(x +2y +3z )2,即(x +2y +3z )2≤14, 因此x +2y +3z ≤14. 因为x +2y +3z =14, 所以x =y 2=z3,解得x =1414,y =147,z =31414, 于是x +y +z =3147.6.已知a ,b ,c ∈R ,且2a +2b +c =8,求(a -1)2+(b +2)2+(c -3)2的最小值. 由柯西不等式得 (4+4+1)×≥2, 所以9≥(2a +2b +c -1)2. 因为2a +2b +c =8,所以(a -1)2+(b +2)2+(c -3)2≥499,当且仅当a -12=b +22=c -3时等号成立,所以(a -1)2+(b +2)2+(c -3)2的最小值是499.7.已知x ,y ,z 均为实数.(1)若x +y +z =1,求证:3x +1+3y +2+3z +3≤33; (2)若x +2y +3z =6,求x 2+y 2+z 2的最小值.(1)证明:因为(3x +1+3y +2+3z +3)2≤(12+12+12)(3x +1+3y +2+3z +3)=27.所以3x +1+3y +2+3z +3≤3 3. 当且仅当x =23,y =13,z =0时取等号.(2)因为6=x +2y +3z ≤x 2+y 2+z 2·1+4+9,所以x 2+y 2+z 2≥187,当且仅当x =y 2=z 3即x =37,y =67,z =97时,x 2+y 2+z 2有最小值187.8.已知a ,b ∈(0,+∞),a +b =1,x 1,x 2∈(0,+∞). (1)求x 1a +x 2b +2x 1x 2的最小值;(2)求证:(ax 1+bx 2)(ax 2+bx 1)≥x 1x 2.(1)因为a ,b ∈(0,+∞),a +b =1,x 1,x 2∈(0,+∞), 所以x 1a +x 2b +2x 1x 2≥3·3x 1a ·x 2b ·2x 1x 2=3·32ab≥3·32⎝ ⎛⎭⎪⎫a +b 22=3×38=6, 当且仅当x 1a =x 2b =2x 1x 2且a =b ,即a =b =12且x 1=x 2=1时,x 1a +x 2b +2x 1x 2有最小值6.(2)证明:由a ,b ∈(0,+∞),a +b =1,x 1,x 2∈(0,+∞),及柯西不等式可得:(ax 1+bx 2)(ax 2+bx 1)=·≥(ax 1·ax 2+bx 2·bx 1)2=(a x 1x 2+b x 1x 2)2=x 1x 2,当且仅当ax 1ax 2=bx 2bx 1,即x 1=x 2时取得等号. 所以(ax 1+bx 2)·(ax 2+bx 1)≥x 1x 2.9.(1)关于x 的不等式|x -3|+|x -4|<a 的解集不是空集,求a 的取值范围; (2)设x ,y ,z ∈R ,且x 216+y 25+z 24=1,求x +y +z 的取值范围.(1)因为|x -3|+|x -4|≥|(x -3)-(x -4)|=1,且|x -3|+|x -4|<a 的解集不是空集,所以a >1,即a 的取值范围是(1,+∞). (2)由柯西不等式,得·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x 42+⎝ ⎛⎭⎪⎫y 52+⎝ ⎛⎭⎪⎫z 22 ≥⎝ ⎛⎭⎪⎫4×x 4+5×y 5+2×z 22=(x +y +z )2, 即25×1≥(x +y +z )2.所以5≥|x +y +z |,所以-5≤x +y +z ≤5. 所以x +y +z 的取值范围是.10.设a 1,a 2,…,a n 为实数,证明:a 1+a 2+…+a n n≤a 21+a 22+…+a 2nn.不妨设a 1≤a 2≤a 3≤…≤a n ,由排序原理得a 21+a 22+a 23+…+a 2n =a 1a 1+a 2a 2+a 3a 3+…+a n a n , a 21+a 22+a 23+…+a 2n ≥a 1a 2+a 2a 3+a 3a 4+…+a n a 1, a 21+a 22+a 23+…+a 2n ≥a 1a 3+a 2a 4+a 3a 5+…+a n a 2,…a 21+a 22+a 23+…+a 2n ≥a 1a n +a 2a 1+a 3a 2+…+a n a n -1,以上n 个式子两边相加得n (a 21+a 22+a 23+…+a 2n )≥(a 1+a 2+a 3+…+a n )2,两边同除以n 2得a 21+a 22+a 23+…+a 2n n ≥⎝ ⎛⎭⎪⎫a 1+a 2+a 3+…+a n n 2, 所以a 21+a 22+a 23+…+a 2nn ≥a 1+a2+a 3+…+a n n,结论得证.不等式选讲1.不等式选讲是高考的选考内容之一,考查的重点是不等式的证明、绝对值不等式的解法等,命题的热点是绝对值不等式的求解,以及绝对值不等式与函数的综合问题的求解.2.