七年级数学 暑假提高练习 应用题

合集下载

人教版七年级上册数学期末实际问题应用题-配套问题提升训练

人教版七年级上册数学期末实际问题应用题-配套问题提升训练

人教版七年级上册数学期末实际问题应用题-配套问题提升训练1.机械厂加工车间有90名工人,平均每人每天加工大齿轮20个或小齿轮15个,已知2个大齿轮与3个小齿轮配成一套,问一天可以生产多少套这样成套的产品?2.某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是调入工人人数的3倍多4人.(1)调入多少名工人;(2)在(1)的条件下,每名工人每天可以生产1200个螺柱或2000个螺母,1个螺柱需要2个螺母,为使每天生产的螺桩和螺母刚好配套,应该安排生产螺柱和螺母的工人各多少名?3.劳作课上,王老师组织七年级5班的学生用硬纸制作圆柱形笔筒.七年级5班共有学生55人,其中男生人数比女生人数少3人,每名学生每小时能剪筒身30个或剪筒底90个.(1)七年级5班有男生,女生各多少人;(2)原计划女生负责剪筒身,男生负责剪筒底,要求一个筒身配两个筒底,那么每小时剪出的筒身与筒底能配套吗?如果不配套,男生应向女生支援多少人,才能使每小时剪出的筒身与筒底配套.4.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,求这一天有几个工人加工甲种零件,几个工人加工乙种零件?5.机械厂加工车间有90名工人,平均每人每天加工大齿轮8个或小齿轮14个,已知1个大齿轮与2个小齿轮配成一6.某车间有27个工人,生产甲、乙两种零件,已知每人每天平均能生产甲种零件22个或乙种零件16个,应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的甲种零件和乙种零件刚好配套?(每2个甲种零件和1个乙种零件配成一套)7.某丝巾厂家70名工人义务承接了第十六届亚运会上中国志愿者手上、脖子上的丝巾的制作任务.已知每人每天平均生产手上的丝巾1800条或者脖子上的丝巾1200条,1条脖子上的丝巾要配2条手上的丝巾.(1)为了使每天生产的丝巾刚好配套,应分配多少名工人生产手上的丝巾,多少名工人生产脖子上的丝巾?(2)在(1)的方案中,能配成______套.8.制作一张餐桌要用一个桌面和4条桌腿.某家具公司的木工师傅用31m木材可制作15个桌面或300个桌腿,公司现有318m的木材.(1)应怎样安排用料才能使制作的桌面和桌腿配套?(2)一共可制作多少张桌子?9.某车间每天能制作甲种零件300只,或者制作乙种零件200只,1只甲种零件需要配2只乙种零件.(1)若制作甲种零件2天,则需要制作乙种零件____只,才能刚好配成套.(2)现要在20天内制作最多的成套产品,则甲、乙两种零件各应制作多少天?10.在甲处劳动的工人有29人,在乙处劳动的工人有17人,现在为了赶工期,总公司另调20名工人去支援甲乙两处,使在甲处劳动的工人为在乙处劳动的工人的2倍还多3人,应分别调往甲乙两处各多少名工人?11.某体育用品商场销售某品牌自行车,已知1名熟练工与1名新工人每天共能装配好8辆自行车,3名熟练工与5名新工人每天共能装配好28辆自行车.①1名新工人每天可以装配好多少辆自行车?②根据销售经验,该商场预计元旦期间每天可以售出20辆该品牌自行车,商场现只有2名熟练工,那么至少还需要招多少名新工人?12.在手工制作课上,老师组织七年级(2)班的学生用硬纸制作圆柱形茶叶筒.七年级(2)班共有学生44人,其中男生人数比女生人数少2人,并且每名学生每小时剪筒身50个或剪筒底120个.(1)七年级(2)班有男生、女生各多少人?(2)要求一个筒身配两个筒底,为了使每小时剪出的筒身与筒底刚好配套,应该分配多少名学生剪筒身,多少名学生剪筒底?13.某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成. 工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品. (1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G 型装置的加工,且每人每天只能加工4个G型装置. 请问至少需要补充多少名新工人?14.(1)把一批图书分给初一某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则差25本.这个班有多少名学生?(2)读书周,这个班级的学生去图书馆整理图书,已知平均每个学生单独整理这个图书馆的图书需要235小时,上午男生先整理了4个小时,下午女生加入,一起又干了3个小时完成了全部工作,问这个班级男生有多少人?15.制作一张餐桌要用一个桌面和4条桌腿.某家具公司的木工师傅用1m3木材可制作15个桌面或300个桌腿,公司现有18m3的木材.(1)应怎样安排用料才能使制作的桌面和桌腿配套?(2)家具公司欲将制作餐桌全部出售,为尽快回收资金,决定以标价的八折出售,一张餐桌仍可获利28%,这样全部出售后总获利31500元.求每张餐桌的标价是多少?16.公园计划在园内的坡地上栽种树苗和花圃,树苗和花苗的比例是1:25,已知每人每天种植树苗3棵或种植花苗50棵,现有15人参与种植劳动.(1)怎样分配种植树苗和花苗的人数,才能使得种植任务同时完成?(2)现计划种植树苗60棵,花苗1500棵,要求在3天内完成,原有人数能完成吗?如果完成,请说明理由;如不能完成,请问至少派多少人去支援才能保证3天内完成任务?参考答案1.解:设生产大齿轮的为x人,则生产小齿轮的为(90-x)人,由题意得:20x×3=15(90-x)×2,解得:x=30,20×30÷2=300(套).∴一天可以生产300套这样成套的产品.2.解:(1)设调入x名工人,根据题意得:16+x=3x+4,解得:x=6,故调入6名工人;(2)16+6=22(人),设y名工人生产螺柱,根据题意得:2×1200y=2000(22-y),解得:y=10,22-y=22-10=12(人),则10名工人生产螺柱,12名工人生产螺母.3.解:(1)设七年级5班有男生x人,则有女生(x+3)人,由题意得:x+x+3=55,解得x=26,女生:26+3=29(人).答:七年级5班有男生26人,女生29人;(2)男生剪筒底的数量:26×90=2340(个),女生剪筒身的数量:29×30=870(个),∵一个筒身配两个筒底,2340:870≠2:1,∴原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不配套.设男生应向女生支援y人,由题意得:90×(26﹣y)=(29+y)×30×2,解得y=4.答:男生应向女生支援4人,才能使每小时剪出的筒身与筒底配套.4.设这一天加工甲种零件的工人人数为x ,加工乙种零件的工人人数为()16x -由题意可得:()165244161440x x ⨯+⨯-=解得:6x =∴这一天加工甲种零件的工人人数为6人,加工乙种零件的工人人数为10人; 5.解:需安排x 名工人加工大齿轮,则安排(90-x )名工人加工小齿轮才能使每天加工的大小齿轮刚好配套,由题意知,8214(90)x x ⋅=-,16x =1260-14x ,30x =1260,x =42,90-42=48(人),答:需安排42名工人加工大齿轮,则安排48名工人加工小齿轮才能使每天加工的大小齿轮刚好配套.6.解:设分配x 人生产甲零件,则有(27-x)人生产乙零件,根据题意可列方程:22x=2×16(27-x), 解得:x=16.则27-x=11人.即分配16人生产甲零件,11人生产乙零件.7.(1)为了使每天生产的丝巾刚好配套,应分配x 名工人生产手上的丝巾,(70)x -名工人生产脖子上的丝巾,根据题意,得:1800(70)12002x x =-⨯⨯,解得:40x =.∴70704030x -=-=.答:为了使每天生产的丝巾刚好配套,应分配40名工人生产手上的丝巾,30名工人生产脖子上的丝巾;(2)301200⨯=36000(套),故答是:36000.8.解:(1)设应计划使用3xm 木料制作桌面,则使用3(18)x m -木料制作桌腿,根据题意得:415300(18)x x ⨯=-,解得:15x =,则1818153x -=-=.答:用15立方米做桌面,用3立方米做桌腿才能使制作的桌面和桌腿配套. (2)31m 木材可制作15个桌面,则315m 木料制作1515225⨯=个桌面.答:一共制作225套.9.解:(1)300×2×2=1200(只). 故答案为:1200.(2)设应制作甲种零件x 天,则应制作乙种零件(20﹣x)天,依题意,得:2×300x =200(20﹣x), 解得:x =5,∴20﹣x =15.答:应制作甲种零件5天,乙种零件15天.10.解:设应调往甲处x 名工人,则应调往乙处(20-x )名工人,()29217203x x +=+-+解得16x =所以204x -=答:应调往甲处16人,乙处4人.11.②解法一:设至少还需要招y 名新工人,由题意得(8﹣2)×2+2y=20, 解得:y=4.答:至少还需要招4名新工人.解法二:[20﹣(8﹣2)×2]÷2=[20﹣6×2]÷2=[20﹣12]÷2=8÷2=4(名).答:至少还需要招4名新工人.12.(1)设七年级(2)班有男生x 人,依题意得()244x x ++=,解得21x =,223x +=所以,七年级(2)班有男生21人,女生23人;(2)设分配剪筒身的学生为y 人,依题意得()50212044y y ⨯=-,解得24y =,4420y -=,所以,应该分配24名学生剪筒身,20名学生剪筒底.13.试题解析:(1)设有x 名工人加工G 型装置,则有(80-x )名工人加工H 型装置,根据题意,,解得x=32,则80-32=48(套),答:每天能组装48套GH 型电子产品;(2)设招聘a 名新工人加工G 型装置仍设x 名工人加工G 型装置,(80-x )名工人加工H 型装置,根据题意,,整理可得,x=,答:至少应招聘30名新工人,14.(1)设有x名学生,根据书的总量相等可得:3x+20=4x﹣25,解得:x=45(名).答:这个班有45名学生.(2)设男生有y人,则女生有(45﹣y)人,依题意得:(4+3)y+3(45﹣y)=235,解得y=25.答:这个班级男生有25人.15.解:(1)设用x立方米做桌面,则用(18﹣x)立方米做桌腿.根据题意得:4×15x=300(18﹣x),解得:x=15,则18﹣x=18﹣15=3.答:用15立方米做桌面,用3立方米做桌腿才能使制作的桌面和桌腿配套.(2)15×15=225(张),设每张餐桌的标价是y元,根据题意得:225[0.8y﹣0.8y÷(1+28%)]=31500,解得:y=800.故每张餐桌的标价是800元.16.(1)首先设安排x人种植树苗,可得:3x:50(15﹣x)=1:25解得:x=6.答:安排6人种植树苗,安排9人种植花苗;(2)树苗:6020263333==⨯,至少为7人;花苗:1500503⨯=10,至少10人,∴不能完成10+7-15=2(人)答:至少派2人去支援才能保证三天内完成任务.。

人教版数学七年级上册期末提高专练:数轴类应用题综合(五)

人教版数学七年级上册期末提高专练:数轴类应用题综合(五)

2020年秋人教版数学七年级上册期末提高专练:数轴类应用题综合(五)1.已知在纸面上有一数轴(如图),折叠纸面.例如:若数轴上数2表示的点与数﹣2表示的点重合,则数轴上数﹣4表示的点与数4表示的点重合,根据你对例题的理解,解答下列问题:若数轴上数﹣3表示的点与数1表示的点重合.(根据此情境解决下列问题)(1)则数轴上数3表示的点与数表示的点重合.(2)若点A到原点的距离是5个单位长度,并且A、B两点经折叠后重合,则B点表示的数是.(3)若数轴上M,N两点之间的距离为2018,并且M,N两点经折叠后重合,如果M点表示的数比N点表示的数大,则M点表示的数是;则N点表示的数是.2.阅读材料:如图①,若点B把线段AC分成两条长度相等的线段AB和BC,则点B叫做线段AC的中点.回答问题:(1)如图②,在数轴上,点A所表示的数是﹣2,点B所表示的数是0,点C所表示的数是3.①若A是线段DB的中点,则点D表示的数是;②若E是线段AC的中点,求点E表示的数.(2)在数轴上,若点M表示的数是m,点N表示的数是n,点P是线段MN的中点.①若点P表示的数是1,则m、n可能的值是(填写符合要求的序号);i)m=0,n=2;ii)m=﹣5,n=7;iii)m=0.5,n=1.5;iv)m=﹣1,n=2.②若点P表示的数是1,m、n之间满足的数量关系是.3.同学们知道,|8﹣3|表示8与3的差的绝对值,也可理解为数轴上表示数8与3两点间的距离.试探索:(1)填空:|8+3|表示数轴上数8与数两点间的距离;(2)|x+5|+|x﹣2|表示数轴上数x与数的距离和数x与数的距离的和.(3)满足|x+5|+|x﹣2|=7的所有整数x的值是.(4)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有写出最小值;如果没有,说明理由.4.已知在纸面上有一数轴(如图),折叠纸面.例如:若数轴上数2表示的点与数﹣2表示的点重合,则数轴上数﹣4表示的点与数4表示的点重合,根据你对例题的理解,解答下列问题若数轴上数﹣7表示的点与数1表示的点重合.(根据此情境解决下列问题)①则数轴上数3表示的点与数表示的点重合;②若点A到原点的距离是5个单位长度,并且A、B两点经折叠后重合,则B点表示的数是;③若数轴上M、N两点之间的距离为2020,并且M、N两点经折叠后重合,如果M点表示的数比N点表示的数大,则M点表示的数是,则N点表示的数是;5.根据给出的数轴及已知条件,解答下面的问题:(1)已知点A,B,C表示的数分别为1,﹣2.5,﹣3观察数轴,B,C两点之间的距离为;与点A的距离为3的点表示的数是;(2)若将数轴折叠,使得A点与C点重合,则与B点重合的点表示的数是;若此数轴上M,N两点之间的距离为2020(M在N的左侧),且当A点与C点重合时,M点与N点也恰好重合,则M、N两点表示的数分别是:M:,N:.(3)若数轴上P,Q两点间的距离为m(P在Q左侧),表示数n的点到P,Q两点的距离相等,则将数轴折叠,使得P点与Q点重合时,P,Q两点表示的数分别为:P,Q.(用含m,n的式子表示这两个数)6.阅读下面材料:点A,B在数轴上分别表示有理数a、b,|AB|表示A,B两点之间的距离.当A、B两点中有一点在原点时(假设A在原点),如图①,|AB|=|OB|=|b|=b=|a﹣b|;当A、B两点都在原点右侧时,如图②,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;当A、B两点都在原点左侧时,如图③,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;当AB两点在原点两侧时,如图④,|AB|=|OA|+|OB|=|a|+|b|=﹣a+(﹣b)=|a﹣b|;请根据上述结论,回答下列问题:(1)数轴上表示2和5的两点间距离是,数轴上表示﹣2和﹣5的两点间距离是,数轴上表示﹣1和3的两点间距离.(2)数轴上表示x和﹣1的两点A和B之间的距离可表示为,若|AB|=2,则x 的值为.(3)当|x+2|+|x﹣1|取最小值时,请写出所有符合条件的x的整数值.7.在一条不完整的数轴上从左到右有点A,B,D,C,其中AB=2,BD=3,DC=1,如图所示,设点A,B,D,C所对应数的和是p.(1)①若以B为原点.写出点A,D,C所对应的数,并计算p的值;②若以D为原点,p的值是若以C为原点,p的值是.(2)若原点O在图中数轴上点C的右边,且CO=15,p的值是.8.已知数轴上A,B,C三点对应的数分别为﹣1、3、5,点P为数轴上任意一点,其对应的数为x.点A与点P之间的距离表示为AP,点B与点P之间的距离表示为BP.(1)若AP=BP,则x=;(2)若AP+BP=8,求x的值;(3)若点P从点C出发,以每秒3个单位的速度向右运动,点A以每秒1个单位的速度向左运动,点B以每秒2个单位的速度向右运动,三点同时出发.设运动时间为t秒,试判断:4BP﹣AP的值是否会随着t的变化而变化?请说明理由.9.操作探究:已知在纸面上有一数轴(如图3所示),操作一:(1)折叠纸面,使表示的点1与﹣1表示的点重合,则﹣2表示的点与表示的点重合;操作二:(2)折叠纸面,使﹣1表示的点与3表示的点重合,那么5表示的点与表示的点重合,此时若数轴上A、B两点之间距离为9,(A在B的左侧),且A、B两点经折叠后重合,那么A、B两点表示的数分别是、.操作三:(3)已知在数轴上点A表示的数是a,点A移动4个单位,此时点A表示的数和a是互为相反数,那么a的值是.10.已知a>b,a与b两个数在数轴上对应的点分别为点A、点B,求A、B两点之间的距离.【探索】小明利用绝对值的概念,结合数轴,进行探索:因为a>b,则有以下情况:情况一、若a>0,b≥0,如图,A、B两点之间的距离:AB=|a|﹣|b|=a﹣b;……(1)补全小明的探索【应用】(2)若点C对应的数c,数轴上点C到A、B两点的距离相等,求c.(用含a、b的代数式表示)(3)若点D对应的数d,数轴上点D到A的距离是点D到B的距离的n(n>0)倍,请探索n的取值范围与点D个数的关系,并直接写出a、b、d、n的关系.参考答案1.解:(1)∵数轴上数﹣3表示的点与数1表示的点关于点﹣1对称,1﹣(﹣3)=4,而﹣1﹣4=﹣5,所以数轴上数3表示的点与数﹣5表示的点重合;故答案为:﹣5;(2)点A到原点的距离是5个单位长度,则点A表示的数为5或﹣5,∵A、B两点经折叠后重合,∴当点A表示﹣5时,﹣1﹣(﹣5)=4,﹣1+4=3,当点A表示5时,5﹣(﹣1)=6,﹣1﹣6=﹣7,∴B点表示的数是﹣7或3;故答案为:﹣7或3;(3)M、N两点之间的距离为2018,并且M、N两点经折叠后重合,∴﹣1+×2018=1008,﹣1﹣×2018=﹣1010,又∵M点表示的数比N点表示的数大,∴M点表示的数是1008,N点表示的数是﹣1010.故答案为:1008,﹣1010.2.解:(1)①点A所表示的数是﹣2,点B所表示的数是0,A是线段DB的中点,∴点D表示的数是﹣4,故答案为:﹣4;②点A所表示的数是﹣2,点C所表示的数是3,E是线段AC的中点,∴点E表示的数为=.(2)①点M表示的数是m,点N所表示的数是n,点P是线段MN的中点,点P表示的数是1,∴1=,即m+n=2,∴m、n可能的值是:(i)m=0,n=2;(ii)m=﹣5,n=7;(iii)m=0.5,n=1.5.故答案为:(i)(ii)(iii);②若点P表示的数是1,m、n之间满足的数量关系是1=,即m+n=2.故答案为:m+n=2.3.解:(1)∵|8﹣3|表示数8与3两点间的距离,∴|8+3|表示数轴上数8与数﹣3两点间的距离,故答案为﹣3;(2)同理可得:|x+5|+|x﹣2|表示数轴上数x与数﹣5的距离和数x与数2的距离的和,故答案为﹣5,2;(3)点P对应的数为x,如图1所示:∴线段AB上所有整数点对应x的取值﹣5、﹣4、﹣3、﹣2、﹣1、0、1、2是都满足AP+BP=7,故答案为﹣5、﹣4、﹣3、﹣2、﹣1、0、1、2;(4)有最小值,最小值为3.其理由如下:①若点P在线段AB上时,∴|x﹣3|+|x﹣6|=AP+BP=3,②若点P在线段AB的延长线上时,∴|x﹣3|+|x﹣6|=AP+BP>3,③若点P在线段AB的反向延长线上时,∴|x﹣3|+|x﹣6|=AP+BP>3,综合所述:|x﹣3|+|x﹣6|≥3.4.解:①∵数轴上数﹣7表示的点与数1表示的点关于点﹣3对称,﹣3﹣3=﹣6,而﹣3﹣6=﹣9,∴数轴上数3表示的点与数﹣9表示的点重合;故答案为:﹣9;②点A到原点的距离是5个单位长度,则点A表示的数为5或﹣5,∵A、B两点经折叠后重合,∴当点A表示﹣5时,﹣3﹣(﹣5)=2,﹣3+2=﹣1,当点A表示5时,5﹣(﹣3)=8,﹣3﹣8=﹣11,∴B点表示的数是﹣11或﹣1;故答案为:﹣11或﹣1;③M、N两点之间的距离为2020,并且M、N两点经折叠后重合,∴﹣3+×2020=1007,﹣3﹣×2020=﹣1013,又∵M点表示的数比N点表示的数大,∴M点表示的数是1007,N点表示的数是﹣1013,故答案为:1007,﹣1013.5.解:(1)观察数轴可知:B、C两点之间的距离为﹣2.5﹣(﹣3)=0.5,与点A的距离为3的点表示的数是1+3=4或1﹣3=﹣2.故答案为0.5,4或﹣2.(2)与点B重合的点表示的数是:﹣1+[﹣1﹣(﹣2.5)]=0.5;M=﹣1﹣=﹣1011,N=﹣1+=1009;故答案为﹣1011,1009.(3)根据题意,得P=n﹣,Q=n+.故答案为n﹣,n+.6.解:(1)数轴上表示2和5的两点间距离是3,数轴上表示﹣2和﹣5的两点间距离是3,数轴上表示﹣1和3的两点间距离4.故答案为:3;3;4;(2)数轴上表示x和﹣1的两点之间的距离是|x+1|,|AB|=2,则|x+1|=2,故x=1或﹣3;故答案为:|x+1|,1或﹣3;(3)若|x+2|+|x﹣1||取最小值,那么表示x的点在﹣2和1之间的线段上,所以﹣2≤x≤1;所以所有符合条件的x的整数值﹣2,﹣1,0,1.故答案为:﹣2,﹣1,0,17.解:(1)①若以B为原点,∵AB=2,BD=3,DC=1∴点A,D,C所对应的数分别为:﹣2,3,4;p=﹣2+3+4=5;②若以D为原点,p=﹣3﹣5+1=﹣7;若以C为原点,p=﹣6﹣4﹣1=﹣11;故答案为:﹣7;﹣11;(2)若原点O在图中数轴上点C的右边,且CO=15则p=﹣21﹣19﹣16﹣15=﹣71.故答案为:﹣71.8.解:(1)由数轴可得:若AP=BP,则x=1;故答案为:1;(2)∵AP+BP=8∴若点P在点A左侧,则﹣1﹣x+3﹣x=8∴x=﹣3若点P在点A右侧,则x+1+x﹣3=8∴x=5∴x的值为﹣3或5.(3)BP=5+3t﹣(3+2t)=t+2AP=t+6+3t=4t+6∴4BP﹣AP=4(t+2)﹣(4t+6)=2∴4BP﹣AP的值不会随着t的变化而变化.9.解:(1)折叠纸面,使表示的点1与﹣1表示的点重合,则﹣2表示的点与 2表示的点重合;故答案为:2(2)由表示﹣1的点与表示3的点重合,可确定对称点是表示1的点,则表示5的点与对称点距离为4,则重合点应该是左侧与对称点距离为4的点,即﹣3;由题意可得,A、B两点距离对称点的距离为9÷2=4.5,∵对称点是表示1的点,∴A、B两点表示的数分别是﹣3.5,5.5.故答案为:﹣3;﹣3.5,5.5(3)当A向左移动时,有a﹣4=﹣a,a=2当A向右移动时,有a+4=﹣a,a=﹣2综上所诉,a=2或﹣2.故答案为:2或﹣2.10.解:(1)情况二:若a≥0,b<0 时,A、B两点之间的距离:AB=a+|b|=a﹣b;情况三:若a<0,b<0 时,A、B两点之间的距离:AB=|b|﹣|a|=a﹣b;(2)∵点C对应的数c,点C到A、B两点的距离相等,∴a﹣c=c﹣b,∴2c=a+b,即c=(a+b);(3)①当0<n<1时,点D的个数为2,此时a﹣d=n(d﹣b),d﹣a+n(d﹣b).②当n=1时,点D的个数为1,此时点D到A,B两点距离相等,d=.③当n>1时,点D的个数为2,此时a﹣d=n(d﹣b),a﹣d=n(b﹣d).。

