最新人教版高中数学选修1-2《回归分析的基本思想及其初步应用》示范教案(第1课时)

合集下载

人教A版高中数学选修第一章回归分析的基本思想及其初步应用教案新(1)

人教A版高中数学选修第一章回归分析的基本思想及其初步应用教案新(1)

第二课时1.1回归分析的基本思想及其初步应用(二)教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用.教学重点:了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和.教学难点:了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和.教学过程:一、复习准备:1.由例1知,预报变量(体重)的值受解释变量(身高)或随机误差的影响.2.为了刻画预报变量(体重)的变化在多大程度上与解释变量(身高)有关?在多大程度上与随机误差有关?我们引入了评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和.二、讲授新课:1.教学总偏差平方和、残差平方和、回归平方和:(1)总偏差平方和:所有单个样本值与样本均值差的平方和,即21()ni i SST y y ==-∑.残差平方和:回归值与样本值差的平方和,即21()ni i i SSE y y ==-∑.回归平方和:相应回归值与样本均值差的平方和,即21()ni i SSR y y ==-∑.(2)学习要领:①注意i y 、i y 、y 的区别;②预报变量的变化程度可以分解为由解释变量引起的变化程度与残差变量的变化程度之和,即222111()()()nn nii i i i i i yy y y y y ===-=-+-∑∑∑;③当总偏差平方和相对固定时,残差平方和越小,则回归平方和越大,此时模型的拟合效果越好;④对于多个不同的模型,我们还可以引入相关指数22121()1()nii i n ii yy R yy ==-=--∑∑来刻画回归的效果,它表示解释变量对预报变量变化的贡献率. 2R 的值越大,说明残差平方和越小,也就是说模型拟合的效果越好.2. 教学例题:为了对x 、Y 两个变量进行统计分析,现有以下两种线性模型: 6.517.5y x =+,717y x =+,试比较哪一个模型拟合的效果更好.分析:既可分别求出两种模型下的总偏差平方和、残差平方和、回归平方和,也可分别求出两种模型下的相关指数,然后再进行比较,从而得出结论.(答案: 52211521()155110.8451000()i i i ii y y R yy ==-=-=-=-∑∑, 221R =-521521()18010.821000()ii i ii yy yy ==-=-=-∑∑,84.5%>82%,所以甲选用的模型拟合效果较好.)3. 小结:分清总偏差平方和、残差平方和、回归平方和,初步了解如何评价两个不同模型拟合效果的好坏.。

高中数学回归分析的基本思想及其初步应用教案1 新人教A版选修1-2

高中数学回归分析的基本思想及其初步应用教案1 新人教A版选修1-2

1、1回归分析的基本思想及其初步应用。

教学目标:通过典型案例,掌握回归分析的基本步骤。

教学重点:熟练掌握回归分析的步骤。

教学难点:求回归系数 a , b教学方法:讲练。

教学过程:一、复习引入:回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法。

二、新课:1、回归分析的基本步骤:(1) 画出两个变量的散点图。

(2) 求回归直线方程。

(3) 用回归直线方程进行预报。

2、举例:例1、题(略) 用小黑板给出。

解:(1) 作散点图,由于问题是根据身高预报体重,因此要求身高与体重的回归直线方程,取身高为自变量x 。

体重为因变量 y ,作散点图(如图)(2)列表求 ,ˆ0.849ˆ85.712x yba ≈≈-回归直线方程 y=0.849x-85.712对于身高172cm 女大学生,由回归方程可以预报体重为y=0.849*172-85.712=60.316(kg) 预测身高为172cm 的女大学生的体重为约60。

316kg问题:身高为172cm 的女大学生的体重一定是60。

316kg 吗?(留下一节课学习) 例2:(提示后做练习、作业)研究某灌溉渠道水的流速y 与水深x 之间的关系,测得一组数据如下:水深xm 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 流速ym/s1.70 1.79 1.88 1.952.03 2.10 2.16 2.21(1)求y 对x 的回归直线方程;(2)预测水深为1。

95m 时水的流速是多少?解:(略)三、小结四、作业: 例2、 预习。

高中数学《1.1回归分析的基本思想及其初步应用》教案2 新人教A版选修1-2

高中数学《1.1回归分析的基本思想及其初步应用》教案2 新人教A版选修1-2

11.1回归分析的基本思想及其初步应用(二)教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用. 教学重点:了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和. 教学难点:了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和. 教学过程:一、复习准备:1.由例1知,预报变量(体重)的值受解释变量(身高)或随机误差的影响.2.为了刻画预报变量(体重)的变化在多大程度上与解释变量(身高)有关?在多大程度上与随机误差有关?我们引入了评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和. 二、讲授新课:1. 教学总偏差平方和、残差平方和、回归平方和:(1)总偏差平方和:所有单个样本值与样本均值差的平方和,即21()ni i SST y y ==-∑.残差平方和:回归值与样本值差的平方和,即21()ni i i SSE y y ==-∑. 回归平方和:相应回归值与样本均值差的平方和,即21()ni i SSR y y ==-∑. (2)学习要领:①注意i y 、 i y 、y 的区别;②预报变量的变化程度可以分解为由解释变量引起的变化程度与残差变量的变化程度之和,即222111()()()n n ni i i i i i i y y y y y y ===-=-+-∑∑∑;③当总偏差平方和相对固定时,残差平方和越小,则回归平方和越大,此时模型的拟合效果越好;④对于多个不同的模型,我们还可以引入相关指数 22121()1()nii i n ii yy R yy ==-=--∑∑来刻画回归的效果,它表示解释变量对预报变量变化的贡献率. 2R 的值越大,说明残差平方和越小,也就是说模型拟合的效果越好. 2. 教学例题:为了对x 、Y 两个变量进行统计分析,现有以下两种线性模型: 6.517.5y x =+,717y x =+,试比较哪一个模型拟合的效果更好.分析:既可分别求出两种模型下的总偏差平方和、残差平方和、回归平方和,也可分别求出两种模型下的相关指数,然后再进行比较,从而得出结论. (答案:52211521()155110.8451000()i i i ii y y R y y ==-=-=-=-∑∑,221R =-521521()18010.821000()iii ii y y y y ==-=-=-∑∑,84.5%>82%,所以甲选用的模型拟合效果较好.)3. 小结:分清总偏差平方和、残差平方和、回归平方和,初步了解如何评价两个不同模型拟合效果的好坏.第三课时。

人教A版高中数学选修1-2《一章 统计案例 1.1 回归分析的基本思想及其初步应用》优质课教案_7

人教A版高中数学选修1-2《一章 统计案例  1.1 回归分析的基本思想及其初步应用》优质课教案_7

1.1回归分析的基本思想及其初步应用教学设计一.教学目标设计: (1).知识与技能:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用 (2).过程与方法:通过本课程德尔学习,使学生了解回归分析的基本思想、方法及初步应用 (3).情感,态度与价值观:充分利用图形的直观性,简捷巧妙的解题 二.教学重点设计:了解线性回归模型与函数模型的差异,了解判断刻画模型拟合效果的方法-相关指数和残差分析. 三,教学难点设计:解释残差变量的含义,了解偏差平方和分解的思想. 四.教学过程设计: (一)、复习探究:设计例1,既复习了以前的知识,又做好了前后知识的衔接,承上启下。

