离散数学3_3

合集下载

离散数学第3版习题答案

离散数学第3版习题答案

离散数学第3版习题答案离散数学是一门重要的数学学科,它研究的是离散对象和离散结构的数学理论。

离散数学的应用广泛,涉及到计算机科学、信息技术、通信工程等领域。

在学习离散数学的过程中,习题是不可或缺的一部分,通过解答习题可以加深对知识的理解和掌握。

本文将为大家提供《离散数学第3版》习题的答案,希望能对学习者有所帮助。

第一章:命题逻辑1.1 习题答案:1. (a) 真值表如下:p | q | p ∧ qT | T | TT | F | FF | T | FF | F | F(b) 命题“p ∧ q”的真值表如下:p | q | p ∧ qT | T | TT | F | FF | T | FF | F | F(c) 命题“p ∨ q”的真值表如下:p | q | p ∨ qT | T | TT | F | TF | T | TF | F | F(d) 命题“p → q”的真值表如下:p | q | p → qT | T | TT | F | FF | T | TF | F | T1.2 习题答案:1. (a) 命题“¬(p ∧ q)”等价于“¬p ∨ ¬q”。

(b) 命题“¬(p ∨ q)”等价于“¬p ∧ ¬q”。

(c) 命题“¬(p → q)”等价于“p ∧ ¬q”。

(d) 命题“¬(p ↔ q)”等价于“(p ∧ ¬q) ∨ (¬p ∧ q)”。

1.3 习题答案:1. (a) 命题“p → q”的否定是“p ∧ ¬q”。

(b) 命题“p ∧ q”的否定是“¬p ∨ ¬q”。

(c) 命题“p ↔ q”的否定是“(p ∧ ¬q) ∨ (¬p ∧ q)”。

(d) 命题“p ∨ q”的否定是“¬p ∧ ¬q”。

1.4 习题答案:1. (a) 命题“p → q”与命题“¬p ∨ q”等价。

离散数学(chapter3集合的基本概念和运算)

离散数学(chapter3集合的基本概念和运算)

以上运算律的证明思路:欲证P=Q,即证 x P x Q。
2013-7-10 离散数学
20
Байду номын сангаас
三、集合算律
证明分配律:A∪(B∩C) = (A∪B)∩(A∪C) 对x, x A∪(B ∩C) (x A ) (x B∩C )
(x A) (x B x C )
Z: 整数集合
Q: 有理数集合
R: 实数集合 C: 复数集合
: 空集(不含任何元素) E: 全集 (在某一问题中,含有所涉及的全部集合的集合。)
2013-7-10 离散数学 6
三、集合的表示方法
列出集合的所有元素,元素之间用逗号 1、列举法: 隔开。如A = { a, b, c } , B = { 1,2,4,6,7,9 } 用谓词概括该集合中元素的属性。 2、描述法: 如:A = { x | xZ 3 < x 6 } A = { x | P (x) },其中P (x)表示x满足的性质。 即A是由所有使P (x)为真的全体x构成。
2013-7-10 离散数学 3
§3.1 集合的基本概念
内容:集合,元素,子集,幂集等。 重点:(1) 掌握集合的概念及两种表示法, (2) 常见的集合N , Z, Q, R, C 和特殊集合 ,E, (3) 掌握子集及两集合相等的概念, (4) 掌握幂集的概念及求法。
2013-7-10 离散数学 4
2013-7-10
离散数学
8
四、集合之间的关系
3、真子集: B A。
B A B A B A
BABA B=A
4、幂 集:集合A的全体子集构成的集合,记作P (A)。 符号化为 P (A) = { x | x A} n 元集A的幂集P (A)含有2n个元素。

离散数学第3章 集合

离散数学第3章 集合
命题演算证明法的书写规范 (以下的X和Y代表集合公式) (1) 证XY
任取x, xX … xY (2) 证X=Y
方法一 分别证明 XY 和 YX 方法二 任取x,xX … xY
注意:在使用方法二的格式时,必须保证每步推理都是充分 必要的
27
第三章 集合
命题演算法
例3-3.2 证明A(AB) = A (吸收律)
元素a属于A,记作aA; 或者a不属于A,记作aA,也可以记作┓(aA)。
(4)任意性:集合的元素也可以是集合。 例:A={1,{2},2,{3,4},{6}} A=5,2A,{2}A,6A,{6}A
6
第三章 集合 例如:A={{a,b},d,{{b}}}。可以用一种树形图来表示这种
隶属关系,该图分层构成,每一层上的结点都表示一个集 合,它的儿子就是它的元素。 集合的树型层次结构
32
第三章 集合
§3-3-3 笛卡儿积
定义3-3.2 两个元素a,b组成二元组,若它们有次序 之别,称为二元有序组,或称为有序对或序偶,记为<a, b>,称a为第一分量,b为第二分量;若它们无次序区分, 称为二元无序组,或称为无序对,记为(a,b)。
有序对具有如下性质。 (1)有序性:当x≠y时<x,y>≠<y,x>。 (2)<x,y>与<u,v>相等的充分必要条件是
A
B
11
第三章 集合
§3-2 集合之间的关系
§3-2-1 集合之间的关系 (1)相等关系: • 两集合A和B相等,当且仅当它们有相同的元素。 • 若A与B相等,记为A=B;否则,记为A≠B。 • 可形式化为:A=B(x)(xAxB)。
12
第三章 集合