七年级数学应用题带答案

七年级数学应用题带答案

七年级数学应用题带答案应用题是我们学习数学的时候会学到的,下面是店铺帮大家整理的七年级数学应用题带答案,希望对大家有所帮助。

七年级数学应用题带答案篇1【题目1】B处的兔子和A处的狗相距56米。

兔子从B处逃跑,狗同时从A处跳出追兔子,狗一跳2米,狗跳3次的时间和兔子跳4次的时间相同。

兔子跳出112米后被狗追上,问兔子一跳多少米?【解答】狗和兔子的速度比是(112+56):112=3:2,狗跳3次跳了2×3=6米,兔子就跳6×2/3=4米,所以兔子每跳一次4÷4=1米【题目2】甲乙两车分别从A、B两地同时开出,相对而行,4小时后甲车行了全程的1/4,乙车行的路程比全程的12.5%少60千米,甲乙两车继续行驶735千米相遇。

求AB两地相距多少千米?【解答】735-60=675千米占全程的1-1/4-12.5%=5/8,所以两地之间的距离是675÷5/8=1080千米。

【题目3】火车每分钟行1050米,从车头与一个路标并列到车尾离开这个路标3分钟后一辆摩托车以每分钟1200米的速度从这个路标出发,摩托车出发25分钟后,与火车的车头正好并列,求这列火车的长。

【解答】摩托车行了1200×25=30000米,车尾行了1050×(25+3)=29400米。

所以火车长30000-29400=600米。

【题目4】在同一路线上有ABCD四个人,每人的速度固定不变。

已知A在12时追上C,14时时与D迎面相遇,16时时与B迎面相遇。

而B在17时时与C迎面相遇,18时追上D,那么D在几时迎面遇到C。

【解答】把12时AB的距离看作单位1,四人速度分别用ABCD 来表示。

A+B=1/4,B+C=1/5。

2(A+D)+6(B-D)=4(A+B),得出B-D=1/2(A+B)=1/2×1/4=1/8,12时C和D相距2×(1/4-1/8)=1/4,C+D=1/5-1/8=3/40,所以需要的时间是1/4÷3/40=10/3小时,即在15时20分的时候C和D相遇。

七年级数学上册分数应用题提高题

七年级数学上册分数应用题提高题

七年级数学上册分数应用题提高题题目 1小明每天骑自行车去学校。

第一天,他用了2/5小时骑行,第二天,他用了1/4小时骑行,第三天,他用了3/8小时骑行。

请计算小明三天骑自行车的总时间。

解答:第一天骑行时间:2/5小时第二天骑行时间:1/4小时第三天骑行时间:3/8小时总时间 = 第一天骑行时间 + 第二天骑行时间 + 第三天骑行时间= 2/5小时 + 1/4小时 + 3/8小时为了方便计算,我们先将这三个分数通分为40份:总时间 = (8/40 + 10/40 + 15/40)小时= 33/40小时所以,小明三天骑自行车的总时间为33/40小时。

题目 2李华在一次测验中得了4/5的分数,如果满分是80分,那么李华的得分是多少?解答:满分是80分得分是4/5的分数得分 = 80分 × 4/5= 64分所以,李华的得分是64分。

题目 3有一堆书,其中1/4是科学类书籍,2/5是文学类书籍,剩下的是其他类书籍。

如果科学类书籍有60本,那么这堆书一共有多少本?解答:科学类书籍占总量的1/4,文学类书籍占总量的2/5,剩下的是其他类书籍。

设总量为x,则科学类书籍的数量为1/4x。

根据题目可知,科学类书籍有60本:1/4x = 60解方程,得到:x = 60 × 4/1= 240所以,这堆书一共有240本。

题目 4小明一共有12块相同大小的巧克力,他打算分给他的弟弟和妹妹。

他打算把这些巧克力的3/4给他的妹妹,剩下的部分给他的弟弟。

请问他的弟弟能分到几块巧克力?解答:小明打算将巧克力的3/4给他的妹妹,所以弟弟能分到的部分是1 - 3/4 = 1/4。

巧克力的数量为12块,弟弟能分到的巧克力数量为1/4 × 12 = 3块。

所以,小明的弟弟能分到3块巧克力。

题目 5小红的父亲给她一些零花钱,其中的1/5用于买书,1/4用于买文具,剩下的80元存入银行。

请问小红的父亲给了她多少元的零花钱?解答:小红父亲给的零花钱剩下的80元存入银行,说明父亲给的零花钱占总额的80元。

人教版七年级数学上册期末提高专练:数轴类应用题综合(一)及答案

人教版七年级数学上册期末提高专练:数轴类应用题综合(一)及答案

2021年秋人教版数学七年级上册期末提高专练:数轴类应用题综合(一)1.读图回答问题:(1)若将点B向右移动4个单位后,则点B表示的数为.(2)在数轴上找一点D,使点D到A,C两点的距离相等,写出点D表示的数.(3)在数轴上找一点E,使点E到点A的距离等于2,求点E表示的数.(4)在数轴上找一点F,使点F到点A的距离是到点B的距离的2倍,求点F表示的数.2.操作与探究:已知在纸面上有数轴(如图),折叠纸面.例如:若数轴上数2表示的点与数﹣2表示的点重合,则数轴上数﹣4表示的点与数4表示的点重合,根据你对例题的理解,解答下列问题:(1)若数轴上数1表示的点与﹣1表示的点重合,则数轴上数3表示的点与数表示的点重合.(2)若数轴上数﹣3表示的点与数1表示的点重合.①则数轴上数3表示的点与数表示的点重合.②若数轴上A,B两点之间的距离为7(A在B的左侧),并且A,B两点经折叠后重合,则A,B两点表示的数分别是.3.如图,在数轴上,点A表示﹣10,点B表示11,点C表示18.动点P从点A出发,沿数轴正方向以每秒2个单位的速度匀速运动;同时,动点Q从点C出发,沿数轴负方向以每秒1个单位的速度匀速运动.设运动时间为t秒.(1)当t为何值时,P、Q两点相遇?相遇点M所对应的数是多少?(2)在点Q出发后到达点B之前,求t为何值时,点P到点O的距离与点Q到点B的距离相等;(3)在点P向右运动的过程中,N是AP的中点,在点P到达点C之前,求2CN﹣PC的值.4.已知如图,在数轴上有A,B两点,所表示的数分别为﹣10,﹣4,点A以每秒5个单位长度的速度向右运动,同时点B以每秒3个单位长度的速度也向右运动,如果设运动时间为t秒,解答下列问题:(1)运动前线段AB的长为;运动1秒后线段AB的长为;(2)运动t秒后,点A,点B运动的距离分别为和;(3)求t为何值时,点A与点B恰好重合;(4)在上述运动的过程中,是否存在某一时刻t,使得线段AB的长为5,若存在,求t的值;若不存在,请说明理由.5.已知在纸面上画有一根数轴,现折叠纸面.(1)若﹣1表示的点与1表示的点重合,则3表示的点与数表示的点重合;(2)若﹣1表示的点与3表示的点重合,回答以下问题:①6表示的点与数表示的点重合;②若数轴上A、B两点之间的距离为d(点A在点B的左侧,d>0),且A、B两点经折叠后重合,则用含d的代数式表示点B在数轴上表示的数是.6.已知A、B在数轴上对应的数分别用+2、﹣6表示,P是数轴上的一个动点.(1)数轴上A、B两点的距离为.(2)当P点满足PB=2PA时,求P点表示的数.(3)将一枚棋子放在数轴上k0点,第一步从k点向右跳2个单位到k1,第二步从k1点向左跳4个单位到k2,第三步从k2点向右跳6个单位到k3,第四步从k3点向左跳8个单位到k4.①如此跳6步,棋子落在数轴的k6点,若k6表示的数是12,则k o的值是多少?②若如此跳了1002步,棋子落在数轴上的点k1002,如果k1002所表示的数是1998,那么k0所表示的数是(请直接写答案).7.已知快递公司坐落在一条东西走向的街道上,某快递员从快递公司取件后在这条街道上送快递,他先向东骑行1千米到达A店,继续向东骑行2千米到达B店,然后向西骑行5千米到达C店,最后回到快递公司.(1)以快递公司为原点,以向东方向为正方向,用1厘米表示1千米,画出数轴,并在数轴上表示出A,B,C 三个店的位置.(2)C店离A店有多远?(3)快递员一共骑行了多少千米?8.一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续走了1千米到达小红家,又向西走了10千米到达小刚家,最后回到百货大楼.(1)以百货大楼为原点,以向东的方向为正方向,用1个单位长度表示1千米,请你在数轴上表示出小明、小红、小刚家的位置;(2)小明家与小刚家相距多远?9.如图,A、B分别为数轴上的两点,A点对应的数为﹣5,B点对应的数为55,现有一动点P以6个单位/秒的速度从B点出发,同时另一动点Q恰好以4个单位/秒的速度从A点出发:(1)若P向左运动,同时Q向右运动,在数轴上的C点相遇,求C点对应的数.(2)若P向左运动,同时Q向左运动,在数轴上的D点相遇,求D点对应的数.(3)若P向左运动,同时Q向右运动,当P与Q之间的距离为20个单位长度时,求此时Q点所对应的数.10.(1)在数轴上标出数﹣4.5,﹣2,1,3.5所对应的点A,B,C,D;(2)C,D两点间距离=;B,C两点间距离=;(3)数轴上有两点M,N,点M对应的数为a,点N对应的数为b,那么M,N两点之间的距离=;(4)若动点P,Q分别从点B,C同时出发,沿数轴负方向运动;已知点P的速度是每秒1个单位长度,点Q 的速度是每秒2个单位长度,问①t为何值时P,Q两点重合?②t为何值时P,Q两点之间的距离为1?参考答案1.解:(1)点B表示的数为0;故答案为:0.(2)点D表示的数为0.5;(3)点E在点A的右边时,点E表示的数为1,点E在点A的左边时,点E表示的数为﹣3,∴点E表示的数为1或﹣3.(4)当点F在A、B时,AF+BF=3,且AF=2BF,∴点F表示的数为﹣3;当点F在点B的左侧时,根据题意可知点B是AF的中点,∴点F表示的数是﹣7.∴点F表示的数为﹣3或﹣7.2.解:(1)数轴上数1表示的点与﹣1表示的点关于原点对称,所以数轴上数3表示的点与数﹣3表示的点重合;(2)①数轴上数﹣3表示的点与数1表示的点关于点﹣1对称,所以数轴上数3表示的点与数﹣5表示的点重合;②AB=7,所以点A、B到﹣1的距离均为3.5,所以两点表示的数分别﹣1+3.5=2.5,﹣1﹣3.5=﹣4.5.故答案为:(1)﹣3;(2)﹣5;2.5,﹣4.5.3.解:(1)根据题意得2t+t=28,解得t=,∴AM=>10,∴M在O的右侧,且OM=﹣10=,∴当t=时,P、Q两点相遇,相遇点M所对应的数是;(2)由题意得,t的值大于0且小于7.若点P在点O的左边,则10﹣2t=7﹣t,解得t=3.若点P在点O的右边,则2t﹣10=7﹣t,解得t=.综上所述,t的值为3或时,点P到点O的距离与点Q到点B的距离相等;(3)∵N是AP的中点,∴AN=PN=AP=t,∴CN=AC﹣AN=28﹣t,PC=28﹣AP=28﹣2t,2CN﹣PC=2(28﹣t)﹣(28﹣2t)=28.4.解:(1)AB=﹣4﹣(﹣10)=6,运动1秒后,A表示﹣5,B表示﹣1,∴AB=﹣1+5=4.故答案为6,4.(2)运动t秒后,点A,点B运动的距离分别为5t,3t,故答案为5t,3t.(3)由题意:(5﹣3)t=6,∴t=3.(4)由题意:6+3t﹣5t=5或5t﹣(6+3t)=5,解得t=或,∴t的值为或秒时,线段AB的长为5.5.解:(1)∵,∴0×2﹣3=﹣3,故答案为:﹣3;(2)①∵,∴1×2﹣6=﹣4,故答案为:﹣4;②∵,A、B两点之间的距离为d(点A在点B的左侧,d>0),且A、B两点经折叠后重合,∴表示点B在数轴上表示的数是:,故答案为:.6.解:(1)|+2﹣(﹣6)|=8,故答案为:8.(2)设点表示的数为x,①当点P在点A的左侧时,有2(2﹣x)=x﹣(﹣6)解得,x=﹣,②当点P在点A的右侧时,有x+6=2(x﹣2),解得,x=10答:点P所表示的数为﹣或10.(3)①设k0所表示的数为a,由题意得,a+2﹣4+6﹣8+10﹣12=12,解得,a=18,答:k0所表示的数为18.②由题意的,a+2﹣4+6﹣8+10﹣12+…+2002﹣2004=1998,解得,a=3000,故答案为:3000.7.解:(1)如图所示:;(2)C店离A店:1﹣(﹣2)=3千米;(3)快递员一共行了:|1+|+|2|+|﹣5|+|2|=10千米.8.解:(1)如图:(2)根据(1)可得:小明家与小刚家相距4﹣(﹣5)=9(千米).9.解:(1)设运动时间为x秒,4x+6x=55﹣(﹣5),解得:x=6,因此C点对应的数为﹣5+4×6=19,(2)设运动时间为y秒,6y﹣4y=55﹣(﹣5),解得:y=30,点D对应的数为﹣5﹣4×30=﹣125,(3)①相遇前PQ=20时,设运动时间为a秒,4a+6a=55﹣(﹣5)﹣20,解得:a=4,因此Q点对应的数为﹣5+4×4=11,②相遇后PQ=20时,设运动时间为b秒,4b+6b=55﹣(﹣5)+20,解得:b=8,因此C点对应的数为﹣5+4×8=27,故Q点对应的数为11或27.10.解:(1)如图所示:(2)CD=3.5﹣1=2.5,BC=1﹣(﹣2)=3;(3)MN=|a﹣b|;(4)①依题意有2t﹣t=3,解得t=3.故t为3秒时P,Q两点重合;②依题意有2t﹣t=3﹣1,解得t=2;或2t﹣t=3+1,解得t=4.故t为2秒或4秒时P,Q两点之间的距离为1.故答案为:2.5,3;|a﹣b|.。

七年级数学应用题大全

七年级数学应用题大全

七年级数学应用题(60题)1、运送吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为吨的货车运。

还要运几次才能完2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米3、某车间计划四月份生产零件5480个。

