单效蒸发及计算
第二节 单效蒸发和真空蒸发
三.蒸发器的传热面积: 由蒸发器的传热方程可得 A Q Kt m 而传热量:Q=DR 在蒸发器中,管外为蒸气冷凝,温度恒 定为TS,管内为溶液沸腾,温度为定值t, 可视为恒温差传热, t m TS t
故:
Q DR A Kt m K (TS t )
重点例题:例7-1
1.蒸发器的生产能力 1)定义:单位时间蒸发水分的质量W, 单位为kg/h。由于它主要取决于过程的 热流量,所以常以热流量Q来衡量蒸发 器的生产能力。 D r DR
D r DR Q KAt m W W R r r r W Kt m U A r
为了提高蒸发器的生产强度,应设法增 大蒸发器的传热系数和传热温度差。
①有效温度差△t:除和温度差损失有关 外,主要还是取决于加热蒸气压力和冷 凝器中压力之差。加热蒸气压力受工厂 用气条件限制;而冷凝器中真空度提高 要考虑真空泵功率消耗,且随真空度的 提高,溶液沸点的降低、粘度增大,也 会对溶液的沸腾传热产生不利的影响。 对一般物料蒸发,所用加热蒸气不超过 500kPa,冷凝器中压力也不小于10~ 20kPa(绝)。因此,有效温度差的增大 是有一定限度的。
2.蒸发器的生产强度: 1)定义:单位传热面积的生产能力, 以U表示,单位为 kg/(m2.h) ,即: U= W/ A 当蒸发任务W一定,U越大,A越小。 U反映了蒸发操作的设备性能。 2)影响因素: 主要为总传热系数和传热温度差。
K U t
3)提高生产强度的途径 对多数物系当沸点进料,忽略热损失时
对一定浓度的溶液, 只要知道它在两个 不同压力下的沸点, 再查出相同压力下 对应水的沸点,即 可绘出该浓度溶液 的杜林线,由此直 线即可求得该溶液 在其它压力下的沸 点。 见例题7-3
化工原理 单效蒸发
溶液的沸点t=T+Δ,有效传热温度差Δt=ΔtT-Δ
温度差损失原因:〈〈12〉〉溶蒸液发的器沸中点液升柱高静压头的影响 〈3〉流体摩擦阻力损失
⑴ 溶液的沸点升高与杜林规则
将1atm下的沸点升高
杜林(Duhling)规则:溶液的沸点与同温度 近似地作为其它压力
若为沸点进料,即t0 t1,并忽略热损失和比热C1和C0的差别,则有:
D Wr r
或 D r Wr
由于蒸汽在t1和T下的潜热r和r相差不大,
D W
r R
1
②溶液的浓缩热不可忽略
(3)蒸发Байду номын сангаас传热面积的计算
A Q DR K (Ts t1 ) K (Ts t1 )
1 K
1
i
Ri
1
o
Ro
5.3 2 蒸发设备中的温度差损失
Q H s hs
9.87 105
2728 556.51000
0.455kg / s 1640kg / h
2·求料液流量F
DH s Fh0 WH (F W )h1 Dhs QL
查NaOH的焓浓图得:料液的焓h0=120kJ/kg,完成液的焓 h1=540kJ/kg
又热损失 QL=0·03Q 0.03 9.87 105 29600W 29.6kW
h1=c1t1,h0=c0t0代入热量衡算C式1=:4.187 1-0.5+2.01 0.5=3.1
0·455(2728-556·5)+F 3·75 35=F-W 3·1100+2681W+29·6
178·7F+2371W=958·4 将W=0·6F代入,解得:F=0·6kg/s,W=0·36kg/s
单效蒸发
h = cpt
h0 =c p , 0 t0
c p = c p,w (1 w) + c p,b w = c p,w (c p,w c p,b )w c p,0 = c p,w (1 w0 ) + c p,b w0 = c p,w (c p,w c p,b )w0
代入热流量公式得:
Φ = qm,v r0 = qm,0c p,0 (t t0 ) + qm,wr′ + Φ L
t '" = 0.5 ~ 1° C
5.3 单效蒸发 5.3.1 物料衡算
目的: 目的:计算蒸发水量和完成液浓度 对溶质: 对溶质:
料液 qm0,w0, t0 ,c0 ,h0
加热室
二次蒸汽 qmwT’,H’
qm,0 w0 = (qm,0 qm,w )w
蒸发水量: q m,w w0 = q m ,0 (1 ) w
完成液 qm0-qmw,w, t,c,h
因此,溶液的沸点: 因此,溶液的沸点:
t = T ′ + t ' + t " + t '" = T ′ + t t
② 传热温差损失 溶液沸点升高,造成传热温差减小。
理论传热温度差: tT = T T ′
有效传热温差:
传热温度差损失:
t = T t
tT t = t T ′ = t t
若沸点进料,忽略热损失时,
t0 = t
qm , w qm , v
ΦL = 0
qm ,v =
qm , w r ′ r0
r = ≈1 r′
生蒸汽的经济性(经济程度) 生蒸汽的经济性(经济程度)qmw/qmv * 蒸发操作重要经济指标之一,反映蒸发操作能耗的大小; * 实际由于沸点升高和热损失,单效蒸发 qmw/qmv ≈0.9 。