此部分命题形式单一、稳定,难度中等,备考本部分内容时应注意分类讨论思想的应用.1.(选修4­5 P19习题1.2T5,P17例5改编)已知函数f(x)=|x-4|+|x-a|(a∈R)的最小值为a.(1)求实数a的值;(2)解不等式f(x)≤5.(1)f(x)=|x-4|+|x-a|≥|a-4|=a,从而解得a=2.(2)由(1)知,f(x)=|x-4|+|x-2|=⎩⎪⎨⎪⎧-2x +6(x ≤2)2(2<x ≤4)2x -6(x >4). 结合函数y =f (x )的图象知,不等式f (x )≤5的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12≤x ≤112.2.(选修4­5 P16例3、P35例3改编)已知函数f (x )=|3x -1|.(1)设f (x )≤2的解集为M ,记集合M 中的最大元素为a max ,最小元素为a min ,求a max -a min ; (2)若a ,b 为正实数,且a +b =a max ,求1a +1b的最小值.(1)f (x )≤2,即为 |3x -1|≤2,所以-2≤3x -1≤2,即-13≤x ≤1.所以M =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-13≤ x ≤1. 即a max =1,a min =-13,a max -a min=1-⎝ ⎛⎭⎪⎫-13=43.(2)由(1)知,a +b =1,且a ,b 为正实数,所以(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+b a +a b≥2+2b a ·ab=4. 当且仅当a =b =12时取等号,即1a +1b ≥4,所以1a +1b的最小值为4.3.(选修4­5 P20习题1.2T9,P37习题3.1T8改编)(1)若关于x 的不等式|x -3|+|x -4|≤a 的解集不是空集,求a 的范围;(2)若g (x )=x ,且p >0,q >0,p +q =1,x 1,x 2∈ (1)法一:|x -3|+|x -4|≥|(x -3)-(x -4)|=1.即|x -3|+|x -4|的最小值为1.所以|x -3|+|x -4|≤a 的解集不是空集时,a ≥1. 法二:设f (x )=|x -3|+|x -4| =⎩⎪⎨⎪⎧-2x +7,x <3,1,3≤x ≤4,2x -7,x >4.函数f(x)的图象为所以f(x)min=1.则f(x)≤a的解集不是空集时,a≥1.(2)证明:由p>0,q>0,p+q=1,要证不等式pg(x1)+qg(x2)≤g(px1+qx2)成立,即为证明p x1+q x2≤px1+qx2成立.(*)法一:(分解法)要证(*)成立,即证(p x1+q x2)2≤(px1+qx2)2成立.即证:p2x1+2pq x1x2+q2x2≤px1+qx2,即证px1(1-p)+qx2(1-q)-2pq x1x2≥0.因为p+q=1.只需证pqx1+pqx2-2pq x1x2≥0成立.即证(x1-x2)2≥0.因为(x1-x2)2≥0显然成立.所以原不等式成立.法二:(柯西不等式法)因为(p x1+q x2)2=(p·px1+q·qx2)2≤=(p+q)(px1+qx2)因为p+q=1.所以(p x1+q x2)2≤px1+qx2.所以p x1+q x2≤px1+qx2.即pg(x1)+qg(x2)≤g(px1+qx2).4.(选修4­5 P19习题1.2T5,P45习题3.3T4改编)已知函数f(x)=2|x+1|+|x-2|.(1)求f(x)的最小值m;(2)若a ,b ,c 均为正实数,且满足a +b +c =m ,求证:b 2a +c 2b +a 2c≥3.(1)当x <-1时,f (x )=-2(x +1)-(x -2)=-3x ∈(3,+∞);当-1≤x <2时,f (x )=2(x +1)-(x -2)=x +4∈ (1)①当x ≤-1时,原不等式可化为-x -1<-2x -2,解得x <-1;②当-1<x <-12时,原不等式可化为x +1<-2x -2,解得x <-1,此时原不等式无解;③当x ≥-12时,原不等式可化为x +1<2x ,解得x >1.综上,M ={x |x <-1或x >1}.(2)证明:因为f (a )-f (-b )=|a +1|-|-b +1|≤|a +1-(-b +1)|=|a +b |, 所以,要证f (ab )>f (a )-f (-b ), 只需证|ab +1|>|a +b |, 即证|ab +1|2>|a +b |2, 即证a 2b 2+2ab +1>a 2+2ab +b 2, 即证a 2b 2-a 2-b 2+1>0, 即证(a 2-1)(b 2-1)>0.因为a ,b ∈M ,所以a 2>1,b 2>1, 所以(a 2-1)(b 2-1)>0成立, 所以原不等式成立.。