再通过三个思考设问,引出新课。

(二)、讲授新课:1. 通过散点图,让学生直观感受线性回归模型与一次函数的不同。

2. 通过散点图,让学生体会预报身高与实际身高的关系,进而得到线性回归模型y bx a e =++,引出残差变量e 。

求根据女大学生的身高预报体重的回归方程,并预报身高为172cm的女大学生的体重。

例1. 从某大学中随机选取8名女大学生,其身高和体重如下:3. 作残差分析。

(1)介绍残差的概念和计算方法。

(2)作残差图,使学生了解,通过残差图可以直观的观测出两变量相关性的强弱。

同时感受残差图的优势和不足。

顺势引出相关系数2R4. 相关系数2R(1)介绍相关系数2R的计算公式(2)解释相关系数2R的意义及与r的关系。

5. 例题的设计通过例题的讲述,是学生掌握:(1)样本数据的中心点与回归直线的位置关系(2)回顾模型的建立方法。

(3)回归分析的思想和方法,用残差图与相关系数判断拟合效果的方法和步骤。

6. 归纳出回顾模型的建立方法(三)、课堂小结设计:由学生归纳出本节课的知识点和思想方法。

人教A版高中数学选修1-2《一章 统计案例 1.1 回归分析的基本思想及其初步应用》优质课教案_11

人教A版高中数学选修1-2《一章 统计案例  1.1 回归分析的基本思想及其初步应用》优质课教案_11
(2)画出确定好的解释变量和预报变量的散点图,观察它们之间的关系(如是否存在线性关系等);
(3)由经验确定回归方程的类型(如果呈线性关系,则选用线性回归方程);
(4)按一定规则计算回归方程中的参数;
(5)提出结果后分析残差图是否有异常(个别数据对应的残差过大,或残差呈现不随机的规律性等),若存在异常,则检查数据是否有误或模型是否合适等.
教学目标
1、回忆线性回归模型处理现实问题的步骤;
2、理解随机误差和残差;
3、能用残差图和R2评价模型的拟合效果
教学重难点
教学重点:能用残差图和R2评价模型的拟合效果。
教学难点:理解随机误差和残差。
教学准备
多媒体课件一份
课时安排
1课时
教学环节
教学内容
师生活动
媒体或技术应用
二次修改意见
复习回顾
回顾应用
新知学习
新知应用
跟踪演练
课堂小结
1、变量间的关系
(1)确定关系: 如函数关系
(2)相关关系:正相关 、负相关、不相关如身高和体重之间
2、变量间相关关系的研究方法:回归分析法
回归分析是对具有相关关系的两个变量进行统计分析的一种方法.
回归分析法的步骤
(1)画散点图
(2)求回归方程:
(3)利用回归方程预报
即:对于一组具有线性相关关系的数据
(x1,y1),(x2,y2),…,(xn,yn),
计算
= = = ,
= - ,
回归方程:
其中( , )称为样本点的中心.
例1某班5名学生的数学和物理成绩如下表:
学生
学科
A
B
C
D
E
数学成绩(x)

人教A版高中数学选修1-2《一章 统计案例 1.1 回归分析的基本思想及其初步应用》优质课教案_28

人教A版高中数学选修1-2《一章 统计案例  1.1 回归分析的基本思想及其初步应用》优质课教案_28

3.1回归分析的基本思想及其初步应用的教学设计(1)
一、教学任务分析
通过例1的教学,使学生进一步了解与线性回归模型有关的一些统计思想,1、引入残差变量的必要性,2、残差分析和相关指数R2的作用,3、对于模型预报结果的正确认识。

二、教学重点与难点
重点:1、了解回归模型与函数模型的区别2、了解任何模型只能近似描述实际问题
3、模型拟合效果的分析工具:残差分析和指标R2.
难点: 1.残差变量的解释与分析,2、相关指数R2的理解
三、教学基本流程
四、教学情境设计。

人教A版高中数学选修1-2《一章 统计案例 1.1 回归分析的基本思想及其初步应用》优质课教案_26

人教A版高中数学选修1-2《一章 统计案例  1.1 回归分析的基本思想及其初步应用》优质课教案_26

1.1回归分析的基本思想及其初步应用教学目标:(1).知识与技能:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用。

(2).过程与方法:了解回归分析的基本思想、方法及初步应用。

了解在解决实际问题的过程中寻找更好的模型的方法,了解可用残差分析的方法,比较两种模型的拟合效果.(3).情感,态度与价值观:充分利用图形的直观性,简捷巧妙的解题 教学重点:了解线性回归模型与函数模型的差异,了解判断刻画模型拟合效果的方法-相关指数和残差分析.教学难点:解释残差变量的含义,了解偏差平方和分解的思想.教学方法:讲解法,引导法一、复习准备:1、复习:函数关系是一种确定性关系,而相关关系是一种非确定性关系. 回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,其步骤:收集数据→作散点图→求回归直线方程→利用方程进行预报.2例题:① 例1 从某大学中随机选取8名女大学生,其身高和体重数据如下表所示:编 号 12 3 4 5 6 7 8 身高/cm165165 157 170 175 165 155 170 体重/kg4857 50 54 64 61 43 59 求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm 的女大学生的体重.(分析思路→教师演示→学生整理)② 提问:身高为172cm 的女大学生的体重一定是60.316kg 吗?不一定,但一般可以认为她的体重在60.316kg 左右.二、新课探究1、真实值和预测值之间有误差的,造成这个误差的原因是什么?2、随机误差和残差y y e -=3、残差分析:①残差图:分布在带状区域,可以检验某些样本点是否合理②相关指数R 2=1- ∑∑==--ni i n i i i y yy y 1212)()( R 2越接近1,拟合效果越好 三、课堂总结:用回归方程探究线性回归问题的方法、步骤、残差分析。

四、作业: 五、板书设计1.1回归分析的基本思想及其初步应用复习线性回归分析的步骤:1 例1234新课残差分析 5课后反思:。

人教A版高中数学选修1-2《一章 统计案例 1.1 回归分析的基本思想及其初步应用》优质课教案_12

人教A版高中数学选修1-2《一章 统计案例  1.1 回归分析的基本思想及其初步应用》优质课教案_12

回归分析的基本思想及其初步应用一、教学内容解析回归分析,是一种从事物因果关系出发进行预测的方法.操作中,是在掌握大量观察数据的基础上,利用数理统计方法建立因变量与自变量之间的回归关系函数表达式(称回归方程式),预测今后事物发展的趋势.本节课是人教A版高中数学教材选修1-2第一章第一节的内容,安排在数学必修3之后,学生已经学习了两个变量之间的相关关系,包括画散点图,用最小二乘法求线性回归方程、利用回归方程预报等内容.在本节开始借助微视频通过案例“女中学生的身高与体重的关系”回顾回归分析相关内容,从而引出了线性回归模型与学生熟悉的函数关系的不同之处,解释了随机误差项产生的原因,使学生正确理解回归方程预报值的意义.通过案例“红铃虫的产卵数和温度的关系”,让学生在图形计算器的统计模式下,经历整个知识的生成过程,得到三种不同的拟合模型,学会用残差平方和和相关指数2R来衡量不同模型拟合效果,体会统计方法的特点:统计学关心各种方法的适用范围,以寻求最有效的数据处理方法,以及统计思维与确定性思维的区别与联系.在本节课的教学中,教师引导学生借助图形计算器,经历知识的生成过程,体会回归分析的核心思想,为今后进一步深造奠定了基础,同时培养了学生的动手能力.二、教学目标1.知识技能目标:了解回归分析的基本思想;会建立回归模型,认识随机误差e;了解随机误差的效应即残差,了解残差平方和、残差分析的意义;了解相关指数的概念与作用.2.过程方法目标:(1)会使用图形计算器求回归方程;(2)能正确理解回归方程的预报结果.3.情感态度,价值观目标:通过本节课的学习,加强数学与现实生活的联系,以科学的态度评价两个变量的相关性,理解处理问题的方法,形成严谨的治学态度和锲而不舍的求学精神.培养学生运用所学知识,解决实际问题的能力.教学中引导学生之间合作与交流,使学生在学习的同时,体会与他人合作的重要性.三、教学重难点重点:线性回归模型与函数模型的差异,衡量模型拟合效果的方法-相关指数和残差分析,了解在解决实际问题的过程中寻找更好的模型的方法.难点:理解数学模型的作用,以及统计学在建模时追求的目标.四、教法与教具选择:1.教学方法:开放式探究、启发式引导、互动式讨论.2.教学手段:运用电子白板、多媒体、CASIO fx-CG20CN图形计算器.3.理论根据:心理学家布鲁纳指出:“教学过程是一种提出问题和解决问题的持续不断的活动.”思维永远是从问题开始的,因此,本节课采用了逐步设疑、诱导、解疑,指导学生去发现的方法,使学生始终处于兴奋的状态之中.观察、归纳是发现知识、获得知识的基本思维形式,回归分析是统计学中的一个重要问题,在教学过程中,通过微视频、问题设疑、CASIO fx-CG20CN图形计算器实际操作等教学措施,创设问题情境,引导学生通过收集数据,画散点图,求回归方程,利用残差分析和相关指数衡量模型拟合效果等经历回归分析的整个过程.五、教学过程(一)、创设情景,导入新课函数关系是一种确定性关系,而相关关系是一种非确定性关系. 回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,在数学必修三中,我们利用回归分析的方法对两个具有线性相关关系的变量进行了研究,下面我们通过一个实际案例回忆一下相关内容.微视频,学生随机测量本班八名女同学的身高和体重,画散点图,用最小二乘法求回归系数,预测身高为172cm的女中学生体重为60.316kg.问题1 身高为172cm 的女中学生的体重一定是60.316kg 吗?如果不是,这是由什么原因引起的呢?学生思考讨论:不一定,体重不仅和身高有关系,还和遗传基因、饮食习惯、生长环境有关.老师引导,借助散点图来分析,样本点散布在一条直线的附件,而不是在这条直线上,所以不能用一次函数y bx a =+来描述它们之间的关系.我们引入线性回归模型y bx a e =++来表示,其中a 和b 为模型的未知参数,e 称为随机误差.这就是我们本节课要探究的内容.(二)、启发诱导,探求规律1、线性回归模型:y bx a e =++其中a 和b 为模型的未知参数,e 称为随机误差.注:线性回归模型中,因变量y 的值由自变量x 和随机误差项e 共同确定,即自变量x 只能解释部分y 的变化,在统计中,称自变量x 为解释变量,因变量y 为预报变量。