已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。

甲每小时行45千米,乙每小时行多少千米5、某校六年级有两个班,上学期级数学平均成绩是85分。

已知六(1)班40人,平均成绩为分;六(2)班有42人,平均成绩是多少分6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒7、四年级共有学生200人,课外活动时,80名女生都去跳绳。

男生分成5组去踢足球,平均每组多少人8、食堂运来150千克大米,比运来的面粉的3倍少30千克。

食堂运来面粉多少千克9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。

平均每行梨树有多少棵10、一块三角形地的面积是840平方米,底是140米,高是多少米11、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服。

每件大人衣服用米,每件儿童衣服用布多少米12、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁13、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车14、小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵元,苹果和梨每千克各多少元15、甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点。

甲几小时到达中点16、甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇。

如果甲从A地,乙从B 地同时出发,同向而行,那么4小时后甲追上乙。

已知甲速度是15千米/时,求乙的速度。

17.两根同样长的绳子,第一根剪去15米,第二根比第一根剩下的3倍还多3米。

作业12 二元一次方程组与分式方程应用题-2021年七年级数学暑假作业(浙教版)(原卷版)

作业12 二元一次方程组与分式方程应用题-2021年七年级数学暑假作业(浙教版)(原卷版)

作业12 二元一次方程组与分式方程应用题注意事项:本试卷满分100分,完成时间70分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共18分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020·晋州市第三中学月考)抗击新冠肺炎疫情期间,某口罩厂接到加大生产的紧急任务后积极扩大产能,现在每天生产的口罩比原来多4万个.已知现在生产100万个口罩所需的时间与原来生产60万个口罩所需的时间相同,问口罩厂现在每天生产多少个口罩?设原来每天生产x万个口罩,则由题意可列出方程()A.1004x-=60xB.1004x+=60xC.604x-=100xD.604x+=100x2.(2020·禹城市龙泽实验学校期末)2013年9月,北京到大连的高铁开通运营,高铁列车的运行时间比原动车组的运行时间还要快2小时,已知北京到大连的铁路长约为910千米,原动车组列车的平均速度为x 千米/时,高铁列车的平均速度比原动车组列车增加了52千米/时.依题意,下面所列方程正确的是()A.910910252x x-=+B.910910252x x-=-C.910910252x x-=+D.22(52)910x x++=3.(2020·舞钢市教育局普通教育研究室期末)“十一”旅游黄金周期间,几名同学包租一辆面包车前往“红螺寺”游玩,面包车的租价为180元,出发时,又增加了2名学生,结果每个同学比原来少分担3元车费,原参加游玩的同学为x人,则可得方程()A.180x-180+2x=3 B.180+2x-180x=3; C.180x-1802x-=3 D.1802x--180x=34.(2020·福建中考真题)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.“其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每件椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是()A.62103(1)-=xxB.621031=-xC.621031-=xxD.62103=x5.(2020·云南昆明·初三其他)10年前,小明妈妈的年龄是小明的6倍,10年后,小明妈妈的年龄是小明的2倍,小明和他妈妈现在的年龄分别是多少岁?若设小明和他妈妈现在分别是x岁和y岁,根据题意可列方程组为()A.106(10)102(10)y xy x+=+⎧⎨-=-⎩B.106(10)102(10)y xy x-=-⎧⎨+=+⎩C.106(10)102(10)y xy x-=+⎧⎨+=-⎩D.102(10)106(10)y xy x-=-⎧⎨+=+⎩6.(2020·山东滨州·月考)在抗击“新冠肺炎”的战役中,某品牌消毒液生产厂家计划向部分学校共捐赠13吨消毒液.如果这13吨消毒液的大瓶装(500克)与小瓶装(250克)两种产品分装的数量(按瓶计算)比为3:7.那么这两种产品应该各分装多少瓶?若设生产的消毒液应需分装x大瓶、y小瓶,则以下所列方程组正确的是()A.7350025013000000x yx y=⎧⎨+=⎩B.7350025013000000y xx y=⎧⎨+=⎩C.7350025013000000x yy x=⎧⎨+=⎩D.7350025013000000y xy x=⎧⎨+=⎩7.(2020·绍兴市长城中学七年级期中)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y钱,根据题意,可列方程组为()A.54573y xy x=+⎧⎨=+⎩B.54573y xy x=-⎧⎨=+⎩C.54573y xy x=+⎧⎨=-⎩D.54573y xy x=-⎧⎨=-⎩8.(2020·河北永年·期末)把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为()A.6 B.24 C.26 D.129.(2020·湖北荆州·月考)甲、乙两人练习跑步,如果让甲先跑10m,那么乙跑5s就追上了甲;如果让甲先跑2s,那么乙跑4s就追上了甲,求甲、乙两人的速度.若设甲、乙两人的速度分别为/,/x m s y m s,则下列方程组中正确的是()A.()()510422x yx y x⎧-=⎪⎨-=⎪⎩B.5105442y xy x x=+⎧⎨-=⎩C.()551042x yx y y-=⎧⎨-=⎩D.5510424x yx y=+⎧⎨-=⎩10.(2020·上饶市实验中学初一期末)甲乙丙三人做一项工作,三人每天的工作效率分别为a、b、c,若甲乙一天工作量和是丙2天的工作量,乙丙一天的工作量和是甲5天的工作量,下列结论正确的是()A.甲的工作效率最高B.丙的工作效率最高C.c=3a D.b:c=3:2二、填空题(本大题共4小题,每小题3分,共12分.不需写出解答过程,请把答案直接填写在横线上)11.(2021·全国初二课时练习)8年前父亲的年龄是儿子的年龄的4倍,从现在起8年后父亲的年龄是儿子的年龄的2倍,则父亲和儿子现在的年龄分别为_____岁、_____岁.12.(2020·湖南望城·初一期末)程大位是我国明朝商人、珠算发明家,他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法书中某一问题(如图)的意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个正好分完,大和尚共分得多少个馒头?根据所学的数学知识,可以求得大和尚共分得_________个馒头.13.(2020·浙江杭州市·七年级期末)一个大正方形和四个全等的小正方形按图①、②两种方两种方式摆放,则图②的大正方形中阴影部分的面积是___________(用a、b的代数式表示).14.(2020·吉林铁东·期末)《一千零一夜》中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食,树上一只鸽子对地上觅食的鸽子说:“若从你们中飞来一只,则树下的鸽子就是整个鸽群的13;若从树上飞下去一只,则树上,树下的鸽子数一样多.”你知道树上树下共有______只.15.(2020·浙江嘉兴·中考真题)数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x人,则可列方程_____.16.(2020·重庆南岸·一模)某快递公司快递员甲匀速骑车去距公司6000米的某小区取物件,出发几分钟后,该公司快递员乙发现甲的手机落在公司,于是立马匀速骑车去追赶甲,乙出发几分钟后,甲也发现自己的手机落在了公司,立即调头以原速的2倍原路返回,1分钟后遇到了乙,乙把手机给甲后,乙以原速的一半原路返回公司,甲以返回时的速度继续去小区取物件,刚好在事先预计的时间到达该小区.甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示(给手机及中途其它耽误时间忽略不计),则甲到小区时,乙距公司的路程是_____米.三、解答题(本大题共6小题,共40分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(2020·广东汕尾·初一期末)在某超市,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元.(1)买1件A商品和1件B商品共花多少钱?(2)现该超市开展打折促销活动,买500件A商品和500件B商品用了9600元,比不打折少花多少钱?18.(2021·浙江宁波咸祥中学开学考试)为了更好地保护环境,污水处理公司决定购买10 台甲、乙两种型号的污水处理设备,经调查,购买一台甲型设备比购买一台乙型设备多2 万元,购买2 台甲型设备比购买3 台乙型设备少6 万元.(1)求甲、乙两种型号设备每台各多少万元?(2)已知甲型设备每月处理污水240 吨,乙型设备每月处理污水200 吨,该地每月需要处理的污水不低于2040 吨.若污水处理公司购买污水处理设备的资金不超过105 万元,请你为污水处理公司设计一种最省钱的购买方案。

华师七年级数学下暑假4

华师七年级数学下暑假4

第十七章《二元一次方程组 》一.二元一次方程(组)的概念:1.含有 未知数,并且含有未知数的项的次数都是 ,像这样的 方程 叫做二元一次方程。

一般形式为:ax+by=c (a 、b 、c 为常数,且a 、b 均不为0)结合一元一次方程,二元一次方程对“元”和“次”作进一步的理解;“元”与“未知数”相通,几个元是指几个未知数,“次”指未知数的最高次数。

例如:方程7y-3x=4、-3a+3=4-7b 、2m+3n=0、1-s+t=2s 等都是二元一次方程。

而6x 2=-2y-6、4x+8y=-6z 、m2=n 等都不是二元一次方程。

2.二元一次方程组的定义:把两个二元一次方程合在一起,就组成了一个二元一次方程组。

例如:⎩⎨⎧-=+=-8532y x y x 、⎩⎨⎧=--=+12337b a b a 、⎩⎨⎧=-=+12n m n m 、⎩⎨⎧-=+=-1132t s t s 等都是二元一次方程组。

而⎩⎨⎧-=+=-8532z x y x 注意:(1)只要两个方程一共含有两个未知数,也是二元一次方程组。

如:⎩⎨⎧-==852y x 、⎩⎨⎧-==112t s 也是二元一次方程组。

⎩⎨⎧=--=+12337a a a a 、⎪⎩⎪⎨⎧=-=+121n m n m 等都不是二元一次方程组。

例(1).已知(a -2)x -by |a |-1=5是关于x 、y 的二元一次方程,则a =______,b =_____.(2).二元一次方程3x +2y =15的正整数解为_______________.(3)下列方程中,是二元一次方程的是( )A .3x -2y=4zB .6xy+9=0C .1x +4y=6D .4x=24y -)①xy+2x -y=7; ②4x+1=x -y ; ③1x+y=5; ④x=y ; ⑤x 2-y 2=2 ⑥6x -2y ⑦x+y+z=1 ⑧y (y -1)=2y 2-y 2+xA .1B .2C .3D .4(2)二元一次方程x+y=5的正整数解有______________。

初一数学应用题含答案

初一数学应用题含答案

七年上册数学应用题提高练习训练七年上册数学应用题提高练习训练一、等积变形问题一、等积变形问题常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变. ①圆柱体的体积公式①圆柱体的体积公式①圆柱体的体积公式 V= V= V=底面积×高=底面积×高=底面积×高=S S ·h =p r2h②长方体的体积②长方体的体积 V V V=长×宽×高==长×宽×高==长×宽×高=abc abc1.把一段铁丝围成长方形,发现长比宽多2cm 2cm;围成正方形时,边长刚好为;围成正方形时,边长刚好为4cm 4cm.求所.求所围成的长方形的长和宽各是多少?围成的长方形的长和宽各是多少?2.用一个底面半径为40mm 40mm,高为,高为120mm 的圆柱形玻璃杯向一个底面半径为100mm 的大圆柱形玻璃杯中倒水,倒了满满10杯水后,大玻璃杯的液面离杯口还有10mm 10mm,大玻璃,大玻璃杯的高度是多少?杯的高度是多少?3.一个长方形养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成.现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米.你认为谁的设计符合实际?按照他的设计,鸡场的面积是多少?多少?4.将一个装满水的内部长、宽、高分别为300毫米,毫米,300300毫米和80•80•毫米的长方体铁盒毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,p ≈3.143.14)).5.在一个底面直径为5cm 5cm,高为,高为18cm 的圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径是6cm 6cm、、高是10cm 的圆柱形玻璃杯中,的圆柱形玻璃杯中,能否完全装下?若装不下,能否完全装下?若装不下,能否完全装下?若装不下,那么瓶内水还那么瓶内水还剩多高?若未能装满,求杯内水面离杯口的距离.二、打折销售问题二、打折销售问题(1)商品利润=商品售价-商品成本价商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100% (3)商品销售额=商品销售价×商品销售量(4(4)商品的销售利润=(销售价-成本价)×销售量)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如打8折出售,即按原标价的80%80%出售.出售.出售. 1.随着计算机技术的迅猛发展,电脑价格大幅度下降,某品牌电脑今年每台售出价格为4200元,比去年降低了30%30%,问去年该品牌电脑每台售出价为多少元?,问去年该品牌电脑每台售出价为多少元?2、东方商场把进价为1890元的某商品按标价的8折出售,仍获利10%10%,则该商品的标,则该商品的标价为多少?价为多少?3、某种商品的进价是1000元,售价为1500元,元, 由于销售情况不好,商店决定降价出售,但又要售,但又要保证利润不低于5%5%,那么商店最多降多少元出售此商品。

北师大版七年级数学上册第五章 一元一次方程 综合压轴题和应用题提高强化训练题(含答案)

北师大版七年级数学上册第五章 一元一次方程 综合压轴题和应用题提高强化训练题(含答案)

