logistic回归 ppt课件
合集下载
logistic回归分析精选PPT课件
Number of obs =
LR chi2(1)
=
Prob > chi2
=
Pseudo R2
=
152 30.67 0.0000 0.1455
------------------------------------------------------------------------------
case |
Coef. Std. Err.
z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
exposure | 2.112829 .4228578 5.00 0.000 1.284043 2.941615
2
二分类资料的分析
非条件logistic模型:成组病例对照研究资料 条件logistic模型:配比病例对照研究资料3源自非条件logistic回归模型
lo ( p ) g 0 + i 1 X 1 + t = 2 X 2 k X k
01X1+ 2X2+ + kXk
p1ee01X12X2 kXk 1
|------------------------+----------------------
Odds ratio |
8.271605
| 3.4193 21.33091 (exact)
Attr. frac. ex. |
.8791045
| .7075425 .9531197 (exact)
Attr. frac. pop |
.4626866
logistic回归分析PPT优秀课件
(2)线性回归分析:由于因变量是分类变量,不能满足 其正态性要求;有些自变量对因变量的影响并非线性。
2
logistic回归:不仅适用于病因学分析,也可用于其他方面的研究,研 究某个二分类(或无序及有序多分类)目标变量与有关因素的关 系。
logistic回归的分类: (1)二分类资料logistic回归: 因变量为两分类变量的资料,可用
非条件logistic回归和条件logistic回归进行分析。非条件logistic回 归多用于非配比病例-对照研究或队列研究资料,条件logistic回归 多用于配对或配比资料。 (2)多分类资料logistic回归: 因变量为多项分类的资料,可用多 项分类logistic回归模型或有序分类logistic回归模型进行分析。
比较
调查方向:收集回顾性资料
人数 暴露
疾病
a/(a+b) c/(c+d)
a
+
b
-
病例
c
病例对照原理示意图
6
是否暴露 暴露组 未暴露组 合计
病例 a c a+c
对照 b d b+d
合计 a+b(n1) c+d(n2) n
比数比(odds ratio、OR):病例对照研究中表示疾病与暴露间
联系强度的指标,也称比值比。
相对危险度RR的本质是暴露组与非暴露组发病率之比或发病概率 之比。但病例对照研究不能计算发病率,只能计算比值比OR值。 OR与RR的含义是相同的,也是指暴露组的疾病危险性为非暴露组 的多少倍。当疾病发病率小于5%时,OR是RR的极好近似值。
OR>1,说明 该因素使疾病的危险性增加,为危险因素;
OR<1,说明 该因素使疾病的危险性减小,为保护因素;
2
logistic回归:不仅适用于病因学分析,也可用于其他方面的研究,研 究某个二分类(或无序及有序多分类)目标变量与有关因素的关 系。
logistic回归的分类: (1)二分类资料logistic回归: 因变量为两分类变量的资料,可用
非条件logistic回归和条件logistic回归进行分析。非条件logistic回 归多用于非配比病例-对照研究或队列研究资料,条件logistic回归 多用于配对或配比资料。 (2)多分类资料logistic回归: 因变量为多项分类的资料,可用多 项分类logistic回归模型或有序分类logistic回归模型进行分析。
比较
调查方向:收集回顾性资料
人数 暴露
疾病
a/(a+b) c/(c+d)
a
+
b
-
病例
c
病例对照原理示意图
6
是否暴露 暴露组 未暴露组 合计
病例 a c a+c
对照 b d b+d
合计 a+b(n1) c+d(n2) n
比数比(odds ratio、OR):病例对照研究中表示疾病与暴露间
联系强度的指标,也称比值比。
相对危险度RR的本质是暴露组与非暴露组发病率之比或发病概率 之比。但病例对照研究不能计算发病率,只能计算比值比OR值。 OR与RR的含义是相同的,也是指暴露组的疾病危险性为非暴露组 的多少倍。当疾病发病率小于5%时,OR是RR的极好近似值。
OR>1,说明 该因素使疾病的危险性增加,为危险因素;