第三讲 柯西不等式与排序不等式

第三讲   柯西不等式与排序不等式

第三讲 柯西不等式与排序不等式2.熟悉一般形式的柯西不等式,理解柯西不等式的证明;.会应用柯西不等式解决函数最值,方程、不等式等的一些问题一、课前准备 知识情景:1. 柯西主要贡献简介: 柯西(Cauchy ),法国人,生于1789年,是十九世纪前半叶最杰出的分析家. 他奠定了数学分析的理论基础. 数学中很多定理都冠以柯西的名字,如柯西收敛原理、柯西中值定理、柯西积分不等式、柯西判别法、柯西方程等等.2.如果,a b R ∈, 那么222a b a b +≥. 当且仅当a b =时, 等号成立. 当0,0a b >>时,由222a b a b +≥⇒基本不等式: 二、新课导学(一)二维形式的柯西不等式1. 柯西不等式:若,,,a b c d R ∈,则22222()()()a b c d a c b d +++.当且仅当 时, 等号成立.此即二维形式的柯西不等式. 证法1.(综合法)222222222222()()a b c d a c a db c b d++=+++222()()()a c b d =++当且仅当 时, 等号成立.证法2.(构造法)分析:22222()()()a c b d a b c d +++⇐22222[2()]4()()0a c b d a b c d +-++而22222[2()]4()()a c b d a b c d +-++的结构特征 那么, 证:设22222()()2()f x a b x a c b d x c d =+-+++, ∵ 22()()()f x a x c b x d =-+- 0 恒成立.∴ . 得证. 证法3.(柯西不等式的向量形式) 设向量(,)ma b =,(,)n c d =, 则||m =,||n =.∵ m n⋅=,且><⋅⋅=⋅n m n m n m ,cos ||||,有||||||n m n m ⋅⋅.∴ . 得证. 2. 二维柯西不等式的变式:变式1.若,,,a b c d R ∈,则_a c b d +_a c b d +;变式2.若,,,a b c d R ∈;变式3. (三角不等式)若1122,,,x y x y R∈推论:若123123,,,,,x x x y y y R ∈,则≥3. 二维柯西不等式的应用:例1.(1)已知,a b 为实数,求证: 4422332()()()a b a b a b ++≥+ (2)设,,1a b R a b +∈+=,求证:114ab+≥例2.(1)求函数y =(2)若231x y +=,求2249x y +的最小值,并求最小值点。

高中数学第三讲柯西不等式与排序不等式3.3排序不等式课前导引素材新人教A版选修4-5(2021学年)

高中数学第三讲柯西不等式与排序不等式3.3排序不等式课前导引素材新人教A版选修4-5(2021学年)

高中数学第三讲柯西不等式与排序不等式3.3 排序不等式课前导引素材新人教A版选修4-5编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第三讲柯西不等式与排序不等式 3.3 排序不等式课前导引素材新人教A版选修4-5)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第三讲柯西不等式与排序不等式3.3 排序不等式课前导引素材新人教A版选修4-5的全部内容。

3.3 排序不等式课前导引情景导入有10人各拿一只水桶去接水,设水龙头注满第i(i=1,2,…,10)个人的水桶需要t i 分钟,假定这些ti各不相同。

问只有一个水龙头时,应如何安排10人的顺序,使他们等候的总时间最少?这个最少的总时间等于多少?要解决这个问题,需用到一个重要的不等式——排序不等式.知识预览1。

定理(排序不等式,又称排序原理)设a1≤a2≤…≤a n,b1≤b2≤…≤b n为两组实数,c1,c2,…,cn是b1,b2,…,bn的任一排列。

那么a1b n+a2b n—1+…+anb1≤a1c1+a2c2+…+an c n≤a1b1+a2b2+…+a n bn,当且仅当a1=a2=…=a n或b1=b2=…=bn时,反序和等于顺序和。

2。

排序原理又可用文字表示为反序和≤乱序和≤顺序和。

以上就是本文的全部内容,可以编辑修改。

高尔基说过:“书是人类进步的阶梯。

”我希望各位朋友能借助这个阶梯不断进步。

物质生活极大丰富,科学技术飞速发展,这一切逐渐改变了人们的学习和休闲的方式。

很多人已经不再如饥似渴地追逐一篇文档了,但只要你依然有着这样一份小小的坚持,你就会不断成长进步,当纷繁复杂的世界牵引着我们疲于向外追逐的时候,阅读一文或者做一道题却让我们静下心来,回归自我。