离散数学 第三章 集合

离散数学 第三章 集合

离散数学
将集合中的元素逐一列出,两端加上花括号。 { 1,2,3,4,5}; { 风,马,牛 }; { 2,4,6,8,10,… }; { 3,7,11,15,19,… }; 比较适合集合中的元素有限(较少或有规律),无限 (离散而有规律)的情况。 (3)谓词表示法: { x:P(x) } 或者{ x︱P(x) } 其中:P表示 x 所满足的性质(一元谓词)。 { x : x I (且) x8} ={…,-3,-2, -1,0,1,2,3,4,5,6 , paradox(1902)): 罗素1902年在集合论中也发现了如下的悖论。他 构造了这样一个集合 S={ x:xx } 然后他提出问题: SS ? 如果SS ,那么,按罗素给S的定义,则应有 SS; 如果S S ,那么,按罗素给S的定义,则应有 SS ; 罗素悖论的发现,几乎毁灭集合论,动摇数学的 基础,倾危数学的大厦。直接引发了数学的第三次 危机。
8
离散数学
第三章 集合 (set)
§1.集合理论中的一些基本概念
个体与集合之间的关系 集合的表示法 集合与集合之间的关系 幂集
§2 .集合代数 集合的基本运算
集合的补运算 集合的交运算和并运算
集合的宏运算
9
离散数学
第三章 集合 (set)
§1.集合理论中的一些基本概念 集合概念将作为一个不言自明的元概念(基本概 念)。它不能用别的术语来精确的定义,只能用别的 术语来加以说明。它本身就是用来定义其它概念的概 念。 我们来看看一些关于什么是集合的各种不同的说法, 以便加深对集合这个元概念的理解。 1. 莫斯科大学的那汤松教授说: 凡具有某种特殊性质的对象的汇集称之为集。 2. 复旦大学的陈建功教授说: 凡可供吾人思维的,不论它有形或无形,都叫做 物。具有某种条件的物,称它们的全部谓之一集。 3. 南开大学的杨宗磐教授说:

离散数学 第三-四章

离散数学 第三-四章
n i 1
Ai
(f) A (A∪B ), B (A∪B )
集合与关系 >集合的运算
交与 并的关系 定理3-2.1 设A、B、C为三个集合,则下列分配律 成立。 a) A∩(B∪C)=(A∩B)∪(A∩C) b) A∪(B∩C)=(A∪B)∩(A∪C) 定理3-2.2 设A、B为任意两个集合,则下列吸收律 成立 a) A∪(A∩B)=A b) A∩(A∪B)=A 定理3-2.3 A B 当且仅当 A∪B=B 或 A∩B=A。
集合与关系 > 集合的运算
本节重点掌握的概念: 集合, 集合相等,集合包含, 幂集。
本节重点掌握的方法: 集合的表示, 求幂集.
作业
3-1 (1)(a),(c) ,(e)
(3) (4) (a),(c) ,(e) (5) (6) (a),(c) ,(e) (9)
集合与关系 >集合的概念和表示法
上节知识点: 1. 集合的概念 2. 集合的表示 3 集合之间的关系 4 空集和全集 5 幂集(power set)
A-B
E B
A
集合与关系 >集合的运算
• 绝对补 定义3-2.4 设E为全集,任一集合A关于E的补 E-A, 称为集合A的绝对补,记作~A。
即 ~ A={ x| xE ∧ xA}
集合与关系 >集合的运算
(3) 集合的补(complement) 定义3-2.3 设A、B为任意两个集合,所有属于A而 不属于B的一切元素组成的集合S称为B对于A的 补集,或相对补,记作A-B。 即 A-B={ x| xA ∧ xB} 或 xA-B xA但 xB
例如 A={2, 5, 6} B={1, 2, 4, 7, 9} A-B={5, 6} B-A={1,4,7,9} E - A?