北师大版七年级数学上册第五章一元一次方程综合压轴题和应用题提高强化训练题1、我们规定,若关于x的一元一次方程ax=b的解为x=b﹣a,则称该方程为“差解方程”.例如:2x=4的解为x=2,且2=4﹣2,则该方程2x=4是差解方程.(1)判断:方程3x=4.5差解方程(填“是”或“不是”)(2)若关于x的一元一次方程4x=m+3是差解方程,求m的值.2、定义:如果两个一元一次方程的解互为相反数,我们就称这两个方程为“兄弟方程”.如方程2x=4和3x+6=0为“兄弟方程”.(1)若关于x的方程5x+m=0与方程2x﹣4=x+1是“兄弟方程”,求m的值;(2)若两个“兄弟方程”的两个解的差为8,其中一个解为n,求n的值;(3)若关于x的方程2x+3m﹣2=0和3x﹣5m+4=0是“兄弟方程”,求这两个方程的解.3、定义:如果一个一元一次方程的一次项系数与常数项的差刚好是这个方程的解,则称这个方程为妙解方程.例如:方程2x+4=0中,2﹣4=﹣2,方程的解为x=﹣2,则方程2x+4=0为妙解方程.请根据上述定义解答下列问题:(1)方程2x+3=0是妙解方程吗?试说明理由.(2)已知关于x的一元一次方程3x+m=0是妙解方程.求m的值.(3)已知关于x的一元一次方程2x+a﹣b=0是妙解方程,并且它的解是x=b.求代数式ab的值.4、我们把解相同的两个方程称为同解方程.例如:方程:2x=6与方程4x=12的解都为x=3,所以它们为同解方程.(1)若方程2x ﹣3=11与关于x 的方程4x +5=3k 是同解方程,求k 的值;(2)若关于x 的方程3[x ﹣2(x −k 3)]=4x 和3x+k 12−1−5x 8=1是同解方程,求k 的值;(3)若关于x 的方程2x ﹣3a =b 2和4x +a +b 2=3是同解方程,求14a 2+6ab 2+8a +6b 2的值.5、先阅读下列解题过程,然后解答问题(1)、(2)、(3).例:解绝对值方程:|2x |=1.解:讨论:①当x ≥0时,原方程可化为2x =1,它的解是x =12.②当x <0时,原方程可化为﹣2x =1,它的解是x =−12.∴原方程的解为x =12和−12.问题(1):依例题的解法,方程|12x |=2的解是 ; 问题(2):尝试解绝对值方程:2|x ﹣2|=6;问题(3):在理解绝对值方程解法的基础上,解方程:|x ﹣2|+|x ﹣1|=5.6、阅读下列材料:我们知道|x |的几何意义是在数轴上数x 对应的点与原点的距离;即|x |=|x ﹣0|;这个结论可以推广为|x 1﹣x 2|表示在数轴上数x 1,x 2对应点之间的距离.绝对值的几何意义在解题中有着广泛的应用:例1:解方程|x |=4.容易得出,在数轴上与原点距离为4的点对应的数为±4,即该方程的x=±4;例2:解方程|x+1|+|x﹣2|=5.由绝对值的几何意义可知,该方程表示求在数轴上与﹣1和2的距离之和为5的点对应的x的值.在数轴上,﹣1和2的距离为3,满足方程的x对应的点在2的右边或在﹣1的左边.若x对应的点在2的右边,如图1可以看出x=3;同理,若x对应点在﹣1的左边,可得x=﹣2.所以原方程的解是x=3或x=﹣2.例3:解不等式|x﹣1|>3.在数轴上找出|x﹣1|=3的解,即到1的距离为3的点对应的数为﹣2,4,如图2,在﹣2的左边或在4的右边的x值就满足|x﹣1|>3,所以|x﹣1|>3的解为x<﹣2或x>4.参考阅读材料,解答下列问题:(1)方程|x+3|=5的解为;(2)方程|x﹣2017|+|x+1|=2020的解为;(3)若|x+4|+|x﹣3|≥11,求x的取值范围.7、如图,在数轴上点A表示的有理数为﹣4,点B表示的有理数为6,点P从点A出发以每秒2个单位长度的速度在数轴上沿由A到B方向运动,当点P到达点B后立即返回,仍然以每秒2个单位长度的速度运动至点A停止运动.设运动时间为t(单位:秒).(1)求t=2时点P表示的有理数;(2)求点P与点B重合时t的值;(3)①点P由点A到点B的运动过程中,求点P与点A的距离(用含t的代数式表示);②点P 由点A 到点B 的运动过程中,点P 表示的有理数是多少(用含t 的代数式表示);(4)当点P 表示的有理数与原点距离是2个单位时,直接写出所有满足条件的t 的值.8、已知:如图,点A 、点B 为数轴上两点,点A 表示的数为a ,点B 表示的数为b ,a 与b 满足|a +4|+(b ﹣8)2=0.动点P 从点A 出发,以2个单位长度/秒的速度沿数轴向右运动,同时动点Q 从点B 出发,以1个单位长度/秒的速度沿数轴向右运动.(1)直接写出a 、b 的值,a = ,b = ;(2)设点P 的运动时间为t 秒,当t 为何值时,P 、Q 两点相距20个单位长度;(3)若在运动过程中,动点Q 始终保持原速度原方向,动点P 到达原点时,立即以原来的速度向相反的方向运动.设点P 的运动时间为t 秒,当t 为何值时,原点O 分线段PQ 为1:3两部分.9、阅读理解:【探究与发现】如图1,在数轴上点E 表示的数是8,点F 表示的数是4,求线段EF 的中点M 所示的数对于求中点表示数的问题,只要用点E 所表示的数﹣8,加上点F 所表示的数4,得到的结果再除以2,就可以得到中点M 所表示的数:即M 点表示的数为:−8+42=−2.【理解与应用】把一条数轴在数m处对折,使表示﹣20和2020两数的点恰好互相重合,则m=.【拓展与延伸】如图2,已知数轴上有A、B、C三点,点A表示的数是﹣6,点B表示的数是8.AC=18.(1)若点A以每秒3个单位的速度向右运动,点C同时以每秒1个单位的速度向左运动设运动时间为t秒.①点A运动t秒后,它在数轴上表示的数表示为(用含t的代数式表示)②当点B为线段AC的中点时,求t的值.(2)若(1)中点A、点C的运动速度、运动方向不变,点P从原点以每秒2个单位的速度向右运动,假设A、C、P三点同时运动,求多长时间点P到点A、C的距离相等?10、小明参加启秀期末考试时的考场座位号是由四个数字组成的,这四个数字组成的四位数有如下特征:(1)它的千位数字为2;(2)把千位上的数字2向右移动,使其成为个位数字,那么所得的新数比原数的2倍少1478,求小明的考场座位号.11、一个三位数,十位数字是0,个位数字是百位数字的2倍,如果将这个三位数的个位数字与百位数字调换位置得到一个新的三位数,则这个新的三位数比原三位数的2倍少9,设原三位数的百位数字是x:(1)原三位数可表示为,新三位数可表示为;(2)列方程求解原三位数.12、甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润率定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店老板共获利157元.甲、乙两件服装的成本各为多少元?13、甲、乙两人骑自行车分别从相距36km的两地匀速同向而行,如果甲比乙先出发半小时,那么他们在乙出发后经3小时甲追上乙;如果乙比甲先出发1小时,那么他们在甲出发后经5小时甲才能追上乙.请问:甲、乙两人骑自行车每小时各行多少千米?14、A、B两地相距1000千米,甲列车从A地开往B地;2小时后,乙列车从B地开往A地,经过4小时与甲列车相遇.已知甲列车比乙列车每小时多行50千米.甲列车每小时行多少千米?15、甲、乙两汽车从A市出发,丙汽车从B市出发,甲车每小时行驶40千米,乙车每小时行驶45千米,丙车每小时行驶50千米.如果三辆汽车同时相向而行,丙车遇到乙车后10分钟才能遇到甲车,问何时甲丙两车相距15千米?16、某超市计划购进甲、乙两种型号的节能灯共1000只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如果进货款恰好为37000元,那么可以购进甲型节能灯多少只?(2)超市为庆祝元旦进行大促销活动,决定对乙型节能灯进行打折销售,要求全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折?17、古希腊数学家丢番图(公元3~4世纪)的墓碑上记栽着:“他生命的六分之一是幸福的童年;再活了他生命的十二分之一,两颊长起了细细的胡须;他结了婚,又度过了一生的七分之一;再过五年,他有了儿子,感到很幸福;可是儿子只活了他父亲全部年龄的一半;儿子死后,他在极度悲痛中度过了四年,也与世长辞了.”根据以上信息,请你算出:(1)丢番图的寿命;(2)丢番图开始当爸爸时的年龄;(3)儿子死时丢番图的年龄.18、把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,求盒子底部长方形的面积?19、A、B两地相距480km,C地在A、B两地之间.一辆轿车以100km/h的速度从A地出发匀速行驶,前往B地.同时,一辆货车以80km/h的速度从B地岀发,匀速行驶,前往A地.(1)当两车相遇时,求轿车行驶的时间;(2)当两车相距120km时,求轿车行驶的时间;(3)若轿车到达B地后,立刻以120km/h的速度原路返回,再次经过C地,两次经过C 地的时间间隔为2.2h,求C地距离A地路程.20、某街道1000米的路面下雨时经常严重积水.需改建排水系统.市政公司准备安排甲、乙两个工程队做这项工程,根据评估,有两个施工方案:方案一:甲、乙两队合作施工,那么12天可以完成;方案二:如果甲队先做10天,剩下的工程由乙队单独施工,还需15天才能完成.(1)甲、乙两队单独完成此项工程各需多少天?(2)方案一中,甲、乙两队实际各施工了多少米?21、某超市第一次用3600元购进了甲、乙两种商品,其中甲种商品80件,乙种商品120件.已知乙种商品每件进价比甲种商品每件进价贵5元.甲种商品售价为20元/件,乙种商品售价为30元/件.(注:获利=售价﹣进价)(1)该超市第一次购进甲、乙两种商品每件各多少元?(2)该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得多少利润?(3)该超市第二次又购进同样数量的甲、乙两种商品.其中甲种商品每件的进价不变,乙种商品进价每件少3元;甲种商品按原售价提价a%销售,乙种商品按原售价降价a%销售,如果第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多260元,那么a的值是多少?22、平价商场经销的甲、乙两种商品,甲种商品每件售价98元,利润率为40%;乙种商品每件进价80元,售价128元.(1)甲种商品每件进价为元,每件乙种商品利润率为.(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为3800元,求购进甲、乙两种商品各多少件?(3)在“元旦“期间,该商场只对乙种商品进行如下的优惠促销活动:按下表优惠条件,打折前一次性购物总金额优惠措施少于等于480元不优惠超过480元,但不超过680元其中480元不打折,超过480元的部分给予6折优惠超过680元按购物总额给予7.5折优惠若小华一次性购买乙种商品实际付款576元,求小华在该商场购买乙种商品多少件?23、武汉大洋百货经销甲、乙两种服装,甲种服装每件进价500元,售价800元;乙种服装商品每件售价1200元,可盈利50%.(1)每件甲种服装利润率为,乙种服装每件进价为元;(2)若该商场同时购进甲、乙两种服装共40件,恰好总进价用去27500元,求商场销售完这批服装,共盈利多少?(3)在元旦当天,武汉大洋百货实行“满1000元减500元的优惠”(比如:某顾客购物1200元,他只需付款700元).到了晚上八点后,又推出“先打折”,再参与“满1000元减500元”的活动.张先生买了一件标价为3200元的羽绒服,张先生发现竟然比没打折前多付了20元钱问大洋百货商场晚上八点后推出的活动是先打多少折之后再参加活动?24、某小区建完之后,需要做内墙粉刷装饰,现有甲、乙两个工程队都想承包这项工程,已知甲工程队每天能粉刷160个房间,乙工程队每天能粉刷240个房间.且单独粉刷这些墙面甲工程队比乙工程队要多用20天,在粉刷的过程中,该开发商要付甲工程队每天费用1600元,付乙工程队每天费用2600元.(1)求这个小区共有多少间房间?(2)为了尽快完成这项工程,若先由甲、乙两个工程队按原粉刷速度合作一段时间后,甲工程队停工了,而乙工程队每天的粉刷速度提高25%,乙工程队单独完成剩余部分,且乙工程队的全部工作时间是甲工程队的工作时间的2倍还多4天,求乙工程队共粉刷多少天?(3)经开发商研究制定如下方案:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:按(2)问方式完成:请你通过计算帮开发商选择一种既省时又省钱的粉刷方案.25、2020年春节即将来临,甲、乙两单位准备组织退休职工到某风景区游玩.甲、乙两单位共102人,其中甲单位人数多于乙单位人数,且甲单位人数不够100人.经了解,该风景区的门票价格如下表:数量(张)1﹣5051﹣100101张及以上单价(元/张)60元50元40元如果两单位分别单独购买门票,一共应付5500元.(1)如果甲、乙两单位联合起来购买门票,那么比各自购买门票共可以节省多少钱?(2)甲、乙两单位各有多少名退休职工准备参加游玩?(3)如果甲单位有12名退休职工因身体原因不能外出游玩,那么你有几种购买方案,通过比较,你该如何购买门票才能最省钱?26、当涂大青山有较为丰富的毛竹资源.某企业已收购毛竹110吨,根据市场信息,将毛竹直接销售,每吨可获利100元;如果对毛竹进行粗加工,每天可加工8吨,每吨可获利1000元;如果进行精加工,每天可加工1.5吨,每吨可获利5000元,由于受条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售.为此研究了两种方案:(1)方案一:将收购毛竹全部粗加工后销售,则可获利元;方案二:30天时间都进行精加工,未来得及加工的毛竹,在市场上直接销售,则可获利元.(2)是否存在第三种方案,将部分毛竹精加工,其余毛竹粗加工,并且恰好在30天内完成?若存在,求销售后所获利润;若不存在,请说明理由.27、某市组织学术研讨会,需租用客车接送参会人员往返宾馆和观摩地点,客车租赁公司现有45座和60座两种型号的客车可供租用(1)已知60座的客车每辆每天的租金比45座的贵100元,会务组第一天在这家公司租了2辆60座和5辆45座的客车,一天的租金为1600元,求45座和60座的客车每辆每天的租金各是多少元?(2)由于第二天参会人员发生了变化,因此会务组需重新确定租车方案方案1:若只租用45座的客车,会有一辆客车空出30个座位;方案2:若只租用60座客车,正好坐满且比只租用45座的客车少用两辆①请计算方案1、2的费用;②从经济角度考虑,还有方案3吗?如果你是会务组负责人,应如何确定最终租车方案,并说明理由.28、现有A、B两家粮食种植基地往甲、乙两个粮食配送中心运送粮食,A地可运出粮食80吨,B地可运出粮食60吨,其中甲地需要粮食90吨,乙地需要粮食50吨,每吨粮食运费如下:从A基地运往甲、乙两中心的运费分别为每吨500元和400元,从B基地运往甲、乙两中心的运费分别为每吨200元和300元.设A地运送到甲中心粮食为x吨(1)请根据题意填写下表(填写表中所有空格):运往甲地运往乙地AB(2)若某次运送总运费共花去50000元,请指出当时的调运方案;(3)按照题(2)的调运方案,从A基地往甲中心运送粮食,在运输途中的E地接到F 地商家的一个电话,该商家需要25吨.已知A基地与E地之间的运费为每吨520元,甲中心与F地之间的运费为每吨480元.现A基地有两种方案运送到甲中心和F地商家:方案一:从E地直接运送到F地商家,运到后把剩下的粮食运到甲中心;方案二:先把粮食运到甲中心,再运25吨到F地商家.若方案一比方案二的总运费多21000元,则从E地到F地商家的运费是每吨多少元?参考答案1、我们规定,若关于x的一元一次方程ax=b的解为x=b﹣a,则称该方程为“差解方程”.例如:2x=4的解为x=2,且2=4﹣2,则该方程2x=4是差解方程.(1)判断:方程3x=4.5差解方程(填“是”或“不是”)(2)若关于x的一元一次方程4x=m+3是差解方程,求m的值.【解答】解:(1)∵方程3x=4.5的解为x=1.5=4.5﹣3,∴方程3x =4.5是差解方程, 故答案为:是;(2)∵方程4x =m +3的解是x =m+34, 又∵方程4x =m +3是差解方程,∴m+34=m +3﹣4,∴m =73.2、定义:如果两个一元一次方程的解互为相反数,我们就称这两个方程为“兄弟方程”. 如方程2x =4和3x +6=0为“兄弟方程”.(1)若关于x 的方程5x +m =0与方程2x ﹣4=x +1是“兄弟方程”,求m 的值; (2)若两个“兄弟方程”的两个解的差为8,其中一个解为n ,求n 的值;(3)若关于x 的方程2x +3m ﹣2=0和3x ﹣5m +4=0是“兄弟方程”,求这两个方程的解. 【解答】解:(1)方程2x ﹣4=x +1的解为x =5, 将x =﹣5代入方程5x +m =0得m =25; (2)另一解为﹣n .则n ﹣(﹣n )=8或﹣n ﹣n =8, ∴n =4或n =﹣4;(3)方程2x +3m ﹣2=0的解为x =−3m+22, 方程3x ﹣5m +4=0的解为x =5m−43, 则−3m+22+5m−43=0,解得m=2.所以,两解分别为﹣2和2.3、定义:如果一个一元一次方程的一次项系数与常数项的差刚好是这个方程的解,则称这个方程为妙解方程.例如:方程2x+4=0中,2﹣4=﹣2,方程的解为x=﹣2,则方程2x+4=0为妙解方程.请根据上述定义解答下列问题:(1)方程2x+3=0是妙解方程吗?试说明理由.(2)已知关于x的一元一次方程3x+m=0是妙解方程.求m的值.(3)已知关于x的一元一次方程2x+a﹣b=0是妙解方程,并且它的解是x=b.求代数式ab的值.【解答】解:(1)方程2x+3=0中,一次项系数与常数项的差为:2﹣3=﹣1,方程的解为x=﹣1.5,∵﹣1≠﹣1.5,∴方程2x+3=0不是妙解方程;(2)∵3x+m=0是妙解方程,∴它的解是x=3﹣m,∴3(3﹣m)+m=0,解得:m=4.5;(3)∵2x+a﹣b=0是妙解方程,∴它的解是x=2﹣(a﹣b),∴2﹣(a﹣b)=b,解得:a=2,代入方程得:2b+2﹣b=0,得b=﹣2.∴ab =﹣4.4、我们把解相同的两个方程称为同解方程.例如:方程:2x =6与方程4x =12的解都为x =3,所以它们为同解方程.(1)若方程2x ﹣3=11与关于x 的方程4x +5=3k 是同解方程,求k 的值;(2)若关于x 的方程3[x ﹣2(x −k3)]=4x 和3x+k 12−1−5x 8=1是同解方程,求k 的值;(3)若关于x 的方程2x ﹣3a =b 2和4x +a +b 2=3是同解方程,求14a 2+6ab 2+8a +6b 2的值. 【解答】解:(1)∵方程2x ﹣3=11与关于x 的方程4x +5=3k 是同解方程, ∴2x ﹣3=11,解得x =7,把x =7代入方程4x +5=3k ,解得k =11, 所以k 的值为11;(2)∵方程3[x ﹣2(x −k3)]=4x 和3x+k 12−1−5x 8=1是同解方程,∴3[x ﹣2(x −k3)]=4x 解得,x =2k7,3x+k 12−1−5x 8=1解得,x =121(27﹣2k ),∴2k 7=121(27﹣2k ),解得k =278; 所以k 的值为278;(3)∵方程2x ﹣3a =b 2和4x +a +b 2=3是同解方程, ∴2x ﹣3a =b 2即4x ﹣6a =2b 2, ∴4x =6a +2b 2,∵4x +a +b 2=3, ∴6a +2b 2+a +b 2=3, 即7a +3b 2=3, ∴14a 2+6ab 2+8a +6b 2=2a (7a +3b 2)+7a +3b 2+a +3b 2 =6a +3+a +3b 2 =7a +3b 2+3 =3+3 =6.所以14a 2+6ab 2+8a +6b 2的值为6.5、先阅读下列解题过程,然后解答问题(1)、(2)、(3). 例:解绝对值方程:|2x |=1.解:讨论:①当x ≥0时,原方程可化为2x =1,它的解是x =12.②当x <0时,原方程可化为﹣2x =1,它的解是x =−12. ∴原方程的解为x =12和−12.问题(1):依例题的解法,方程|12x |=2的解是 ;问题(2):尝试解绝对值方程:2|x ﹣2|=6;问题(3):在理解绝对值方程解法的基础上,解方程:|x ﹣2|+|x ﹣1|=5.【解答】解:(1)|12x |=2,①当x≥0时,原方程可化为12x=2,它的解是x=4;②当x<0时,原方程可化为−12x=2,它的解是x=﹣4;∴原方程的解为x=4和﹣4,故答案为:x=4和﹣4.(2)2|x﹣2|=6,①当x﹣2≥0时,原方程可化为2(x﹣2)=6,它的解是x=5;②当x﹣2<0时,原方程可化为﹣2(x﹣2)=6,它的解是x=﹣1;∴原方程的解为x=5和﹣1.(3)|x﹣2|+|x﹣1|=5,①当x﹣2≥0,即x≥2时,原方程可化为x﹣2+x﹣1=5,它的解是x=4;②当x﹣1≤0,即x≤1时,原方程可化为2﹣x+1﹣x=5,它的解是x=﹣1;③当1<x<2时,原方程可化为2﹣x+x﹣1=5,此时方程无解;∴原方程的解为x=4和﹣1.6、阅读下列材料:我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离;即|x|=|x﹣0|;这个结论可以推广为|x1﹣x2|表示在数轴上数x1,x2对应点之间的距离.绝对值的几何意义在解题中有着广泛的应用:例1:解方程|x|=4.容易得出,在数轴上与原点距离为4的点对应的数为±4,即该方程的x=±4;例2:解方程|x+1|+|x﹣2|=5.由绝对值的几何意义可知,该方程表示求在数轴上与﹣1和2的距离之和为5的点对应的x的值.在数轴上,﹣1和2的距离为3,满足方程的x对应的点在2的右边或在﹣1的左边.若x对应的点在2的右边,如图1可以看出x=3;同理,若x对应点在﹣1的左边,可得x=﹣2.所以原方程的解是x=3或x=﹣2.例3:解不等式|x﹣1|>3.在数轴上找出|x﹣1|=3的解,即到1的距离为3的点对应的数为﹣2,4,如图2,在﹣2的左边或在4的右边的x值就满足|x﹣1|>3,所以|x﹣1|>3的解为x<﹣2或x>4.参考阅读材料,解答下列问题:(1)方程|x+3|=5的解为;(2)方程|x﹣2017|+|x+1|=2020的解为;(3)若|x+4|+|x﹣3|≥11,求x的取值范围.【解答】解:(1)方程|x+3|=5的解为x=2或x=﹣8;故答案为:x=2或x=8;(2)方程|x﹣2017|+|x+1|=2020的解为x=﹣2或x=2018;故答案为:x=﹣2或x=2018;(3)∵|x+4|+|x﹣3|表示的几何意义是在数轴上分别与﹣4和3的点的距离之和,而﹣4与3之间的距离为7,当x在﹣4和3时之间,不存在x,使|x+4|+|x﹣3|≥11成立,当x在3的右边时,如图所示,易知当x≥5时,满足|x+4|+|x﹣3|≥11,当x在﹣4的左边时,如图所示,易知当x≤﹣6时,满足|x+4|+|x﹣3|≥11,所以x的取值范围是x≥5或x≤﹣6.7、如图,在数轴上点A表示的有理数为﹣4,点B表示的有理数为6,点P从点A出发以每秒2个单位长度的速度在数轴上沿由A到B方向运动,当点P到达点B后立即返回,仍然以每秒2个单位长度的速度运动至点A停止运动.设运动时间为t(单位:秒).(1)求t=2时点P表示的有理数;(2)求点P与点B重合时t的值;(3)①点P由点A到点B的运动过程中,求点P与点A的距离(用含t的代数式表示);②点P由点A到点B的运动过程中,点P表示的有理数是多少(用含t的代数式表示);(4)当点P表示的有理数与原点距离是2个单位时,直接写出所有满足条件的t的值.【解答】解:(1)﹣4+2×2=0.答:求t=2时点P表示的有理数为0.(2)依题意,得:﹣4+2t=6,解得:t=5.答:当t=5时,点P与点B重合.(3)①∵点P从点A出发以每秒2个单位长度的速度在数轴上沿由A到B方向运动,且当t=5时点P到达点B,∴点P由点A到点B的运动过程中,P A=2t(0≤t≤5);②∵点P从点A出发以每秒2个单位长度的速度在数轴上沿由A到B方向运动,且当t=5时点P到达点B,∴点P由点A到点B的运动过程中,点P表示的有理数是﹣4+2t(0≤t≤5).(4)当0≤t≤5时,点P表示的有理数是﹣4+2t,OP=|﹣4+2t|,∴|﹣4+2t|=2,即﹣4+2t=﹣2或﹣4+2t=2,解得:t=1或t=3;当5<t≤10时,点P表示的有理数是6﹣2(t﹣5)=16﹣2t,OP=|16﹣2t|,∴|16﹣2t|=2,即16﹣2t=2或16﹣2t=﹣2,解得:t=7或t=9.答:当点P表示的有理数与原点距离是2个单位时,满足条件的t的值为1或3或7或9.8、已知:如图,点A、点B为数轴上两点,点A表示的数为a,点B表示的数为b,a与b满足|a+4|+(b﹣8)2=0.动点P从点A出发,以2个单位长度/秒的速度沿数轴向右运动,同时动点Q从点B出发,以1个单位长度/秒的速度沿数轴向右运动.(1)直接写出a、b的值,a=,b=;(2)设点P的运动时间为t秒,当t为何值时,P、Q两点相距20个单位长度;(3)若在运动过程中,动点Q始终保持原速度原方向,动点P到达原点时,立即以原来的速度向相反的方向运动.设点P的运动时间为t秒,当t为何值时,原点O分线段PQ为1:3两部分.【解答】解:(1)依题意有:a+4=0,b﹣8=0,解得:a =﹣4;b =8; (2)AB =8﹣(﹣4)=12, 依题意有2t ﹣t =12+20, 解得t =32;(3)①3(4﹣2t )=8+t ,解得:t =47;②3(2t ﹣4)=8+t , 解得:t =4; ③2t ﹣4=3(8+t ), 解得:t =﹣28(舍去).故当t 为47秒或4秒时,原点O 分线段PQ 为1:3两部分. 故答案为:﹣4,8. 9、阅读理解: 【探究与发现】如图1,在数轴上点E 表示的数是8,点F 表示的数是4,求线段EF 的中点M 所示的数对于求中点表示数的问题,只要用点E 所表示的数﹣8,加上点F 所表示的数4,得到的结果再除以2,就可以得到中点M 所表示的数:即M 点表示的数为:−8+42=−2.【理解与应用】把一条数轴在数m 处对折,使表示﹣20和2020两数的点恰好互相重合,则m = . 【拓展与延伸】如图2,已知数轴上有A 、B 、C 三点,点A 表示的数是﹣6,点B 表示的数是8.AC =18.(1)若点A以每秒3个单位的速度向右运动,点C同时以每秒1个单位的速度向左运动设运动时间为t秒.①点A运动t秒后,它在数轴上表示的数表示为(用含t的代数式表示)②当点B为线段AC的中点时,求t的值.(2)若(1)中点A、点C的运动速度、运动方向不变,点P从原点以每秒2个单位的速度向右运动,假设A、C、P三点同时运动,求多长时间点P到点A、C的距离相等?【解答】解:m=−20+20202=1000;故答案为:1000;(1)①点A向右移动的距离为3t,因此点A从数轴上表示﹣6的点向右移动3t的单位后,所表示的数为3t﹣6,故答案为:3t﹣6,②当点B为线段AC的中点时,Ⅰ)当移动后点C在点B的右侧时,此时t<4,如图1,由BA=BC得,8﹣(3t﹣6)=(12﹣t)﹣8,解得,t=5>4(舍去)Ⅱ)当移动后点C在点B的左侧时,此时t>4,如图2,由BA=BC得,(3t﹣6)﹣8=8﹣(12﹣t),解得,t=5,答:当点B为线段AC的中点时,t的值为5秒.(2)根据运动的方向、距离、速度可求出,点P、C相遇时间为12÷(2+1)=4秒,点A、C相遇时间为18÷(3+1)=92秒,点A追上点P的时间为6÷(3﹣2)=6秒,当点P到点A、C的距离相等时,①如图2﹣3所示,此时t<4,由P A=PC得,2t﹣(3t﹣6)=(12﹣t)﹣2t,解得,t=3;②当A、C相遇时符合题意,此时,t=92,③当点A在点P的右侧,点C在点P的左侧时,此时t>6,∵点A追上点P时用时6秒,之后P A距离每秒增加1个单位长度,而PC每秒增加4个单位长度,∴不存在点P到点A、C的距离相等的情况,因此:当点P到点A、C的距离相等时,t=3或t=9 2.10、小明参加启秀期末考试时的考场座位号是由四个数字组成的,这四个数字组成的四位数有如下特征:(1)它的千位数字为2;(2)把千位上的数字2向右移动,使其成为个位数字,那么所得的新数比原数的2倍少1478,求小明的考场座位号.【解答】解:设原来数字为x,2x﹣1478=(x﹣2000)×10+2解得,x=2315答:小明的考场号是2315.11、一个三位数,十位数字是0,个位数字是百位数字的2倍,如果将这个三位数的个位数字与百位数字调换位置得到一个新的三位数,则这个新的三位数比原三位数的2倍少9,设原三位数的百位数字是x:(1)原三位数可表示为,新三位数可表示为;(2)列方程求解原三位数.【解答】解:(1)设原三位数的百位数字是x,则个位数字是2x,又∵十位数字是0,∴原三位数可表示为100x+2x=102x.∵新的三位数的个位数字是x,百位数字是2x,十位数字是0,∴新三位数可表示为100•2x+x=201x.故答案为102x,201x;。