高中数学第三讲柯西不等式与排序不等式排序不等式素材2

高中数学第三讲柯西不等式与排序不等式排序不等式素材2

3。

3 排序不等式庖丁巧解牛知识·巧学排序不等式Sequence Inequality(又称排序原理) (1)排序原理的内容:设有数组A:a 1≤a 2≤…≤a n ,及数组B:b 1≤b 2≤…≤b n .称a 1b 1+a 2b 2+…+a n b n 为顺序和,a 1b n +a 2b n-1+a 3b n —2+…+a n b 1为倒序和,a 1c 1+a 2c 2+…+a n c n 为乱序和(其中c 1,c 2,…,c n 是b 1≤b 2≤…≤b n 的一个排列)。

则有: 顺序和≥乱序和≥倒序和,其中等号当且仅当a 1=a 2=…=a n 或b 1=b 2=…=b n 时成立。

记忆要诀以S=∑=ni i i b a 1表示顺序和,以∑=+-=ni i n i ba S 11表示倒序和,以S 1=∑=ni i i c a 1表示乱序和(其中,c 1,c 2,…,c n 是b 1≤b 2≤…≤b n 的任一排列),则有S ≤S 1≤S 。

(2)排序原理的本质含义:两实数序列同方向单调(同时增或同时减)时所得两两乘积之和最大,反方向单调(一增一减)时所得两两乘积之和最小,注意等号成立条件是其中一序列为常数序列。

学法一得由排序原理,我们可以得到这样一个推论:对于实数,a 1,a 2,…,a n ,设a i1,a i2,…,a in 为其任一个排列,则有 a 1a i1+a 2a i2+…+a n a in ≤a 12+a 22+…+a n 2。

证明:不妨设满足a 1≤a 2≤…≤a n ,取b k =a k (k=1,2,…,n ),因此b 1≤b 2≤…≤b n ,且a 1,a 2,…,a n 是b 1,b 2,…,b n 的一个排列,由排序原理知, a 11i a +a 22i a +…+a n ni a ≤a 1b 1+a 2b 2+…+a n b n =a 12+a 22+…+a n 2.(3)排序原理的意义:在解各种涉及到若干个可以比较大小的对象(如实数、线段、角度等)a 1,a 2,…,a n 的数学问题时,如果根据对称性,假定它们按一定的顺序排列起来,往往能使问题迎刃而解。

第三讲柯西不等式与排序不等式介绍

第三讲柯西不等式与排序不等式介绍

第一课时 3.1 二维形式的柯西不等式(一)教学要求:认识二维柯西不等式的几种形式,理解它们的几何意义, 并会证明二维柯西不等式及向量形式.教学重点:会证明二维柯西不等式及三角不等式. 教学难点:理解几何意义. 教学过程:一、复习准备:1. 提问: 二元均值不等式有哪几种形式?答案:(0,0)2a ba b +≥>>及几种变式. 2. 练习:已知a 、b 、c 、d 为实数,求证22222()()()a b c d ac bd ++≥+ 证法:(比较法)22222()()()a b c d ac bd ++-+=….=2()0ad bc -≥ 二、讲授新课: 1. 教学柯西不等式:① 提出定理1:若a 、b 、c 、d 为实数,则22222()()()a b c d ac bd ++≥+. → 即二维形式的柯西不等式 → 什么时候取等号? ② 讨论:二维形式的柯西不等式的其它证明方法?证法二:(综合法)222222222222()()a b c d a c a d b c b d ++=+++222()()()ac bd ad bc ac bd =++-≥+. (要点:展开→配方) 证法三:(向量法)设向量α,,)(b a =β),(d c =,α与β之间的夹角为θ,πθ≥≤0。