离散数学第四版课后答案(第3章)

离散数学第四版课后答案(第3章)
但对于等式(4),左边经变形后得
( A B C) ( A B) ((A B) ( A B)) (C ( A B))
= (C ( A B)) C ( A B). 易 见 , C (A B) C, 但 不 一 定 有 C (A B) C.如 令 A B C {1}.时,等式(4)不为真。类假地,等式(5)的左 边经化简后得 (A C) B ,而 (A C) B 不一定恒等于 A-C。 3.17 (1)不为真。(2),(3)和(4)都为真。对于题 (1)举反例如下:令 A {1}, A {1}, B {1,4},C {2}, D {2,3}, 则 A B 且 C B ,但 A C B D ,
这是 S T 的充公必要条件,从而结论为真. 对 于 假 命 题 都 可 以 找 到 反 例 , 如 题 (2) 中 令 S {1,2},T z{1}, M {2}即可;而对于题(5),只要 S 即可. 3.9 (2),(3)和(4)为真,其余为假. 3.10 (1) A {0,1,2}. (2) A {1,2,3,4,5} (3) A {1} (4) A { 0,0 , 0,1 1,0 , 0,2 , 1,1 , 2,0 , 0,3 ,
A B .
(4)易见,当 A=B 成立时,必有 A-B=B-A。反之,由 A-B=B-A 得
( A B) B (B A) B
化简后得 B A ,即 B A,同理,可证出 A B ,从而 得到 A=B。
3.18 由| P(B) | 64 可知|B|=6。又由| P(A B) | 256 知| A B | 8 , 代入包含排斥原理得
{,{1},{2},{1,2}}}.
(4) P( A) {,{{1}},{{1,2}},{{1}},{{1,2}} (5) P( A) {,{1},{1},{2},{1,1},{1,2}{1,2}{1,1,2}. 分析 在做集合运算前先要化简集合,然后再根据题目 要求进行计算.这里的化简指的是元素,谓词表示和集合公 式三种化简. 元素的化简——相同的元素只保留一个,去掉所有冗余 的元素。 谓词表示的化简——去掉冗余的谓词,这在前边的题解 中已经用到。 集合公工的化简——利用简单的集合公式代替相等的 复杂公式。这种化简常涉及到集合间包含或相等关系的判别。 例如,题(4)中的 A {{1,1},{2,1},{1,2,1}}化简后得 A {{1},{1,2}}, 而题(5)中的 A {x | x R x3 2x2 x 2 0} 化 简为 A {1,1,2}。 3.15

《离散数学》课件-第3章集合的基本概念

《离散数学》课件-第3章集合的基本概念
17
例题
计算以下幂集:
,{};{,{}}
解:
P()={} P({})={,{}} P({,{}})= {, {},{{}},{,{}}}
18
3.3 集合的运算
集合的运算 并,交,补(绝对补),差(相对补-),和对称差等。
19
集合的并运算
• 定义3.3.1 设A,B为集合,由A和B的所有元素组成的集 合称为A与B的并集, 可表示为: AB={x|xAxB} 其文氏图:
其文氏图如下:
~E = , ~ = E, ~(~A)= A A ~A = , A ~A = E
27
德.摩根定律
• 定理3.3.5 设A,B为任意二个集合,则有: • (1) (AB)= A B • (2) (A B)= A B • 证明 设E为全集,显然有AE=A,AE=E成立。 • (1) (AB)= {x | xEx(AB)}= {x |
据的增加、删除、修改、排序,以及数据间关系的描述。
集合论在计算机语言、数据结构、编译原理、数据库与
知识库、形式语言及人工智能等许多领域得到广泛的应
用。
2
3.1 集合及其表示
• 集合是由一些对象聚集在一起构成的。 例如,全体整数 全体中国人 26个英文字母
• 构成集合的对象可以是各种类型的事物。 • 定义3.1.1 集合中的对象叫集合的元素,或成员。
• 集合中的元素可以具有共同性质,也可以表面上看起来不相干。
• 如{2,Tom,计算机,广州}
• 在集合论中,规定元素之间是彼此相异的,并且是没有次序关 系的。
例如,{3,4,5},{3,4,4,5,5},{5,3,4}都是同一个集合。
• 例如,A={3,4,5},