人教版七年级数学下册实际问题与一元一次不等式(提高)典型例题(考点)讲解+练习(含答案).doc

人教版七年级数学下册实际问题与一元一次不等式(提高)典型例题(考点)讲解+练习(含答案).doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】实际问题与一元一次不等式(提高)知识讲解责编:杜少波【学习目标】1.会从实际问题中抽象出不等的数量关系,会用一元一次不等式解决实际问题; 2. 熟悉常见一些应用题中的数量关系.【要点梳理】要点一、常见的一些等量关系 1.行程问题:路程=速度×时间2.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量3.利润问题:商品利润=商品售价-商品进价,=100%⨯利润利润率进价4.和差倍分问题:增长量=原有量×增长率5.银行存贷款问题:本息和=本金+利息,利息=本金×利率6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.【:实际问题与一元一次不等式409415 小结:】 要点二、列不等式解决实际问题列一元一次不等式解应用题与列一元一次方程解应用题类似,通常也需要经过以下几个步骤:(1)审:认真审题,分清已知量、未知量及其关系,找出题中不等关系要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“至少”、“不超过”、“超过”等; (2)设:设出适当的未知数;(3)列:根据题中的不等关系,列出不等式; (4)解:解所列的不等式;(5)答:写出答案,并检验是否符合题意. 要点诠释:(1)列不等式的关键在于确定不等关系;(2)求得不等关系的解集后,应根据题意,把实际问题的解求出来; (3)构建不等关系解应用题的流程如图所示.(4)用不等式解决应用问题,有一点要特别注意:在设未知数时,表示不等关系的文字如“至少”不能出现,即应给出肯定的未知数的设法,然后在最后写答案时,应把表示不等关系的文字补上.如下面例1中 “设还需要B 型车x 辆 ”,而在答中 “至少需要11台B 型车 ”.这一点要应十分注意. 【典型例题】类型一、简单应用题1.蓝天运输公司要将300吨物资运往某地,现有A、B两种型号的汽车可供调用.已知A型汽车每辆最多可装该物资20吨,B型汽车每辆最多可装该物资15吨.在每辆车不超载的条件下,要把这300吨物资一次性装运完.问:在已确定调用7辆A型车的前提下至少还需调用B型车多少辆?【思路点拨】本题的数量关系是:7辆A型汽车装载货物的吨数+B型汽车装货物的吨数≥300吨,由此可得出不等式,求出自变量的取值范围,找出符合条件的值.【答案与解析】解:设需调用B型车x辆,由题意得:72015300x⨯+≥,解得:2103x≥,又因为x取整数,所以x最小取11.答:在已确定调用7辆A型车的前提下至少还需调用B型车11辆.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的不等量关系.举一反三:【变式】(2015•香坊区二模)某商场共用2200元同时购进A、B两种型号的背包各40个,且购进A型号背包2个比购进B型号背包1个多用20元.(1)求A、B两种型号背包的进货单价各为多少元?(2)若该商场把A、B两种型号背包均按每个50元的价格进行零售,同时为了吸引消费者,商场拿出一部分背包按零售价的7折进行让利销售.商场在这批背包全部销售完后,若总获利不低于1350元,求商场用于让利销售的背包数量最多为多少个?【答案】解:(1)设A型背包每个为x元,B型背包每个为y元,由题意得,解得:.答:A、B两种型号背包的进货单价各为25元、30元;(2)设商场用于让利销售的背包数量为a个,由题意得,50×70a%+50(40×2﹣a)﹣2200≥1350,解得:a≤30.所以,商场用于让利销售的背包数数量最多为30个.答:商场用于让利销售的背包数数量最多为30个.类型二、阅读理解型2. 用甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C含量及购买这两种原料的价格如下表:甲种原料乙种原料维生素C含量(单位•千克)600 100原料价格(元•千克)8 4现配制这种饮料10kg,要求至少含有4200单位的维生素C,若所需甲种原料的质量为xkg,则x应满足的不等式为()A.600x+100(10-x)≥4200 B.8x+4(100-x)≤4200C.600x+100(10-x)≤4200 D.8x+4(100-x)≥4200【思路点拨】首先由甲种原料所需的质量和饮料的总质量,表示出乙种原料的质量,再结合表格中的数据,根据“至少含有4200单位的维生素C”这一不等关系列不等式.【答案】A【解析】解:若所需甲种原料的质量为xkg,则需乙种原料(10-x)kg.根据题意,得600x+100(10-x)≥4200.【总结升华】能够读懂表格,会把文字语言转换为数学语言.【变式】(2015春•西城区期末)为了落实水资源管理制度,大力促进水资源节约,某地实行居民用水阶梯水价,收费标准如下表:(1)小明家5月份用水量为14立方米,在这个月,小明家需缴纳的水费为元;(2)小明家6月份缴纳水费110元,在这个月,小明家缴纳第二阶梯水价的用水量为立方米;(3)随着夏天的到来,用水量将会有所增加,为了节省开支,小明家计划7月份的水费不超过180元,在这个月,小明家最多能用水多少立方米?【答案】解:(1)由表格中数据可得:0≤x≤15时,水价为:5元/立方米,故小明家5月份用水量为14立方米,在这个月,小明家需缴纳的水费为:14×5=70(元);(2)∵15×5=75<110,75+6×7=117>110,∴小明家6月份使用水量超过15立方米但小于21立方米,设小明家6月份使用水量为x立方米,∴75+(x﹣15)×7=110,解得:x=20,故小明家缴纳第二阶梯水价的用水量为:20﹣15=5(立方米),故答案为:5;(3)设小明家能用水a立方米,根据题意可得:117+(a﹣21)×9≤180,解得:a≤28.答:小明家计划7月份的水费不超过180元,在这个月,小明家最多能用水28立方米.类型三、方案选择型3.(2015•龙岩)某公交公司有A,B型两种客车,它们的载客量和租金如下表:A B载客量(人/辆)45 30租金(元/辆)400 280红星中学根据实际情况,计划租用A,B型客车共5辆,同时送七年级师生到基地校参加社会实践活动,设租用A型客车x辆,根据要求回答下列问题:(1)用含x的式子填写下表:车辆数(辆)载客量租金(元)A x 45x 400xB 5﹣x __________ ___________(2)若要保证租车费用不超过1900元,求x的最大值;(3)在(2)的条件下,若七年级师生共有195人,写出所有可能的租车方案,并确定最省钱的租车方案.【思路点拨】(1)根据题意,载客量=汽车辆数×单车载客量,租金=汽车辆数×单车租金,列出代数表达式即可;(2)根据题意,表示出租车总费用,列出不等式即可解决;(3)由(2)得出x的取值范围,一一列举计算,排除不合题意方案即可.【答案与解析】解:(1)∵载客量=汽车辆数×单车载客量,租金=汽车辆数×单车租金,∴B型客车载客量=30(5﹣x);B型客车租金=280(5﹣x);故填:30(5﹣x);280(5﹣x).(2)根据题意,400x+280(5﹣x)≤1900,解得:x≤4,∴x的最大值为4;(3)由(2)可知,x≤4,故x可能取值为0、1、2、3、4,①A型0辆,B型5辆,租车费用为400×0+280×5=1400元,但载客量为45×0+30×5=150<195,故不合题意舍去;②A型1辆,B型4辆,租车费用为400×1+280×4=1520元,但载客量为45×1+30×4=165<195,故不合题意舍去;③A型2辆,B型3辆,租车费用为400×2+280×3=1640元,但载客量为45×2+30×3=180<195,故不合题意舍去;④A型3辆,B型2辆,租车费用为400×3+280×2=1760元,但载客量为45×3+30×2=195=195,符合题意;⑤A型4辆,B型1辆,租车费用为400×4+280×1=1880元,但载客量为45×4+30×1=210,符合题意;故符合题意的方案有④⑤两种,最省钱的方案是A型3辆,B型2辆.【总结升华】此题主要考查了一次不等式的综合应用,由题意得出租用x辆甲种客车与总租金关系是解决问题的关键.举一反三:【变式】黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用不超过5000元,问公司租用的四座车和十一座车各多少辆?【答案】解:设四座车租x辆,则十一座车租70411x-辆.依题意 70×60+60x+(70-4x)×10≤5000,将不等式左边化简后得:20x+4900≤5000,不等式两边减去3500得 20x≤100,不等式两边除以20得 x≤5,又∵70411x-是整数,∴1x=,704611x-=.答:公司租用四座车l辆,十一座车6辆.4.响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超过132 000元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1200元/台、1600元/台、2000元/台.(1)至少购进乙种电冰箱多少台?(2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?【思路点拨】(1)关系式为:甲种电冰箱用款+乙种电冰箱用款+丙种电冰箱用款≤132000,根据此不等关系列不等式即可求解;(2)关系式为:甲种电冰箱的台数≤丙种电冰箱的台数,以及(1)中得到的关系式联合求解.【答案与解析】解:(1)设购买乙种电冰箱x台,则购买甲种电冰箱2x台,丙种电冰箱(80-3x)台,根据题意得1200×2x+1600x+(80-3x)×2000≤132000解这个不等式得x≥14∴至少购进乙种电冰箱14台;(2)根据题意得2x≤80-3x解这个不等式得x≤16由(1)知x≥14∴14≤x≤16又∵x为正整数∴x=14,15,16.所以,有三种购买方案方案一:甲种电冰箱为28台,乙种电冰箱为14台,丙种电冰箱为38台.方案二:甲种电冰箱为30台,乙种电冰箱为15台,丙种电冰箱为35台.方案三:甲种电冰箱为32台,乙种电冰箱为16台,丙种电冰箱为32台.【总结升华】探求不等关系时,要注意捕捉“大于”、“超过”、“不少于”、“不足”、“至多”等表示不等关系的关键词,通过这些词语,可以直接找到不等关系.初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。

七年级数学应用题专题—表格信息类问题

七年级数学应用题专题—表格信息类问题

七年级数学应用题专题————表格信息类问题班级学号姓名学习要点:1、表格内容提供解题的重要信息,值得同学们注意2、利用方程能求得实际问题的具体数值,还可以进行推理判断3、用方程解决实际问题时,要进行检验并考虑问题的答案是否符合实际情况。

4、提高分析问题、解决问题的能力1、例:暑假里,《新晚报》组织了“我们的小世界杯”足球邀请赛,勇士队在第一轮比赛中共赛了9场,得分17分,比赛规则胜一场得3分,平一场得1分,负一场得0分,勇士队在这一轮中只负了2场,那么这个队胜了几场?又平了几场?2、练习题:在一次有12支球队参加的足球循环赛中(每两队必须赛一场),规定胜一场得3分,平一场得1分,负一场得0分,某队在这次循环赛中所胜场数比所负的场数多两场,结果得18分,那么该队胜了几场?3、例:教课书P984、例:声音在空气中传播速度v(米/秒)与温度t(℃)(1)观察表格,你能发现声音在空气中的传播速度v与温度t有怎样的关系吗?(2)当t=2.5℃时,求声音的传播速度(3)当v=337米/秒时,求此时的温度?5、生活中有许多量存在不同度量方法,下表是摄氏温度(℃)与华氏温度(℉)之间的对照表:(1)列式表示摄氏温度t 与华氏温度F 之间的关系(2)你所在地今天的气温是多少?转化成华氏温度是几度? (3)若某地今天的气温是华氏64.4℉,求该地的摄氏温度?6、一批货物要运往某地,货主准备租用汽车公司的甲、乙两种货车,已知过去两次租用这两种货车的情况如右表:现租用该公司3辆甲种货车及5辆乙种货车, 一次刚好运完这批货物。

如果运费按每吨30 元计算,问:货主应付运费多少元?7、例:团体购买公园门票,票价如下:今有甲、乙两个旅游团,若分别购票,两团总计应付门票费6570元,若合在一起作为一个团购票,总计只须付5040元,问这两个旅游团各有多少人?8、某校七年级(1)、(2)两个班级共104人去游长风乐园,其中(1)班人数较少,不到50人,(2)班人数较多,有50人。

七年级上册数学20道应用题及答案

七年级上册数学20道应用题及答案

七年级上册数学20道应用题及答案1、有一根铁丝,第一次用去了他的一半少1米,第二次用去了剩余铁丝的一半还多1米,结果这根铁丝还剩余2.5米,问这根铁丝原来长多少米?解设:这根铁丝原来长X米.X-[1/2(1/2X-1)+1]=2.5X=42、将内径为200mm的圆柱形水桶中的满桶水倒入一个内部长\宽\高分别为300mm.300mm.80mm的长方形铁盒中,正好倒满,求圆柱形水桶中的水高? 解设:高为Xmm100·100·Л·X=300·300·80X=720Л3、列车在中途受阻,耽误了6分钟,然后将时速由原来的每小时40千米提高到每小时50千米,问这样走多少千米,就可以将耽误的时间补上?解设:走X千米X/50=[X-(40·6/60)]/40X=44、某学校七年级(1)班组织课外活动,准备举行一次羽毛球比赛,去商店购买羽毛球拍和羽毛球,每副球拍25元,每只球2元,甲商店说:"羽毛球及球拍都打9折优惠",乙商店说"买一副球拍赠送2只羽毛球,(1)学校准备花90元钱全部用于买2副羽毛球拍及羽毛球若干只,问到哪家商店购买更合算?(2)若必须买2副羽毛球拍,则应当买多少只羽毛球时到两家商店才一样合算?解甲:打9折后球拍为:22.5元/只球为1.8元/只球拍22.5·2=45元球:(90-45)÷1.8=25(只)乙: 25·2=50(元){送两只球}需要买的球:(90-50)÷2=20(只)一共的球:20+2=22(只)甲那里可以买25只,而乙只能买22只.所以,甲比较合算.5、甲\乙\丙三位同学向贫困地区的少年儿童捐赠图书,已知这三位同学捐赠图书的册数的比是5:6:9 ,如果甲\丙两位同学捐书册数的和是乙捐书册数的2倍还多12册,那么他们各捐书多少册?解设:每份为X甲:5X 乙:6X 丙:9X5X+9X=6X·2+12X=6所以:甲:5·6=30(本)乙:6·6=36(本)丙:9·6=54(本)6、整理一批数据,由一个人做需80小时完成任务。