单效蒸发及其计算
温度差损失), ℃;
Δ′——操作压强下由于溶液蒸气压下降而引起的沸点升高, ℃;
F——校正系数,无因次,其经验计算式为
式中 T′——操作压强下二次蒸气的温度, ℃; r′——操作压力下水的汽化热,kJ/kg。
单效蒸发及其计算
2. 按杜林规则计算
杜林规则说明溶液的沸点和同压强下标准溶液沸点间呈线性关 系。由于容易获得纯水在各种压强下的沸点,故一般选用纯水作为 标准溶液。只要知道溶液和水在两个不同压强下的沸点,以溶液沸 点为纵坐标,以水的沸点为横坐标,在直角坐标图上标绘相对应的 沸点值即可得到一条直线(称为杜林直线)。由此直线就可求得该 溶液在其他压强下的沸点。图5-2是由试验测定的不同组成的 NaOH水溶液的沸点与对应压力下纯水沸点的关系线图,已知任意 压力下水的沸点,可由图查出不同浓度下NaOH的沸点。
单效蒸发及其计算
(三)由于管路阻力而引起的温度差损失Δ″
二次蒸气由分离器送至冷凝器要克服管道 中流动阻力,所以分离室内二次蒸气压强应略 高于冷凝器中规定的压强。相应的蒸气温度也 高于冷凝器中蒸气的温度,两者的差值称为由 于管路阻力引起的温度差损失Δ″,其值与蒸气 的流速、物性及管路特性有关,一般取经验值 1~1.5 ℃。
单效蒸发及其计算
解:(1)求Δ′ 取冷凝器绝压pk为15kPa,可查出15 kPa下水蒸气的饱和 温度T′为53.5℃。取因流动阻力而引起的温度差损失Δ 1 ℃,故二次蒸气温度T′=54.5 ℃。由附表查出二次蒸气其他参 数为:T″=54.5 ℃,p′=15.4 kPa ,汽化潜热r′=2367.6 kJ/kg。
单效蒸发及其计算
单效蒸发及其计算
二、 单效蒸发的计算
单效蒸发中要计算的内容有:(1)单位时间内由溶 液中整除的二次蒸气质量,称为蒸发量;(2)单位时间内 消耗的加热蒸气量;(3)所需的蒸发器传热面积S。
项目四 任务一单效蒸发.
所以沸腾液体的平均温度为 :
t t ( p) '' '
在大多数教材中,液柱内部的平均压力取的是液面压力和液柱 底部压力的平均值,即
1 LG 2 1 ' ' t ( p Lg ) t ( p ) 5 pm p
2. 蒸发设备中的温度差损失
(3)因蒸汽流动阻力引起的温度差损失 ' ' '
二、 单效蒸发
1.单效蒸发的计算
对于单效蒸发,在给定的生产任务和确定了操作条 件以后,通常需要计算以下的这些内容: ① 分的蒸发量; ② 热蒸汽消耗量; ③ 发器的传热面积。 要解决以上问题,我们可应用物料衡算方程,热量 衡算方程和传热速率方程来解决。
1. 单效蒸发的计算
(1)物料衡算 溶质在蒸发过程中不挥发,且蒸发过程是个定态过程, 单位时间进入和离开蒸发器的量相等,即
一、 概述
(5)蒸发操作的特点 ① 沸点升高 蒸发的物料是溶有不挥发溶质的溶液。由拉乌尔定律可 知:在相同温度下,其蒸汽压纯溶剂的为低,因此,在相同的 压力下,溶液的沸点高于纯溶剂的沸点。故当加热蒸汽温一定 时,蒸发溶液时的传热温差就比蒸发纯溶剂时来得小,而溶液 的浓度越大,这种影响就越显著。 ② 节约能源 ③ 物料的工艺特性 本章的重点就是研究上述问题,同时还考虑从二次蒸汽 中分离夹带液沫的问题。
Fw0 ( F W )w
水分蒸发量: 完成液的浓度:
w0 W F (1 ) w
w Fw0 F W
1. 单效蒸发的计算
(2)热量衡算 对蒸发器作热量衡算,当加热蒸汽在饱和温度下排出时,
DIs Fi0 ( F W )i WI Dis Q损 D( I s is ) F (i i0 ) W ( I i) Q损
单效蒸发器蒸发计算方式
单效蒸发器蒸发计算方式单效蒸发设计计算内容有: ①确定水的蒸发量; ②加热蒸汽消耗量; ③蒸发器所需传热面积。
在给定生产任务和操作条件,如进料量、温度和浓度,完成液的浓度,加热蒸汽的压力和冷凝器操作压力的情况下,上述任务可通过物料衡算、热量衡算和传热速率方程求解。
一、蒸发水量的计算对图5-13所示蒸发器进行溶质的物料衡算,可得由此可得水的蒸发量(5—1)完成液的浓度(5—2)式中:F ——原料液量,kg/h ; W ——蒸发水量,kg/h ; L ——完成液量,kg/h ; x 0——原料液中溶质的浓度,质量分数;x 1——完成液中溶质的浓度,质量分数。
二、加热蒸汽消耗量的计算加热蒸汽用量可通过热量衡算求得,即对图5-13作热量衡算可得:(5—3)110)(Lx x W F Fx =-=)1(10x x F W -=W F Fx x -=1L c 10Q Dh Lh W H Fh DH +++=+‘图5-13 单效蒸发器或 (5—3a )式中:H ——加热蒸汽的焓,kJ/kg ; H ´——二次蒸汽的焓,kJ/kg ; h 0 ——原料液的焓,kJ/kg ; h 1 ——完成液的焓,kJ/kg ;h c ——加热室排出冷凝液的焓,kJ/h ; Q ——蒸发器的热负荷或传热速率,kJ/h ; Q L ——热损失,可取Q 的某一百分数,kJ/kg ; c 0、c 1——为原料、完成液的比热,kJ/(kg ·℃) 。