人教A版高中数学选修1-2《一章 统计案例 1.1 回归分析的基本思想及其初步应用》优质课教案_22

人教A版高中数学选修1-2《一章 统计案例  1.1 回归分析的基本思想及其初步应用》优质课教案_22

§1.1 回归分析的基本思想及其初步(第一课时)教学目标1、让学生明确用统计方法解决实际应用问题的思路;2、了解线性回归模型与函数模型的差异,理解用最小二乘法求回归模型的步骤;3、了解判断两变量间的线性相关关系的强度——相关系数。

理解只有两个变量相关性显著时,回归方程才具有实际意义;4、了解随机误差e的认识5、通过典型案例的探究,了解回归分析的基本思想,会对两个变量进行回归分析,明确解决回归模型的基本步骤,体会回归分析在生产实际和日常生活中的广泛应用.教学重点1、了解线性回归模型与函数模型的差异;2、了解任何模型只能近似描述实际问题;3、通过典型案例的探究,了解回归分析的基本思想,会对两个变量进行回归分析。

教学难点1、了解线性回归模型与一次函数模型的差异;2、了解随机误差e的认识教学准备课件教学过程1、问题一:一般情况下,体重与身高有一定的关系,个子较高的人体重比较大,你认为这种说法一定正确吗?学生思考、讨论,教师引导学生判断体重与身高之间的关系(函数关系、相关关系)问题二:什么是回归分析?用回归分析的方法对两个具有线性相关关系的变量进行研究的基本步骤是怎样的?(学生回忆、交流,教师点评)回归分析的基本过程:⑴画出两个变量的散点图;⑵判断是否线性相关⑶求回归直线方程(利用最小二乘法)⑷并用回归直线方程进行预报2、例题讲解:例1:从某大学中随机选取8名女大学生,其身高和体重数据如表所示。

求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm 的女大学生的体重。

审题:提问引导学生理解题意①数据体重与身高之间是一种不确定性的关系,它们是否具有线性相关关系?如何判断?②数据体重与身高谁是自变量,谁是因变量?你能求出求出用身高预报体重的回归方程吗?学生根据以前所学的知识,自主解答后,讨论、交流展示。

解:①画出散点图,以身高为自变量x ,体重为因变量y 画出散点图。

从散点图中可以看出样本点呈条状分布,身高与体重之间具有较好的线性相关关系,可以用回归直线来近似刻画它们之间的关系。

高中数学选修1-2教案4:1.1 回归分析的基本思想及其初步应用(一)教学设计

高中数学选修1-2教案4:1.1 回归分析的基本思想及其初步应用(一)教学设计

回归分析的基本思想及其初步应用
【教学目标】
1、知识与技能目标
认识随机误差;
2、过程与方法目标
(1)会使用函数计算器求回归方程;
(2)能正确理解回归方程的预报结果.
3、情感、态度、价值观
通过本节课的学习,加强数学与现实生活的联系,以科学的态度评价两个变量的相关性,理解处理问题的方法,形成严谨的治学态度和锲而不舍的求学精神.培养学生运用所学知识,解决实际问题的能力.教学中适当地利用学生合作与交流,使学生在学习的同时,体会与他人合作的重要性.
【教学重点】随机误差e的认识
【教学难点】随机误差的来源和对预报变量的影响
【教学方法】启发式教学法
【教学手段】多媒体辅助教学
【教学过程设计】。

2021-2022年高中数学《回归分析的初步应用》教案1说课稿新人教A版选修1-2

2021-2022年高中数学《回归分析的初步应用》教案1说课稿新人教A版选修1-2

2021-2022年高中数学《回归分析的初步应用》教案1说课稿新人教A版选修1-2一、教学目标a) 知识与技能*能根据散点分布特点,建立不同的回归模型。

*知道有些非线性模型通过变换可以转化为线性回归模型。

*通过散点图及相关指数比较体验不同模型的拟合效果。

b) 过程与方法*通过将非线性模型转化为线性回归模型,使学生体会“转化”的思想。

*让学生经历数据处理的过程,培养他们对数据的直观感觉,体会统计方法的特点,认识统计方法的应用。

*通过使用转化后的数据,利用计算器求相关指数,使学生体会使用计算器处理数据的方法。

c) 情感、态度与价值观*从实际问题中发现已有知识不足,激发好奇心、求知欲。

*通过寻求有效的数据处理方法,开阔学生的思路,培养学生的探索精神和转化能力。

*通过案例的分析,使学生了解回归分析在生活实际中的应用,增强数学“取之生活,用于生活”的意识,提高学习兴趣。

二.教学重点、难点*重点:通过探究使学生体会有些非线性模型运用等量变换、对数变换可以转化为线性回归模型。

*难点:如何启发学生“对变量作适当的变换(等量变换、对数变换)”,变非线性为线性,建立线性回归模型。

四、教学设计说明:高中新课程中增加了有关统计学初步的内容,先后出现在必修3和选修1-2(文科)、选修2-3(理科)。

《数学3》中的“统计”一章,给出了运用统计的方法解决问题的思路。

“线性回归分析”是其介绍的一种分析整理数据的方法。

在这一章中,学习了如何画散点图、利用最小二乘法的思想利用计算器求回归直线方程、利用回归直线方程进行预报等内容。

然而在大量的实际问题中,两个变量不一定都呈线性相关关系,他们可能呈指数关系或对数关系等非线性关系,本课时就是在学习了如何建立线性回归模型的基础上,探索如何建立非线性关系的回归模型。