第三章《一元一次方程》应用题数轴类提高篇(1)-2021-2022学年人教版数学七年级上册

第三章《一元一次方程》应用题数轴类提高篇(1)-2021-2022学年人教版数学七年级上册

第三章《一元一次方程》应用题数轴类提高篇11.如图,点A、B分别位于原点O的两侧,AB=12,且OA=2OB,动点P从点A出发以每秒3个单位长度的速度向右运动,同时动点Q从点B出发以每秒1个单位长度的速度向左运动.(1)求数轴上点A,B对应的数;(2)当OP=OQ时,求运动的时间.2.如图,已知在数轴上有三个点A、B、C,O是原点,满足OA=AB=BC=20cm,动点P从点O出发向右以每秒2cm的速度匀速运动;同时,动点Q从点C出发,在数轴上向左匀速运动,速度为v(v>1);运动时间为t.(1)求:点P从点O运动到点C时,运动时间t的值.(2)若Q的速度v为每秒3cm,那么经过多长时间P,Q两点相距30cm?此时|QB﹣QC|是多少?(3)当|PA+PB|=2|QB﹣QC|=24时,请直接写出点Q的速度v的值.3.如图,点P、Q在数轴上表示的数分别是﹣8、4,点P以每秒2个单位的速度运动,点Q 以每秒1个单位的速度运动.设点P、Q同时出发向右运动,运动时间为t秒.(1)若运动2秒时,则点P表示的数为,点P、Q之间的距离是个单位;(2)求经过多少秒后,点P、Q重合?(3)试探究:经过多少秒后,点P、Q两点间的距离为6个单位.4.如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).(1)填空:t秒后,点P表示的数为;点Q表示的数为.(2)求当t为何值时,PQ=AB;(3)当点P运动到点B的右侧时,点M是线段PA上靠近于点A的四等分点,点N为线段PB上靠近于点P的三等分点,求PM﹣BN的值.5.如图,在数轴上点A表示的数是﹣4,点B在点A的右侧,且到点A的距离是24,点C 在点A与点B之间,且BC=3AC.(1)点B表示的数是,点C表示的数是;(2)若点P从点A出发,沿数轴以每秒3个单位长度的速度向右匀速运动;同时,点Q 从点B出发,沿数轴以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒,在运动过程中,①当t为何值时,点P与点Q相遇?②当t为何值时,点P与点Q间的距离为9个单位长度?(3)在(2)的条件下,在运动过程中,是否存在某一时刻使得PC+QB=7?若存在,请求出此时点P表示的数;若不存在,请说明理由.6.如图,甲、乙两人(看成点)分别在数轴上﹣3和5的位置,沿数轴做移动游戏,规则如下:两人先猜硬币的正反面,依据猜的对错再移动,若都猜对或都猜错,则甲向右移动1个单位,同时乙向左移动1个单位;若甲猜对乙猜错,则甲向右移动4个单位,同时乙向右移动2个单位;若甲猜错乙猜对,则甲向左移动2个单位,同时乙向左移动4个单位.(1)第一次游戏时,若甲、乙都猜对,则移动后两人相距个单位;若甲猜对乙猜错,则移动后两人相距个单位;若甲猜错乙猜对,则移动后两人相距个单位;(2)若连续(下次在上次的基础上)完成了10次移动游戏,且每次甲、乙所猜结果均为一对一错.游戏结束后,①乙会不会落在原点O处?为什么?②求甲、乙两人之间的距离.7.已知数轴上两点A、B对应的数分别为﹣1、5,点P为数轴上一动点,其对应的数为X.(1)若点P到点A点B的距离相等,求点P对应的数是X=;(2)数轴上是否存在点P,使点P到点A,点B的距离之和为8?若存在,请求出X的值;若不存在,说明理由;(3)现在点A,点B分别以2个单位长度每分和1个单位长度每分的速度同时向右运动,点P以6个单位长度每分的速度从O点向左运动,当遇到A时,点P以原来的速度向右运动,并不停得往返于A与B之间,求当A遇到B重合时,P所经过的总路程.8.如图,在数轴上有A、B两点,点C是线段AB的中点,AB=12,OA=8.(1)求点C所表示的数;(2)动点P、Q分别从A、B同时出发,沿着数轴的正方向运动,点P、Q的运动速度分别是每秒3个单位和每秒2个单位(当P与Q相遇,运动停止),点M是线段PQ的中点,设运动时间为t秒,请用含t的式子表示CM的长;(3)在(2)的条件下,试问t为何值时,CM=PC.9.已知数轴上有两点A、B,点A对应的数为﹣12,点B在点A的右边,且距离A点16个单位,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,B的距离相等,求点P对应的数;(2)是否存在这样的点P,使点P到点A,B的距离之和为20?若存在,请求出x的值;若不存在,请说明理由?(3)点Q是数轴上另一个动点,动点P,Q分别从A,B同时出发,点P以每秒6个单位长度的速度沿数轴向右匀速运动,点Q以每秒4个单位长度的速度沿数轴向左匀速运动,点M为AP的中点,点N在线段BQ上,且BN=BQ,设运动时间为t(t>0)秒.①分别求数轴上点M,N表示的数(用含t的式子表示);②t为何值时,M,N之间的距离为10?10.“幸福是奋斗出来的”,在数轴上,若C到A的距离刚好是3.则C点叫做A的“幸福点”;若C到A、B的距离之和为6,则C叫做A和B的“幸福中心”.(1)如图1,点A表示的数为﹣1,则A的幸福点C所表示的数应该是.(2)如图2,M,N为数轴上两点,点M所表示的数为4,点N所表示的数为﹣2,若点C 就是M和N的幸福中心,则C所表示的所有数中,整数之和为;(3)如图3,A、B、C为数轴上三点,点A所表示的数为﹣1.点B所表示的数为4,点C所表示的数为8,点P从点C出发,以每秒2个单位的速度向左运动,同时,点M,N 分别从点A,B以每秒1个单位的速度向右运动,经过多少秒时,点P是M和N的幸福中心?11.已知数轴上有A,B,C,D,E,F六个点,点C在原点位置,点B表示的数为﹣4,下表中A﹣B,B﹣C,D﹣C,E﹣D,F﹣E的含义为前一个点所表示的数与后一个点所表示的数的差.比如B﹣C为﹣4﹣0=﹣4.A﹣B B﹣C D﹣C E﹣D F﹣E10 ﹣4 ﹣1 x 2(1)在数轴上A,D两点表示的数为,.(2)当点A 与点F 的距离为3时,求x 的值;(3)若点M 从D 出发,以每秒1个单位长度的速度向终点A 移动,同时,点N 从B 出发,以每秒3个单位长度向终点A 移动,当其中一个点到A 点时两点都停止运动.设点M 移动时间为t 秒,请说明t 为何值时,点M 、N 之间的距离为2个单位长度?12.若在数轴上有三点M ,B ,C ,满足M 到点B ,点C 两点的距离差为5,则称M 为点B ,C 的“界点”,已知:数轴上点B 表示数﹣2,点C 表示数9.(1)点M 1表述数﹣4,M 2表述数1,点M 3表述数12三点中,M 是点B ,C 的“界点”.(2)若点B 是M ,C 的界点,请直接写出M 表述的数.(3)M 是C 点左侧的点,若点B 向右运动,是否存在每一时刻,不论M 位于同处,点M 总是B ,C 的“界点”,若存在请写出时刻B 点表示的数,并说明理由,若不存在,也请说明理由.13.在数轴上,点A 表示的数为1,点B 表示的数为3.对于数轴上的图形M ,给出如下定义:P 为图形M 上任意一点,Q 为线段AB 上任意一点,如果线段PQ 的长度有最小值,那么称这个最小值为图形M 关于线段AB 的极小距离,记作d 1(M ,线段AB );如果线段PQ 的长度有最大值,那么称这个最大值为图形M 关于线段AB 的极大距离,记作d 2(M ,线段AB ).例如:点K 表示的数为4,则d 1(点K ,线段AB )=1,d 2(点K ,线段AB )=3.已知点O 为数轴原点,点C ,D 为数轴上的动点.(1)d 1(点O ,线段AB )= ,d 2(点O ,线段AB )= ;(2)若点C ,D 表示的数分别为m ,m +2,d 1(线段CD ,线段AB )=2.求m 的值;(3)点C 从原点出发,以每秒2个单位长度沿x 轴正方向匀速运动;点D 从表示数﹣2的点出发,第1秒以每秒2个单位长度沿x 轴正方向匀速运动,第2秒以每秒4个单位长度沿x 轴负方向匀速运动,第3秒以每秒6个单位长度沿x 轴正方向匀速运动,第4秒以每秒8个单位长度沿x 轴负方向匀速运动,…,按此规律运动,C ,D 两点同时出发,设运动的时间为t 秒,若d 2(线段CD ,线段AB )小于或等于6,直接写出t 的取值范围.(t 可以等于0)14.已知数轴上点A 表示的数为12,点B 表示的数为﹣8.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,同时动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)当点P 与点Q 关于原点O 对称时,求t 的值;(2)是否存在t 的值,使得点P 与点Q 之间的距离为3个单位长度?若存在,请求出t 的值;若不存在,请说明理由.15.如图,点A 在数轴上对应的数为a ,点B 对应的数为b ,点A 与点B 之间的距离记作AB .已知a =﹣2,b 比a 大12.(1)点B表示的数是;(2)设点P在数轴上对应的数为x,当PA﹣PB=4时,求x的值;(3)若点M以每秒1个单位的速度从点A出发沿数轴向右运动,同时点N以每秒2个单位的速度从点B出发沿数轴向左运动.设运动时间是t秒.①在运动过程中,点M对应的数为,点N对应的数为(用含t的代数式表示);②当点M与点N之间的距离是9时,直接写出t的值.。

2024年七年级上册数学应用题

2024年七年级上册数学应用题

2024年七年级上册数学应用题一、行程问题。

1. 甲、乙两人从相距20千米的两地同时出发,相向而行,甲每小时走6千米,乙每小时走4千米,几小时后两人相遇?- 解析:设x小时后两人相遇。

根据路程 = 速度和×时间,可列方程(6 + 4)x=20,即10x = 20,解得x = 2。

所以2小时后两人相遇。

2. 一辆汽车以每小时60千米的速度从A地开往B地,3小时后到达。

返回时速度为每小时45千米,求汽车往返的平均速度。

- 解析:A地到B地的距离为60×3 = 180千米。

返回时所用时间为180÷45=4小时。

往返总路程为180×2 = 360千米,总时间为3 + 4=7小时。

则平均速度为360÷7=(360)/(7)≈51.43千米/小时。

3. 甲、乙两人在环形跑道上跑步,甲每分钟跑200米,乙每分钟跑160米,两人同时同地同向出发,经过40分钟甲第一次追上乙。

求环形跑道的周长。

- 解析:甲每分钟比乙多跑200 - 160 = 40米,40分钟甲比乙多跑了一圈,即环形跑道的周长。

所以周长为40×40 = 1600米。

二、工程问题。

4. 一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作需要多少天完成?- 解析:设两人合作需要x天完成。

把这项工程的工作量看作单位“1”,甲的工作效率是(1)/(10),乙的工作效率是(1)/(15)。

根据工作量=工作效率和×工作时间,可列方程((1)/(10)+(1)/(15))x = 1,通分得到((3)/(30)+(2)/(30))x=1,即(1)/(6)x = 1,解得x = 6。

所以两人合作需要6天完成。

5. 某工程队修一条路,原计划每天修400米,25天完成,实际每天修500米,实际多少天可以完成?- 解析:这条路的总长度为400×25 = 10000米。

实际每天修500米,那么实际完成天数为10000÷500 = 20天。

吉林省舒兰市第十八中学2018-2019学年度下学期七年级数学暑假作业第三章 第2节 图象类应用题(无答案)

吉林省舒兰市第十八中学2018-2019学年度下学期七年级数学暑假作业第三章  第2节  图象类应用题(无答案)

第2 节图象类应用题1. 某厂生产的纪念品深受人们喜爱,今年3 月份以来,该产品在原有库存量为m(m 0)的情况下,日销量与产量持平;5 月份以来,需求量增加,在生产能力不变的情况下,该产品一度脱销.下图能大致表示今年3 月份以来库存量y 与时间t 之间关系的是()2. 小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s 关于时间t 的图象,那么符合小明行驶情况的图象大致是()3. 星期天,小王去朋友家借书,如图是他离家的距离y(千米)与时间x(分钟)的图象,根据图象信息,下列说法正确的是()A.小王去时的速度大于回家的速度B.小王去时走上坡路,回家时走下坡路C.小王在朋友家停留了10 分钟D.小王去时所花的时间少于回家所花的时间4. 明明骑自行车去上学时,经过一段先上坡后下坡的路,在这段路上所走的路程s(千米)与时间t(分)之间的关系如图所示.放学后如果按原路返回,且往返过程中,上坡速度相同,下坡速度相同,那么他回来时,走这段路所用的时间为()A.12 分B.13 分C.14 分D.15 分5. 甲、乙两同学从A 地出发,骑自行车在同一条路上行驶到B 地,他们离出发地的距离s(千米)和行驶时间t(小时)之间的关系图象如图所示,根据图中提供的信息,有下列说法:①他们都行驶了18 千米;②甲在途中停留了0.5 小时;③乙比甲晚出发了0.5 小时;④相遇后,甲的速度小于乙的速度;⑤甲、乙两人同时到达目的地.其中符合图象描述的说法有()A.2 个B.3 个C.4 个D.5 个6. 如图1,点P 在长方形ABCD 的边上,按B→C→D→A 的方向运动,开始时,以每秒2 个单位长度匀速运动;到达C 点后,改为每秒a 个单位匀速运动;到达D 后,改为每秒b 个单位匀速运动.在整个运动过程中,△ABP 的面积S 与运动时间t 的关系如图2 所示,则AB= ,BC=,a= ,b=.7. 一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车在凌晨12 点同时出发,快车到达乙地后停止,慢车到达甲地后继续行驶,中午12 点到达丙地,图中的折线表示两车之间的距离y(km)与时间t(h)之间的关系图象.请根据图象进行以下探究:(1)甲、乙两地之间的距离为km.(2)求快车和慢车的速度分别为多少.(3)求快车经过多长时间到达乙地.8. “龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD 和折线OABC 表示“龟兔赛跑”时路程与时间的关系,请你根据图中给出的信息,解决下列问题.(1)填空:折线OABC 表示赛跑过程中的路程与时间的关系,线段OD 表示赛跑过程中的路程与时间的关系.赛跑的全程是米.(2)兔子在起初每分钟跑多少米?乌龟每分钟爬多少米?(3)兔子醒来,以48 千米/时的速度跑向终点,结果还是比乌龟晚到了0.5 分钟,请你算算兔子中间停下来睡觉用了多少分钟?9.下面的图象反映的过程是:小明从家去超市买文具,又去书店购书,然后回家.其中x 表示时间,y 表示小明离他家的距离,若小明家、超市、书店在同一条直线上.根据图象回答下列问题:(1)超市离小明家多远,小明走到超市用了多少时间?(2)超市离书店多远,小明在书店购书用了多少时间?(3)书店离小明家多远,小明从书店走回家的平均速度是每分钟多少米?10.有一天,龟、兔进行了600m 赛跑.如图表示龟兔赛跑的路程S(米)与时间t(分钟)的关系,(兔子睡觉前后速度保持不变)根据图象回答以下问题:(1)赛跑中,兔子共睡了多长时间?(2)赛跑开始后,乌龟在第几分钟时从睡觉的兔子旁经过?(3)兔子跑到终点时,乌龟已经到了多长时间?11.如图是甲、乙两车的行程表,仔细阅读后回答问题.(1)甲车时速为多少千米?(2)甲、乙两车时速之差为多少千米?(3)半小时两车相差多少千米?t 小时呢?12.蛇的体温随外部环境温度的变化而变化.图表现了一条蛇在两昼夜之间体温变化情况.问题:(1)第一天,蛇体温的变化范围是什么?它的体温从最低上升到最高需要多少时间?(2)第一天什么时间范围内蛇的体温是上升的?在什么时间范围内蛇的体温是下降的?(3)如果以后一天环境温度没有什么变化,请你画出这条蛇体温变化的大致图象.13.汽车的速度随时间变化的情况如图所示:(1)这辆汽车的最高时速是多少?(2)汽车在行驶了多长时间后停了下来,停了多长时间?(3)汽车在第一次匀速行驶时共用了几小时?速度是多少?在这段时间内,它走了多远?14.湖南省由于持续高温和连日无雨,水库蓄水量普遍下降,下图是某水库的蓄水量V 万米3 与干旱持续时间t(天)之间的关系图,请根据此图,回答下列问题:(1)该水库原蓄水量为多少万米3?持续干旱10 天后,水库蓄水量为多少万米3?(2)若水库的蓄水量小于400 万米3 时,将发出严重干旱警报,请问:持续干旱多少天后,将发出严重干旱警报?(3)按此规律,持续干旱多少天时,水库将干涸?15.已知O 为原点,点A(8,0)及在第一象限的动点P(x,y),且x+y=12,设△OPA 的面积为S.(1)求S 关于x 的函数解析式;(2)求x 的取值范围;(3)当S=12 时,求P 点坐标;(4)画出函数S 的图象,16.如图1,在矩形ABCD 中,AB=12cm,BC=6cm,点P 从A 点出发,沿A→B→C→D 路线运动,到D 点停止;点Q 从D 点出发,沿D→C→B→A 运动,到A 点停止.若点P、点Q 同时出发,点P 的速度为每秒1cm,点Q 的速度为每秒2cm,a 秒时点P、点Q 同时改变速度,点P 的速度变为每秒b(cm),点Q 的速度变为每秒c(cm).如图2 是点P 出发x 秒后△APD 的面积S1(cm2)与x(秒)的函数关系图象;图3 是点Q 出发x 秒后△AQD 的面积S2(cm2)与x(秒)的函数关系图象.根据图象:(1)求a、b、c 的值;(2)设点P 离开点A 的路程为y1(cm),点Q 到点A 还需要走的路程为y2(cm),请分别写出改变速度后y1、y2 与出发后的运动时间x(秒)的函数关系式,并求出P 与Q 相遇时x 的值.。