离散数学 第3章 基于归结原理的推理证明

离散数学 第3章 基于归结原理的推理证明

7
3.1.1.2 斯柯林(Skolem)标准范式
定义 3.1.2 从前束范式中消去全部存在量词所得到的公式即为 Skolem 标准范式。 例如,如果用 Skolem 函数 f(x)代替前束形范式 x (y)(z)( P( x) F ( y, z) Q( y, z)) 中 的 y 即得到 Skolem 标准范式: ( x) ( z)(P(x)∧F(f(x), z)∧Q(f(x), z)) Skolem 标准型的一般形式是
(x1 )(x2 )...(xn )M ( x1, x2 ,...,xn )
其中,M(x1,x2,…,xn)是一个合取范式,称为 Skolem 标准型的母式。
8
将谓词公式 G 化为 Skolem 标准型的步骤如下: (1)消去谓词公式 G 中的蕴涵(→)和双条件符号() ,以A∨B 代替 A→B,以(A∧ B)∨(A∧B)替换 AB。 (2)减少否定符号()的辖域,使否定符号“”最多只作用到一个谓词上。 (3)重新命名变元名,使所有的变元的名字均不同,并且自由变元及约束变元亦不同。 (4)消去存在量词。这里分两种情况,一种情况是存在量词不出现在全称量词的辖域内,此 时,只要用一个新的个体常量替换该存在量词约束的变元,就可以消去存在量词;另一种情况 是,存在量词位于一个或多个全称量词的辖域内,这时需要用一个 Skolem 函数替换存在量词 而将其消去。
15
例 3.2.1 求子句集 S={T(x)∨Q(z),R(f(y))}的 H 域。 解 此例中没有个体常量,任意指定一个常量 a 作为个体常量;只有一个函数 f(y),有: H0={a} H1={a,f(a)} H2={a,(a),f(f(a))} …… H∞={a,f(a),f(f(a)),f(f(f(a))),…}

《离散数学》讲义 - 3

《离散数学》讲义 - 3

离散数学
2
1、集合概念及表示
(1)集合 ①概念 一般地说,把具有相同性质的一些东西,汇集成 一个整体,就形成一个集合。 例如:教室内的桌子;全国的高等学校;自然数的 全体;直线上的点。 ②分类 有限集:集合的元素个数是限的。 无限集:集合的元素个数是无限的。
离散数学 3
(2)表示
①集合:A~Z;元素(集合中的事物):a~z。 ② I 元素a属于集合A, 记作:aA II 元素a不属于集合A, 记作:aA
离散数学
8
(2)应用
定理3-1.1 集合A和B相等的充分必要条件是这两 个集合互为子集。
离散数学
9
4、真子集
定义3-1.3 如果集合A的每一个元素都属于B,但 集合B中至少有一个元素不属于A,则称A为B的真 子集。 记作:AB。 即:AB(AB)(AB) AB(x)(xAxB)(x)(xBxA)
离散数学 46
(2)相等
定义3-4.1 两个序偶相等, <x,y>=<u,v>,iff x=u,y=v。 注意: ①序偶<a,b>中的两个元素可以属于不同的集合, 可代表不同类型的事物。 ②在序偶<a,b>中,a称第一元素,b称第二元素。
离散数学
47
(3)推广
三元组是一个序偶,其第一元素也是一个序偶。 形如: <<x,y>,z> <<x,y>,z>=<<u,v>,w>,iff<x,y>=<u,v>,z=w 即:x=u,y=v,z=w。 约定:三元组<<x,y>,z>记作<x,y,z> 注意: 当xy时,<x,y,z><y,x,z> <<x,y>,z><x,<y,z>> 其中:<x,<y,z>>不是三元组。 同理:四元组第一元素是三元组 四元组:<<x,y,z>,w> 四元组相等: <<x,y,z>,w>=<<p,q,r>,s> (x=p)(y=q)(z=r)(w=s)

离散数学第3章 命题逻辑

离散数学第3章 命题逻辑

0
0
0
1 1 0 0
1 0 1 0
0
13

一般来说, 只要不是非常明显的不可兼就使用.


例 p: 今天晚上我在寝室上自习, q :今天晚上我去电影 院看电影. 今天晚上我在寝室上自习或去电影院看电影。 p q.
14
5. 蕴涵(条件)联结词 : p q p: 我有时间, q : 我去看望我的父母. p q : 如果我有时间, 那么我去看望我的父母 . “”相当于“如果…那么…”, “若…则…”,等. p q 可读作“(若)p则q”. p称为前件, q称为后件.
p 1 1 0 0 q 1 0 1 0 pq 1 1 1 0
12
4. 异或联结词 : p q “不可兼或”, 它表示两者不能同时为真


例 p: 明天去深圳的飞机是上午八点起飞, q :明天去深圳 的飞机是上午八点半起飞. p q: 明天去深圳的飞机是上午八点或上午八点半起飞 . p 1 1 0 q 1 0 1 pq 0 1 1 p q pq 1 1 1


2









判断下列语句是否是命题. 2 + 3 = 5. √ 大熊猫产在我国东北. √ x > 3. 立正! 这朵花真漂亮! 你喜欢网络游戏吗? 1+1=10. √ 火星上有生物. √ 我说的都是假话. 小王和小李是同学. √ 你只有刻苦学习,才能取得好成绩. √
3
2. 命题的真值 命题的真值就是命题的逻辑取值. 经典逻辑值只有两个: 1和0 在数理逻辑中, 更多时候逻辑真是用 T(True) 或 t, 逻辑假用 F(False) 或 f 表示的.