OR<1,说明 该因素使疾病的危险性减小,为保护因素;
Logistic回归模型1PPT课件
利用logistic分布函数的特征来表示在自变量X 的作用下出现阳性结果或阴性性结果的概率。
出现阳性结果的概率记为: P( y=1|x),
出现阴性结果的概率为: Q( y=0|x), 注意:P+Q=1。
当只有一个自变量时,logistic回归模型:
exp(X) P(y1|x)1ex0 p(X)
(1)
(10)
P(1)─X取1时,为暴露组 ; P(0)─X取0时,为非暴露组。
loig (tP )0x
lO n ) li [ o ( P R ( 1 t ) l g ] i [ o P ( 0 t ) ( g ] 0 1 ) ( 0 0 )
lnO ( R ) ORe
(五) 的统计学意义
-
1
Logistic 回归模型
主讲:黄志碧
回归分析概述
1、根据自变量多少分
(1)简单回归(一个自变量)
(2)多元回归(多个自变量) 2、根据Y的取值分
(1)确定型回归(多元线性回归) (2)概率型回归(Logistic回归) 3、根据回归图形分 线性回归(多元线性回归) 非线性回归(Logistic回归)
模型拟合优度检验: H0设实际频数分布和理 论频数分布相符合,即模型的拟合优度较好。
-
38
第二节 二项分类变量资料 非条件logistic 回归
二项分类反应变量是最常见的变量类型, 又称0、1变量。可用于病例-对照研究,队列 研究和横断面研究,其中成组设计的非条件 Logistic回归最常见。
-
0
Q (y0|x)1ex 1p 0(X) (2)
式中, 0 为回归线的截距, 是与X有关的
参数,也称回归系数。
Q P((yy 1 0||x x))exp 0(X) (3)
出现阳性结果的概率记为: P( y=1|x),
出现阴性结果的概率为: Q( y=0|x), 注意:P+Q=1。
当只有一个自变量时,logistic回归模型:
exp(X) P(y1|x)1ex0 p(X)
(1)
(10)
P(1)─X取1时,为暴露组 ; P(0)─X取0时,为非暴露组。
loig (tP )0x
lO n ) li [ o ( P R ( 1 t ) l g ] i [ o P ( 0 t ) ( g ] 0 1 ) ( 0 0 )
lnO ( R ) ORe
(五) 的统计学意义
-
1
Logistic 回归模型
主讲:黄志碧
回归分析概述
1、根据自变量多少分
(1)简单回归(一个自变量)
(2)多元回归(多个自变量) 2、根据Y的取值分
(1)确定型回归(多元线性回归) (2)概率型回归(Logistic回归) 3、根据回归图形分 线性回归(多元线性回归) 非线性回归(Logistic回归)
模型拟合优度检验: H0设实际频数分布和理 论频数分布相符合,即模型的拟合优度较好。
-
38
第二节 二项分类变量资料 非条件logistic 回归
二项分类反应变量是最常见的变量类型, 又称0、1变量。可用于病例-对照研究,队列 研究和横断面研究,其中成组设计的非条件 Logistic回归最常见。
-
0
Q (y0|x)1ex 1p 0(X) (2)
式中, 0 为回归线的截距, 是与X有关的
参数,也称回归系数。
Q P((yy 1 0||x x))exp 0(X) (3)
《logistic回归》课件
03
易于理解和实现: 由于基于逻辑函数,模型输出结 果易于解释,且实现简单。
Logistic回归的优势与不足
• 稳定性好: 在数据量较小或特征维度较高 时,Logistic回归的预测结果相对稳定。
Logistic回归的优势与不足
01
不足:
02
对数据预处理要求高: 需要对输入数据进行标准化或归一化处理,以 避免特征间的尺度差异对模型的影响。
模型假设
01
线性关系
因变量与自变量之间存在线性关系 。
无自相关
因变量与自变量之间不存在自相关 。
03
02
无多重共线性
自变量之间不存在多重共线性,即 自变量之间相互独立。
随机误差项
误差项是独立的,且服从二项分布 。
04
模型参数求解
最大似然估计法
通过最大化似然函数来求解模型参数。
梯度下降法
通过最小化损失函数来求解模型参数。
特征选择与降维
在处理大数据集时,特征选择和降维是提高模 型性能和可解释性的重要手段。
通过使用诸如逐步回归、LASSO回归等方法, 可以自动选择对模型贡献最大的特征,从而减 少特征数量并提高模型的泛化能力。
降维技术如主成分分析(PCA)可以将高维特 征转换为低维特征,简化数据结构并揭示数据 中的潜在模式。
迭代法
通过迭代的方式逐步逼近最优解。
牛顿法
利用牛顿迭代公式求解模型参数。