根据向量内积的定义,我们有:,θβαβαcos =∙ 所以,θβαβαcos =∙因为1cos ≤θ,所以,βαβα≤∙22||||c d ac bd +≥+证法四:(函数法)设22222()()2()f x a b x ac bd x c d =+-+++,则22()()()f x ax c bx d =-+-≥0恒成立.∴ 22222[2()]4()()ac bd a b c d ∆=-+-++≤0,即22222()()()a b c d ac bd ++≥+③ 讨论:二维形式的柯西不等式的一些变式?22||c d ac bd +≥+ 或 22||||c d ac bd +≥+222c d ac bd +≥+.④ 提出定理2:设,αβ是两个向量,则||||||αβαβ≤. 即柯西不等式的向量形式(由向量法提出 )→ 讨论:什么时候等号成立?(β是零向量,或者,αβ共线)⑤ 练习:已知a 、b 、c 、d 证法:(分析法)平方 → 应用柯西不等式 → 讨论:其几何意义?(构造三角形) 2. 教学三角不等式:① 出示定理3:设1122,,,x y x y R ∈分析其几何意义 → 如何利用柯西不等式证明→ 变式:若112233,,,,,x y x y x y R ∈,则结合以上几何意义,可得到怎样的三角不等式? 3. 小结:二维柯西不等式的代数形式、向量形式;三角不等式的两种形式(两点、三点) 三、巩固练习:1. 练习:试写出三维形式的柯西不等式和三角不等式第二课时 3.1 二维形式的柯西不等式(二)教学要求:会利用二维柯西不等式及三角不等式解决问题,体会运用经典不等式的一般方法——发现具体问题与经典不等式之间的关系,经过适当变形,依据经典不等式得到不等关系. 教学重点:利用二维柯西不等式解决问题. 教学难点:如何变形,套用已知不等式的形式. 教学过程: 一、复习准备:1. 提问:二维形式的柯西不等式、三角不等式? 几何意义?答案:22222()()()a b c d ac bd ++≥+≥2. 讨论:如何将二维形式的柯西不等式、三角不等式,拓广到三维、四维?3. 如何利用二维柯西不等式求函数y ?要点:利用变式22||ac bd c d ++.二、讲授新课: 1. 教学最大(小)值:① 出示例1:求函数y = 分析:如何变形? → 构造柯西不等式的形式 → 板演→ 变式:y → 推广:,,,,,)y a b c d e f R +=∈ ② 练习:已知321x y +=,求22x y +的最小值. 解答要点:(凑配法)2222222111()(32)(32)131313x y x y x y +=++≥+=. 讨论:其它方法 (数形结合法) 2. 教学不等式的证明:① 出示例2:若,x y R +∈,2x y +=,求证:112x y+≥. 分析:如何变形后利用柯西不等式? (注意对比 → 构造)要点:2222111111()()]22x y x y x y +=++=++≥… 讨论:其它证法(利用基本不等式)② 练习:已知a 、b R +∈,求证:11()()4a b a b++≥. 3. 练习:① 已知,,,x y a b R +∈,且1a bx y+=,则x y +的最小值. 要点:()()a bx y x y x y+=++=…. → 其它证法② 若,,x y z R +∈,且1x y z ++=,求222x y z ++的最小值. (要点:利用三维柯西不等式)变式:若,,x y z R +∈,且1x y z ++=.4. 小结:比较柯西不等式的形式,将目标式进行变形,注意凑配、构造等技巧.第三课时 3.2 一般形式的柯西不等式教学要求:认识一般形式的柯西不等式,会用函数思想方法证明一般形式的柯西不等式,并应用其解决一些不等式的问题.教学重点:会证明一般形式的柯西不等式,并能应用. 教学难点:理解证明中的函数思想. 教学过程: 一、复习准备: 1. 练习:2. 提问:二维形式的柯西不等式?如何将二维形式的柯西不等式拓广到三维? 答案:22222()()()a b c d ac bd ++≥+;2222222()()()a b c d e f ad be cf ++++≥++ 二、讲授新课:1. 教学一般形式的柯西不等式:① 提问:由平面向量的柯西不等式||||||αβαβ≤,如果得到空间向量的柯西不等式及代数形式?② 猜想:n 维向量的坐标?n 维向量的柯西不等式及代数形式? 结论:设1212,,,,,,,n n a a a b b b R ∈,则222222212121122()()()n n n n a a a b b b a b a b a b +++++≥+++讨论:什么时候取等号?(当且仅当1212nna a ab b b ===时取等号,假设0i b ≠) 联想:设1122n n B a b a b a b =+++,22212n A a a a =++,22212n C b b b =+++,则有20B AC -≥,可联想到一些什么?③ 讨论:如何构造二次函数证明n 维形式的柯西不等式? (注意分类)要点:令2222121122)2()n n n f x a a a x a b a b a b x =++⋅⋅⋅++++⋅⋅⋅+()(22212()n b b b +++⋅⋅⋅+ ,则2221122()()())0n n f x a x b a x b a x b =++++⋅⋅⋅+≥+(.又222120n a a a ++⋅⋅⋅+>,从而结合二次函数的图像可知,[]22221122122()4()n n n a b a b a b a a a ∆=+++-++22212()n b b b +++≤0即有要证明的结论成立. (注意:分析什么时候等号成立.) ④ 变式:222212121()n n a a a a a a n++≥++⋅⋅⋅+. (讨论如何证明)2. 