离散数学第三章第三节

离散数学第三章第三节
7
3、闭包的概念
关系可以具有自反、对称、传递等性质。然而,不是所有的关 系都具有这些性质。但通过对给定的关系添加新的元素(有序 对),所得的关系将具有这些性质。当然,在对给定的关系进行 扩充时,一方面要使扩充后的关系具有某些性质;另一方面,又 不想添加过多的元素,做到恰到好处,即添加的元素要最少。 对给定的关系用扩充元素的方法得出具有某些性质的新关系叫 闭包运算。
11
4、构造闭包(续1)
定理5(2)的证明。
定理5 设R是A上的关系,则 (2) s(R)=RRC
证:设R'= RRC,显然R RRC(=R')
任取<x,y>RRC <x,y>R<x,y>RC <y,x>RC<y,x>R <y,x>RRC 所以R'是对称的。 设R"是对称的且RR"。 任取<x,y>R'<x,y>R<x,y>RC <x,y>R"<y,x>R (因RR") <x,y>R"<y,x>R" (因RR") <x,y>R"<x,y>R" (因R"是对称的) <x,y>R" 故R'R"
16
第3-3讲 作业
P119
5 P127 1,2a
17
12
4、构造闭包(续2)
定理5(3)的证明。
定理5 设R是A上的关系,则 (3) t(R)=RR2R3… 证:先证RR2R3… t(R),只须证明对任意正整数n均有
Rnt(R)即可。用归纳法证明。 n=1时,R1=R ,R t(R)。 假设Rn t(R),则对 任意<x,y>Rn+1 <x,y> RnR t(<x,t>Rn<t,y>R) t(<x,t> t(R)<t,y> t(R)) <x,y> t(R) (因t(R)是传递的) 从而命题得证。 再证 t(R) RR2R3…。为此,只需证 RR2R3…是传递的, 因为t(R)是包含R的最小传递闭包。 任意<x,y>RR2R3… <y,z>RR2R3… s(<x,y>Rs) t(<y,z>Rt) st(<x,y>Rs<y,z>Rt) st(<x,y>RsRt) <x,y> RR2R3… 这说明RR2R3…是传递的。

离散数学第三章习题详细答案

离散数学第三章习题详细答案

3.9解:符号化:p:a是奇数. q:a是偶数. r:a能被2整除前提:(p→¬r),(q→r)结论:(q→¬p)证明:确。

方法2(等值演算法)(p→¬r)∧(q→r)→(q→¬p)⇔(¬p∨¬r)∧(¬q∨r) →(¬q∨¬p)⇔(p∧r) ∨(q∧¬r) ∨¬q∨¬p⇔((p∧r) ∨¬p)∨((q∧¬r) ∨¬q)⇔(r∨¬p) ∨(¬r∨¬q)⇔¬p∨(r∨¬r) ∨¬q⇔ 1即证得该式为重言式,则原结论正确。

方法3(主析取范式法)(p→¬r)∧(q→r)→(q→¬p)⇔(¬p∨¬r)∧(¬q∨r) →(¬q∨¬p)⇔(p∧r) ∨(q∧¬r) ∨¬q∨¬p⇔m0+ m1+ m2+ m3+ m4+ m5+ m6+ m7可知该式为重言式,则结论推理正确。

3.10. 解:符号化:p:a是负数. q:b是负数. r:a、b之积为负前提:r→(p∧¬q) ∨(¬p∧q)结论:¬r→(¬p∧¬q)方法1(真值法)证明:不正确。

方法2(主析取范式法)证明:(r→(p∧¬q) ∨(¬p∧q))→(¬r→(¬p∧¬q))⇔¬ (¬r∨(p∧¬q) ∨(¬p∧q))∨(r∨(¬p∧¬q))⇔r∨(¬p∧¬q)⇔m0+m2+m4+m6+m7只含5个极小项,课件原始不是重言式,因此推理不正确3.11.填充下面推理证明中没有写出的推理规则。