模型评估指标
准确率
正确预测的样本数占总样本数的比例 。
精度
预测为正例的样本中实际为正例的比 例。
召回率
实际为正例的样本中被预测为正例的 比例。
F1分数
精度和召回率的调和平均数,用于综 合评估模型性能。
易于理解和实现: 由于基于逻辑函数,模型输出结 果易于解释,且实现简单。
Logistic回归的优势与不足
• 稳定性好: 在数据量较小或特征维度较高 时,Logistic回归的预测结果相对稳定。
Logistic回归的优势与不足
01
不足:
02
对数据预处理要求高: 需要对输入数据进行标准化或归一化处理,以 避免特征间的尺度差异对模型的影响。
模型假设
01
线性关系
因变量与自变量之间存在线性关系 。
无自相关
因变量与自变量之间不存在自相关 。
03
02
无多重共线性
自变量之间不存在多重共线性,即 自变量之间相互独立。
随机误差项
误差项是独立的,且服从二项分布 。
04
模型参数求解
最大似然估计法
通过最大化似然函数来求解模型参数。
梯度下降法
通过最小化损失函数来求解模型参数。
特征选择与降维
在处理大数据集时,特征选择和降维是提高模 型性能和可解释性的重要手段。
通过使用诸如逐步回归、LASSO回归等方法, 可以自动选择对模型贡献最大的特征,从而减 少特征数量并提高模型的泛化能力。
降维技术如主成分分析(PCA)可以将高维特 征转换为低维特征,简化数据结构并揭示数据 中的潜在模式。
迭代法
通过迭代的方式逐步逼近最优解。
牛顿法
利用牛顿迭代公式求解模型参数。
模型评估指标
准确率
正确预测的样本数占总样本数的比例 。
精度
预测为正例的样本中实际为正例的比 例。
召回率
实际为正例的样本中被预测为正例的 比例。
F1分数
精度和召回率的调和平均数,用于综 合评估模型性能。
Logisic回归分析PPT课件
0
吸烟 不吸烟
各 变 量
X2
1
0
饮酒 不饮酒
编
码
Y
1
病例
0
对照
39
17
表16-1 吸烟与食道癌关系的病例-对照调查资料
分层 吸烟 饮酒 观察例数 阳性数 阴性数
g
X1
X2
ng
dg
ng dg
1
0
0
199
63 136
2
0
1
170
63 107
3
1
0
101
44
57
4
1
1
416
265 151
39
18
经 logistic 回归计算后得
计算公式为:
OR j
P1 P0
/(1 /(1
P1 ) P0 )
式中 P1 和 P0 分别表示在 X j 取值为 c1 及 c0 时 的发病概率, ORj 称作多变量调整后的优势比, 表示扣除了其他自变量影响后危险因素的作用。
39
12
与 logisticP 的关系:
对比某一危险因素两个不同暴露水平X j c1 与X j c0 的发病 情况(假定其它因素的水平相同),其优势比的自然对数为:
.
51
2
0
1
1
0
1
2
1
1
52
2
1
1
1
0
0
2
1
1
53
2
1
0
1
0
0
1
1
1
54
3
1
1
0
1
《logistic回归分析》PPT课件
3
第一节 非条件logistic回归
一、logistic 回归模型:
设因变量 Y 是一个二分类变量,其取值为 Y =1 和Y =0。 影响 Y 取值的 m 个自变量分别为 X1, X 2 ,, X m 。在 m 个自变量(即暴露因素)作用下阳性结果发生的条件
概率为 P P(Y 1 X1, X 2 ,, X m ) ,则 logistic 回归模
表 1 调查数据
y
x
1
0
1
a
b
0
c
d
合计 a+c b+d
表 2 对应概率
y
x
1
0
1 0 合计
p1 1- p1
1
p2 1- p2
1
9
表 1 调查数据
y
x
1
0
1
a
b
0
c
d
合计 a+c b+d
表 2 对应概率
y
x
1
0
1 0 合计
p1 1- p1
1
p2 1- p2
1
Logistic
模型为:
p1
p( y
1|
(2)多分类资料Logistic回归: 因变量为多项分类的资料,可 用多项分类Logistic回归模型或有序分类Logistic回归模型进 行分析。
2
非条件Logistic回归分析 条件Logistic回归分析 无序分类反应变量Logistic回归分析 有序多分类反应变量Logistic回归分析 Logistic回归分析应用及注意事项
21
对所拟合模型的假设检验:
概率p值均小 于0.05,说明 方程有意义。
第一节 非条件logistic回归
一、logistic 回归模型:
设因变量 Y 是一个二分类变量,其取值为 Y =1 和Y =0。 影响 Y 取值的 m 个自变量分别为 X1, X 2 ,, X m 。在 m 个自变量(即暴露因素)作用下阳性结果发生的条件