教学柯西不等式的应用:① 出示例1:已知321x y z ++=,求222x y z ++的最小值. 分析:如何变形后构造柯西不等式? → 板演 → 变式: ② 练习:若,,x y z R +∈,且1111x y z ++=,求23y zx ++的最小值. ③ 出示例2:若a >b >c ,求证:ca cb b a -≥-+-411. 要点:21111()()[()()]()(11)4a c a b b c a b b c a b b c-+=-+-+≥+=---- 3. 小结:柯西不等式的一般形式及应用;等号成立的条件;根据结构特点构造证明.第四课时 3.3 排序不等式教学要求:了解排序不等式的基本形式,会运用排序不等式分析解决一些简单问题,体会运用经典不等式的一般方法.教学重点:应用排序不等式证明不等式. 教学难点:排序不等式的证明思路. 教学过程: 一、复习准备:1. 提问: 前面所学习的一些经典不等式? (柯西不等式、三角不等式)2. 举例:说说两类经典不等式的应用实例. 二、讲授新课: 1. 教学排序不等式:(1)引入:若某网吧的3台电脑同时出现了故障,对其维修分别需要45min ,25 min 和30 min ,每台电脑耽误1 min ,网吧就会损失0.05元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国高中数学联赛 金牌教练员讲座兰州一中数学组第六讲 不等式的应用、参数取值范围问题知识、方法、技能I .排序不等式(又称排序原理) 设有两个有序数组n a a a ≤≤≤Λ21及.21n b b b ≤≤≤Λ 则n n b a b a b a +++Λ2211(同序和)jn n j j b a b a b a +++≥Λ2211(乱序和)1121b a b a b a n n n +++≥-Λ(逆序和)其中n j j j ,,,21Λ是1,2,…,n 的任一排列.当且仅当n a a a ===Λ21或n b b b ===Λ21时等号(对任一排列n j j j ,,,21Λ)成立.证明:不妨设在乱序和S 中n j n ≠时(若n j n =,则考虑1-n j ),且在和S 中含有项),(n k b a n k ≠则.n n jn n j n n k b a b a b a b a n +≤+ ①事实上,左-右=,0))((≥--n j n k n b b a a由此可知,当n j n ≠时,调换n k j n j k j b a b a b a S ++++=ΛΛ11(n j n ≠)中n b 与nj 位置(其余不动),所得新和.1S S ≥调整好n a 及n b 后,接着再仿上调整1-n a 与1-n b ,又得.12S S ≥如此至多经1-n 次调整得顺序和n n b a b a b a +++Λ2211jn n j j b a b a b a +++≥Λ2211 ②这就证得“顺序和不小于乱序和”.显然,当n a a a ===Λ21或n b b b ===Λ21时②中等号成立.反之,若它们不全相等,则必存在n j 及k ,使n b .,k n j a a b n >>这时①中不等号成立.因而对这个排列②中不等号成立.类似地可证“乱序和不小于逆序和”.II .应用排序不等式可证明“平均不等式”:设有n 个正数n a a a ,,,21Λ的算术平均数和几何平均数分别是n n n nn a a a G na a a A ΛΛ2121=+++=和此外,还有调和平均数(在光学及电路分析中要用到nn a a a nH 11121+++=Λ,和平方平均(在统计学及误差分析中用到)na a a Q nn 22221+++=Λ 这四个平均值有以下关系n n n n Q A G H ≤≤≤. ○* 其中等号成立的充分必要条件都是n a a a ===Λ21.下面首先证明算术平均数一几何平均数不等式:.n n G A ≥记1,,,2121211====n n n Ga a a x G aa x G a x ΛΛ;.1,,1,12211nn x y x y x y ===Λ由于数组n x x x ,,,21Λ和数组n y y y ,,,21Λ中对应的数互为倒数,由排序不等式得n n y x y x y x +++Λ1211(逆序和)≤ 1121,-+++n n n y x y x y x Λ,即 .21nn n n G a G a G a n +++≤Λ从而.n n G A ≥等号当且仅当n x x x ===Λ21或n y y y ===Λ21时成立,而这两者都可得到n a a a ===Λ21.下面证明.n n H G ≥对n 个正数na a a 1,,1,121Λ应用,n n A G ≤得.1111112121n nn a a a n a a a ⋅⋅⋅≥+++ΛΛ即.n n H G ≥(符号成立的条件是显然的).最后证明,n n Q A ≤它等价于.0)()(22122221≥+++-+++n n a a a a a a n ΛΛ而上式左边=ΛΛΛ+-++-+-++-+-2223221221221)()()()()(n n a a a a a a a a a a0)(21≥-+-n n a a ,于是不等式及等号成立的条件都是显然的了.从上述证明可见,nn Q A ≤对一切R a a a n ∈,,,21Λ成立.III .应用算术平均数——几何平均数不等式,可用来证明下述重要不等式. 