重难点02 有理数与数轴的复杂应用题(原卷版)-【暑假自学课】2024年新七年级数学暑假精品课(苏科

重难点02 有理数与数轴的复杂应用题(原卷版)-【暑假自学课】2024年新七年级数学暑假精品课(苏科

重难点02 有理数与数轴的复杂应用题1.通过数轴可以更直观地理解一些重要的概念,如正数和负数、相反数、绝对值等;2.利用数轴可以比较有理数的大小;3.数轴使得数和点能够相互转化,因此,数轴是数形结合的“桥梁”,是第一个数形结合体,是解决数学问题的一种重要工具.一. 数轴与有理数的关系:任何一个有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理教,还可以表示其他数,比如 .要点诠释:(1)一般地,数轴上原点右边的点表示正数,左边的点表示负数;反过来也对,即正数用数轴上原点右边的点表示,负数用原点左边的点表示,零用原点表示.(2)在数轴上表示的两个数,右边的数总比左边的数大.二.数轴与相反数(1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称). (2)互为相反数的两数和为0.三.数轴与绝对值1.定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.要点诠释:(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小.(3)一个有理数是由符号和绝对值两个方面来确定的.一.选择题(共2小题)1.(2022秋•钟楼区校级月考)如图,M、N、P、R分别是数轴上四个整数所对应的点,其中有一点是原点,数b对应的点在P与R之间,若|a|+|b|=3,则原点可能是()A.N或P B.M或R C.M或N D.P或R2.(2022秋•钟楼区校级月考)如图,圆的周长为4个单位长度.在该圆的4等分点处分别标上0、1、2、3,先让圆周上表示数字0的点与数轴上表示﹣1的点重合,再将数轴按逆时针方向环绕在该圆上,则数轴上表示﹣2014的点与圆周上重合点的数字是()A.0B.1C.2D.3二.解答题(共15小题)3.(2022秋•邗江区月考)已知在纸面上有一数轴(如图),折叠纸面.(1)若1表示的点与﹣1表示的点重合,则﹣6表示的点与表示的点重合;(2)若﹣1表示的点与5表示的点重合,回答以下问题:①数字7表示的点与表示的点重合;②若数轴上A、B两点之间的距离为78(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少?4.(2022秋•兴化市期末)“数缺形时少直观,形少数时难入微”,数形结合是解决数学问题的重要思想方法.如图,线段AB、CD都在数轴上,且AB=2(单位长度),CD=4(单位长度),点B从M出发沿射线MN方向,以6个单位长度/秒的速度运动;同时,点C从N出发沿射线NM方向,以2个单位长度/秒的速度运动,在点B、C运动的过程中,线段AB、CD随之运动.已知点M在数轴上表示的数是﹣8,点N在数轴上表示的数是16.(1)如图,当点B、C分别与点M、N重合时,则点A在数轴上表示的数是,点D在数轴上表示的数是.(2)运动t秒后.①点A在数轴上对应的数为,点D在数轴上对应的数为(用含t的代数式表示).②当运动到BC=8(单位长度)时,求出此时点B在数轴上表示的数.(3)若点P是线段AB上的任意一点,在整个运动过程中,是否存在P A+PC+PB+PD的值为定值?若存在,求出该定值以及定值所持续的时间;若不存在,请说明理由.5.(2022秋•邗江区期中)点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,则在数轴上A、B两点之间的距离AB=|a﹣b|.所以式子|x﹣2|的几何意义是数轴上表示x的点与表示2的点之间的距离.借助于数轴回答下列问题:(1)数轴上表示4和1的两点之间的距离是;数轴上表示﹣3和2两点之间的距离是;(2)数轴上表示数x与﹣2两点之间的距离可以表示为,若距离是3,那么x=;(3)若数轴上表示数a的点位于﹣4与2之间,则|a+4|+|a﹣2|=;(4)如图,在数轴上点A、B表示的数分别为﹣2、4,若点M从A点出发以每秒5个单位长度的速度沿数轴向右匀速运动,点N从B点向右出发以每秒4个单位长度的速度沿数轴匀速运动,设点M、N同时出发,运动时间为t秒,经过多少秒后,M、N两点间的距离为12个单位长度.6.(2022秋•如东县期中)数轴是一种特定的几何图形,利用数轴能形象地表示数,在数轴的问题中,我们常常用到数形结合的思想,并借助方程解决问题.如图1,在数轴上,点A表示数﹣8,点C表示的数为2,点B表示的数为6.(1)点P从点A出发,以2个单位/秒的速度向右运动,同时,点Q从点B出发,以1个单位/秒的速度向左运动,经过多久两点相遇?(2)如图2,我们将图1的数轴沿点O和点C各折一次后会得到一个新的图形,与原来相比,线段AO 和CB仍然水平,线段OC处产生了一个坡度,我们称这样的数轴为“坡数轴”,其中O为“坡数轴”原点,在“坡数轴”上,每个点对应的数就是把“坡数轴”拉直后对应的数.记“坡数轴”上A到B的距离为A和B拉直后距离:即=AO+OC+CB,其中AO、OC、CB代表线段长度.在“坡数轴”上,上坡时点的移动速度变为水平路线上移动速度的一半,下坡时移动速度变为水平路线上移动速度的2倍.①点P从点A出发,以2个单位/秒的速度沿着“坡数轴”向右运动,同时点Q从点B出发,以1个单位/秒的速度沿着“坡数轴”向左运动,经过多久,=3?②点P从A处沿“坡数轴”以每秒2个单位长度的速度向右移动,当移到点C时,立即掉头返回(掉头时间不计),在P出发的同时,点Q从B处沿“坡数轴”以每秒1个单位长度的速度向左移动,当P重新回到A点所有运动结束,设P点运动时间为t秒,在移动过程中,何时=3?直接写出t的值.7.(2022秋•鼓楼区校级月考)【阅读】|4﹣1|表示4与1差的绝对值,也可以理解为4与1两数在数轴上所对应的两点之间的距离:|4+1|可以看作|4﹣(﹣1)|,表示4与﹣1的差的绝对值,也可以理解为4与﹣1两数在数轴上所对应的两点间的距离.(1)|4﹣(﹣1)|=;(2)利用数轴找出所有符合条件的整数x,使得|x+3|=4,则x=;(3)利用数轴找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是:.8.(2022秋•港闸区校级月考)数轴是初中数学的一个重要工具,利用数轴可以将数与形完美结合.通过研究数轴,我们发现了许多重要的规律,比如:数轴上点A和点B表示的数为a,b,则A,B两点之间的距离AB=|a﹣b|,若a>b,则可化简为AB=a﹣b.若点P为数轴上一动点,点P对应的数记为a,请你利用数轴解决以下问题:(1)若点P与表示有理数﹣2的点的距离是3个单位长度,则a的值为;(2)若数轴上点P位于表示﹣5的点与表示2的点之间,则|a﹣2|+|a+5|=;(3)若数轴上比a小2的数用b表示,比a大5的数用c表示,则|b﹣2|+|c+5|的最小值为;(4)若a1=a,a2=a,a3=a,…,a9=a.则式子|a1﹣1|+2|a2+2|+3|a3﹣3|+…+9|a9﹣9|的最小值为.9.(2022秋•洪泽区校级月考)如图所示的数轴中,点A表示1,点B表示﹣2,试回答下列问题:(1)A、B两点之间的距离是;(2)观察数轴,与点A的距离为5的点表示的数是;(3)若将数轴折叠,使点A与表示﹣3的点重合,则点B与表示数的点重合;(4)若数轴上M,N两点之间的距离为2022(点M在点N的左侧),且M,N两点经过(3)中折叠后互相重合,则M、N两点表示的数分别是和.10.(2022秋•丹徒区期中)数轴上,点A,B表示的数分别为a,b,请利用刻度尺或圆规画图.(1)如图1,若a+b=0,请在数轴上画出原点O;(2)如图2,若a=2b,请在数轴上画出原点O;(3)如图3,若a﹣b=2,在数轴上画出表示数a+b的点C;(4)如图4,若a+b=3,在数轴上画出表示数a﹣b的点D.11.(2022秋•宜兴市期中)已知数轴上三点A,B,C表示的数分别为﹣12,﹣5,5,P,Q两点分别从A,C两点同时出发,相向而行,点P的速度为4个单位/秒,点Q的速度为6个单位/秒.(1)点A与点C之间的距离为;(2)P,Q在数轴上的相遇位置对应的数是;(3)设点P运动时间为t(s),当点B到点Q的距离是点B到点P距离的2倍时,求t的值;(4)当点P到A、B、C三点的距离之和为20个单位长度时,点P立即调头返回.速度不变.当P,Q 两点在数轴上相遇时,相遇位置对应的数是.12.(2022秋•江阴市校级月考)已知数轴上顺次有A、B、C三点,分别表示数a、b、c,并且满足|b|=|c|=5,b<c,点A在点B的左边且与点B距离8个单位长度.一只电子小蜗牛从A点向正方向移动,速度为3个单位/秒.(1)请求出A、B、C三点分别表示的数;(2)运动多少秒时,小蜗牛到点B的距离为2个单位长度?(3)设点P在数轴上点A的右边,且点P分别到点A、点B、点C的距离之和是20,那么点P所表示的数是多少?13.(2022秋•广陵区校级月考)已知,a,b满足|4a﹣b|+(a﹣4)2=0,分别对应着数轴上的A,B两点.(1)a=,b=,并在数轴上画出A,B两点;(2)若点P从点A出发,以每秒3个单位长度向数轴正半轴运动,求运动时间为多少时,点P到点A 的距离是点P到点B距离的2倍;(3)数轴上还有一点C对应的数为30,若点P和点Q同时从点A和点B出发,分别以每秒3个单位长度和每秒1个单位长度的速度向C点运动,P点到达C点后,再立刻以同样的速度返回,运动到终点A,点Q到达点C后停止运动.求点P和点Q运动多少秒时,P,Q两点之间的距离为4,并求此时点Q对应的数.14.(2022秋•江都区月考)已知:点A、B、P为数轴上三点,我们约定:点P到点A的距离是点P到点B的距离的k倍,则称P是[A,B]的“k倍点”,记作:P[A,B]=k.例如:若点P表示0,点A表示﹣2,点B表示1,则P是[A,B]的“2倍点”,记作:P[A,B]=2.(1)如图,A、B、P、Q、M、N为数轴上各点,如图图示,回答下面问题:①P[A,B]=②M[N,A]=;③若C[Q,B]=1,则C表示的数为.(2)若点A表示﹣1,点B表示5,点C是数轴上一点,且C[A,B]=3,则点C所表示数为.(3)数轴上,若点M表示﹣10,点N表示50,点K在点M和点N之间,且K[M,N]=5.从某时刻开始,点M出发向右做匀速运动,且M的速度为5单位/秒,设运动时间为t(t>0),当t为何值时,M[N,K]=3.15.(2022秋•钟楼区校级月考)平移和翻折是初中数学两种重要的图形变换(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动4个单位长度,再向正方向移动1个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是.A.(+4)+(+1)=+5B.(+4)+(﹣1)=+3C.(﹣4)﹣(+1)=﹣5D.(﹣4)+(+1)=﹣3②一机器人从原点O开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位,…,依次规律跳,当它跳2022次时,落在数轴上的点表示的数是.(2)翻折变换①若折叠纸条,表示﹣1的点与表示3的点重合,则表示2022的点与表示的点重合;②若数轴上A、B两点之间的距离为2022(A在B的左侧,且折痕与①折痕相同),且A、B两点经折叠后重合,则A点表示,B点表示.③一条数轴上有点A、B、C,其中点A、B表示的数分别是﹣19、8,现以点C为折点,将数轴向右对折,若点A对应的点A'落在点B的右边,并且A'B=2,求点C表示的数.16.(2022秋•靖江市月考)如图,半径为1的小圆与半径为2的大圆上有一点与数轴上原点重合,两圆在数轴上做无滑动的滚动,小圆的运动速度为每秒π个单位,大圆的运动速度为每秒2π个单位.(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是;(2)若大圆不动,小圆沿数轴来回滚动,规定小圆向右滚动时间记为正数,向左滚动时间记为负数,依次滚动的情况记录如下(单位:秒):﹣1,+2,﹣4,﹣2,+3,﹣8①第几次滚动后,小圆离原点最远?②当小圆结束运动时,小圆运动的路程共有多少?此时两圆与数轴重合的点之间的距离是多少?(结果保留π)(3)若两圆同时在数轴上各自沿着某一方向连续滚动,滚动一段时间后两圆与数轴重合的点之间相距6π,求此时两圆与数轴重合的点所表示的数.17.(2022秋•鼓楼区校级月考)在数轴上有三个点A、B、C,它们表示的有理数分别为a、b、c.已知a 是最大的负整数,且|b+4|+(c﹣2)2=0.(1)求A、B、C三点表示的有理数分别是多少?(2)填空:①如果数轴上点D到A,C两点的距离相等,则点D表示的数为;②如果数轴上点E到点A的距离为2,则点E表示的数为;(3)在数轴上是否存在一点F,使点F到点A的距离是点F到点B的距离的2倍?若存在,请直接写出点F表示的数;若不存在,请说明理由.一.解答题(共14小题)1.(2021秋•溧水区期末)【数学概念】如图,A、B为数轴上不重合的两个点,P为数轴上任意一点,我们比较线段P A和PB的长度,将较短线段的长度定义为点P到线段AB的“靠近距离”.特别地,若线段P A和PB的长度相等,则将线段P A或PB的长度定义为点P到线段AB的“靠近距离”.【概念理解】如图①,点A表示的数是﹣4,点B表示的数是2.(1)若点P表示的数是﹣2,则点P到线段AB的“靠近距离”为;(2)若点P表示的数是m,点P到线段AB的“靠近距离”为3,则m的值为(写出所有结果);【概念应用】(3)如图②,在数轴上,点P表示的数是﹣6,点A表示的数是﹣3,点B表示的数是2.点P以每秒2个单位长度的速度沿数轴向右运动,同时点B以每秒1个单位长度的速度沿数轴向右运动.设运动的时间为t秒,当点P到线段AB的“靠近距离”为2时,求t的值.2.(2021秋•海陵区校级月考)如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+|b﹣8|=0.(1)点A表示的数为;点B表示的数为;(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向右运动;同时另一小球乙从点B处以2个单位/秒的速度向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①当t=1时,甲小球到原点的距离=;乙小球到原点的距离=;当t=5时,甲小球到原点的距离=;乙小球到原点的距离=;②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲,乙两小球到原点的距离相等时经历的时间.3.(2021秋•宜兴市校级月考)如图,点A在数轴上所对应的数为2.(1)点B在点A左侧且距点A为3个单位长度,则点B所对应的数为,请在数轴上标出点B的位置;(2)在(1)的条件下,点A以每秒1个单位长度沿数轴向右运动,点B以每秒2个单位长度沿数轴向左运动,当点A运动到5所在的点处时停止运动,同时点B也停止运动,求此时A,B两点间距离;(3)在(2)的条件下,若点A不动,点B沿数轴开始向右运动,经过t秒A,B两点相距3个单位长度,求t值;(4)在(1)的条件下,点A以每秒1个单位长度,点B以每秒2个单位长度同时沿数轴向左运动,当点B运动到所对应的数为m时停止运动,请直接写出此时点A所对应的数为;若点A继续运动,请直接写出当AB=2时,点A继续运动的距离为.(用含m的式子表示)4.(2021秋•崇川区校级月考)数轴上两点间的距离等于这两点所对应的数的差的绝对值.例:如图所示,点A、B在数轴上分别对应的数为a、b,则A、B两点间的距离表示为|AB|=|a﹣b|.根据以上知识解题:(1)若数轴上两点A、B表示的数为x、﹣1,①A、B之间的距离可用含x的式子表示为;②若该两点之间的距离为2,那么x值为;(2)|x+1|+|x﹣2|的最小值为,此时x的取值是;(3)已知|x+1|+|x﹣2|=7时,x的取值是;(4)|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2021|的最小值为,此时x的取值是.5.(2021秋•高港区校级月考)【操作感知】如图1,长方形透明纸上有一条数轴,AB是周长为4的圆的直径,点A与数轴原点重合,将圆从原点出发沿数轴正方向滚动1周,点A落在数轴上的点A'处;将圆从原点出发沿数轴负方向滚动半周,点B落在数轴上的点B′处,折叠长方形透明纸,使数轴上的点A′与点B′重合,此时折痕与数轴交点表示的数为.【建立模型】折叠长方形透明纸,使得数轴上表示数a的点C与表示数b的点D重合,则折痕与数轴交点表示的数为.(用含a,b的代数式表示)【问题解决】如图2,点P表示的数为﹣10,点Q表示的数为20,如果点M从点P的位置出发,以每秒2个单位的速度向点Q运动,当点M到达点Q时停止运动,设运动时间为t秒(t>0).(1)若点M到P,Q两点中一点的距离为到另一点距离的两倍,求t值.(2)若点M从点P出发,同时点N从点Q开始运动,以每秒1个单位的速度向点P运动,并与点M 同时停止,请求出当点M,N,P中其中一点到另外两点距离相等时t的值.6.(2021秋•兴化市校级月考)如图,请回答问题:(1)点B表示的数是,点C表示的数是.(2)折叠数轴,使数轴上的点B和点C重合,则点A与数字重合.(3)m、n两数在数轴上所对的两点之间的距离可以表示为|m﹣n|,如5与﹣2两数在数轴上所对的两点之间的距离可以表示为|5﹣(﹣2)|,从而很容易就得出在数轴上表示5与﹣2两点之间的距离是7.①若x表示一个有理数,则|x﹣3|+|x﹣6|的最小值=.②若x表示一个有理数,且|x﹣4|+|x+3|=7,则满足条件的所有整数x的和是.③当x=时,2|x﹣2|+2|x﹣3|+5|x﹣4|取最小值.④当x取何值时,2|2x﹣1|+|3x﹣2|+|x﹣|+|2x﹣7|+|3x﹣9|取最小值?最小值为多少?7.(2021秋•姜堰区校级月考)点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,则在数轴上A、B两点之间的距离AB=|b﹣a|.所以式子|x﹣2|的几何意义是数轴上表示x的点与表示2的点之间的距离.借助于数轴回答下列问题:(1)数轴上表示2和5两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是.(2)如果|x+1|=3,那么x=.(3)若|a﹣3|=2,|b+2|=1,且数a,b在数轴上表示的数分别是点A,点B,则A,B两点间的最大距离是,最小距离是.(4)①若数轴上表示x的点位于﹣3与1之间,则|x﹣1|+|x+3|=.②若|x﹣3|+|x+1|=8,则x =.8.(2021秋•沛县校级月考)在学习绝对值后,我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离.而|5|=|5﹣0|,即|5﹣0|也可理解为5、0在数轴上对应的两点之间的距离.类似的,|5﹣3|表示5与3之差的绝对值,也可理解为5与3两数在数轴上所对应的两点之间的距离.如|x﹣3|的几何意义是数轴上表示有理数3的点与表示数x的点之间的距离,一般地,点A、B在数轴上分别表示数a、b,那么A、B之间的距离可表示为|a﹣b|.请根据绝对值的意义并结合数轴解答下列问题:(1)数轴上表示2和3的两点之间的距离是;数轴上表示数a的点与表示﹣2的点之间的距离表示为;(2)数轴上点P表示的数是2,P、Q两点的距离为3,则点Q表示的数是;(3)数轴上有一个点表示数a,则|a+1|+|a﹣3|+|a+8|的最小值为;(4)a、b、c、d在数轴上的位置如图所示,若|a﹣d|=12,|b﹣d|=7,|a﹣c|=9,则|b﹣c|等于.9.(2021秋•如东县月考)结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于.(2)如果|x+1|=3,那么x=;(3)若|a﹣3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B两点间的最大距离是,最小距离是.(4)利用数轴,找出所有符合条件的整数x,使|x+2|+|x−5|=7.则所有符合条件的整数x有个.10.(2021秋•镇江期末)如图,线段AB=28厘米,点D和点C在线段AB上,且AC:BC=5:2,DC:AB=1:4.点P从点A出发以4厘米/秒的速度沿射线AD向点C运动,点P到达点C所在位置后立即按照原路原速返回,到达点D所在位置后停止运动,点Q从点B出发以1厘米/秒的速度沿着射线BC 的方向运动,点Q到达点D所在的位置后停止运动.点P和点Q同时出发,点Q运动的时间为t秒.(1)求线段AD的长度;(2)当点C恰好为PQ的中点时,求t的值;(3)当PQ=7厘米时,求t的值.11.(2021秋•射阳县校级月考)认真阅读下面的材料,完成有关问题:材料:在学习绝对值时,我们已了解绝对值的几何意义,如|5﹣3|表示5、3在数轴上对应的两点之间的距离;又如|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离.因此,一般地,点A,B在数轴上分别表示有理数a,b,那么A,B之间的距离(也就是线段AB的长度)可表示为|a﹣b|.因此我们可以用绝对值的几何意义按如下方法求|x﹣1|+|x﹣2|的最小值;|x﹣1|即数轴上x与1对应的点之间的距离,|x﹣2|即数轴上x与2对应的点之间的距离,把这两个距离在同一个数轴上表示出来,然后把距离相加即可得原式的值.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是.(2)数轴上表示x与2的两点之间的距离可以表示为.(3)如果|x﹣2|=5,则x=.(4)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是.(5)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.12.(2021秋•惠山区期末)【探索新知】如图1,点C将线段AB分成AC和BC两部分,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC称作互为圆周率伴侣线段.(1)若AC=3,则AB=;(2)若点D也是图1中线段AB的圆周率点(不同于C点),则AC DB;(填“=”或“≠”)【深入研究】如图2,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.(3)若点M、N均为线段OC的圆周率点,求线段MN的长度.(4)在图2中,若点D在射线OC上,且线段CD与图中以O、C、D中某两点为端点的线段互为圆周率伴侣线段,直接写出D点所表示的数.13.(2021秋•鼓楼区校级月考)数学实验室:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:①数轴上表示2和6两点之间的距离是,数轴上表示1和﹣4的两点之间的距离是.②数轴上表示x和﹣3的两点之间的距离表示为.数轴上表示x和6的两点之间的距离表示为.③若x表示一个有理数,则|x﹣1|+|x+4|的最小值=.④若x表示一个有理数,且|x+1|+|x﹣3|=4,则满足条件的所有整数x的是.⑤若x表示一个有理数,当x为,式子|x+2|+|x﹣3|+|x﹣4|有最小值为.14.(2021秋•金坛区月考)先阅读,后探究相关的问题【阅读】|5﹣2|表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|可以看作|5﹣(﹣2)|,表示5与﹣2的差的绝对值,也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.(1)如图,先在数轴上画出表示点2.5的相反数的点B,再把点A向左移动1.5个单位,得到点C,则点B和点C表示的数分别为和,B,C两点间的距离是;(2)数轴上表示x和﹣1的两点A和B之间的距离表示为;如果|AB|=3,那么x 为;(3)若点A表示的整数为x,则当x为时,|x+4|与|x﹣2|的值相等;(4)要使代数式|x+5|+|x﹣2|取最小值时,相应的x的取值范围是.。