概率为 P P(Y 1 X1, X 2 ,, X m ) ,则 logistic 回归模
表 1 调查数据
y
x
1
0
1
a
b
0
c
d
合计 a+c b+d
表 2 对应概率
y
x
1
0
1 0 合计
p1 1- p1
1
p2 1- p2
1
9
表 1 调查数据
y
x
1
0
1
a
b
0
c
d
合计 a+c b+d
表 2 对应概率
y
x
1
0
1 0 合计
p1 1- p1
1
p2 1- p2
1
Logistic
模型为:
p1
p( y
1|
(2)多分类资料Logistic回归: 因变量为多项分类的资料,可 用多项分类Logistic回归模型或有序分类Logistic回归模型进 行分析。
2
非条件Logistic回归分析 条件Logistic回归分析 无序分类反应变量Logistic回归分析 有序多分类反应变量Logistic回归分析 Logistic回归分析应用及注意事项
21
对所拟合模型的假设检验:
概率p值均小 于0.05,说明 方程有意义。
logistic回归(共36张PPT)
二分类自变量 系数为比数比的对数值,由此比数比=eb
多分类自变量 以第i类作参照,比较相邻或相隔的两个类别。
连续型自变量 当自变量改变一个单位时,比数比为eb
2022/11/3
27
输出结果的解释
模型拟合的优劣
自变量与结果变量(因变量)有无关系
确认因变量与自变量的编码 模型包含的各个自变量的临床意义 由模型回归系数计算得到的各个自变 量的比数比的临床意义
3
一般直线回归难以解决的问题
医学数据的复杂、多样
连续型和离散型数据
医学研究中疾病的复杂性
一种疾病可能有多种致病因素或与多种危 险因素有关
疾病转归的影响因素也可能多种多样 临床治疗结局的综合性
2022/11/3
4
简单的解决方法
固定其他因素,研究有影响的一两个因 素; 分层分析:按1~2个因素组成的层进行 层内分析和综合。 统计模型
2022/11/3
28
输出结果的解释
模型的预测结果的评价
敏感度、特异度和阳性预测值
正确选择预测概率界值,简单地以0.5为 界值,但并不是最好的。
C指数
预测结果与观察结果的一致性的度量。 C值越大(最大为1),模型预测结果的
能力越强。
2022/11/3
29
非条件logistic回归
研究对象之间是否发生某事件是 独立的。 适用于:
放入所有变量,再逐个筛选
理论上看,前进法选择变量的经验公式缺乏总体概念,当用于因
素分析时,建议用后退法。当变量间有完全相关性时,后退法无 法使用,可用前进法。
2022/11/3
21
5.交互作用的引入
交互作用的定义
当自变量和因变量的关系随第三个变量 的变化而改变时,则存在交互作用
多分类自变量 以第i类作参照,比较相邻或相隔的两个类别。
连续型自变量 当自变量改变一个单位时,比数比为eb
2022/11/3
27
输出结果的解释
模型拟合的优劣
自变量与结果变量(因变量)有无关系
确认因变量与自变量的编码 模型包含的各个自变量的临床意义 由模型回归系数计算得到的各个自变 量的比数比的临床意义
3
一般直线回归难以解决的问题
医学数据的复杂、多样
连续型和离散型数据
医学研究中疾病的复杂性
一种疾病可能有多种致病因素或与多种危 险因素有关
疾病转归的影响因素也可能多种多样 临床治疗结局的综合性
2022/11/3
4
简单的解决方法
固定其他因素,研究有影响的一两个因 素; 分层分析:按1~2个因素组成的层进行 层内分析和综合。 统计模型
2022/11/3
28
输出结果的解释
模型的预测结果的评价
敏感度、特异度和阳性预测值
正确选择预测概率界值,简单地以0.5为 界值,但并不是最好的。
C指数
预测结果与观察结果的一致性的度量。 C值越大(最大为1),模型预测结果的
能力越强。
2022/11/3
29
非条件logistic回归
研究对象之间是否发生某事件是 独立的。 适用于:
放入所有变量,再逐个筛选
理论上看,前进法选择变量的经验公式缺乏总体概念,当用于因
素分析时,建议用后退法。当变量间有完全相关性时,后退法无 法使用,可用前进法。
2022/11/3
21
5.交互作用的引入
交互作用的定义
当自变量和因变量的关系随第三个变量 的变化而改变时,则存在交互作用
《Logistic回归》PPT课件
常量 -20.207 4.652 18.866
1 .000
.000
a. 在步骤 1 中输入的变量: 性别, 年龄, 学历, 体重指数, 家族史, 吸烟, 血压, 总胆 固醇, 甘油三脂, 高密度脂蛋白, 低密度脂蛋白.