离散数学第三章集合的基本概念和运算

离散数学第三章集合的基本概念和运算
第3章 集合的基本概念和运算
3.1 集合的基本概念
3.2 集合的基本运算
3.3 集合中元素的计数
3.1 集合的基本概念
1.子集:若 B⊆A⇔∀x(x∈B→x∈A),则称B为A的子集. 2.真子集:若 B⊆A ∧ B≠A,则称B为A的真子集. 3.集合相等: B⊆A ∧ A⊆B⇔A=B,称集合A与B相等. 4.空集:不含任何元素的集合称为空集.记作φ. 空集是一切集合的子集;空集是唯一的. 5.n元集:含有n个元素的集合称为n元集. 6.全集:如果所涉及的集合都是某个集合的子集,则称这个集 合为全集(E). 7.幂集:设A为集合,把A的全体子集构成的集合,称为A的幂集 记作P(A),P(A)={x|x⊆A}. 若A是n元集,则P(A)有2n个元集(n元集有2n个子集).
二.集合运算的算律 幂等律:A∪A=A, A∩A=A;
结合律: (A∪B)∪C=A∪(B∪C), (A∩B)∩C=A∩(B∩C); 交换律: A∪B=B∪A , A∩B=B∩A; 分配律: A∪(B∩C)=(A∪B)∩(A∪C), A∩(B∪C)=(A∩B)∪(A∩C); 同一律: A∪φ=A, 排中律: A∪~A=E; A∩E=A; 零律: A∪E=E, A∩φ=φ;
| Ai I A j I Ak | +... + ( −1) m | A1 I A2 I ...I Am | ∑
推论: 推论:在S中至少具有一条性质的元素数是
| A1 U A 2 U ... U A m |= +
1≤ i < j < k ≤ m
∑|A
i =1
m
i
|−
1≤ i < j ≤ m
∑|AI
i
二.包含排斥原理 包含排斥原理

离散数学3、4章

离散数学3、4章
• 充分性:设是双射,考虑的逆关系,易知,对于B 中的每个元素y,都对应着A中唯一的一个在下以y 为映象的元素x,因此, 的逆关系是B到A的映射。
2020/3/28
离散数学
12
双射的逆也是双射
• 显然,若是A到B的双射,则其逆映 射 – 1也是B到A的双射,并且对任意 的x∈A,均有: – 1((x)) = x .
2020/3/28
离散数学
24
抽屉原理(鸽巢原理)
我们知道,若A,B均为有限集,且A与B 之间存在双射,则A和B的元素个数相等,即 A~B。但是:
定理4.1.2 任何有限集均不能和其真子集等势。
• 此定理也称为抽屉原则:若将n+1个物体放入 n个抽屉中,则至少有一个抽屉中放了两个或 两个以上的物体。
第三章 映 射
映射又称为函数,是两个集合 之间一种特殊的二元关系。
本章主要介绍各种典型的映射及 其性质、运算以及它们之间的联 系。
2020/3/28
离散数学
1
§3.1 基本概念
定义3.1.1: 设A,B是两个集合,是A到B的二 元关系,若对A中每个元素a,有唯一的 b∈B, 使得<a,b>∈ ,则称为A到B的映射,记为:
本章将利用“映射”的概念建立集合 间的等势关系,并拓广集合中元素个数 的概念,引进集合的基数的概念,最后 讨论可数集与不可数集。
2020/3/28
离散数学
20
§4.1 等 势
如何比较两个集合中元素的多少呢? 引入等势的概念。
定义4.1.1 设A和B是集合,若存在A到B 的双射,则称A与B等势,记为A ~B 。 (可形象理解为A与B的元素一样多。)
在,于是A~C,故~是传递的。 综上所

《离散数学》课件-第3章命题逻辑的推理理论

《离散数学》课件-第3章命题逻辑的推理理论

判断方法一:真值表法
真值表的最后一列全为1,所以((p∨q)∧┐p) →q为重言式。因而推理正确。
判断方法二:等值演算法
((p∨q)∧┐p)→q ⇔ ((p∧┐p)∨(q∧┐p))→q ⇔ ( q∧┐p )→q ⇔ ┐q∨p∨q ⇔1
因为((p∨q)∧┐p)→q为重言式,所 以推理正确。
判断方法三:主析取范式法
★ ★★
可见,如果能证明★★是重言式,则★也是重言式。 在★★中,原来的结论中的前件A已经变成前提了,称A为 附加前提。称这种将结论中的前件作为前提的证明方法为 附加前提法。
例:在自然推理系统P中构造下面推理的证明 如果小张和小王去看电影,则小李也去看电影。小
赵不去看电影或小张去看电影。小王去看电影。所 以,当小赵去看电影时,小李也去。
前提引入
② ┐s
前提引入
③ ┐p
①②拒取式(A→B)∧┐B⇒┐A
④ p∨q
B)∧┐B⇒A
⑥ q→r
前提引入
⑦r
⑤⑥假言推理(A→B)∧A⇒B
⑧ r∧(p∨q) ⑦④合取引入
(2)前提:┐p∨q,r∨┐q,r→s 结论:p→s
证明:
① ┐p∨q 前提引入
② p→q
①置换
(A→B)∧(C→D)∧(┐B∨┐D) ⇒(┐A∨┐C)
(12)合取引入规则:若证明的公式序列中出现过 A和B,则A∧B是A和B的有效结论。
推理规则(12个)
(1)前提引入规则 (2)结论引入规则(隐规则) (3)置换规则:等值置换 (4)假言推理规则:(A→B)∧A⇒B (5)附加规则:A⇒(A∨B) (6)化简规则:A∧B ⇒A (7)拒取式规则:(A→B)∧┐B⇒┐A (8)假言三段论规则:(A→B)∧(B→C)⇒(A→C) (9)析取三段论规则:(A∨B)∧┐B⇒A (10)构造性二难推理规则 (11)破坏性二难推理规则 (12)合取引入规则