人教版七年级数学上册期末提高专练:数轴类应用题综合(四)及答案

人教版七年级数学上册期末提高专练:数轴类应用题综合(四)及答案

人教版七年级数学上册期末提高专练:数轴类应用题综合(四)1.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A、B(在﹣2,﹣3的正中间)两点的位置,分别写出它们所表示的有理数A:,B:.(2)写出点A的距离为2的点表示的数是;(3)若经过折叠,A点与﹣3表示的点重合,则B点与数表示的点重合;(4)若数轴上M、N两点之间的距离为9(M在N的左侧),且M、N两点经过(3)中折叠后互相重合,M、N两点表示的数分别是:M:,N:.2.一辆货车从超市出发,向东走了3千米到达小彬家,继续向东走了1.5千米到达小颖家,然后向西走了9.5千米到达小明家,最后回到超市.(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1千米,请你在数轴上表示出小明家,小彬家和小颖家的位置.(2)小明家距小彬家多远?(3)如果货车耗油量是每千米0.02升,那么在上述过程中共耗油多少升?3.已知数轴上A、B两点对应数分别为﹣2和4,P为数轴上一点,对应数为x.(1)若P为线段AB的中点,求P点对应的数(2)数轴上是否存在点P,使P点到A点、B点距离和为10?若存在,求出x的值;若不存在,请说明理由(3)若点A、点B和点P(P点在原点)同时向左运动,它们的速度分别为1、2、1个单位长度/分,则第几分钟时,P为AB的中点.4.数轴上的点M对应的数是2,一只蚂蚁从点M出发沿着数轴以每秒2个单位的速度向左或向右爬行,当它到达数轴上的点N后,立即返回到原点,共用6秒.(1)蚂蚁爬行的路程是多少?(2)点N对应的数是多少?(3)点M和点N之间的距离是多少?5.已知数轴上,点O为原点,点A表示的数为10,动点B、C在数轴上移动,且总保持BC=3(点C在点B右侧),设点B表示的数为m.(1)如图1,若B为OA中点,则AC=,点C表示的数是;(2)若B、C都在线段OA上,且AC=2OB,求此时m的值;(3)当线段BC沿射线AO方向移动时,若存在AC﹣OB=AB,求满足条件的m值.6.阅读下面材料:如图,点A、B在数轴上分别表示有理数a、b,则A、B两点之间的距离可以表示为|a﹣b|.根据阅读材料与你的理解回答下列问题:(1)数轴上表示3与﹣4两点之间的距离是.(2)数轴上有理数x与有理数8所对应两点之间的距离用绝对值符号可以表示为.(3)代数式|x+6|可以表示数轴上有理数x与有理数所对应的两点之间的距离;若|x+6|=5,则x=.(4)求代数式|x+1010|+|x+504|+|x﹣1009|的最小值.7.如图,相距5km的A、B两地间有一条笔直的马路,C地位于AB两地之间且距A地2km,小明同学骑自行车从A地出发沿马路以每小时5km的速度向B地匀速运动,当到达B地后立即以原来的速度返回.到达A地停止运动,设运动时间为t(小时),小明的位置为点P.若以点C为坐标原点,以从A到B为正方向,用1个单位长度表示1km,解答下列各问:(1)指出点A所表示的有理数;(2)求t=0.5时,点P表示的有理数;(3)当小明距离C地1km时,直接写出所有满足条件的t值;(4)在整个运动过程中,求点P与点A的距离(用含t的代数式表示);(5)用含t的代数式表示点P表示的有理数.8.操作探究:已知在纸面上有一数轴(如图所示).左右折叠纸面,折痕所在的直线与数轴的交点为“对折中心点”操作一:(1)左右折叠纸面,使1表示的点与﹣1表示的点重合,则﹣3表示的点与表示的点重合;操作二:(2)左右折叠纸面,使﹣1表示的点与3表示的点重合,回答以下问题:①对折中心点所表示的数为.对折后5表示的点与数表示的点重合;②若数轴上A、B两点之间距离为11(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少?9.阅读下面材料,回答问题距离能够产生美.“世界上最遥远的距离不是瞬间便无处寻觅而是尚未相遇便注定无法相聚”距离是数学、天文学、物理学中的热门话题,唯有对宇宙距离进行测量,人类才能掌握世界尺度.已知点A,B在数轴上分别表示有理数a,b,A,B两点之间的距离表示为AB.(1)当A,B两点中有一点在原点时,不妨设点A在原点,如图1,AB=OB=|b|﹣|a|=b﹣a=|a﹣b|.(2)当A,B两点都不在原点时,①如图2,点A,B都在原点的右边,AB=OB﹣OA=|b|﹣|a|=b﹣a=|a﹣b|;②如图3,点A,B都在原点的左边,AB=OB﹣OA=|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|;③如图4,点A,B在原点的两边,AB=OA+OB=|a|+|b|=a+(﹣b)=a﹣b=|a﹣b|.综上,数轴上A,B两点的距离AB=|a﹣b|.利用上述结论,回答以下三个问题:(1)若数轴上表示x和﹣2的两点之间的距离是4,则x=;(2)若代数式|x+1|+|x﹣2|取最小值时,则x的取值范围是;(3)若未知数x,y满足(|x﹣1|+|x﹣3|)(|y﹣2|+|y+1|)=6,则代数式x+2y的最大值是,最小值是.10.如图,在数轴上点A表示的数是8,若动点P从原点O出发,以2个单位/秒的速度向左运动,同时另一动点Q 从点A出发,以4个单位/秒的速度也向左运动,到达原点后立即以原来的速度返回,向右运动,设运动的时间为t(秒).(1)当t=0.5时,求点Q到原点O的距离;(2)当t=2.5时求点Q到原点O的距离;(3)当点Q到原点O的距离为4时,求点P到原点O的距离.参考答案1.解:(1)观察图象可知A表示1,B表示﹣2.5.故答案为1,2.5.(2)点A表示的数为﹣1或3.故答案为﹣1或3.(3)由题意对称中心表示的数为﹣1,所以点B与0.5表示的数重合.故答案为0.5(4)因为对称中心表示的数为﹣1,M、N两点表示的数分别是﹣5.5,3.5,故答案为﹣5.5,3.5.2.解:(1)位置如图所示.(2)小明家距小彬家有:|﹣5|+3=8(千米),(3)货车从超市出发,最后回到超市走的路程是:3+1.5+9.5+5=19(千米)19×0.02=0.38(升),答:货车从超市出发,最后回到超市共耗油0.38升.3.解:(1)∵A、B两点对应的数分别为﹣2和4,∴AB=6,∵点P到点A、点B的距离相等,∴P到点A、点B的距离为3,∴点P对应的数是1;(2)存在;设P表示的数为x,①当P在AB左侧,PA+PB=10,4﹣x+(﹣2﹣x)=10,解得x=﹣4,②当P在AB右侧时,x+2+x﹣4=10,解得:x=6;由题意得:(﹣t﹣2)+(﹣2t+4)=2(﹣t),解得:t=2,即经过2分钟点P为AB的中点.4.解:(1)2×6=12(个单位长度).故蚂蚁爬行的路程是12个单位长度;(2)①当点M在点N左侧时:a﹣2+a=12,a=7;②当点M在点N右侧时:﹣a+2﹣a=12,a=﹣5;(3)若向左爬MN=2﹣(﹣5)=7若向右爬MN=7﹣2=5.5.解:(1)∵B为OA中点,∴BO=BA,∵OA=10,∴AB=OA=5,∴AC=AB﹣BC=5﹣3=2;点C表示的数是8;(2)∵AC=2OB,BC=3,OA=10,∴BO=×(10﹣3)=.此时m=;(2)当点B在O右边时,(10﹣m﹣3)﹣m=(10﹣m),解得m=;当点B在O左边时,(10﹣m﹣3)+m=(10﹣m),解得m=﹣11.综上所述,满足条件的m值为或﹣11.故数轴上表示3与﹣4两点之间的距离是7;(2)数轴上有理数x与有理数8所对应两点之间的距离用绝对值符号可以表示为|x﹣8|,(3)代数式|x+6|可以表示数轴上有理数x与有理数﹣6所对应的两点之间的距离;若|x+6|=5,则x=﹣1或﹣11,(4)如图,|x+1010|+|x+504|+|x﹣1009|的最小值为|1009﹣(﹣1010)|=2019.故答案为:7;|x﹣8|;﹣6,﹣1或﹣11.7.解:(1)因为AC=2km,且1个单位长度表示1km,所以点A所表示的有理数是﹣2.(2)5×0.5﹣2=2.5﹣2=0.5.所以t=0.5时点P表示的有理数是0.5.(3)①当小明在C点的左边时,(2﹣1)÷5=1÷5=0.2;②当小明在C点的右边时,(2+1)÷5=3÷5=0.6.③返回时,同法可得,(5+2)÷5=1.4,(5+4)÷5=1.8答:当小明距离C地1km时,t的值是0.2或0.6或1.4或1.8.(4)①小明从A地到B地时,点P与点A的距离是5t千米.②5÷5=1(小时),所以小明从B地到A地时,点P与点A的距离是:=5﹣5t+5=10﹣5t(千米).所以在整个运动过程中,求点P与点A的距离是5t千米或(10﹣5t)千米.(5)因为点P与点A的距离是5t千米或(10﹣5t)千米,所以点P表示的有理数是5t﹣2或8﹣5t.8.解:(1)∵1与﹣1重合,∴折痕点为原点,∴﹣3表示的点与3表示的点重合.故答案为:3.(2)①∵由表示﹣1的点与表示3的点重合,∴可确定折痕点是表示1的点,∴5表示的点与数﹣3表示的点重合.故答案为:1,﹣3.②由题意可得,A、B两点距离对称点的距离为11÷2=5.5.因为对折中心点所表示的数为1的点,1+5.5=6.5,1﹣5.5=﹣4.5.所以A、B两点表示的数分别是﹣4.5,6.5.9.解:(1)若数轴上表示x和﹣2的两点之间的距离是4,则|x+2|=4解得x=﹣6或x=2故答案为:﹣6或2;(2)若代数式|x+1|+|x﹣2|取最小值时,表示在数轴上找一点x,到﹣1和2的距离之和最小,显然这个点x在﹣1和2之间故答案为:﹣1≤x≤2;(3)∵(|x﹣1|+|x﹣3|)(|y﹣2|+|y+1|)=6又∵|x﹣1|+|x﹣3|的最小值为2,|y﹣2|+|y+1|的最小值为3∴1≤x≤3,﹣1≤y≤2∴代数式x+2y的最大值是7,最小值是﹣1故答案为:7;﹣1.10.解:(1)当t=0.5时,AQ=4t=4×0.5=2∴点Q到原点O的距离为6;(2)当t=2.5时,点Q运动的距离为4t=4×2.5=10 ∵OA=8∴OQ=10﹣8=2∴点Q到原点O的距离为2;(3)当点Q到原点O的距离为4时,∵OQ=4∴Q向左运动时,OA=8,则AQ=4∴t=1∴OP=2;Q向右运动时OQ=4∴Q运动的距离是8+4=12∴运动时间t=12÷4=3∴OP=2×3=6∴点P到原点O的距离为2或6.。

七年级上数学应用题70道

七年级上数学应用题70道

七年级上数学应用题(1)小王、小李同住一楼中,两人从家去上班,小王先走20分钟后小李才出发。

已知小李的速度是小王速度的3倍,则小李出发后多少时间能追上小王?(2)甲每分钟行80米,乙每分钟行50米,在下午1:30时,两人在同地背向而行了6分钟,甲又调转方向追乙,则甲在什么时间追上乙?(3)某商店开张为吸引顾客,所有商品一律按八折优惠出售,已知某种旅游鞋每双进价为60元,八折出售后,商家所获利润率为40%。

问这种鞋的标价是多少元?优惠价是多少?(4)小刚的爸爸前年买了某公司的二年期债券4500元,今年到期,扣除利息税后,共得本利和约4700元,问这种债券的年利率是多少(精确到0.01%)?(5)一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?(6)某工作,甲单独干需用15小时完成,乙单独干需用12小时完成,若甲先干1小时、乙又单独干4小时,剩下的工作两人合作,问:再用几小时可全部完成任务?(7)一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?(8)甲、乙两人在400米长的环形跑道上跑步,甲分钟跑240米,乙每分钟跑200米,二人同时同地同向出发,几分钟后二人相遇?若背向跑,几分钟后相遇?(9)某粮库装粮食,第一个仓库是第二个仓库存粮的3倍,如果从第一个仓库中取出20吨放入第二个仓库中,第二个仓库中的粮食是第一个中的。

问每个仓库各有多少粮食?(10)一个三位数,三个数位上的数字之和是17,百位上的数比十位上的数大7,个位上的数是十位上的数的3倍,求这个三位数。

(11)如果某一年的5月份中,有5个星期五,且它们的日期之和为80,那么这个月的4号是星期几?(12)已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?(13)甲乙两人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。

七年级数学数学应用题练习题及答案

七年级数学数学应用题练习题及答案

七年级数学数学应用题练习题及答案数学应用题练习题及答案一、选择题1. 以下哪个数是素数?A. 20B. 25C. 29D. 30答案:C2. 某商品原价为200元,现打8折出售,打折后的价格是多少?A. 160元B. 180元C. 200元D. 240元答案:A3. 甲、乙、丙三个数的和为72,丙数是甲数的2倍,乙数是丙数的3倍,那么乙数是多少?A. 8B. 16C. 24D. 32答案:D4. 甲、乙、丙三个数的和为125,丙数是甲数的3倍,乙数是丙数的2倍,那么乙数是多少?A. 15B. 25C. 35D. 45答案:D5. 某车每小时行驶70千米,行驶8小时共行驶多少千米?A. 480千米B. 560千米C. 640千米D. 720千米答案:D二、填空题1. 一个长方形的长是8cm,宽是6cm,它的周长是__,面积是__。

答案:周长是28cm,面积是48cm²。

2. 8架飞机连续起飞,每架飞机之间间隔2分钟,最后一架飞机起飞后,过了多久第一架飞机和最后一架飞机的间隔是30分钟?答案:过了44分钟。

3. 甲数是乙数的3倍,乙数是丙数的2倍,甲、乙、丙三个数的和是80,那么甲数是__,乙数是__,丙数是__。

答案:甲数是36,乙数是12,丙数是32。

三、解答题1. 一辆公共汽车载有学生和老师共100人,学生有80人,那么老师有多少人?解析:学生和老师加起来是100人,已知学生80人,所以老师有100-80=20人。

答案:老师有20人。

2. 一个正方形的边长是xcm,它的周长和面积的关系是多少?解析:正方形的周长等于4边长,面积等于边长的平方。

答案:周长是4xcm,面积是x²cm²。

3. 甲、乙、丙三个数的和是57,乙数是甲数的2倍,丙数是甲数的3倍,那么甲数是多少?解析:设甲数为x,则乙数为2x,丙数为3x。

根据题意,可以列出方程:x + 2x + 3x = 57,化简得到6x = 57,解方程得到x = 9。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

提高练习应用题
【鸡兔同笼问题】一队敌兵一队狗,两队并成一队走. 人头狗头七十六,却有二百条腿走. 请你用心算一算,多少敌兵多少狗?
【数字问题】有一个两位数比它个位数上的数字与十位上的数字的和的5倍大2;若将它个位数字与十位上的数字互换位置,则原来的数比新数小9,求这个两位数.
【增收节支问题】甲乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后,两种商品的单价和比原来的单价和提高了20%。

甲乙两种商品调价后的单价是多少元?
【产品配套问题】某车间有30名工人,每名工人每小时能生产甲种零件30个或生产乙种零件25个,而甲种零件3个,乙种零件5个配成一套机件,请你为车间主管计算一下如何安排劳动力才能使每小时生产的零件刚好配套?
【行程问题】A、B两地相距20km,甲、乙两人分别从A、B两地同时出发相向而行,2h后在途中相遇,然后甲返回A地,乙仍继续前进,当甲回到A地时,乙离A地还有4km,求甲、乙的速度.
【顺(逆)水问题】甲、乙两地相距80千米,一艘轮船从甲地出发顺水航行4小时到达乙地,而从乙地出发逆水航行需5小时到达甲地.求船在静水中的速度和水流的速度.
【工程问题】某厂有甲、乙两组共同生产某种产品。

若甲组先生产1天,然后两组又一起生产了5天,则两组产量一样多。

若甲组先生产了300个产品,然后两组同时生产4天,则乙组比甲组多生产100个产品。

两组一天各生产多少个产品?
【劳力配置问题】某班同学参加运土劳动,一部分同学抬土,一部分同学挑土,全部同学共用土筐59个,扁担36根,求抬土和挑土的同学各有多少人?
【火车过桥问题】某列火车通过450米的铁桥,从车头上桥到车尾下桥,共33秒,同一列火车以同样的速度穿过760米长的隧道时,整列火车都在隧道里的时间是22秒,问这列火车的长度和速度分别是多少?
【方案设计问题】某同学在A、B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元。

(1)求该同学看中的随身听和书包单价各是多少元?
(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?。

相关文档
最新文档