考虑溶液浓缩热不大,并将H ´取t 1下饱和蒸汽的焓,则(9—3a )式可写成:(5—4)式中: r 、r ´——分别为加热蒸汽和二次蒸汽的汽化潜热,kJ/kg 。
若原料由预热器加热至沸点后进料(沸点进料),即t 0=t 1,并不计热损失,则(4—5)式可写为:(5—5)或(5—5a ) 式中:D /W 称为单位蒸汽消耗量,它表示加热蒸汽的利用程度,也称蒸汽的经济性。
单效蒸发计算
7.4.1单效蒸发过程的数学描述 一、物料衡算 F----原料液的质量流量(kg/h)
W----二次蒸汽的质量流量(kg/h)
w0----原料液中溶质的质量百分数 w----完成液中溶质的质量百分数 ∴对溶质列物料衡算
Fw0 = (F – W) w
则:水分蒸发量
W
F
(1
w0 w
即:当加热蒸汽的压强一定时,传热推动力决定于溶液的沸点t
2、影响溶液的沸点的因素 (1)溶液沸点升高 溶液特点:溶质的存在可使溶液的蒸气压降低而沸点升高 杜林(Duhring)规则: ①在浓度不太高的范围内,可以合理地认为溶液的沸点升高与 压强无关而可取大气压下的数值 ②在高浓度范围内,只要已知两个不同压强下溶液的沸点, 则其他压强下溶液的沸点可按水的沸点作线性内插(或外推)。
设计型 已知 F、w0、 t0 、w 设计条件:加热蒸汽的压强及冷凝汽的操作压强
求: K、A、D
操作型 1)已知 w0、 t0 、w、K、A、加热蒸汽压强 求:F、D
2)已知 w0、 t0 、F、A;求:w、加热蒸汽压强
)
7.4.1单效蒸发过程的数学描述 二、热量衡算
一、物料衡算
1、准确解 蒸汽冷凝放热 + 物料带入热量 = 完成液带出热量 + 二次蒸汽带出热量 + 热损失 D r0 + Fi0 = (F- W) i+WI + Q损 或 D r0 = F(I- i0 ) + W(I-i) + Q损 一般:热损失 可视具体条件取加热蒸汽放热量的某一百分数。
∴ 溶液的平均温度
t = t0 +Δˊ+Δˊˊ= t0 +Δ
单效蒸发及其计算.
a ——常压下溶液的沸点升高,可由实验测定的tA值
求得,℃; Δ′——操作条件下溶液的沸点升高,℃;
f——校正系数,无因次。其经验计算式为:
0.016(T 273) 2 f r
式中 T′——操作压强下二次蒸气的温度,℃;
(5-6)
r′——操作压强下二次蒸气的汽化热,kJ/kg。
(2) 杜林规则
式中 作压强有关。
(5-4)
tA——溶液沸点,℃,主要与溶液的类别、浓度及操 T′——与溶液压强相等时水的沸点,即二次蒸气的 饱和温度,℃
在文献和手册中,可以查到常压(1atm)下某些溶液在不同浓
度时的沸点数据。非常压下的溶液沸点则需计算,估算方法有两种。
(1) f a
式中
(5-5)
ΔtT ——理论上的传热温度差, ℃
t —— 溶液的沸点, ℃ T——纯水在操作沸点, ℃ Ts——加热蒸气的温度, ℃
例:用476kN/m2(绝压)的水蒸气作为加热蒸汽(Ts=150 ℃), 蒸发室内压力为1atm,蒸发30%的NaOH溶液,沸点为t=115 ℃, 其最大传热温度差,用ΔtT来表示: ΔtT=Ts-T=150-100=50℃ 有效温度差为: Δt=Ts-t=150-115=35℃ 则温度差损失为: Δ= ΔtT- Δt=( Ts-T)-( Ts-t)=t-T=15 ℃ 即传热温度差损失等于溶液的沸点与同压下水的沸点之差。只 有求得Δ,才可求得溶液的沸点t(=T+ Δ )和有效传热温度差Δt (=ΔtT- Δ )。
k=1+0.142x
(5-9a)
ym=150.75x2-2.71x
式中 x——溶液的质量浓度
(5-9b)
2 液柱静压强引起的温度差损失
5-1-3单效蒸发
(cp0-cpw)w1=(cp1-cpw)w0
由溶质物料平衡
Fw0 w1 = F -W F w0 ∴(c p 0 - c pw ) = w 0 (c p1 - c pw ) F -W
4
(cp0-cpw)F=(F-W) cp1-(F-W) cpw (F-W) cp1=(cp0-cpw)F+(F-W) cpw =Fcp0-Wcpw cp1t1=h1 cp0t0=h0 cpwT’ =hw (加热至沸点溶剂的焓值)
代入
Dr+ Fh0= (F-W)h1+ WH’ + QL(热量衡算式)
得到:Dr =W(H’-cpwt1)+Fcp0(t1-t0)+QL
H H’ cpw t 1 r
故
D r
(结合比焓定义理解, 同时忽略沸点升高)
二次蒸汽的汽化潜热
Fc p 0 (t1 t0 ) Wr QL
实际上 e值略大于1,一般为1.1左右。
6
(三)传热面积 S 由传热速率方程
Q Dr S Kt m K (T t1 )
K的计算→传热学知识
7
常见蒸发器的K值范围
蒸发器型式 K/(Wm-2K-1)
蛇管式
降膜式 中央循环管式(自然循环) 外热式(自然循环) 中央循环管式(强制循环)