这个内容在人教A版教材中只安排了一道关于“红铃虫”的例题,但是它却代表了一种“回归分析”的类型。

如何利用这道例题使学生掌握这类问题的解决方法呢?为此,我设计了“引导发现、合作探究”的教学方法。

(教师用书)高中数学 1.1 回归分析的基本思想及其初步应用教案 新人教A版选修1-2

(教师用书)高中数学 1.1 回归分析的基本思想及其初步应用教案 新人教A版选修1-2

1.1回归分析的基本思想及其初步应用(教师用书独具)●三维目标1.知识与技能通过典型案例的探究,了解回归分析的基本思想,会对两个变量进行回归分析,明确解决回归模型的基本步骤,并对具体问题进行回归分析以解决实际应用问题.了解最小二乘法的推导,解释残差变量的含义,了解偏差平方和分解的思想,了解判断刻画模型拟合效果的方法——相关指数和残差分析.掌握利用计算器求线性回归直线方程参数及相关系数的方法.2.过程与方法通过收集数据作散点图,分析散点图,求回归直线方程,分析回归效果,利用方程进行预报.3.情感、态度与价值观培养学生利用整体的观点和互相联系的观点来分析问题,进一步加强数学的应用意识,培养学生学好数学、用好数学的信心,加强与现实生活的联系,以科学的态度评价两个变量的相互关系.●重点难点重点:回归分析的基本方法、随机误差e的认识、残差图的概念、用残差及R2来刻画线性回归模型的拟合效果.难点:回归分析的基本方法、残差概念的理解及拟合效果的判定、非线性回归向线性回归的转化.教学时要以残差分析为重点,突出残差表和R2的计算,通过举例说明相关关系与确定性关系的区别,说明回归分析的必要性及其方法.借助例题使学生掌握作散点图、求回归直线方程的方法,通过作残差图、计算R2让学生掌握拟合效果的判断方法.对于非线性回归问题重点在如何转换,引导学生分析总结转化方法和技巧,从而化解难点.(教师用书独具)●教学建议本节课建议教师采取探究式教学,把“关注知识”转向“关注学生”,在教学过程中,把“给出知识”的过程转变为“引起活动,让学生探究知识的过程”,把“完成教学任务”转向“促进学生发展”,让学生成为课堂上的真正主人.在教学中,知识点可由学生通过探索“发现”,让学生充分经历探索与发现的过程,并引导学生积极解决探索过程中发现的问题.教学中不要以练习为主,而是定位在知识形成过程的探索,例题的解答也要由学生探讨、教师点拨,共同完成.要注重数学的思想性,如统计思想、随机观念、函数思想、数形结合的思想方法等,引导学生体验数学中的理性精神,加强数学形式下的思考和推理能力.●教学流程创设问题情境,引出问题,引导学生探讨,从而引出回归分析、线性回归模型、刻画回归效果的有关概念及解决方法.利用填一填的形式,使学生自主学习本节基础知识,并反馈了解,对理解有困难的概念加以讲解.引导学生在学习基础知识的基础上分析回答例题1的问题,并总结规律方法,完成变式训练.引导学生分析例题2,根据图中的数据计算系数,求出回归方程,列出残差表,求出R2并判断拟合效果,完成变式训练.完成当堂双基达标,巩固所学知识及应用方法,并进行反馈矫正.归纳整理,进行课堂小结,整体认识本节所学知识,强调重点内容和规律方法.通过老师启发引导,完成例题3,并要求学生借鉴例题3的解法完成变式训练.引导学生分析例题3,让学生作出散点图,观察相关性,引出问题,即如何使问题转化为相关关系并用线性回归分析二者关系.【问题导思】一台机器由于使用时间较长,生产的零件有一些会有缺陷.按不同转速生产出有缺陷的零件的统计数据如下:1.【提示】2.从散点图中判断x 和y 之间是否具有相关关系? 【提示】 有.3.若转速为10转/秒,能否预测机器每小时生产缺陷的零件件数? 【提示】 可以.根据散点图作出一条直线,求出直线方程后可预测. (1)回归直线方程: y ^=b ^x +a ^,其中:b ^=∑i =1nx i -xy i -y∑i =1nx i -x2,a ^=y -b ^x ,x =1n ∑i=1n x i ,y =1n ∑i =1ny i . (2)变量样本点中心:(x ,y ),回归直线过样本点的中心.(3)线性回归模型:y =bx +a +e ,其中e 称为随机误差,a 和b 是模型的未知参数,自变量x 称为解释变量,因变量y 称为预报变量.R 2=1-∑i =1ny i -y ^i2∑i =1ny i -y2,R 2表示解释变量对预报变量变化的贡献率,R 2越接近于1,表示回归的效果越好①线性回归分析就是由样本点去寻找一条直线,使之贴近这些样本点的数学方法;②利用样本点的散点图可以直观判断两个变量的关系是否可以用线性关系表示;③通过回归方程y ^=b ^x +a ^,可以估计和观测变量的取值和变化趋势;④因为由任何一组观测值都可以求得一个线性回归方程,所以没有必要进行相关性检验.其中正确命题的个数是( )A .1B .2C .3D .4【思路探究】 可借助于线性相关概念及性质逐一作出判断.【自主解答】 ①反映的正是最小二乘法思想,故正确.②反映的是画散点图的作用,也正确.③解释的是回归方程y ^=b ^x +a ^的作用,故也正确.④是不正确的,在求回归方程之前必须进行相关性检验,以体现两变量的关系.【答案】 C1.解答例1中④时,必须明确具有线性相关关系的两个变量间才能求得一个线性回归方程,否则求得的方程无实际意义.因此必须先进行线性相关性判断,后求线性回归方程.2.回归分析的过程:(1)随机抽取样本,确定数据,形成样本点;(2)由样本点形成散点图,判断是否具有线性相关关系;(3)由最小二乘法确定线性回归方程; (4)由回归方程观察变量的取值及变化趋势.关于变量y 与x 之间的回归直线方程叙述正确的是( ) A .表示y 与x 之间的一种确定性关系 B .表示y 与x 之间的相关关系 C .表示y 与x 之间的最真实的关系D .表示y 与x 之间真实关系的一种效果最好的拟合【解析】 回归直线方程能最大可能地反映y 与x 之间的真实关系,故选项D 正确. 【答案】 D求y 关于x【思路探究】 回归模型拟合效果的好坏可以通过计算R 2来判断,其值越大,说明模型的拟合效果越好.【自主解答】 x =15(14+16+18+20+22)=18,y =15(12+10+7+5+3)=7.4,∑i =15x 2i =142+162+182+202+222=1 660, ∑i =15x i y i =14×12+16×10+18×7+20×5+22×3=620,所以b ^=∑i =15x i y i -5x y∑i =15x 2i -5x 2=620-5×18×7.41 660-5×182=-1.15,a ^=7.4+1.15×18=28.1,所以所求回归直线方程是y ^=-1.15x +28.1.列出残差表:所以∑i =15(y i -y ^i )2=0.3,∑i =15(y i -y )2=53.2,R 2=1-∑i =15y i -y ^i2∑i =15y i -y2≈0.994,所以回归模型的拟合效果很好.1.回归直线方程能定量地描述两个变量的关系,系数a ^,b ^刻画了两个变量之间的变化趋势,其中b ^表示x 变化一个单位时,y 的平均变化量.利用回归直线可以对问题进行预测,由一个变量的变化去推测另一个变量的变化.2.线性回归分析中:(1)残差平方和越小,预报精确度越高.(2)相关指数R 2取值越大,说明模型的拟合效果越好.某运动员训练次数与运动成绩之间的数据关系如下:(1)(2)求出线性回归方程;(3)作出残差图,并说明模型的拟合效果; (4)计算R 2,并说明其含义.【解】 (1)作出该运动员训练次数(x )与成绩(y )之间的散点图,如图所示.(2)可求得x =39.25,y =40.875,∑i =18x 2i =12 656,∑i =18y 2i =13 731,∑i =18x i y i =13 180,∴b ^=∑i =18x i -xy i -y∑i =18x i -x2=∑i =18x i y i -8x y∑i =18x 2i -8x 2≈1.041 5,a ^=y -b ^x =-0.003 875,∴线性回归方程为y ^=1.041 5x -0.003 875. (3)作残差图如图所示,由图可知,残差点比较均匀地分布在水平带状区域中,说明选用的模型比较合适. (4)相关指数R 2=0.985 5.说明了该运动员的成绩的差异有98.55%的可能性是由训练次数引起的.(1)作出x (2)建立x 与y 的关系,预报回归模型并计算残差; (3)利用所得模型,预报x =40时y 的值.【思路探究】 (1)画出散点图或进行相关性检验,确定两变量x 、y 是否线性相关.由散点图得x 、y 之间的回归模型.(2)进行拟合,预报回归模型,求回归方程.【自主解答】 (1)作出散点图如图,从散点图可以看出x 与y 不具有线性相关关系,根据已有知识可以发现样本点分布在某一条指数函数曲线y =c 1e c 2x 的周围,其中c 1、c 2为待定的参数.(2)对两边取对数把指数关系变为线性关系,令z =ln y ,则有变换后的样本点应分布在直线z =bx +a ,a =ln c 1,b =c 2的周围,这样就可以利用线性回归模型来建立y 与x 之间的非线性回归方程了,数据可以转化为:求得回归直线方程为z =0.272x -3.849, ∴y ^=e 0.272x -3.849. 残差如下表:两个变量不具有线性关系,不能直接利用线性回归方程建立两个变量的关系,可以通过变换的方法转化为线性回归模型,如y =c 1e c 2x ,我们可以通过对数变换把指数关系变为线性关系,令z =ln y ,则变换后样本点应该分布在直线z =bx +a (a =ln c 1,b =c 2)的周围.有一个测量水流量的实验装置,测得试验数据如下表:【解】 由表中测得的数据可以作出散点图,如图.观察散点图中样本点的分布规律,可以判断样本点分布在某一条曲线附近,表示该曲线的函数模型是Q =m ·h n(m ,n 是正的常数).两边取常用对数,则lg Q =lg m +n ·lg h .令y =lg Q ,x =lg h ,那么y =nx +lg m ,即为线性函数模型y =bx +a 的形式(其中b =n ,a =lg m ).由下面的数据表,用最小二乘法可求得b ^≈2.509 7,a ^=-0.707 7,所以n ≈2.51,m ≈0.196.没有理解相关指数R 2的意义而致误关于x 与y 有如下数据:为了对x 、y 两个变量进行统计分析,现有以下两种线性模型:甲模型y ^=6.5x +17.5,乙模型y ^=7x +17,试比较哪一个模型拟合的效果更好.【错解】 ∵R 21=1-∑i =15y i -y ^i2∑i =15y i -y2=1-1551 000=0.845.R 22=1-∑i =15y i -y ^i2∑i =15y i -y2=1-1801 000=0.82.又∵84.5%>82%,∴乙选用的模型拟合的效果更好.【错因分析】 没有理解R 2的意义是致错的根源,用相关指数R 2来比较模型的拟合效果,R 2越大,模型的拟合效果越好,并不是R 2越小拟合效果更好.【防范措施】 R 2=1-∑i =1ny i -y ^i2∑i =1ny i -y2,R 2越大,残差平方和越小,从而回归模型的拟合效果越好.在线性回归模型中,R 2表示解释变量对于预报变量变化的贡献率,R 2越接近1,表示回归的效果越好(因为R 2越接近1,表示解释变量和预报变量的线性相关性越强).从根本上理解R 2的意义和作用,就可防止此类错误的出现.【正解】 R 21=1-∑i =15y i -y ^i2∑i =15y i -y2=1-1551 000=0.845,R 22=1-∑i =15y i -y ^i2∑i =15y i -y2=1-1801 000=0.82,84.5%>82%,所以甲模型拟合效果更好.1.在研究两个变量间的关系时,首先要根据散点图来粗略判断它们是否线性相关,是否可以用线性回归模型来拟合数据.然后,可以通过残差e ^1,e ^2,…,e ^n 来判断模型拟合的效果,判断原始数据中是否存在可疑数据.这方面的分析工作称为残差分析.2.我们还可以用相关指数R 2来反映回归的效果,其计算公式是:R 2=1-∑i =1ny i -y ^i2∑i =1ny i -y2.显然,R 2取值越大,意味着残差平方和越小,也就是说模型的拟合效果越好.在线性回归模型中,R 2表示解释变量对于预报变量变化的贡献率.1.已知x 和y 之间的一组数据则y 与x 的线性回归方程y ^=b x +a 必过点( ) A .