七、变量筛选
从所用的方法看,有强迫法、前进法、后退 法和逐步法。在这些方法中,筛选变量的过 程与线性回归过程的完全一样。但其中所用 的统计量不再是线性回归分析中的F统计量, 而是以上介绍的参数检验方法中的三种统计 量之一。
八、logistic 回归模型拟合优度检验和预 测准确度检验
(一)拟合优度检验:
Logistic回归模型的拟合优度检验是通过比较模型 预测的与实际观测的事件发生与不发生的频数有无差 别来进行检验。如果预测的值与实际观测的值越接近, 说明模型的拟合效果越好。
·模型的拟合优度检验方法有偏差检验(Deviance)、 皮尔逊(pearson)检验、统计量(Homser-Lemeshow), 分别计算统计量X2D、X2 P、X2HL值。统计量值越小, 对应的概率越大。无效假设H0:模型的拟合效果好。
第九章 Logistic回归
(非条件Logistic回归)
第一节 Logistic回归概述
一、Logistic回归目的: Logistic回归通常以离散 型的分类变量(疾病的死亡、痊愈等)发生结果的 概率为因变量,以影响疾病发生和预后的因素为自 变量建立模型。研究分类变量(因变量)与影响因 素(自变量)之间关系的研究方法。属于概率型非 线性回归方法。
本例模型的似然比检验结果:
X2=-2(ln Lp-ln Lk)=95.497
模 型 系数 的 综 合检 验
步骤 1
步骤 块 模型
统计学-logistic回归分析ppt课件
最新版整理ppt
38
九、logistic回归的应用举例
• 输精管切除术与动脉粥样硬化疾病的研究
• 1.问题的描述
(1)输精管切除术是否与动脉粥样硬化疾病 有关?
(2)如果存在联系,与其他已知的危险因素 相比,输精管切除术的相对重要性有多大?
(3)哪些男性亚群在输精管切除术以后发生 动脉粥样硬化疾病的可能性特别大?
• 条件Logistic回归的回归系数检验与分 析,和非条件Logistic回归完全相同。
最新版整理ppt
36
八、logistic回归的应用
1.疾病(某结果)的危险因素分析和筛选
用回归模型中的回归系数(βi)和OR说明 危险因素与疾病的关系。
适用的资料:
前瞻性研究设计、病例对照研究设计、 横断面研究设计的资料。
或
p (y 1 /x 1 ,x 2 x k) 1 e (0 1 1 x k ....kx k)
最新版整理ppt
10
2.模型中参数的意义
ln1PP=01X1
Β0(常数项):暴露因素Xi=0时,个体发病 概率与不发病概率之比的自然对数比值。
ln1PP (y(y 1/0x/x 0)0)=0
最新版整理ppt
调查员审阅每日住院病人情况如果诊断适合研究的范围将病例转给心脏病主任医师作评估由他做出病例诊断是否合格的决定调查人员核对病人背景资料是否合格如果病人满足诊断标椎和背景资料合格调查人员开始询问并填写调查表每完成5个病例和10个配对对照以后请研究中心的工作人员对调查表进行评估重复以上步骤
第十六章 logistic回归分析
最新版整理ppt
28
• 分析因素xi为等级变量时,如果每个等级的 作用相同,可按计量资料处理:如以最小或
《logistic回归模型》课件
方法、模型优化方法及评估指标,并运用实战案例加深了对模型的理解与应
用。
参考资料
- 《统计学习方法》
- 《机器学习实战》
- 《Python机器学习经典实例》
同时,我们使用准确率、精度、召回率、F1-score、ROC和AUC等评估指标来度量模型的效果。
实战案例
让我们利用Logistic回归模型来预测Titanic号上的幸存者。通过数据格式及预处
理、特征工程、模型构建和模型评估等步骤,我们将从实际案例中学习该模
型的应用。
小结
通过本课程,我们深入了解了Logistic回归模型的特点及适用场景、参数估计
() = (^)
参数估计方法
Logistic回归模型的参数估计通常采用极大似然估计。为了最大化似然函数,
我们使用梯度上升算法进行优化,并可以应用L1和L2正则化方法来提高模型
的鲁棒性。
ቤተ መጻሕፍቲ ባይዱ
模型优化方法
为了提高Logistic回归模型的性能,我们可以进行特征工程。这包括数据预处理、特征选择和特征降维等步骤。
《logistic回归模型》PPT
课件
欢迎来到《logistic回归模型》PPT课件。本课程将带你深入了解Logistic回归模
型的应用及优化方法。让我们开始这个令人兴奋的学习之旅吧!