1000~2000
加热蒸汽的汽化潜热
5
从上式可以看出,加热蒸汽的热量(Dr) 用于:
(1)加热溶液[ Fcp0(t1-t0)] ;
(2)蒸发水份(Wr’) ; (3)弥补热损QL 。 若沸点进料, t0=t1;又忽略热损 QL=0
就有
或
D r e 1 W r
Wr D r
单效蒸发及计算范文
单效蒸发及计算范文单效蒸发是一种常见的蒸发操作过程,用于从溶液中分离溶剂和溶质。
在单效蒸发中,溶液在一个蒸发器中加热,使溶剂蒸发,然后凝结和收集。
单效蒸发的基本原理是根据溶剂和溶质之间的汽液平衡关系。
在溶液中,溶剂的蒸汽压与溶质的蒸汽压不同,溶剂的蒸汽压较高,因此在加热的过程中,溶剂会先蒸发,而溶质则会留在液相中。
通过控制加热温度和压力,可以实现溶剂和溶质的分离。
单效蒸发的计算涉及一些基本参数,如溶液的初始浓度、蒸发温度、蒸汽压、蒸发器的流量和效率等。
以下是一个简单的单效蒸发计算实例:假设我们有一种溶液,初始浓度为10%(质量分数),总体积为1000升。
我们希望通过单效蒸发把溶剂蒸发掉,从而得到更高浓度的溶液。
蒸发器的进料流量为100升/小时,效率为90%。
首先,我们需要确定溶液中的溶剂和溶质的组分和浓度。
假设这是一个水和盐的溶液,溶剂为水,溶质为盐。
根据溶液的初始浓度,我们可以得到溶液中的溶剂和溶质的质量。
溶液的初始质量为1000升*10%=100千克,其中溶剂的质量为100千克*(1-10%)=90千克,溶质的质量为100千克-90千克=10千克。
接下来,我们需要根据溶液的成分和性质确定溶剂和溶质的蒸汽压。
水的蒸汽压可以通过查找蒸汽压表得到,假设此温度下水的蒸汽压为5千帕。
盐的蒸汽压可以忽略不计,因为溶剂和溶质的蒸汽压差异较大。
然后,我们可以计算蒸发器中的蒸汽流量。
蒸汽流量等于进料流量乘以效率,即100升/小时*90%=90升/小时。
最后,我们可以计算蒸发的速率。
蒸发速率等于溶剂的质量除以溶剂的密度,再除以流量,即90千克/(90升/小时)=1千克/升。
通过这个例子,我们可以看到单效蒸发的计算包括了溶液的成分和浓度、蒸发温度、蒸汽压、流量和效率等参数的考虑。
根据实际情况,还可以进一步考虑热损失、传热系数等因素来优化蒸发过程。
单效蒸发器蒸发计算方式
页眉内容单效蒸发器蒸发计算方式单效蒸发设计计算内容有: ①确定水的蒸发量; ②加热蒸汽消耗量; ③蒸发器所需传热面积。
在给定生产任务和操作条件,如进料量、温度和浓度,完成液的浓度,加热蒸汽的压力和冷凝器操作压力的情况下,上述任务可通过物料衡算、热量衡算和传热速率方程求解。
一、蒸发水量的计算对图5-13所示蒸发器进行溶质的物料衡算,可得由此可得水的蒸发量(5—1)完成液的浓度(5—2)式中:F ——原料液量,kg/h ; W ——蒸发水量,kg/h ; L ——完成液量,kg/h ; x 0——原料液中溶质的浓度,质量分数;x 1——完成液中溶质的浓度,质量分数。
二、加热蒸汽消耗量的计算加热蒸汽用量可通过热量衡算求得,即对图5-13作热量衡算可得:(5—3)110)(Lx x W F Fx =-=)1(1x x F W -=W F Fx x -=1Lc 10Q Dh Lh WH Fh DH +++=+‘图5-13 单效蒸发器或(5—3a )式中:H ——加热蒸汽的焓,kJ/kg ; H ´——二次蒸汽的焓,kJ/kg ; h 0 ——原料液的焓,kJ/kg ; h 1 ——完成液的焓,kJ/kg ;h c ——加热室排出冷凝液的焓,kJ/h ; Q ——蒸发器的热负荷或传热速率,kJ/h ; Q L ——热损失,可取Q 的某一百分数,kJ/kg ; c 0、c 1——为原料、完成液的比热,kJ/(kg ·℃) 。
考虑溶液浓缩热不大,并将H ´取t 1下饱和蒸汽的焓,则(9—3a )式可写成:(5—4)式中: r 、r ´——分别为加热蒸汽和二次蒸汽的汽化潜热,kJ/kg 。
若原料由预热器加热至沸点后进料(沸点进料),即t 0=t 1,并不计热损失,则(4—5)式可写为:(5—5)或(5—5a ) 式中:D /W 称为单位蒸汽消耗量,它表示加热蒸汽的利用程度,也称蒸汽的经济性。
单效蒸发及计算
单效蒸发及计算 Prepared on 22 November 2020单效蒸发及计算一.物料衡算(materialbalance)对图片5-13所示的单效蒸发器进行溶质的质量衡算,可得由上式可得水的蒸发量及完成液的浓度分别为(5-1)(5-2)式中F———原料液量,kg/h;W———水的蒸发量,kg/h;L———完成液量,kg/h;x0———料液中溶质的浓度,质量分率;x1———完成液中溶质的浓度,质量分率。
二.能量衡算(energybalance)仍参见图片(5-13),设加热蒸汽的冷凝液在饱和温度下排出,则由蒸发器的热量衡算得(5-3)或(5-3a)式中D———加热蒸汽耗量,kg/h;H———加热蒸汽的焓,kJ/kg;h0———原料液的焓,kJ/kg;H'———二次蒸汽的焓,kJ/kg;h1———完成液的焓,kJ/kg;hc———冷凝水的焓,kJ/kg;QL———蒸发器的热损失,kJ/h;Q———蒸发器的热负荷或传热速率,kJ/h。