(2,2) B .(32,0)C .(1,2)D .(32,4)【解析】 ∵x =14(0+1+2+3)=32,y =14(1+3+5+7)=4,∴回归方程y ^=b ^x +a ^必过点(32,4).【答案】 D2.(2013·青岛高二检测)在下列各组量中:①正方体的体积与棱长;②一块农田的水稻产量与施肥量;③人的身高与年龄;④家庭的支出与收入;⑤某户家庭的用电量与电价.其中量与量之间的关系是相关关系的是( )A .①②B .②④C .③④D .②③④【解析】 ①是函数关系V =a 3;⑤电价是统一规定的,与用电量有一定的关系,但这种关系是确定的关系.②③④中的两个量之间的关系都是相关关系,因为水稻的产量与施肥量在一定范围内是正比、反比或其他关系,并不确定;人的身高一开始随着年龄的增加而增大,之后则不变化或降低,在身高增大时,也不是均匀增大的;家庭的支出与收入有一定的关系,在一开始,会随着收入的增加而支出也增加,而当收入增大到一定的值后,家庭支出趋向于一个常数值,也不是确定关系.【答案】 D3.下列命题正确的有________.①在线性回归模型中,e 是bx +a 预报真实值y 的随机误差,它是一个可观测的量; ②残差平方和越小的模型,拟合的效果越好; ③用R 2来刻画回归方程,R 2越小,拟合的效果越好;④在残差图中,残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,若带状区域宽度越窄,说明拟合精度越高,回归方程的预报精度越高.【解析】 对于①随机误差e 是一个不可观测的量,③R 2越趋于1,拟合效果越好,故①③错误.对于②残差平方和越小,拟合效果越好,同理当残差点比较均匀地落在水平的带状区域时,拟合效果越好,故②④正确.【答案】 ②④4.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据:(1)(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测技改后生产100吨甲产品比技改前少消耗多少吨标准煤.(参考数值:3×2.5+4×3+5×4+6×4.5=66.5) 【解】 (1)如下图.(2)∑i =14x i y i =3×2.5+4×3+5×4+6×4.5=66.5,x =3+4+5+64=4.5,y =2.5+3+4+4.54=3.5, ∑i =14x 2i =32+42+52+62=86. b ^=66.5-4×4.5×3.586-4×4.52=66.5-6386-81=0.7, a ^=y -b ^x =3.5-0.7×4.5=0.35,因此,所求的线性回归方程为y ^=0.7x +0.35.(3)根据回归方程预测,现在生产100吨产品消耗的标准煤的数量为0.7×100+0.35=70.35(吨),故耗能减少了90-70.35=19.65(吨标准煤).一、选择题1.在画两个变量的散点图时,下面叙述正确的是( ) A .预报变量在x 轴上,解释变量在y 轴上 B .解释变量在x 轴上,预报变量在y 轴上 C .可以选择两个变量中任意一个变量在x 轴上 D .可以选择两个变量中任意一个变量在y 轴上【解析】 结合线性回归模型y =bx +a +e 可知,解释变量在x 轴上,预报变量在y 轴上,故选B.【答案】 B2.(2013·泰安高二检测)在回归分析中,相关指数R 2的值越大,说明残差平方和( ) A .越大 B .越小 C .可能大也可能小D .以上均错【解析】 ∵R 2=1-∑i =1ny i -y ^i2∑i =1ny i -y2,∴当R 2越大时,∑i =1n(y i -y ^i )2越小,即残差平方和越小.【答案】 B3.设变量y 对x 的线性回归方程为y ^=2-2.5x ,则变量x 每增加一个单位时,y 平均( )A .增加2.5个单位B .增加2个单位C .减少2.5个单位D .减少2个单位【解析】 回归直线的斜率b ^=-2.5,表示x 每增加一个单位,y 平均减少2.5个单位. 【答案】 C4.(2012·湖南高考)设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=0.85x -85.71,则下列结论中不正确...的是( ) A .y 与x 具有正的线性相关关系 B .回归直线过样本点的中心(x ,y )C .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg【解析】 由于线性回归方程中x 的系数为0.85,因此y 与x 具有正的线性相关关系,故A 正确.又线性回归方程必过样本中心点(x ,y ),因此B 正确.由线性回归方程中系数的意义知,x 每增加1 cm ,其体重约增加0.85 kg ,故C 正确.当某女生的身高为170 cm 时,其体重估计值是58.79 kg ,而不是具体值,因此D 不正确.【答案】 D5.在判断两个变量y 与x 是否相关时,选择了4个不同的模型,它们的相关指数R 2分别为:模型1的相关指数R 2为0.98,模型2的相关指数R 2为0.80,模型3的相关指数R 2为0.50,模型4的相关指数R 2为0.25.其中拟合效果最好的模型是( )A .模型1B .模型2C .模型3D .模型4【解析】 相关指数R 2能够刻画用回归模型拟合数据的效果,相关指数R 2的值越接近于1,说明回归模型拟合数据的效果越好.【答案】 A 二、填空题6.在研究身高和体重的关系时,求得相关指数R 2≈________,可以叙述为“身高解释了64%的体重变化,而随机误差贡献了剩余的36%”,所以身高对体重的效应比随机误差的效应大得多.【解析】 结合相关指数的计算公式R 2=1-∑i =1ny i -y ^i2∑i =1ny i -y2可知,当R 2=0.64时,身高解释了64%的体重变化.【答案】 0.647.调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归直线方程:y ^=0.254x +0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加________万元.【解析】 以x +1代x ,得y ^=0.254(x +1)+0.321,与y ^=0.254x +0.321相减可得,年饮食支出平均增加0.254万元.【答案】 0.2548.已知回归直线的斜率的估计值为 1.23,样本点的中心为(4,5),则回归直线方程是________.【解析】 由斜率的估计值为1.23,且回归直线一定经过样本点的中心(4,5),可得y ^-5=1.23(x -4),即y ^=1.23x +0.08. 【答案】 y ^=1.23x +0.08 三、解答题9.某省2013年的阅卷现场有一位质检老师随机抽取5名学生的总成绩和数学成绩(单位:分)如下表所示:(1)(2)对x 与y 作回归分析;(3)求数学成绩y 对总成绩x 的回归直线方程;(4)如果一个学生的总成绩为500分,试预测这个学生的数学成绩. 【解】 (1)散点图如图所示:(2)x =2 0125,y =3395,∑5 i =1x 2i =819 794, ∑5i =1y 2i =23 167,∑5i =1x i y i =137 760. ∴r =错误! ·错误!)=错误!≈0.989. 因此可以认为y 与x 有很强的线性相关关系.(3)回归系数b ^=∑5i =1x i y i -5 x y∑5i =1x 2i -5x2=0.132 452,a ^=y -b ^x =14.501 315.∴回归方程为y ^=0.132 452x +14.501 315.(4)当x =500时,y ^≈81.即当一个学生的总成绩为500分时,他的数学成绩约为81分. 10.(2012·福建高考)某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:(1)求回归直线方程y =bx +a ,其中b =-20,a =y -b x ;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)【解】 (1)由于x =16(8+8.2+8.4+8.6+8.8+9)=8.5,y =16(90+84+83+80+75+68)=80,又b =-20,所以a =y -b x =80+20×8.5=250,从而回归直线方程为y ^=-20x +250. (2)设工厂获得的利润为L 元,依题意得L =x (-20x +250)-4(-20x +250)=-20x 2+330x -1 000 =-20(x -8.25)2+361.25.当且仅当x =8.25时,L 取得最大值.故当单价定为8.25元时,工厂可获得最大利润.11.在关于人的脂肪含量(百分比)和年龄的关系的研究中,研究人员获得了一组数据如下表:(2)求相关指数R 2,并说明其含义; (3)给出37岁时人的脂肪含量的预测值.【解】 (1)散点图如图所示.由散点图可知样本点呈条状分布,脂肪含量与年龄有比较好的线性相关关系,因此可以用线性回归方程来刻画它们之间的关系.设线性回归方程为y ^=b ^x +a ^,则由计算器算得b ^≈0.576,a ^≈=-0.448, 所以线性回归方程为y ^=0.576x -0.448. (2)残差平方和: ∑i=114e ^2i =∑i =114(y i -y ^i )2≈37.78.总偏差平方和:∑i =114(y i -y -)2≈644.99.R 2=1-37.78644.99≈0.941. R 2≈0.941,表明年龄解释了94.1%的脂肪含量变化.(3)当x =37时,y ^=0.576×37-0.448≈20.9,故37岁时人的脂肪含量约为20.9%.(教师用书独具)为研究重量x (单位:克)对弹簧长度y (单位:厘米)的影响,对不同重量的6个物体进行测量,数据如下表所示:(1)(2)求出R 2; (3)进行残差分析.【思路探究】 (1)由表作出散点图,求出系数值,即可写出回归方程. (2)列出残差表,计算R 2,由R 2的值判断拟合效果. (3)由(2)中残差表中数值,进行回归分析. 【自主解答】 (1)散点图如图.x =16(5+10+15+20+25+30)=17.5, y =16(7.25+8.12+8.95+9.90+10.9+11.8)≈9.487,∑i =16x 2i =2 275,∑i =16x i y i =1 076.2.计算得,b ^≈0.183,a ^≈6.285, 所求线性回归方程为y ^=6.285+0.183x . (2)列表如下:所以∑i =16(y i -y ^i )2≈0.013 18,∑i =16(y i -y )2=14.678 4.所以,R 2=1-0.013 1814.678 4≈0.999 1,回归模型的拟合效果较好.(3)由残差表中的数值可以看出第3个样本点的残差比较大,需要确认在采集这个数据的时候是否有人为的错误,如果有的话,需要纠正数据,重新建立回归模型;由表中数据可以看出残差点比较均匀地落在不超过0.15的狭窄的水平带状区域中,说明选用的线性回归模型的精度较高,由以上分析可知,弹簧长度与拉力成线性关系.建立回归模型的基本步骤: (1)确定解释变量和预报变量;(2)画散点图,观察是否存在线性相关关系; (3)确定回归方程的类型,如y =bx +a ; (4)按最小二乘法估计回归方程中的参数;(5)得结果后分析残差图是否异常,若存在异常,则检查数据是否有误,或模型是否合适.假设关于某设备的使用年限x (年)和所支出的维修费用y (万元)有关的统计资料如下表所示.若由资料知y (1)线性回归方程y ^=b ^x +a ^的回归系数a ^、b ^; (2)求相关指数R 2;(3)估计使用年限为10年时,维修费用是多少? 【解】 (1)由已知数据制成下表.由此可得x =4,y =5,21 b ^=∑i =15 x i -xy i -y∑i =15 x i -x 2=1.23, a ^=y -b ^x =5-1.23×4=0.08,∴y ^=1.23x +0.08.(2)R 2=1-∑i =15 y i -y ^i2∑i =15 y i -y 2=1-0.65115.78≈0.958 7. (3)回归直线方程为y ^=1.23x +0.08,当x =10(年)时,y ^=1.23×10+0.08=12.38(万元),即估计使用10年时维修费用是12.38万元.。