离散数学第三章 函数

离散数学第三章  函数
射函数。
第三章 函数
二、反函数
1、定义1:设f:AB是双射,则逆关系 f -1:BA
是从B到A的函数,称为 f 的反函数。
记 f -1 :BA。 由定义可知:当函数 f:AB的反函数存在,若 f (x) = y,则f -1 (y) = x 且
f f 1 I A , f 1 f I B
f 0 ( x) x n 1 n f ( x ) f ( f ( x ))
第三章 函数
(2) 定理2: 设f: A→B,则 f。IB=IA。f=f
(3) 定理3:设有函数f:AB,g:BC
① 若f ,g是单射,则f g也是单射。
② 若f ,g是满射,则f g也是满射。
所以 f。g={(x, 4x 2+4x+2)}, g。f={(x, 2x 2+3)}
f。f={(x, 4x+3)}, g。g={(x, x 4+2x 2+2)}
第三章 函数
2、性质:
⑴ 定理1:设有函数f:AB,g:BC,h:
CD,则f ( g h) 和( f g ) h都是函数,且
③ 若f ,g是双射,则f g也是双射。
注:定理3的逆不成立。
第三章 函数
例3:设A={ 1, 2, 3 }, B={ a, b, c, d }, C={ x, y, z }
令 f = {(1, a), (2, b), (3, c)},
g = {(a , x), (b, y), (c, z), ( d, z)}
f ( g h) = ( f g ) h = f g h 证明: f。(g。h)(x) =(g。h) (f (x))=h (g (f (x)) =h((f。g) (x))=(f。g)。h (x)