由式5-3或5-3a可知,如果各物流的焓值已知及热损失给定,即可求出加热蒸汽用量D以及蒸发器的热负荷Q。
溶液的焓值是其浓度和温度的函数。
对于不同种类的溶液,其焓值与浓度和温度的这种函数关系有很大的差异。
因此,在应用式5-3或5-3a求算D时,按两种情况分别讨论:溶液的稀释热可以忽略的情形和稀释热较大的情形。
1.可忽略溶液稀释热的情况大多数溶液属于此种情况。
例如许多无机盐的水溶液在中等浓度时,其稀释的热效应均较小。
对于这种溶液,其焓值可由比热容近似计算。
若以0℃的溶液为基准,则(5-4)(5-4a)将上二式代入式5-3a得(5-3b)式中t0———原料液的温度,℃;t1———完成液的温度,℃;C0———原料液的比热容,℃;C1———完成液的比热容,℃;当溶液溶解的热效应不大时,其比热容可近似按线性加合原则,由水的比热容和溶质的比热容加合计算,即(5-5)(5-5a)式中CW———水的比热容,℃;CB———溶质的比热容,℃。
单效蒸发及其计算.
计算溶液比热的经验公式为:
Cp=cpw(1-x)+cpBx
当x<0.2时,上式简化为:
(5-19)
Cp=cpw(1-x)
式中 Cp——溶液的比热,kJ/(kg• ℃);
(5-19a)
Cpw——纯水的比热, kJ/(kg• ℃);
CpB——溶质的比热, kJ/(kg• ℃).
为简化计算,上式中完成液的比热可用原料液的比热表示。
式中 作压强有关。
(5-4)
tA——溶液沸点,℃,主要与溶液的类别、浓度及操 T′——与溶液压强相等时水的沸点,即二次蒸气的 饱和温度,℃
在文献和手册中,可以查到常压(1atm)下某些溶液在不同浓
度时的沸点数据。非常压下的溶液沸点则需计算,估算方法有两种。
(1) f a
式中
(5-5)
下降。此项温度差损失与蒸汽的流速、物
性和管道的尺寸有关,一般取0.5~1.5℃。
二、单效蒸发的计算
单效蒸发的计算项目有: (1)蒸发量; (2)加热蒸气消耗量;
(3)蒸发器的传热面积
通常生产任务中已知的项目有: (1)原料液流量、组成与温度; (2)完成液组成; (3)加热蒸气压强或温度; (4)冷凝器的压强或温度。
a ——常压下溶液的沸点升高,可由实验测定的tA值
求得,℃; Δ′——操作条件下溶液的沸点升高,℃;
f——校正系数,无因次。其经验计算式为:
0.016(T 273) 2 f r
式中 T′——操作压强下二次蒸气的温度,℃;
(5-6)
r′——操作压强下二次蒸气的汽化热,kJ/kg。
(2) 杜林规则
k=1+0.142x
(5-9a)
ym=150.75x2-2.71x
单效蒸馏器蒸发计算方式
单效蒸馏器蒸发计算方式
单效蒸馏器是一种常见的蒸馏设备,常用于分离液体的混合物。
蒸发计算是在设计和操作蒸馏器时必不可少的环节。
蒸发计算的基本原理是根据物料的物理化学性质和热力学原理,确定蒸馏器的操作条件和设计参数。
下面是一个简单的蒸发计算方式,供参考:
1. 确定进料物料的质量流率和组成,包括液相和气相组分的含量。
2. 确定蒸发器的进料温度和出料温度,这涉及到蒸发器的设计
要求和操作目标。
3. 根据物料的蒸发热和热平衡原理,计算出所需的蒸发热量。
4. 根据蒸发热量和进料温度,计算出蒸发器所需的加热功率或
蒸汽流量。
5. 根据蒸发器的传热性能和热平衡原理,计算出所需的换热面积。
6. 根据蒸发器的传热性能和操作要求,选择合适的传热介质和
传热方式。
7. 根据蒸发器的操作要求,选择适当的操作参数,如进料质量流率、汽液比、蒸发温度等。
8. 进行蒸发器的设计和优化,包括确定设备的尺寸、材料、结构等。
在进行蒸发计算时,需要考虑多种因素,如物料的性质、操作条件、设备的性能等。
因此,蒸发计算是一个复杂的过程,需要综合考虑多种因素才能得到准确的结果。
以上是单效蒸馏器蒸发计算方式的简要介绍,希望对您有所帮助。
单效蒸发及计算
单效蒸发及计算一.物料衡算二.能量衡算1.可忽略溶液稀释热的情况2.溶液稀释热不可忽略的情况三.传热设备的计算1.传热的平均温度差2.蒸发器的传热系数3.传热面积计算四.蒸发强度与加热蒸汽的经济性1.蒸发器的生产能力和蒸发强度2.加热蒸汽的经济性一.物料衡算(materialbalance)对图片5-13所示的单效蒸发器进行溶质的质量衡算,可得由上式可得水的蒸发量及完成液的浓度分别为(5-1)(5-2)式中F———原料液量,kg/h;W———水的蒸发量,kg/h;L———完成液量,kg/h;x0———料液中溶质的浓度,质量分率;x1———完成液中溶质的浓度,质量分率。