柯西(Cavchy )不等式:设1a 、2a 、3a ,…,n a 是任意实数,则).)(()(222212222122211n n n n b b b a a a b a b a b a ++++++≤+++ΛΛΛ等号当且仅当k ka b i i (=为常数,),,2,1n i Λ=时成立.证明:不妨设),,2,1(n i a i Λ=不全为0,i b 也不全为0(因为i a 或i b 全为0时,不等式显然成立). 记A=22221n a a a +++Λ,B=22221n b b b +++Λ.且令),,,2,1(,n i Bby A a x i i i i Λ===则.1,12222122221=+++=+++n n y y y x x x ΛΛ于是原不等式成为.12211≤+++n n y x y x y x Λ即≤+++)(22211n n y x y x y x Λ2222122221n n y y y x x x +++++++ΛΛ.它等价于.0)()()(2222211≥-++-+-n n y x y x y x Λ其中等号成立的充要条件是).,,2,1(n i y x i i Λ==从而原不等式成立,且等号成立的充要条件是).(BA k ka b i i == IV .利用排序不等式还可证明下述重要不等式.切比雪夫不等式:若n a a a ≤≤≤Λ21,n b b b ≤≤≤Λ21 ,则.21212211nb b b n a a a n b a b a b a nn n n +++⋅+++≥+++ΛΛΛ证明:由题设和排序不等式,有n n b a b a b a +++Λ2211=n n b a b a b a +++Λ2211,132212211b a b a b a b a b a b a n n n +++≥+++ΛΛ,…….11212211-+++≥+++n n n n n b a b a b a b a b a b a ΛΛ将上述n 个不等式叠加后,两边同除以n 2,即得欲证的不等式.赛题精讲I .排序不等式的应用 应用排序不等式可以简捷地证明一类不等式,请看下述例题. 例1:对+∈R c b a ,,,比较a c c b b a c b a 222333++++与的大小.【思路分析】要应用“排序不等式”,必须取两组便于排序的数,这要从两式的结构上去分析. 【略解】 取两组数.,,;,,222c b a c b a不管c b a ,,的大小顺序如何,都是乱序和都是同序和a c c b b a c b a 222333++++,故 a c c b b a c b a 222333++>++.【评述】 找出适当的两组数是解此类题目的关键.例2:+∈R c b a ,,,求证.222222222222abc ca b bc a b a c a c b c b a c b a ++≤+++++≤++ 【思路分析】 应先将a 、b 、c 三个不失一般性地规定为.0>≥≥c b a 【略解】由于不等式关于a 、b 、c 对称,可设.0>≥≥c b a于是ab c c b a 111,222≥≥≥≥.由排序不等式,得ac c b b a c c b b a a 111)(111222222⋅+⋅+⋅≤⋅+⋅+⋅逆序和(乱序和). 及.111111222222bc a b c a c c b b a a ⋅+⋅+⋅≤⋅+⋅+⋅ 以上两个同向不等式相加再除以2,即得原式中第一个不等式.再考虑数组abca bc c b a 111,0333≥≥>≥≥及,仿上可证第二个不等式,请读者自己完成.【评述】应用排序不等式的技巧在于构造两个数组,而数组的构造应从需要入手来设计.这一点应从所要证的式子的结构观察分析,再给出适当的数组. 例3:在△ABC 中,试证:.23ππ<++++≤c b a cC bB aA【思路分析】 可构造△ABC 的边和角的序列,应用排序不等式来证明之.【详解】 不妨设c b a ≤≤,于是.C B A ≤≤由排序不等式,得.,,bC aB cA cC bB aA aC cB bA cC bB aA cC bB aA cC bB aA ++≥++++≥++++≥++ 相加,得)())(()(3c b a C B A c b a cC bB aA ++=++++≥++π, 得3π≥++++c b a cC bB aA ①又由,0,0,0b c a c b a a c b -+<-+<-+<有).(2)()3()2()2()()()()()()(0cC bB aA c b a C c B b A a C B A c B C A b A C B a b c a B c b a C a c b A ++-++=-+-+-=-++-++-+=-++-++-+<ππππ得.2π<++++c b a cC bB aA ②由①、②得原不等式成立.【评述】此题后半部分应用了不等式的性质来证明. 例4:设n a a a ,,,21Λ是互不相同的自然数,试证.212112221n a a a n n +++≤+++ΛΛ 【思路分析】 应先构造两个由小到大的排序.【略解】将n a a a ,,,21Λ按由小到大的顺序排成n j j j a a a <<<Λ21其中n j j j ,,,21K 是1,2,…,n 的一个排列,则.,2,121n a a a n j j j ≥≥≥Λ于是由排序不等式,得.12112222222121n na a a n a a a n j j j n +++≥+++≥+++ΛΛΛ例5:设n b b b ,,,21Λ是正数n a a a ,,,21Λ的一个排列,求证.2211n b a b a b a nn ≥+++Λ【思路分析】 应注意到),,2,1(11n i a a ii Λ==⋅【略证】不妨设n a a a ≥≥≥Λ21,因为n a a a ,,,21Λ都大于0. 