高中数学选修1-2《回归分析基本思想及其初步应用》教案

高中数学选修1-2《回归分析基本思想及其初步应用》教案

高中数学选修1-2《回归分析基本思想及其初步应用》教案Teaching plan of 1-2 "basic idea of regression analysis and its p reliminary application" as an elective course in high school mat hematics高中数学选修1-2《回归分析基本思想及其初步应用》教案前言:数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种,在人类历史发展和社会生活中,数学发挥着不可替代的作用,是学习和研究现代科学技术必不可少的基本工具。

本教案根据数学课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划、并以启迪发展学生智力为根本目的。

便于学习和使用,本文档下载后内容可按需编辑修改及打印。

教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用.教学重点:了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和.教学难点:了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和.教学过程:一、复习准备:1.由例1知,预报变量(体重)的值受解释变量(身高)或随机误差的影响.2.为了刻画预报变量(体重)的变化在多大程度上与解释变量(身高)有关?在多大程度上与随机误差有关?我们引入了评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和.二、讲授新课:1.教学总偏差平方和、残差平方和、回归平方和:(1)总偏差平方和:所有单个样本值与样本均值差的平方和,即 .残差平方和:回归值与样本值差的平方和,即 .回归平方和:相应回归值与样本均值差的平方和,即 .(2)学习要领:①注意、、的区别;②预报变量的变化程度可以分解为由解释变量引起的变化程度与残差变量的变化程度之和,即 ;③当总偏差平方和相对固定时,残差平方和越小,则回归平方和越大,此时模型的拟合效果越好;④对于多个不同的模型,我们还可以引入相关指数来刻画回归的效果,它表示解释变量对预报变量变化的贡献率. 的值越大,说明残差平方和越小,也就是说模型拟合的效果越好.2.教学例题:例2 关于与有如下数据:2 4 5 6 830 40 60 50 70为了对、两个变量进行统计分析,现有以下两种线性模型:,,试比较哪一个模型拟合的效果更好.分析:既可分别求出两种模型下的总偏差平方和、残差平方和、回归平方和,也可分别求出两种模型下的相关指数,然后再进行比较,从而得出结论.-------- Designed By JinTai College ---------。