二.能量衡算(energybalance)仍参见图片(5-13),设加热蒸汽的冷凝液在饱和温度下排出,则由蒸发器的热量衡算得(5-3)或(5-3a)式中D———加热蒸汽耗量,kg/h;H———加热蒸汽的焓,kJ/kg;h0———原料液的焓,kJ/kg;H'———二次蒸汽的焓,kJ/kg;h1———完成液的焓,kJ/kg;hc———冷凝水的焓,kJ/kg;QL———蒸发器的热损失,kJ/h;Q———蒸发器的热负荷或传热速率,kJ/h。
由式5-3或5-3a可知,如果各物流的焓值已知及热损失给定,即可求出加热蒸汽用量D以及蒸发器的热负荷Q。
溶液的焓值是其浓度和温度的函数。
对于不同种类的溶液,其焓值与浓度和温度的这种函数关系有很大的差异。
因此,在应用式5-3或5-3a求算D时,按两种情况分别讨论:溶液的稀释热可以忽略的情形和稀释热较大的情形。
1.可忽略溶液稀释热的情况大多数溶液属于此种情况。
例如许多无机盐的水溶液在中等浓度时,其稀释的热效应均较小。
对于这种溶液,其焓值可由比热容近似计算。
若以0℃的溶液为基准,则(5-4)(5-4a)将上二式代入式5-3a得(5-3b)式中t0———原料液的温度,℃;t1———完成液的温度,℃;C0———原料液的比热容,℃;C1———完成液的比热容,℃;当溶液溶解的热效应不大时,其比热容可近似按线性加合原则,由水的比热容和溶质的比热容加合计算,即(5-5)(5-5a)式中CW———水的比热容,℃;CB———溶质的比热容,℃。
单效蒸发计算7.3蒸发操作经济性与操作方式7.4蒸发设备
7.3.1加热蒸汽的经济性
❖ 蒸汽的经济性:每1kg加热蒸汽所能蒸发的水量
(W/D) (或用溶液中蒸发出1kg 水所需消耗的生 蒸汽的量 D/W表示蒸汽的利用率)。若物料的水溶
液先预热至沸点后加入蒸发器,忽略生蒸汽与产生 的二次蒸汽的汽化潜热的差异,不计热损失,则每
1kg加热蒸汽可汽化1kg水,即W/D =1。实际上,由 于有热损失等原因,W/D <1。
由传热速率方程得
Q A
Ktm
式中
A ——蒸发器传热面积,m2;
Q ——传热量,W;
K——传热系数,W/m2·K;
Δtm——平均传热温差,K。
❖ (3)蒸发器传热面积的计算
由于蒸发过程的蒸汽冷凝和溶液沸腾之间的恒温差传
热,Δtm=Ts - t,且蒸发器的热负荷Q = DR,所以有
Q
DR
ห้องสมุดไป่ตู้
A
K (Ts t) K (Ts t)
一百分数。
❖ 焓值的计算:习惯上取0℃为基准,即0℃时的焓 为零,则有
hs c*Ts
h0 c0t0 0 c0t0
h ct 0 ct
代入前面的两式得:
D(Hs hs ) F (ct c0t0 ) W (H ct) Ql
式中 c0 、c——料液和完成液的比热,kJ/kg·K。
为了避免使用不同浓度溶液的比热,可近似认为 溶液的比热容和所含溶质的浓度呈加和关系,即
DHs Fh0 (F W )h WH Dhs Ql (3)
D(Hs hs ) F(h h0 ) W (H h) Ql (4)
式中
D —— 加热蒸汽消耗量,kg/s;
t0,t —— 加料液与完成液的温度,℃; h0,h,hs —— 加料液,完成液和冷凝水的热焓,kJ/kg; H,Hs—— 二次蒸汽和加热蒸汽的热焓,kJ/kg。 式中热损失Ql可视具体条件来取加热蒸汽放热量(DR)的某
单效蒸发
7.2 单效蒸发7.2.1 单效蒸发的计算对于单效蒸发,在给定的生产任务和确定了操作条件以后,通常需要计算以下的这些内容:① 分的蒸发量;② 热蒸汽消耗量;③ 发器的传热面积。
要解决以上问题,我们可应用物料衡算方程,热量衡算方程和传热速率方程来解决。
(1)物料衡算溶质在蒸发过程中不挥发,且蒸发过程是个定态过程,单位时间进入和离开蒸发器的量相等,即w W F Fw )(0-=水分蒸发量: )1(0w w F W -= (1) 完成液的浓度: WF Fw w -=0 (2) (2)热量衡算对蒸发器作热量衡算,当加热蒸汽在饱和温度下排出时,损Q Di WI i W F Fi DI s +++-=+)(0s (3)或 损Q i I W i i F i I D s s +-+-=-)()()(0 (4) 式中 D ——加热蒸汽消耗量,kg/s ;0t ,t ——加料液与完成液的温度,℃;0i ,i ,s i ——加料液,完成液和冷凝水的热焓,kJ/kg ;I ,s I ——二次蒸汽和加热蒸汽的热焓,kJ/kg 。
式中热损失损Q 可视具体条件来取加热蒸汽放热量(0Dr )的某一百分数。
用以上两个式子进行计算时,必须预知溶液在一定浓度和温度下的焓。
对于大多数物料的蒸发,可以不计溶液的浓缩热,而由比热求得其焓。
习惯上取0℃为基准,即0℃时的焓为零,则有0*T c i s =000000t c t c i =-=ct ct i =-=00c 、c ——料液和完成液的比热,kJ/kg ·K 。
代入前面的两式得损Q ct I W t c c F i I D t s s +-+-=-)()()(00为了避免使用不同溶液浓度下的比热,可以近似认为溶液的比热容和所含溶质的浓度呈加和关系,即0B 0*0)1(w c w c c +-=w c w c c B *)1(+-=式中 *c ——水的比热,kJ/kg ; B c ——溶质的比热,kJ/kg 。