所以有na a a 11121≤≤≤Λ, 又nn a a a b b b 1,,1,11,,1,12121ΛΛ是的任意一个排列,于是得到.11111122112211nn n n b a b a b a a a a a a a n +++⋅≤⋅++⋅+⋅=ΛΛ 【评述】 此题比较简单,但颇具启发意义,读者应耐心体会.例6:设正数c b a ,,的乘积1=abc ,试证:.1)11)(11)(11(≤+-+-+-ac c b b a【略解】设xzc z y b y x a ===,,,这里z y x ,,都是正数,则原需证明的不等式化为y x z x z y z y x xyz y x z x z y z y x -+-+-+≤-+-+-+,,,))()((显然中最多只有一个非负数.若y x z x z y z y x -+-+-+,,中恰有一个非正数,则此时结论显然成立.若y x z x z y z y x -+-+-+,,均为正数,则z y x ,,是某三角形的三边长.容易验证)].()()([(31))()((222z y x z y x z y x z y x y x z x z y z y x -++-++-+≤-+-+-+故得.))()((xyz y x z x z y z y x ≤-+-+-+【评述】 利用上述换元的方法可解决同类的问题.见下题:设正数a 、b 、c 的乘积,1=abc 证明.23)(1)(1)(1222≥+++++b a c a c b c b a证明:设1,1,1,1====xyz zc y b x a 则,且所需证明的不等式可化为23222≥+++++y x z x z y z y x ,现不妨设z y x ≥≥,则yx zx z y z y x +≥+≥+,据排序不等式得y x z x z y z y x +++++222y x zy x z y x z y x z +⋅++⋅++⋅≥ 及y x z x z y z y x +++++222yx zx x z y z z y x y +⋅++⋅++⋅≥ 两式相加并化简可得)(2222yx z x z y z y x +++++.333=≥++≥xyz z y x例7:设实数n n n z z z y y y x x x ,,,,,212121ΛΛΛ≥≥≥≥≥≥是n y y y ,,,21Λ的一个置换,证明:∑∑==-≤-ni i i ni i iz x y x1212.)()(【略解】 显然所需证不等式等价于∑∑==≥ni ii n i ii z x y x 11,这由排序不等式可直接得到.【评述】 应用此例的证法可立证下题:设k a 是两两互异的正整数(),2,1Λ=k ,证明对任意正整数n ,均有∑∑==≥ni ni k kk a 112.1证明:设n b b b ,,,21Λ是n a a a ,,,21Λ的一个排列,使n b b b <<<Λ21,则从条件知对每个k b n k k >≤≤,1,于是由排序不等式可知∑∑∑===≥≥ni n i k ni k kk b k a 11212.1II .柯西不等式的应用 应用柯西不等式,往往能十分简捷地证明某些不等式.例8:设+∈R x x x n ,,,21Λ,求证:.211221322221n n n n x x x x x x x x x x x +++≥++++-ΛΛ【思路分析】 注意到式子中的倒数关系,考虑应用柯西不等式来证之. 【评述】注意到式子中的倒数关系,考虑应用柯西不等式来证之.【详解】 ∵0,,,21>n x x x Λ,故由柯西不等式,得))((1221322221132x x x x x x x x x x x x n n n n ++++++++-ΛΛ2111323212)(x x x x x x x x x x x x n nn n ⋅+⋅++⋅+⋅≥-Λ2121)(n n x x x x ++++=-Λ,∴.211221322221n n n n x x x x x x x x x x x +++≥++++-ΛΛ 【评述】这是一道高中数学联赛题,还可用均值不等式、数学归纳法、比较法及分离系数法和构造函数法等来证之.针对性训练题1.设a 、b 、c +∈R ,利用排序不等式证明: (1)b a b a b a abba≠>(); (2)b a a c c b cbac b a c b a +++≥222;(3)23≥+++++b a c a c b c b a ; (4).101010121212c b a abc ca b bc a ++≥++ 2.设a 、b 、c 是三角形三边的长,求证:.3≥-++-++-+cb a cb ac b a c b a3.已知a 、b 、c *N ∈,并且,,,c b a b a c a c b >+>+>+求证:.1)1()1()1(≤-+-+-+cb a cb a b ac a c b 4.设,1,*>∈n N n 求证:.22121-⋅>+++n n nn n n C C C Λ5.若b a b a b a lg 2lg ,62,0,0+=+>>求且的最大值. 6.若122,122++=+b ab a 求的最小值.7.已知11),(),1(13++=>=-x y y x u x y x 求的最小值. 8.y x y x u y x 2),(,1222+==+求的最值.。

相关文档
最新文档