高中数学选修1-2《回归分析的基本思想及其初步应用》教案

高中数学选修1-2《回归分析的基本思想及其初步应用》教案

高中数学选修1-2《回归分析的基本思想及其初步应用》教案教学目标:1.了解回归分析的基本概念和方法,学会使用回归分析方法对一些实际问题作出预测和分析。

2.能够正确理解和使用回归分析的基本统计量,包括相关系数、判定系数和残差等。

3.能够理解和描述回归分析的假设条件和前提条件,掌握回归分析的模型建立过程,并能正确应用到实际问题中。

教学重点:1.回归分析的基本概念和方法。

2.回归分析的统计量及其含义。

3.回归分析的模型建立过程。

教学难点:1.应用回归分析方法对实际问题进行预测和分析。

2.掌握回归分析模型的建立方法。

教学方法:1.讲授法2.实例分析法3.互动式教学法教学内容:第一节回归分析的基本概念和方法1.回归分析的概念和意义。

2.回归分析的基本模型和方程式。

3.单变量和多变量回归分析的区别和应用。

4.回归分析的基本假设条件和前提条件。

第二节回归分析的统计量及其含义1.相关系数的概念和计算方法。

2.判定系数的定义和计算方法。

3.残差的概念和含义。

4.其他相关统计量的应用。

第三节回归分析的模型建立过程1.数据的收集和清理。

2.变量的筛选和筛选标准。

3.模型的构建和检验。

4.模型的应用和预测。

教学方式:1.讲授。

通过讲解回归分析的概念、方法、统计量和模型建立过程等内容,让学生了解回归分析的基本概念和方法,为后续的案例分析打下基础。

2.案例分析。

通过实例分析法,将回归分析的理论知识与实际问题相结合,并引导学生从实际问题中理解和掌握回归分析的方法和应用。

3.互动式教学。

引导学生在互动交流中,理解和掌握回归分析的基本概念和方法,加深对回归分析的理解和认识。

教学评估:教师根据学生在课堂上的表现和课下的练习情况,对学生进行综合评价。

主要考核内容包括:学生对回归分析的概念和方法的理解程度、学生对回归分析应用的掌握情况、学生对回归分析的模型建立和检验能力、学生的综合分析和判断能力等。

据此评价学生的成绩,并作出相应的教学反思和改进。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章统计案例本章概览整体设计教材分析1.本章内容在学科知识中的地位与重要性在实际生活中,我们经常面临着一些需要作出推断的问题,例如研制出的一种新药,需要推断它是否有效;吸烟是否与患癌症有关等等,在对于类似的问题作出推断时,我们不能仅凭主观臆断作出结论,而是需要通过实验来收集数据,并对这些数据作出相应的分析,从而做出合理的判断.两个变量之间是否存在关系?又是何种关系?这些问题的解决,也是数学中一种重要的思想方法.本章是数学与生产、生活实际相结合、相联系的重要体现,是数学重要思想方法的应用,是数学与生产、生活相联系的桥梁之一.2.本章主要内容本章知识是新课标教材的新增内容,目的是通过案例介绍一些统计方法,体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用.本章的重点是:独立性检验和回归分析的基本思想与方法;难点是:独立性检验和回归分析的初步应用.主要内容具体有:(1)线性相关关系的判断;(2)残差分析;(3)建立回归模型的基本步骤;(4)拟合效果的比较;(5)等高条形图的应用;(6)独立性检验的基本思想.课标要求1.通过典型案例的探究,进一步了解回归分析的基本思想、方法及其初步应用.2.通过典型案例的探究,了解独立性检验(只要求2×2列联表)的基本思想、方法及其初步应用.教学建议本章在必修课程学习统计的基础上,通过对典型案例的讨论,了解和使用一些常用的统计方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用.在进行本章教学时,应注意以下几点:(1)通过对典型案例的讨论,了解回归分析的基本思路、方法及其初步应用.回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法.教学中应该通过生活中详实事例理解回归分析的方法,其步骤为通过散点图,直观地了解两个变量的关系,然后,通过最小二乘法建立回归模型,最后通过分析残差、相关指数等,评价模型的好坏.重点是了解回归分析的思想方法,对其理论基础不做要求,避免学生单纯记忆和机械套用公式进行计算.(2)通过对典型案例的分析,了解独立性检验的基本思想、方法及其初步应用.教学中应用实例分析总结得出独立性检验的意义,并且认真体会独立性检验的基本思路类似于反证法,会用类比的思想方法得出独立性检验的基本步骤.重点是了解独立性检验的思想方法,对其理论基础不做要求,避免学生单纯记忆和机械套用公式进行计算.(3)回归分析和独立性检验两种思想方法的学习重在使用.这部分内容是《必修3》统计内容的深化,反映了对已学知识的螺旋式上升的认识过程,也充分体现了两种思想的应用价值,在应用中不断提高对两种思想方法的认识.课时分配本章教学时间大约需10课时,具体分配如下(仅供参考)3.1回归分析的基本思想及其初步应用约4课时3.2独立性检验的基本思想及其初步应用约3课时实习作业约2课时本章复习约1课时3.1 回归分析的基本思想及其初步应用整体设计教材分析1.教材的地位和作用高中新课程中增加了有关统计学初步的内容,先后出现在必修3和选修12(文科)、选修23(理科)中.《数学3(必修)》中的“统计”一章,给出了运用统计的方法解决问题的思路.“线性回归分析”是其介绍的一种分析、整理数据的方法.在这一部分中,学习了如何画散点图、利用最小二乘法的思想、利用计算器求回归直线方程、利用回归直线方程进行预报等内容.然而在大量的实际问题中,两个变量不一定都呈线性相关关系,它们可能呈指数关系或对数关系等非线性关系,本节就是在学习了如何建立线性回归模型的基础上,探索如何建立非线性关系的回归模型.通过本节的学习,使学生了解回归分析的必要性和回归分析的基本思想,明确回归分析的基本方法和基本步骤,学会以科学的态度评价两个变量的相互关系,培养学生运用所学内容解决实际问题的能力.2.课时划分《回归分析的基本思想及其初步应用》的教学分四个课时完成.第一课时:介绍线性回归模型的数学表达式,解释随机误差项产生的原因,使学生能正确理解回归方程的预报结果;第二课时:从相关系数、相关指数和残差分析角度探讨回归模型的拟合效果,以及建立回归模型的基本步骤;第三课时:介绍两个变量非线性相关关系;第四课时:回归分析的应用.第一课时教学目标知识与技能通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用.过程与方法让学生经历数据处理的过程,培养他们对数据的直观感觉,体会统计方法的特点,认识统计方法的应用;通过使用转化后的数据,利用计算器求相关指数,使学生体会使用计算器处理数据的方法.情感、态度与价值观从实际问题中发现已有知识的不足,激发好奇心、求知欲;通过寻求有效的数据处理方法,开阔学生的思路,培养学生的探索精神和转化能力;通过案例的分析,使学生了解回归分析在生活实际中的应用,增强数学“取之生活,用于生活”的意识,提高学习兴趣.重点难点教学重点:理解回归分析的基本思想,掌握求回归直线方程的步骤以及对随机误差e的认识.教学难点:掌握利用回归分析的基本思想处理实际问题的方法,理解随机误差的来源和对预报变量的影响.教学过程引入新课“名师出高徒”这句谚语的意思是什么?有名气的老师就一定能教出厉害的学生吗?这两者之间是否有关?活动设计:学生独立思考回答问题.学情预测:学生可能会说“有名气的老师不一定能教出厉害的学生”.教师提问:为什么?学情预测:两者之间有一定的关系,但不是必然关系,即名师也不一定出高徒,二者之间是相关关系.设计意图:复习两个变量之间的关系,为线性分析做好铺垫.提出问题:我们知道函数关系是一种确定性关系,而相关关系是一种非确定性关系.上面所提的“名师”与“高徒”之间的关系就是相关关系.那么,在一般情况下,人的身高与体重之间是什么关系?试设计一个方案,来分析某大学女大学生的身高与体重之间的关系,并以此为依据来预报身高172 cm的女大学生的体重.学生活动:学生独立思考,小组合作交流讨论.活动结果:可以采用统计的方法解决这一问题,先采用随机抽样的方法,从在校女大学生中抽取样本,记录其身高和体重,然后通过所得数据建立线性回归模型,并根据所得模型来预报身高为172 cm女生的体重.其步骤:收集数据→作散点图→求回归直线方程→利用方程进行预报.设计目的:合理设计问题,使学生进一步掌握用统计方法解决问题的基本步骤:提出问题、收集数据、分析整理数据、进行预测或决策.探究新知若从某大学中随机选取8名女大学生,其身高和体重数据如下表所示:的女大学生的体重.学生活动:分组合作探究,查阅课本中的计算公式.活动结果:1.画散点图选取身高为自变量x,体重为因变量y,画出散点图形象展示两个变量之间的关系,并判断二者是否具有线性关系.由散点图可以发现,样本点呈条状分布,身高和体重有比较好的线性相关关系,因此可以用线性回归直线近似刻画它们之间的关系.2.建立回归方程由计算器可得a ^=-85.712,b ^=0.849. 于是得到回归方程为y ^=0.849x -85.712. 3.预报和决策当x =172时,y ^=0.849×172-85.712=60.316(kg).即一名身高为172 cm 的女大学生的体重预报值为60.316 kg.设计目的:进一步熟悉线性回归分析的具体步骤.提高学生的数据处理能力,并让学生在应用中进一步掌握公式的应用.理解新知 提出问题:散点图可以直观地判断两个变量是否具有线性相关性,那么还有什么方法可以描述线性相关性的强弱?学生活动:独立思考或相互讨论. 活动结果:还可以通过必修3中的相关系数r 来衡量两个变量之间的线性相关关系的强弱.提出问题:如何根据相关系数r 描述线性相关性的强弱?相关系数的计算公式是什么? 学生活动:独立思考或相互讨论,查阅课本. 活动结果:其具体计算公式是r =∑i =1n(x i -x )(y i -y )∑i =1n(x i -x)2∑j =1n(y j -y )2当r>0时,表示两个变量正相关;当r<0时,表示两个变量负相关.r 的绝对值越接近1,表明两个变量的线性相关性越强,r 的绝对值越接近0,表明两个变量之间几乎不存在线性相关关系.通常,当|r|>0.75时,认为两个变量有很强的线性相关关系.提出问题:在本例中,身高和体重的线性相关系数是多少?我们建立的线性回归方程是否有实际意义?学生活动:独立计算,求解相关系数.活动结果:利用计算器可求得r =0.798,这表明体重与身高有很强的线性相关关系,从而表明我们建立的回归模型是有意义的.设计目的:复习判断变量线性相关的方法,进一步熟悉线性相关系数的计算公式. 提出问题:身高为172 cm 的女大学生的体重一定是60.316 kg 吗? 学生活动:独立思考也可相互讨论.学情预测:不一定,但一般可以认为她的体重在60.316 kg 左右. 提出问题:为什么根据得到的一次函数求出的结论不一定是实际值?产生误差的原因是什么?学生活动:独立思考也可相互讨论,教师加以适当的引导提示. 活动结果:观察上述散点图,我们可以发现女大学生的体重y 和身高x 之间的关系并不能用一次函数y =bx +a 来严格刻画(因为所有的样本点不共线,所以线性模型只能近似地刻画身高和体重的关系).在数据表中身高为165 cm 的3名女大学生的体重分别为48 kg 、57 kg和61 kg ,如果能用一次函数来描述体重与身高的关系,那么身高为165 cm 的3名女大学生的体重应相同.这就说明体重不仅受身高的影响还受其他因素的影响,如生理因素、饮食锻炼、测量工具等其他因素.为了更准确地刻画身高和体重的关系,可用下列线性回归模型来表示:y =bx +a +e.我们把自变量x 称作解释变量,因变量y 称作预报变量,e 称为随机误差.提出问题:函数模型y =bx +a 与线性回归模型y =bx +a +e 有什么关系? 学生活动:独立思考也可相互讨论,教师加以适当的引导提示.活动结果:线性回归模型:y =bx +a +e 当理想化时,即所有人的遗传因素都一样、所有人的生活方式都一样、所有测量都没有误差等等,此时e =0,线性回归模型就变成函数模型了.因此,一次函数模型是线性回归模型的特殊形式,线性回归模型是一次函数模型的一般形式.设计目的:突破本节课的难点,充分认识随机误差e 的来源和对预报变量的影响. 运用新知例1假设关于某设备的使用年限x(年)和所支出的维修费用y(万元)有如下统计数据:若由此资料可知y 对x 呈线性相关关系,试求: (1)回归直线方程;(2)估计使用年限为10年时,维修费用为多少?分析:正确理解计算b ^,a ^的公式和准确的计算,是求线性回归方程的关键. 解:(1)故x =4,y=5,∑i =15x 2i =90,∑i =15x i y i =112.3,于是b ^=∑i =15x i y i -5x y∑i =15x 2i -5x2=112.3-5×4×590-5×42=1.23,a ^=y -b ^x =5-1.23×4=0.08,∴回归直线方程为y ^=b ^x +a ^=1.23x +0.08.(2)当x =10时,y ^=1.23×10+0.08=12.38(万元),估计当使用10年时的维修费用为12.38万元.点评:由于本节课题目计算量大,公式较多,所以在求解时易出现公式乱用,数据出错等问题,对这一点,同学们在解题时尤为需要注意.【变练演编】例2其中x 为高一数学成绩,y 为高二数学成绩. (1)y 与x 是否具有线性相关关系;(2)如果y 与x 具有线性相关关系,求线性回归方程.思路分析:先根据数据计算相关系数,然后根据相关系数的大小,判断两个变量是否线性相关.解:(1)由已知表格中的数据,利用计算器进行计算得x =71,y=72.3,∑i =110x i y i =51 467,∑i =110x 2i =50 520,∑i =110y 2i =52 541,r =∑i =1n(x i -x )(y i -y )∑i =1n(x i -x )2∑j =1n(y j -y )2≈0.785 3>0.75,故两个变量有很强的线性相关关系.(2)y 与x 具有线性相关关系,可设线性回归方程为y ^=a ^+b ^x ,则b ^=∑i =110(x i -x )(y i -y )∑i =110(x i -x )2≈1.22,a ^=y -b ^x =72.3-1.22×71=-14.32, 所以y 关于x 的线性回归方程为y ^=1.22x -14.32.点评:本题通过计算相关系数,将两个变量相关性的判断转化为数据大小的比较.变式:在确定上题中y 与x 的线性相关关系中,是否还有别的方法?若有,请加以说明. 活动设计:学生分组讨论,回顾课本解答问题. 活动成果:还可以通过画散点图的方法来判断两个变量是否具有相关性.如选取x 的值作为自变量,y 的值作为因变量,画出散点图.由图可知两个变量有线性相关性,求其回归直线方程是有实际意义的. 设计意图:进一步熟悉判断变量线性相关的各种方法. 【达标检测】1.对于回归分析,下列说法错误的是( )A .在回归分析中,两个变量的关系若是非确定关系,那么其中一个变量不能由另一个变量唯一确定B .回归系数可以是正的,也可以是负的C .回归分析中,如果r 2=1或r =±1,说明变量x 与变量y 之间完全线性相关D .相关样本系数r ∈(-1,1)2.下列各组变量之间具有线性相关关系的是( )A .出租车费与行使的里程B .学习成绩与学生身高C .身高与体重D .铁的体积与质量3.若劳动生产率x(千元)与月工资y(元)之间的回归直线方程为y ^=50+80x ,则下列判断正确的是( )A .劳动生产率为1 000元时,月工资为130元B .劳动生产率提高1 000元时,月工资平均提高80元C .劳动生产率提高1 000元时,月工资平均提高130元D .月工资为210元时,劳动生产率为2 000元 答案:1.D 2.C 3.B 课堂小结(给学生1~2分钟的时间默写本节的主要基础知识、方法、例题、题目类型、解题规律等;然后用精炼的、准确的语言概括本节的知识脉络、思想方法、解题规律)1.知识收获:进一步学习回归分析的基本思想以及求回归直线方程的步骤,正确认识随机误差e 的产生原因、了解线性回归模型与函数的不同之处.2.方法收获:线性回归方程的求法、用样本估计总体的统计思想.3.思维收获:体会模型诊断的思想,提高利用回归方法解决实际问题的能力,培养探索和创新的精神.设计意图:让学生自己小结,这是一个多维整合的过程,是一个高层次的自我认识过程. 补充练习 【基础练习】1.对变量x ,y 有观测数据(x i ,y i )(i =1,2,…,10),得散点图1;对变量u ,v 有观测数据(u i ,v i )(i =1,2,…,10),得散点图2.由这两个散点图可以判断( )图1 图2A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关 2.实验测得四组(x ,y)的值是(1,2),(2,3),(3,4),(4,5),则y 对x 的回归直线方程是( )A.y ^ =x +1B.y ^ =x +2C.y ^ =2x +1D.y ^=x -1 3.已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是( )A.y ^=1.23x +4 B.y ^=1.23x +5 C.y ^=1.23x +0.08 D.y ^=0.08x +1.234.若已知∑i =1n(x i -x )2是∑i =1n(y i -y )2的2倍,∑i =1n(x i -x )(y i -y )是∑i =1n(y i -y )2的1.2倍,则相关系数r =____________.答案:1.C 2.A 3.C 4.325【拓展练习】(1)对变量y 与x 进行相关性检验;(2)如果y 与x 之间具有线性相关关系,求线性回归方程; (3)如果父亲的身高为73英寸,估计儿子的身高. 解:(1)x =66.8,y=67.01,∑i =110x 2i =44 794,∑i =110y 2i =44 941.93, x y =4 476.27,x 2=4 462.24,y 2=4 490.34,∑i =110x i y i =44 842.4.所以r =∑i =1n(x i -x )(y i -y )∑i =1n(x i -x)2∑j =1n(y j -y )2≈0.980 2>0.75.所以y 与x 之间具有线性相关关系. (2)设线性回归方程为y ^=b ^x +a ^. 计算得b ^≈0.464 5,a ^=y -b ^ x =67.01-0.464 5×66.8≈35.98. 故所求的线性回归方程为y ^=0.464 5x +35.98.(3)当x =73时,y ^=0.464 5×73+35.98≈69.9,所以当父亲身高为73英寸时,估计儿子的身高约为69.9英寸.设计说明本设计通过不断提出问题,研究问题,解决问题,使学生在不断探索中体会发现与成功的快乐.本节课主要通过具体的实际例子,体会线性回归思想在处理实际问题中的应用,既是对必修3相关内容的延伸,更是对必修3相关内容的复习,通过解决具体实际案例,让学生掌握判断变量是否线性相关的方法和求线性回归方程的具体步骤.通过本节课的学习培养学生对数据的处理能力和应用数学解决实际问题的数学意识,同时在问题解决的过程中,让学生体会与他人合作的重要性.备课资料 1.在Excel 软件中做散点图的步骤如下:(1)进入Excel 软件操作界面,在A1,B1分别输入“身高”和“体重”,在A ,B 列输入相应的数据.(2)选中数据后点击“图表向导”图标,进入“图表类型”对话框,选择“标准类型”中的“XY 散点图”,单击“下一步”.(3)在“图表向导”中的“图表数据源”对话框中,选择“系列”选项,单击“添加”按钮添加“系列1”,在“X 值”栏中输入身高所在数据区域,在“Y 值”栏中输入体重所在数据区域,单击“下一步”.(4)进入“图表向导”中的“图表选项”对话框,对图表的一些属性进行设置. (5)单击“完成”按钮.(设计者:杨雪峰)。

相关文档
最新文档