单效蒸发器范文
单效蒸发器篇(一):单效蒸发器蒸发计算方式最详细总结,还有案例分析哦在蒸发结晶系统操作过程中,时常也伴随着许多的数值和计算,今天小七详细为您说明单效蒸发器蒸发过程中,在给定生产任务和操作条件要完成的计算。
蒸发水量的计算对图5-13所示蒸发器进行溶质的物料衡算,可得Fx0=(F-W)x1=Lx1由此可得水的蒸发量完成液的浓度式中F——原料液量,kg/h;W——蒸发水量,kg/h;L——完成液量,kg/h;x0——原料液中溶质的浓度,质量分数;x1——完成液中溶质的浓度,质量分数。
加热蒸汽消耗量的计算加热蒸汽用量可通过热量衡算求得,即对图5-13作热量衡算可得DH Fh0=WH Dhc QL (5—3)或Q=D(H-hc)=WH’ Lh1-Fh0 QL(5—3a)式中H——加热蒸汽的焓,kJ/kg ;H′——二次蒸汽的焓,kJ/kg ;h0——原料液的焓,kJ/kg ;h1——完成液的焓,kJ/kg ;hc——加热室排出冷凝液的焓,kJ/h ;Q——蒸发器的热负荷或传热速率,kJ/h ;QL——热损失,可取Q的某一百分数,kJ/kg ;c0、c1——为原料、完成液的比热,kJ/(kg·℃) 。
考虑溶液浓缩热不大,并将H′取t1下饱和蒸汽的焓,则(9—3a)式可写成(5—4)式中r 、r′——分别为加热蒸汽和二次蒸汽的汽化潜热,kJ/kg。
若原料由预热器加热至沸点后进料(沸点进料),即t0=t1,并不计热损失,则(4—5)式可写为(5—5)或(5—5a)式中D/W称为单位蒸汽消耗量,它表示加热蒸汽的利用程度,也称蒸汽的经济性。
由于蒸汽的汽化潜热随压力变化不大,故r=r′。
对单效蒸发而言,D/W=1,即蒸发一千克水需要约一千克加热蒸汽,实际操作中由于存在热损失等原因,D/W ≈1。
可见单效蒸发的能耗很大,是很不经济的。
传热面积的计算蒸发器的传热面积可通过传热速率方程求得,即(5—6)或(5—6a)式中A ——蒸发器的传热面积,m2;K——蒸发器的总传热系数,W/(m2·K);Δtm——传热平均温度差,℃;Q——蒸发器的热负荷,W或kJ/kg。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(5-4a)
将上二式代入式5-3a得
(5-3b)
式中
t0———原料液的温度,℃;
t1———完成液的温度,℃;
C0———原料液的比热容, ℃ ;
C1———完成液的比热容, ℃ ;
当溶液溶解的热效应不大时,其比热容可近似按线性加合原则,由水的比热容和溶质的比热容加合计算,即
(5-5)
(5-5a)
式中
S----蒸发器的传热面积,m2;
K----蒸发器的总传热系数,W/(m2.K);
----传热的平均温度差,℃;
Q----蒸发器的热负荷,W。
式5-11中的热负荷Q可通过对加热器作热量衡算求得。当忽略加热器的热损失,则Q为加热蒸汽冷凝放出的热量,即
(5-12)
但在确定蒸发器的和K时,与普通的热交换器有着一定的差别。下面分别予以讨论。
3.传热面积计算
四.蒸发强度与加热蒸汽的经济性
1.蒸发器的生产能力和蒸发强度
2.加热蒸汽的经济性
一.物料衡算(material balance)
对图片5-13所示的单效蒸发器进行溶质的质量衡算,可得
由上式可得水的蒸发量及完成液的浓度分别为
(5-1)
(5-2)
式中
F———原料液量,kg/h;
W———水的蒸发量,kg/h;
1.传热的平均温度差(meantemperature difference)
蒸发器加热室的一侧为蒸汽冷凝,另一侧为溶液沸腾,其温度为溶液的沸点。因此,传热的平均温度差为
(5-13)
式中
式中T----加热蒸汽的温度,℃;
t1----操作条件下溶液的沸点,℃。
亦称为蒸发的有效温度差,是传热过程的推动力。
单效蒸发及计算
————————————————————————————————作者:
———————————————————————————————— 日期:
单效蒸发及计算
一.物料衡算
二.能量衡算
1.可忽略溶液稀释热的情况
2.溶液稀释热不可忽略的情况
三.传热设备的计算
1.传热的平均温——完成液量,kg/h;
x0———料液中溶质的浓度,质量分率;
x1———完成液中溶质的浓度,质量分率。
二.能量衡算(energybalance)
仍参见图片(5-13),设加热蒸汽的冷凝液在饱和温度下排出,则由蒸发器的热量衡算得
(5-3)
或
(5-3a)
式中
D———加热蒸汽耗量,kg/h;
H———加热蒸汽的焓,kJ/kg;
(5-10)
一般水的汽化潜热随压力变化不大,即 ,则 或 。换言之,采用单效蒸发,理论上每蒸发1kg水约需1kg加热蒸汽。但实际上,由于溶液的热效应和热损失等因素,e值约为1.1或更大。
2.溶液稀释热不可忽略的情况.