什么是Logistic回归模型
Logistic回归模型是一种适用于二分类问题和非线性分类问题的模型。它假设
数据独立同分布、满足线性和二项分布的特点,并使用如下公式进行建模:
《logistic回归分析》课件
信用卡欺诈检测
应用逻辑回归模型检测信用 卡交易中的欺诈行为,保护 用户利益和减少风险。
电影推荐
利用逻辑回归模型根据用户 的历史行为和偏好进行电影 推荐,提供个性化的影片推 荐。
总结与展望
Logistic回归分析的优点和不足
总结逻辑回归分析的优点和限制,讨论其适用范围和局限性。
发展前景
展望逻辑回归分析在未来的发展趋势和应用领域。
探讨Logistic回归分析在实际问题中的广泛应用。
Logistic回归与线性回归的区别
比较Logistic回归和线性回归之间的差异和适用情况。
逻辑回归模型及其基本假设
1 Sigmoid函数
2 逻辑回归的数学模
型
介绍Sigmoid函数及其在
3 基本假设
描述逻辑回归模型中的
逻辑回归中的作用。
解释逻辑回归的数学模
《logistic回归分析》PPT 课件
介绍logistic回归分析的PPT课件,涵盖课程内容、逻辑回归模型、参数估计与 模型拟合、分类结果与型诊断、实战案例、总结与展望以及参考文献。
课程介绍
什么是Logistic回归分析
介绍Logistic回归分析的基本概念和原理。
Logistic回归分析的应用
• [3]C. Bishop (2006) Pattern recognition and machine learning. Springer.
讨论如何评估逻辑回归模型的分类结果,确定 哪些样本属于正类和负类。
ROC曲线
解释ROC曲线在逻辑回归模型中的作用,用于评 估模型的分类性能。
混淆矩阵
介绍混淆矩阵,用于评估逻辑回归模型的分类 准确性和误判情况。
模型的诊断
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
比值比
OR=[P1/(1-P1)]/[P2/(1-P2)]
比值比 Odds Ratio
Odds=P/(1-P) 暴露组: P=a/(a+b) 1-P= b/(a+b) Odds=a/b 非暴露组:P=c/(c+d) 1-P= d/(c+d) Odds=c/d
病例 对照
暴露组
非暴露组
a c
b d
P ad 1 /(1 P 1) OR P0 /(1 P0 ) bc
相同,如下表: X1 暴露(X2=1) 非暴露(X2=0) X1 X1 X2 X2+1 X2 X3 X3 X3
Logistic回归系数与OR的关系:
P * ) exp b0 b1 x1 b2 ( x2 1) b3 x3 暴露: ( 1 P expb0 b1x1 b2 x 2 b3x3 b2
当年龄为a时, odds(Y=1|age=a) = exp(-4.353 + 0.038 a) 当年龄为a+1, odds(Y=1|age=a+1) = exp(-4.353 + 0.038 (a+1))
P ) exp b 0 b1x1 b 2 x 2 b 3 x 3 非暴露:( 1 P
p * ( ) 1 p exp(b 2 ) OR p 1 p
例:log odds (Y=1) = - 4.353 + 0.038 age
Y:妇女是否患有骨质疏松,Y=1为是,Y=0为否
1 , 2 ….. m分别为m个自变量的回归系数。 P ln( ) 取值:-∞ ~ +∞ 1 P
Logistic回归模型的函数
1.00
P
0.50
Z
-4.00 -2.00 0.00 2.00 4.00
Logistic回归模型特点: Logistic function 取值 0-1,可描述/预测 概率,Logistic 模型是概率模型 Logistic function 呈S-形曲线,符合流 行病学对危险因素与疾病风险关系的认识