《离散数学》第3章 集合

《离散数学》第3章  集合

P ( A) = {φ , A}
第二节 集合的运算 内容: 内容:集合的运算,文氏图,运算律。 重点: 重点:(1) 掌握集合的运算
A ∪ B, A ∩ B, A − B, ~ A, A ⊕ B
(2) 用文氏图表示集合间的相互 关系和运算, (3) 掌握基本运算律的内容及运用。
一、集合的运算。 集合的运算。 集合 A, B 的并集 A ∪ B, 交集 A ∩ B,相对补集
三 包含排斥定理 设A和 B是两个有限集合,则 A ∪ B = A + B − A ∩ B ,
B 其中 A, B 分别表示 A、的元数.
把包含排斥定理推广到n个集合的情况可用如下定 理表述: 设A1 , A2 ,⋯ A为有限集合,其元数分别为 A , A ,⋯, A ,则 n
1 2 n
A1 ∪ A2 ∪ ⋯ ∪ An
A= B ⇔ A⊆ B∧B⊆ A
5、特殊的集合。 空集 φ 全集 E (或 U )
φ ⊆ A ⊆ E ( A 为任一集合)
例1、选择适当的谓词表示下列集合。 、 (1) 小于5的非负整数集 (2) 奇整数集合
{x | x ∈ N ∧ x < 5} {x | x = 2n + 1 ∧ n ∈ Z }
{ } (8) {a, b} ∈ {a, b, {{a, b}}}
(7) {a, b} ⊆ a, b, {{a, b}}
例3、A, B, C 为集合,若 A ∈ B 且B ∈ C , 、 有可能 A ∈ C 吗,有可能 A ∉ C 吗? 解:两种情形都有可能。 设 A = {a}, B = {{a}} , C = {{a}, {{a}}} , 则 A ∈ B, B ∈ C ,有 A ∈ C 。 又设 A = {a}, B = {{a}} , C = {{{a}}}, 则 A ∈ B, B ∈ C ,但 A ∉ C 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定理3-6.3 集合A的一个划分确定A的元素间的一个 等价关系。 证明:设集合A的一个划分S={S1,S2,…,Sm},现定义 一个关系R={<x,y>|x∈A,y∈A,x,y属于同一分 块},可以证明,R是等价关系。 I:对任意a∈A,a和a在同一分块,故<a,a>∈R,R自反 II:若a和b在同一分块,则b和a也在同一分块,即 aRb必有bRa,R对称
注意:商集中不记录重复的等价类,故实际上是所有 等价类集合的类别体现。 例:前例整数集合I上的模3同余等价关系R的商集为:
I/R={[0]R,[1]R,[2]R},即商集只表示等价类的种类一 共是三种。该商集也可表示为I/R=[3]R,[-2]R,[5]R}等 形式。
定理3-6.2 集合A上的等价关系R,决定了A的一个 划分,该划分就是商集A/R。 证明 I:在A/R={[a]R|a∈A}中, [a]R A
等价关系与等价类的性质
1. 定理3-6.1 aRb iff [a]R=[b]R。
证明:
必要性:因为有aRb,对任意x∈[a]R,有aRx,由R对称,得 bRa,由R传递,得bRx,知x∈[b]R,即[a]R [b]R;同理 可证明[b]R[a]R,故[a]R=[b]R 充分性:因为[a]R=[b]R,a∈[a]R有a∈[b]R,故有bRa,R是 等价关系,有aRb. 证毕.
(2)R={<x,y>|x∈I,y∈I,x≡y(mod 3)}
解:[0]R={…,-6,-3,0,3,6,…}
[1]R={…,-5,-2,1,4,7,…}
[2]R={…,-4,-1,2,5,8,…}
显然有: [0]R= [3]R= [-3]R=…
[1]R= [4]R= [-2]R=…
[2]R= [5]R= [-1]R=…
aA
II:对于A的每一个元素a,由于R是自反的,故必有 aRa成立,即a∈[a]R,故A的每个一元素的确属于一 个分块 III:A的每个元素只能属于一种分块[a]R≠[b]R,即得aRx且bRx,由R是等价关系可推出aRb, 则有[a]R=[b]R,这不可能。
III: 若a与b在同一分块中,b与c在同一分块中,因为
SiSj= (i≠j) 故a与c必在同一分块,即
aRb∧bRcaRc,R传递
该定理的应用:由集合上的一种划分求等价关系的方法
设集合A上的一种划分S={S1,S2,…,Sm},则
m
R S k S k 一定是等价关系。
k 1
划分与等价关系是一一对应的,由此得到一个 定理—— 定理:如果有划分:H={A1,A2,…,An},
II(对称性):<a,b>∈Ra≡b(mod k)b≡a(mod k),故<b,a>∈R,R对称。 III(传递性):任意<a,b>∈R且<b,c>∈R,即 a≡b(mod k)且b≡c(mod k),显然有a≡c(mod k),故 <a,c>∈R,即R传递。 综合I,II,III,有R是等价关系。
3-7
相容关系
定义3-7.1 给定集合A上的关系R,若R是自反的, 对称的,则称R是相容关系。
定义3-6.2 设R为集合A上的等价关系,对任何 a∈A,集合[a]R={x|x∈A∧aRx}称为元素a形成的 R等价类。 例:写出以下等价关系的所有等价类。
(1)R={<1,1>,<1,4>,<4,1>,<4,4>,<2,2>,<2,3>, <3,2>,<3,3>}
解:[1]R=[4]R={1,4} [2]R=[3]R={2,3}
2.关于等价类的性质:
1)[a]R一定非空且a∈[a]R。
证明 等价关系R自反,故<a,a>∈R,有 a∈[a]R。 2)aRb [a]R=[b]R
3)< a,b > R ,则[a]R∩[b]R=
定义3-6.3 集合A上的等价关系R,其等价类集合
{[a]R|a∈A}称作A关于R的商集,记作A/R。
则RH=A1×A1∪A2×A2∪…∪An×An
其中RH是指由H所确定的一个等价关系R.
例:设A={1,2,3,4,5},有一个划分H={{1,2}, {3},{4,5}},求由该划分确定的A上的一个等价 关系R。
定理3-6.4 设R1和R2为非空集合A上的等价关系, 则R1=R2当且仅当A/R1=A/R2。 证明:必要性:若R1=R2,显然有A/R1=A/R2。 充分性:由A/R1=A/R2证明R1=R2 任取序偶<a,b>∈R1,则a,b∈[a]R1,因为A/R1=A/R2, 则存在[x]R2∈A/R2,有[x]R2=[a]R1,即有a,b∈[x]R2, <x,a>∈R2且<x,b>∈R2,R2是等价关系,容易推出 <a,b>∈R2,故R1R2;同理可证, R2R1。
3-6 等价关系与等价类
定义3-6.1 设R为定义在集合A上的一个关系,若R是 自反的,对称的和传递的,则R称为等价关系。 例1:平面上三角形集合中,三角形的相似关系是等 价关系;上海市的居民的集合中,住在同一区的关系 也是等价关系。 例2:设I为整数集合,R={<x,y>|x≡y(mod k)},证 明关系R为等价关系。 证明 I(自反性):任意a∈I,有a≡a(mod k),故 <a,a>∈R
相关文档
最新文档