有些溶液,如CaCl2、NaOH的水溶液,在稀释时其放热效应非常显著。因而在蒸发时,作为溶液稀释的逆过程,除了提供水分蒸发所需的汽化潜热之外,还需要提供和稀释热效应相等的浓缩热。溶液浓度越大,这种影响越加显著。对于这类溶液,其焓值不能按上述简单的比热容加合方法计算,需由专门的焓浓图查得。
如果仍采用如上操作条件(即加热蒸汽的温度为150℃,冷凝器的操作压力为101.3kPa),蒸发71.3%的NH4NO3水溶液,则实验表明,在相同的压力下(101.3kPa),该水溶液在120℃下沸腾。然而该溶液上方形成的二次蒸汽却与纯水沸腾时产生的蒸汽有着相同的温度,即100℃。也就是说,二次蒸汽的温度低于溶液的沸点温度。亦忽略二次蒸汽从蒸发室流到冷凝器的阻力损失,则进入冷凝器的二次蒸汽温度为100℃,此时传热的有效温度差变为 ℃=30℃
式中
CW———水的比热容, ℃ ;
CB———溶质的比热容, ℃ 。
将式5-5与5-5a联立消去CB并代入式5-2中,可得 ,再将上式代入式5-3b中,并整理得
(5-6)
由于已假定加热蒸汽的冷凝水在饱和温度下排出,则上式中的即为加热蒸汽的冷凝潜热,即
(5-7)
但由于溶液的沸点升高,二次蒸汽的温度 与溶液温度t1并不相同(下面还要详细讨论)。但作为近似,可以认为
设蒸发器蒸发的是纯水而非含溶质的溶液。采用T=150℃的蒸汽加热,冷凝器在常压(101.3kPa)下操作,因此进入冷凝器的二次蒸汽的温度为100℃。如果忽略二次蒸汽从蒸发室流到冷凝器的摩擦阻力损失,则蒸发室内操作压力亦为101.3kPa。又由于蒸发的是纯水,因此蒸发室内的二次蒸汽及沸腾的水均为100℃。此时传热的有效温差 应等于总温度差 ℃。
通常溶液的焓浓图需由实验测定。图片(5-14)为以0℃为基准温度的NaOH水溶液的焓浓图。由图可见,当有明显的稀释热时,溶液的焓是浓度的高度非线性函数。
对于这类稀释热不能忽略的溶液,加热蒸汽的消耗量可直接按式5-3a计算,即
(5-3b)
三.传热设备的计算
蒸发器的传热速率方程与通常的热交换器相同,即
(5-11)
h0———原料液的焓,kJ/kg;
H'———二次蒸汽的焓,kJ/kg;
h1———完成液的焓,kJ/kg;
hc———冷凝水的焓,kJ/kg;
QL———蒸发器的热损失,kJ/h;
Q———蒸发器的热负荷或传热速率,kJ/h。
由式5-3或5-3a可知,如果各物流的焓值已知及热损失给定,即可求出加热蒸汽用量D以及蒸发器的热负荷Q。
但是,在蒸发过程的计算中,一般给定的条件是加热蒸汽的压力(或温度T)和冷凝内的操作压力。由给定的冷凝器内的压力,可以定出进入冷凝器的二次蒸汽的温度tc。一般地,将蒸发器的总温度差定义为
(5-14)
式中tc----进入冷凝器的二次蒸汽的温度,℃。那么,如何从已知的 求得传热的有效温差 ,或者说,如何将tc转化为t1呢?让我们先讨论一种简化的情况。
(5-8)
式中
r——加热蒸汽的冷凝潜热,kJ/kg;
r'——二次蒸汽的冷凝潜热,kJ/kg。
将式5-7及式5-8代入式5-6中,可得o
(5-9)
上式表示加热蒸汽放出的热量用于:(1)原料液由t0升温到沸点t1;(2)使水在t1下汽化成二次蒸汽以及(3)热损失。
若原料液在沸点下进入蒸发器并同时忽略热损失,则由式5-9可得单位蒸汽消耗量e为
溶液的焓值是其浓度和温度的函数。对于不同种类的溶液,其焓值与浓度和温度的这种函数关系有很大的差异。因此,在应用式5-3或5-3a求算D时,按两种情况分别讨论:溶液的稀释热可以忽略的情形和稀释热较大的情形。
1.可忽略溶液稀释热的情况
大多数溶液属于此种情况。例如许多无机盐的水溶液在中等浓度时,其稀释的热效应均较小。对于这种溶液,其焓值可由比热容近似计算。若以0℃的溶液为基准,则