Logistic 回归
Logistic Regression
ˆ Y 0 1 X1 m X m e
多元线性回归分析:
• 用来分析多个自变量与一个因变量的关系;
• 模型中因变量Y是连续性随机变量,并要求
服从正态分布。
但是,在医学研究中,常碰到因变量为 非连续性变(影响因素)
- 可以是连续变量,也可以是分类变量。 - 如果自变量中有分类变量,应以数字表示 不同分类,如:“吸烟状况”为自变量X1, 可以: X1 =1表示吸烟
X1 = 0 表示不吸烟。
二、回归模型参数的意义
P ln logit P 0 1 X 1 2 X 2 mXm 1 P
Logit变换(也称对数单位转换)
( 0 1 X 1 2 X 2 mXm )
P ln = 0 1 X 1 2 X 2 mXm 1 P P为发病概率,取值0-1 ;1-P为不发病概率。 0为常数项或截距;
1. 二项分类:如药物实验中,动物出现死亡 或生存,人群中某种疾病的患病与未患病, 临床实验中药物的有效与无效等。 2. 多项有序分类:如某一药物的治疗结果是 治愈、显效、有效、无效。 3. 多项无序分类:如研究肝炎的类型,分为 甲、乙、丙、丁、戊型等。
Logistic回归(疾病的病因分析)
Logistic回归分析,主要用于因变量是分类变量 的回归分析。根据因变量分类的不同,常分为: - 因变量为二分变量的Logistic回归; - 因变量为多分类变量的Logistic回归。
(有序多分类、无序多分类) 此外还有用于分析匹配资料的条件Logistic回归等。 研究对象未经过匹配的非条件Logistic回归和研究对 象经匹配的条件Logistic回归。
一、Logistic回归模型
e P ( 0 1 X 1 2 X 2 mXm ) 1 e
P 有Logistic回归模型: exp a b1x1 b 2 x2 b 3 x3 1 P
如果要分析其中X2(假设是口服避孕药)变化一个单
P 位对于 的影响程度,可以计算当X2分别为( X2 +1) 1 P P 和X2时 的值,并计算其比值,此时其它变量保持 1 P
例:口服避孕药(OC)与心肌梗塞(MI)关系 病例(MI) 服OC 未服OC 合计 39 114 153 对照 24 154 178 合计 63 268 331
- 统计学检验
X2 =7.70 ,p<0.01
结论为拒绝无效假设,即两组暴露率差异有统计学意义。
比值比(Odds ratio, OR): 考察关联强度大小,即暴露组的疾病危险性为非暴 露组的多少倍。定量描述危险因素与疾病之间的关系。 设P表示暴露因素下个体发病的概率,则发病的概 率P与未发病的概率1-P 之比为比值。 比值 Odds=P/(1-P)
单纯从数学上讲,与多元线性回归分析 中回归系数的解释并无不同,亦即β m表示Xm 改变一个单位时, 因变量的平均变化量,与 衡量危险因素作用大小的比值比(OR)有一 个对应的关系。
模型中回归系数:
常用于解释病例-对照研究中的OR
病例对照研究:是以确诊患有某特定疾病的 病人作为病例,以不患有该病但具有可比性的个 体作为对照,搜集既往可能的危险因素的暴露史, 并通过统计学方法,评估暴露因素与疾病之间是 否存在统计学上的关联。常用于疾病病因的探索。
OR>1,疾病的危险度因暴露而增加;
OR<1,疾病的危险度因暴露而减少;
OR=1,疾病的发生与暴露无关。
本例,OR=2.195,说明口服避孕药患心肌梗 塞的危险是没有口服避孕药的2.195倍。
当一种病的死亡率(或发病率)近似于零时, 1-P≈1,则有: OR≈P1/P0=RR,RR为相对危险度
Logistic回归系数与OR的关系: