晶闸管模块MTC600A

晶闸管模块MTC600A
晶闸管模块MTC600A

基于晶闸管的PSM模块CROWBAR控制研究

基于晶闸管的PSM模块CROWBAR控制研究 周君, 陈滋健等 摘要:本文根据EAST装置中NBI加速极高压电源特点,设计了基于晶闸管的PSM模块CROWBAR控制方法,在系统打火等严重故障情况下及时撤除高压以保护系统设备和人员安全。和传统引燃管CROWBAR保护相比,NBI加速极电源系统在每个PSM模块上并联晶闸管作为快速旁路开关,在CROWBAR动作后通过串联快速直流熔断器迅速切断电网和负载的连接。测试实验表明CROWBAR运行可靠稳定,具备抗干扰和快速动作能力,能够满足EAST对NBI系统的运行要求。 关键词:晶闸管;PSM模块;CROWBAR保护 The Research on CROWBAR Control of PSM based on Thyristor ZHOU-jun,CHEN-zijian,QIAN-lixiu,JIANG-lei (ECU Electronics CO.LTD.of CETC 38,hefei 230088,China) Abstract:Discussions focus on the design considerations of CROWBAR,which make sure safe operation of NBI system and personnel by removing high voltage when serious faults happen such as arc inside the NBI https://www.360docs.net/doc/4912162569.html,pared with the CROWBAR protection of being composed of traditional high power ignitrons,NBI accelerator supply adopt parallel thyristor structure with each PSM modular act as rapid bypass switch,by means of series connection of fast fuse to cut the link between grid and load after the CROWBAR is triggered.The test experiment show that CROWBAR system can not only meet the standard of safe steady operation,with anti-jamming and rapid triggle capacity, but also be able to meet the requirement of EAST,an advanced full super-conducted TOKAMAK device. Key words: thyristor; PSM Modular; CROWBAR protection 1 引言 大型全超导托卡马克核聚变实验装置(Experimental Advanced Superconducting Tokamak:EAST)是国家“九五”重大科学工程之一,中性束注入NBI (Neutral Beam Injectors:)是托卡马克装置中电流驱动和芯部辅助加热的重要手段.为了满足实验要求,NBI电源系统由一组大功率直流脉冲电源组成,而加速极高压电源是整个供电系统中最关键的部分[1] [2] [4] . EAST实验需要将等离子体的离子温度达到8KeV,这就要求NBI系统的功率达到 6-8MW,NBI加速极高压电源输出电压达到100kV,输出额定电流100A。为实现该目标,采用PSM(Pulse Step Modulator)技术,由100个PSM电源模块串联得到100kV高压。 NBI在束源打火时,高压电源封锁输出,如故障保护系统监测到高压未切断(拒动)时间>4us,须启动CROWBAR,确保高压电源的能量输入NBI系统时间<15us的极限[1]。CROWBAR保护是NBI系统的“生命线”,一旦保护失败,就将损坏价值昂贵的设备,甚至危及到托卡马克的安全运行[3],故CROWBAR 保护动作的可靠性是整个装置的最关键的 设计之一。 鉴于NBI加速极高压电源系统具有高压大功率和快速关断的要求,结合PSM模块串联方案,本文提出每一个PSM模块均设置由晶闸管、快速直流熔断器和控制驱动电路组成的 CROWBAR保护系统。该方法具有分布式、低成本、高可靠的特点。 2 系统方案

晶闸管及其应用讲解

晶闸管及其应用 课程目标 1 了解晶闸管结构,掌握晶闸管导通、关断条件 2 掌握可控整流电路的工作原理及分析 3 理解晶闸管的过压、过流保护 4 掌握晶闸管的测量、可控整流电路的调试和测量 课程内容 1 晶闸管的结构及特性 2 单相半波可控整流电路 3 单相半控桥式整流电路 4 晶闸管的保护 5 晶闸管的应用实例 6 晶闸管的测量、可控整流电路的调试和测量 学习方法 从了解晶闸管的结构、特性出发,掌握晶闸管的可控整流应用,掌握晶闸管的过压和过流保护方式,结合实物和实训掌握晶闸管管脚及好坏的判断,通过应用实例,了解晶闸管的典型应用。 课后思考 1晶闸管导通的条件是什么?导通时,其中电流的大小由什么决定?晶闸管阻断时,承受电压的大小由什么决定? 2为什么接电感性负载的可控整流电路的负载上会出现负电压?而接续流二极管后负载上就不出现负电压了,又是为什么? 3 如何用万用表判断晶闸管的好坏、管脚? 4 如何选用晶闸管?

晶闸管的结构及特性 一、晶闸管外形与符号: 图5.1.1 符号 图5.1.2 晶闸管导通实验电路图 为了说明晶闸管的导电原理,可按图5.1.2所示的电路做一个简单的实验。 (1)晶闸管阳极接直流电源的正端,阴极经灯泡接电源的负端,此时晶闸管承受正向电压。控制极电路中开关S断开(不加电压),如图5.1.2(a)所示,这时灯不亮,说明晶闸管不导通。 (2)晶闸管的阳极和阴极间加正向电压,控制极相对于阴极也加正向电压,如图5.1.2(b)所示.这时灯亮,说明晶闸管导通。 (3)晶闸管导通后,如果去掉控制极上的电压,即将图5.1.2(b)中的开关S断开,灯仍然亮,这表明晶闸管继续导通,即晶闸管一旦导通后,控制极就失去了控制作用。 (4)晶闸管的阳极和阴极间加反向电压如图5.1.2(C),无论控制极加不加电压,灯都不亮,晶闸管截止。 (5)如果控制极加反向电压,晶闸管阳极回路无论加正向电压还是反向电压,晶闸管都不导通。 从上述实验可以看出,晶闸管导通必须同时具备两个条件: (1) 晶闸管阳极电路加正向电压; (2) 控制极电路加适当的正向电压(实际工作中,控制极加正触发脉冲信号)。

可控硅模块原理

西玛华晶科技(深圳)有限公司 西玛华晶科技(深圳)有限公司的产品是引用德国国际半导体公司的产品技术和台湾半导体公司的封装工艺;由西玛科技集团联合上海华晶集团在深圳打造的亚洲区最大的功率模块供应平台,为亚洲区提供“品种齐全”“品质第一”“交付最快”“价格最低”的优质产品。公司销售的功率模块产品在制造過程中完全符合國際品質標准及國家工業標准,公司秉持“诚信经营”“客户至上”为宗旨;“品质第一”“交付最快”为目標。我們的專業研发設計人員爲達成最高目標、最高品質,不斷奉献智慧與心力,为您提供最佳品质的功率模块产品。 本公司专业研发制造:可控硅模块、二极管模块、快恢复二极管模块、IGBT 模块,在线智能调功模块等各類型功率模块;为客戶提供完整的電力节能解決方案。公司已能生产30多个系列、约400多种型号规格和60多种内部接线方式的可控硅模块、整流模块和超快恢复二极管模块等各种桥臂模;单三相整流桥模块,单三相交流开关模块,绝缘型降压硅堆模块以及三相整流桥,可控硅集成模块和电焊机及充电机专用硅整流组件等。并已广泛用于调光器,控温器,电解电镀和励磁电源,电池充放电,静止无功补偿装置,交直流电机控制,直流斩波调速,高频逆变焊机和工频电焊机,不停电UPS电源,开关电源,感应加热,交流电机软起动,变频装置以及各种自动化装置。产品在多项国家重点工程中得到应用,部分产品已出口全球(如:欧美,东南亚,俄罗斯,新加坡,马来西亚,印度等)。稳定可靠的产品质量满足了用户的设计制造及使用要求,深受广大用户的好评! 可控硅模块 可控硅模块的定义 可控硅模块又叫晶闸管(Silicon Controlled Rectifier, SCR)。自从20世纪50年代问世以来已经发展成了一个大的家族,它的主要成员有单向晶闸管、双向晶闸管、光控晶闸管、逆导晶闸管、可关断晶闸管、快速晶闸管,等等。今天大家使用的是单向晶闸管,也就是人们常说的普通晶闸管,它是由四层半导体材料组成的,有三个PN结,对外有三个电极:第一层P型半导体引出的电极叫阳极A,第三层P型半导体引出的电极叫控制极G,第四层N型半导体引出的电极叫阴极K。从晶闸管的电路符号可以看到,它和二极管一样是一种单方向导电的器件,关键是多了一个控制极G,这就使它具有与二极管完全不同的工作特性。 用万用表可以区分晶闸管的三个电极 普通晶闸管的三个电极可以用万用表欧姆挡R×100挡位来测。大家知道,晶闸管G、K之间是一个PN结〔图2(a)〕,相当于一个二极管,G为正极、K为负极,所以,按照测试二极管的方法,找出三个极中的两个极,测它的正、反向电阻,电阻小时,万用表黑表笔接的是控制极G,红表笔接

晶闸管模块

一、产品介绍 1、用途 广泛应用于不同行业各类用途如调温、调光、励磁、电镀、电解、电焊、等离子拉弧、充放电、稳压的电源装置,还可用于交流电机软起动和直流电机调速。 2、特点 (1)本说明书所覆盖的晶闸管智能控制模块,最大特点是采用本公司独立开发的全数字移相触发集成电路。控制电路与晶闸管主电路集成于一体后,使模块具备了强大的电力调控功能。模块输出对称性高,无直流分量。大规格模块具有过热、过流、缺相保护功能。 (2)采用进口方形芯片、高级芯片支撑板,模块压降小、功耗低,效率高,节电效果好。 (3)采用进口贴片元件,保证了触发控制电路的可靠性。 (4)采用(DCB)陶瓷覆铜板,经独特处理方法和特殊焊结工艺,保证焊接层无空洞,导热性能好。热循环负载次数超过国家标准近10倍。(6)采用高级导热绝缘封装材料,绝缘、防潮性能优良。 (5)触发控制电路、主电路与导热底板相互隔离,导热底板不带电,介电强度≥2500V(RMS),保证人身安全。 (6)输入0~10V直流控制信号,可对主电路输出电压进行平滑调节。(7)可手动、仪表或微机控制。 (8)适用于阻性和感性负载。 3、型号、规格 本说明书所介绍的三相模块,由于控制电路不同,而分为半控和全控两种形式,单相模块没有半控、全控之分。 (1)半控型(详见表1):

表 1 (2)全控型(详见表2): 表2

注: 1、规格栏中的电流为模块最大输出直流电流平均值和交流电流有效值。电压为模块最高输入交流线电压有效值。 2、备注栏内带“※”的型号,可具备过热、过流、缺相等保护功能(分别用h1、h2、h3表示)。当需要模块具有哪种保护功能时,应由用户订货时在模块型号后面加注所需保护种类代号,即h1、h2、h3。三种保护功能可同时具备,也可分别具备。若不需要模块具有保护功能,则不用填写保护代号。

Simulink电力电子仿真模块详细介绍

Simulink电力电子仿真模块详细介绍 1、二极管 1.1、电路符号和静态伏安特性: 1.2、模块图标: 1.3、外部接口: 二极管模块有2个电气接口和1个输出接口。2个电气接口(a,k)分别位于二极管的阳极和阴极。输出接口(m)输出二极管的电流和电压测量值(Iak、Vak),其中电流单位A,电压单位V。 1.4参数设置:

(1)Resistance Ron:导通电阻,单位Ω,当电感为0时,电阻不能为0; (2)Inductance Lon:电感,单位H,当电阻为0时,电感不能为0; (3)Forward voltage Vf:正向电压,当二极管正向电压大于Vf后,二极管导通; (4)Initial current Ic:初始电流,通常为0; (5)Snubber resistance Rs:并联缓冲电路的电阻值,设置inf时取消缓冲电阻; (6)Snubber capacitance Cs:缓冲电路电容值,单位F,当电容为0时,取消缓冲电容;设置inf时,缓冲电路为纯电阻性电路; (7)Show measurement port:选中复选框,出现测量输出接线口m,可观测二极管的电流和电压值。 2、晶闸管模块 2.1、原理 当晶闸管承受正向电压(Vak>0)且门极有正的触发脉冲(g>0)时,晶闸管导通。触发脉冲必须足够宽,才能使阳极电流Iak大于设定的晶闸管擎住电流I1,否则晶闸管任要转向关断。导通晶闸管阳极电流下降到0,或者承受反向电压时关断。 2.2、电路负荷和静态伏安特性 2.3、模块图例 详细模块简化模块 2.4、外部接口

晶闸管模块有2个电气接口,1个输入接口和1个输出接口。2个电气接口(a,k)分别对应晶闸管的阳极和阴极。输入接口(g)为门极逻辑信号。输出接口(m)输出晶闸管的电流和电压测量值(Iak、Vak),其中电流单位为A,电压单位为V。 2.5、参数设置: (1)Resistance Ron:导通电阻,单位Ω,当电感为0时,电阻不能为0; (2)Inductance Lon:电感,单位H,当电阻为0时,电感不能为0; (3)Forward voltage Vf:正向电压,晶闸管的门槛电压Vf; (4)Latching current Il:擎住电流,(简单模块无该选项); (5)Turn-off time Tq:单位s,它包括阳极电流下降到0的时间和晶闸管正向阻断的时间,(简单模块无该项); (6)Initial current Ic:初始电流,单位A,当电感值大于0时,可以设置仿真开始晶闸管的初始电流值,通常为0; (7)Snubber resistance Rs:并联缓冲电路的电阻值,设置inf时取消缓冲电阻; (8)Snubber capacitance Cs:缓冲电路电容值,单位F,当电容为0时,取消缓冲电容;设置inf时,缓冲电路为纯电阻性电路; (9)Show measurement port:选中复选框,出现测量输出接线口m,可观测晶闸管的电流和电压值。 3、可开断晶闸管模块 3.1、原理

晶闸管及其应用教案

课题 任务九晶闸管及其应用 9.1 单、双向晶闸管和单结晶闸管的认识和检测 课型 新课授课班级授课时数 2 教学目标 了解单向、双向晶闸管和单结晶体管的结构、引脚、主 要参数、基本特性 教学重点 万用表的正确使用方法 教学难点 单、双向晶闸管和单结晶闸管的认识和检测 学情分析 教学效果 教后记

A、导入新课 实物展示:向学生展示单向、双向晶闸管和单结晶体管,提出本次课任务。 B、新授课 基础知识 一、单向晶闸管 ㈠外形 单向晶闸管的外形如图9-1所示。 图9-1 单向晶闸管外形 ㈡结构与符号 单向晶闸管是由三个PN结及其划分为四个区组成,如图9-2所示。由外层的P型和N型半导体分别引出阳极A和阴极K,由中间的P型半导体引出控制极G。文字符号用“V”表示。 (a)结构(b)符号 图9-2 单向晶闸管的结构与符号展示法 (结合演示讲解) 实物展示

㈢工作特性 ⒈单向晶闸管的导通必须具备两个条件: ①在阳极(A)与阴极(K)之间必须为正向电压(或正向偏压);即: U AK>0; ②在控制极(G)与阴极(K)之间也应有正向触发电压;即:U GK >0。 ⒉晶闸管导通后,控制极(G)将失去作用,即:当U GK=0,晶闸管仍然导通。 ⒊单向晶闸管要关断时必须满足: 使其导通(工作)电流小于晶闸管的维持电流值或在阳极(A)与阴极(K)之间加上反向电压(反向偏压);即:I V<I H或U AK<0。 二、双向晶闸管 ㈠外形 双向晶闸管的外形如图9-3所示。 图 9-3 双向晶闸管外形 ㈡结构与符号 双向晶闸管的结构与符号如图9-4所示,它是一个NPNPN五层结构的半导体器件,其功能相当于一对反向并联的单向晶闸管,电流可以从两个方向通过。所引出的三个电极分别为第一阳极T1、第二阳极T2和控制极G。结合演示讲解 实物展示

晶闸管模块的应用

晶闸管智能模块发展史及后来的应用 摘要:富安时介绍晶闸管thyristor可控硅模块的接图,晶闸管功率控制器主要技术参数及其应用范围。电焊设备、激光电源、励磁电源、电镀电解电源、调功、调光、工业炉温控、固态动力开关、牵引、直流拖动、大吊车驱动、搅拌电源、电机软起动列出这种模块的控制方法及其电连接图。晶闸管调整器体积小,功能齐全,联线简单,控制方便,性能稳定可靠是这种模块的特点,而增大容量,扩大功能,降低成本,系列化晶闸管功率控制器模块今后发展趋势。 1概况 目前,富安时晶闸管的制造工艺和设计应用技术已相当成熟,正沿着大功率化和模块化二个方向前进:一是为高压真流输电(HVDC),静止无功补偿(SVC),超大功率高压变频调速以及几十万安培的直流电源领域用的125mm,8000V以上晶闸管的稳定生产而开

展研发工作;二是向着体积更小,重量更轻,结构更紧凑,可靠性更高,使用更方便,内部接线电路各异和功能不同的模块化开展技术改进工作。 晶闸管功率控制器模块和整流二极管模块自20世纪70年代初问世以来获得了蓬勃发展,目前已能大批量生产各种类型的电力半导体模块,并广泛应用于国民经济各部门,为工业发展,技术进步,节能、节电、节材发挥了极大作用。但是由于晶闸管是电流控制的电力半导体器件,所以需要较大的脉冲触发功率才能驱动晶闸管,而且它的触发系统电路复杂,体积大,安装调试较难,抗干扰和可靠性较差,制造成本也高,又因其触发系统易产生电磁干扰,难与微机接口,不易实现微机控制。多年来,世界各国围绕如何更加方便、可靠、高效地使用晶闸管取得二方面的进展:一是把分立器件芯片按一定电路联成后封装成一般模块,给用户带来一定的使用方便;二是将门极触发系统的部分分立元器件制成专用集成触发电路,简化了触发系统。但是所有这些并未摆脱将晶闸管主电路与门极触发系统分立制作的传统方式,也没有出现过把复杂庞大的触发系统、检测保护系统和大功率晶闸管主电路集成为一体,做成一个体积小,功能完整,并通过一个端口便能实现对三相电力进行调控的晶闸管智能模块(FUANSHI)。

晶闸管的工作原理和应用

晶闸管的工作原理与应用 时间:2009-09-21 14120次阅读【网友评论10条我要评论】收藏 1 晶闸管(SCR) 晶体闸流管简称晶闸管,也称为可控硅整流元件(SCR),是由三个PN结构成的一种大功率半导体器件。在性能上,晶闸管不仅具有单向导电性,而且还具有比硅整流元件更为可贵的可控性,它只有导通和关断两种状态。 晶闸管的优点很多,例如:以小功率控制大功率,功率放大倍数高达几十万倍;反应极快,在微秒级内开通、关断;无触点运行,无火花、无噪声;效率高,成本低等。因此,特别是在大功率UPS供电系统中,晶闸管在整流电路、静态旁路开关、无触点输出开关等电路中得到广泛的应用。 晶闸管的弱点:静态及动态的过载能力较差,容易受干扰而误导通。 晶闸管从外形上分类主要有:螺栓形、平板形和平底形。 2 普通晶闸管的结构和工作原理 晶闸管是PNPN四层三端器件,共有三个PN结。分析原理时,可以把它看作是由一个PNP管和一个NPN管所组成,其等效图解如图1(a)所示,图1(b)为晶闸管的电路符号。 图1 晶闸管等效图解图 2.1 晶闸管的工作过程 晶闸管是四层三端器件,它有J1、J2、J3三个PN结,可以把它中间的NP分成两部分,构成一个PNP型三极管和一个NPN型三极管的复合管。

当晶闸管承受正向阳极电压时,为使晶闸管导通,必须使承受反向电压的PN结J2失去阻挡作用。每个晶体管的集电极电流同时就是另一个晶体管的基极电流。因此是两个互相复合的晶体管电路,当有足够的门极电流Ig流入时,就会形成强烈的正反馈,造成两晶体管饱和导通。 设PNP管和NPN管的集电极电流分别为IC1和IC2,发射极电流相应为Ia和Ik,电流放大系数相应为α1=IC1/Ia和α2=IC2/Ik,设流过J2结的反相漏电流为ICO,晶闸管的阳极电流等于两管的集电极电流和漏电流的总和: Ia=IC1+IC2+ICO =α1Ia+α2Ik+ICO (1) 若门极电流为Ig,则晶闸管阴极电流为:Ik=Ia+Ig。 因此,可以得出晶闸管阳极电流为: (2) 硅PNP管和硅NPN管相应的电流放大系数α1和α2随其发射极电流的改变而急剧变化。当晶闸管承受正向阳极电压,而门极未接受电压的情况下,式(1)中 Ig=0,(α1+α2)很小,故晶闸管的阳极电流Ia≈ICO,晶闸管处于正向阻断状态;当晶闸管在正向门极电压下,从门极G流入电流Ig,由于足够大的Ig流经NPN管的发射结,从而提高放大系数α2,产生足够大的集电极电流IC2流过PNP管的发射结,并提高了PNP管的电流放大系数α1,产生更大的集电极电流IC1流经NPN 管的发射结,这样强烈的正反馈过程迅速进行。 当α1和α2随发射极电流增加而使得(α1+α2)≈1时,式(1)中的分母 1-(α1+α2)≈0,因此提高了晶闸管的阳极电流Ia。这时,流过晶闸管的电流完全由主回路的电压和回路电阻决定,晶闸管已处于正向导通状态。晶闸管导通后,式(1)中1-(α1+α2)≈0,即使此时门极电流Ig=0,晶闸管仍能保持原来的阳极电流Ia而继续导通,门极已失去作用。在晶闸管导通后,如果不断地减小电源电压或增大回路电阻,使阳极电流Ia减小到维持电流IH以下时,由于α1和α2迅速下降,晶闸管恢复到阻断状态。 2.2 晶闸管的工作条件 由于晶闸管只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化,此条件见表1。 表1 晶闸管导通和关断条件

教案-晶闸管及其应用

课题:8.1 晶闸管 8.2 晶闸管触发电路 授课时数:2 教学目标:1.掌握晶闸管的结构和工作原理。 2.了解晶闸管触发电路。 教学重点:1.晶闸管的分类、结构、型号、参数和工作特性。 2.单结晶体管的特性及晶闸管触发电路的工作原理。 教学难点:1.晶闸管的工作特性。 2.单结晶体管触发电路的工作原理。 A.引入 晶闸管俗称可控硅。具有体积小、重量轻、效率高、寿命长、使用方便等优点。它广泛应用于无触点开关电路及可控整流设备中。 B.复习 三端集成稳压器的分类。 C.新授课 8.1 晶闸管 8.1.1 单向晶闸管 1.单向晶闸管的结构和符号 (1)外形 平面型、螺栓型和小型塑封型等几种。 (2)符号及内部结构 三个电极:阳极A、阴极K、控制极G 4层半导体: P—1N—2P—2N 1 P—引出线为控制极;1P—引出线为阳极;2N—引出线为阴极 2

3个PN结( J,2J,3J) 1 文字符号:一般用SCR、KG、CT、VT表示。 2.单向晶闸管的工作原理: (1)实验演示: ①正向阻断:A-K加正向电压,G无电压-不导通。 ②反向阻断:A-K加反向电压,G无论是否加控制电压-不导通。 ③触发导通:A—K加正向电压,G,K加正向电压—导通。 ④导通后控制极失去控制作用:晶闸管一旦导通,降低或去掉控制极电压仍导通。 (2)工作特点: ①单向晶闸管导通必须具备两个条件:一是晶闸管阳极与阴极间接正向电压;二是控制极与阴极之间也要接正向电压。 ②晶闸管一旦接通后,去掉控制极电压时,晶闸管仍然导通。 ③导通后的晶闸管若要关断时,必须将阳极电压降低到一定程度。 ④晶闸管具有控制强电的作用,即利用弱电信号对控制极的作用,就可使晶闸管导通去控制强电系统。 3.单向晶闸管主要参数 (1)额定正向平均电流 在规定环境温度和散热条件下,允许通过阳极和阴极之间的电流平均值。 (2)维持电流 在规定环境温度、控制极断开的条件下,保持晶闸管处于导通状态所需要的最小正向电流。 (3)控制极触发电压和电流 在规定环境温度及一定正向电压条件下,使晶闸管从关断到导通,控制极所需的最小电压和电流。 (4)正向阻断峰值电压 在控制极开路和晶闸管正向阻断的条件下,可以重复加在晶闸管两端的正向峰值电压。 (5)反向阻断峰值电压 在控制极断开时,可以重复加在晶闸管上的反向峰值电压。 4.晶闸管的型号及含义 (1)型号 3 表示额定电压为500 V 表示额定正向平均电流为5 A 表示晶闸管元件 表示N型硅材料

晶闸管的应用

晶闸管的实际应用 摘要:晶闸管具有硅整流器件的特性,能在高电压、大电流条件下工作,且其工作过程可以控制、被广泛应用于可控整流、交流调压、无触点电子开关、逆变及变频等电子电路中。这些特点使得晶闸管在实际产品的电路中应用的非常广泛,各式电子产品中都能够找到它的身影,对晶闸管做更为深入的研究有助于进一步打开电子市场! 关键词:晶闸管可控调光整流电路 晶闸管又名反向阻断型可控硅SRC。它的问世,开创了传统的电力电子技术阶段,一方面由于其功率变换能力的突破,另一方面实现了弱点对以晶闸管为核心的强电变换电路的控制,使电子技术步入了功率领域,在工业界引起了一场技术革命!晶闸管的问世使得它在工业、商业、影剧院以及家用电器中已得到广泛应用,主要应用有调光和调温装置、跑马彩灯控制等,下面我们分析一下它的具体应用。 一、晶闸管导通原理分析: 图一、晶闸管导通电路图 (1)晶闸管阳极接直流电源的正端,阴极经灯泡接电源的负端,此时晶闸管承受正向电压。控制极电路中开关S断开(不加电压),如图一(a)所示,这时灯不亮,说明晶闸管不导通。 (2)晶闸管的阳极和阴极间加正向电压,控制极相对于阴极也加正向电压,如图一(b)所示.这时灯亮,说明晶闸管导通。 (3)晶闸管导通后,如果去掉控制极上的电压,即将图一(b)中的开关S断开,灯仍然亮,这表明晶闸管继续导通,即晶闸管一旦导通后,控制极就失去了控制作用。 (4)晶闸管的阳极和阴极间加反向电压如图一(c),无论控制极加不加电压,灯都不亮,晶闸管截止。

(5)如果控制极加反向电压,晶闸管阳极回路无论加正向电压还是反向电压,晶闸管都不导通。 二、晶闸管的伏安特性图: 图二、晶闸管的伏安特性曲线 三、晶闸管的控制角和导通角: 图三、晶闸管的工作波形图

晶闸管及其应用

晶闸管及其应用

晶闸管及其应用 课程目标 1 了解晶闸管结构,掌握晶闸管导通、关断条件 2 掌握可控整流电路的工作原理及分析 3 理解晶闸管的过压、过流保护 4 掌握晶闸管的测量、可控整流电路的调试和测量 课程内容 1 晶闸管的结构及特性 2 单相半波可控整流电路 3 单相半控桥式整流电路 4 晶闸管的保护 5 晶闸管的应用实例 6 晶闸管的测量、可控整流电路的调试和测量 学习方法 从了解晶闸管的结构、特性出发,掌握晶闸管的可控整流应用,掌握晶闸管的过压和过流保护方式,结合实物和实训掌握晶闸管管脚及好坏的判断,通过应用实例,了解晶闸管的典型应用。

课后思考 1晶闸管导通的条件是什么?导通时,其中电流的大小由什么决定?晶闸管阻断时,承受电压的大小由什么决定? 2为什么接电感性负载的可控整流电路的负载上会出现负电压?而接续流二极管后负载上就不出现负电压了,又是为什么? 3 如何用万用表判断晶闸管的好坏、管脚? 4 如何选用晶闸管?

晶闸管的结构及特性 一、晶闸管外形与符号: 图 5.1.1 符号 图5.1.2 晶闸管导通实验电路图 为了说明晶闸管的导电原理,可按图5.1.2所示的电路做一个简单的实验。 (1)晶闸管阳极接直流电源的正端,阴极经灯泡接电源的负端,此时晶闸管承受正向电压。控制极电路中开关S断开(不加电压),如图

5.1.2(a)所示,这时灯不亮,说明晶闸管不导通。 (2)晶闸管的阳极和阴极间加正向电压,控制极相对于阴极也加正向电压,如图5.1.2(b)所示.这时灯亮,说明晶闸管导通。 (3)晶闸管导通后,如果去掉控制极上的电压,即将图5.1.2(b)中的开关S断开,灯仍然亮,这表明晶闸管继续导通,即晶闸管一旦导通后,控制极就失去了控制作用。 (4)晶闸管的阳极和阴极间加反向电压如图5.1.2(C),无论控制极加不加电压,灯都不亮,晶闸管截止。 (5)如果控制极加反向电压,晶闸管阳极回路无论加正向电压还是反向电压,晶闸管都不导通。 从上述实验可以看出,晶闸管导通必须同时具备两个条件: (1) 晶闸管阳极电路加正向电压; (2) 控制极电路加适当的正向电压(实际工作 中,控制极加正触发脉冲信号)。 二、伏安特性

晶闸管及其应用.(DOC)

课题 9.1晶闸管简介 课型 新课授课班级授课时数1教学目标 1.认识晶闸管的结构和符号 2.能理解晶闸管工作原理 3.熟记晶闸管导通与关断的条件 教学重点 晶闸管的结构和工作原理 教学难点 工作原理 学情分析 教学效果 教后记

新课 A.复习 1.三端集成稳压器的分类。 2.画出实现输出 10 V的稳压电源图。 B.引入 二极管整流,当V i固定,V o是固定值,许多场合,所需的直流电源电压应能改变,具有可控性。 C.新授课 一、晶闸管的结构符号 1.结构:实物演示。 阳极a 阴极c4层半导体 控制极g 2.符号: 3.3个PN结(g与c之间为一个PN结)。 二、工作原理: 1.实验演示: (1)a≠c加反向电压,无论是否加控制电压——不导通; 控制极加反向电压,a≠c加正向电压——不导通。 (2)a,c加正向电压,g,c加正向电压,导通。 2.工作特点: (1)导通条件:晶闸管阳极与阴极间必须加正向电压, 控制极与阴极间也要接正向电压。 (2)晶闸管一旦导通,降低或去掉控制极电压仍导通。 (3)关断条件:减小阳极电流< I H 维持电流。 方法:断开阳极电源、阳-阴间加反向电压。

讨论: ①V1,V2如何连接? V2的b极与V1的c极连接,V2的c极与V1的b极连接。 ②a,c加正向电压,V1,V2是否导通? 不加g极,中间取反偏,V1无基极电流,不导通。 ③控制极与阴极间加正向电压,V1工作状态如何? V1有基极电流而导通。 ④V1,V2工作状态:饱和,总压降1 V。 ⑤V1,V2导通后,g极去掉,V1,V2状态如何:V1,V2仍维持导通,反馈电流代替V1基本电流。 ⑥要使V1,V2截止,应采取什么措施? a.去掉U gK。 b.I A<I H(调电位器)。 三、简易检测: 1.检测阳、阴极:正常时R E1,R E2都很大(指针基本不动)。 2.检测控制极是否短路或断开: (1)一个PN结。 (2)方法:同判别普通二极管一样。 四、主要参数: 1.额定正向平均电流:允许通过阳极与阴极之间的电流平均值。 2.维持电流:保持晶闸管导通的最小正电流。 3.晶闸管导通的最小正触发电压和电流;晶闸管从关断到导通,晶闸管所需的最小电压和电流。 4.正向阻断峰值电压:正向电压最大值。 5.反向阻断峰值电压:反向电压最大值。 练习 习题九91 小结1.晶闸管结构及符号2.工作原理 3.主要参数 布置作业 习题九92补充画波形

晶闸管的发展及其应用

目 录 第一章 电力电子技术简介及其器件发展 (1) 第二章 晶闸管 (2) 2.1 晶闸管的产生及符号 (2) 2.2晶闸管的导通与关断条件 (3) 2.3 晶闸管的工作原理 (4) 2.4 晶闸管的阳极伏安特性 (5) 2.5 晶闸管的主要参数 (6) 2.5.1 晶闸管的重复峰值电压 (7) 2.5.2晶闸管的额定通态平均电流额定电流T I (AV ) (7) 2.6 通态平均电压T U (AV ) (8) 2.7 门极触发电压GT U 和门极触发电流GT I (8) 2.8 维持电流H T (9) 2.8 掣住电流L I (9) 2.9 断态电压临界上升率du /dt (9) 2.10 通态电流临界上升率di /dt (10) 第三章 双向晶闸管及其派生晶闸管 (11) 3.1 双向晶闸管 (11) 3.2 快速晶闸管 (12) 3.4 光控晶闸管 (13) 第四章 晶闸管的保护与串并联使用 (14) 4.1 过电压保护 (14) 4.1.1操作过电压 (14) 4.1.2雷击过电压 (15) 4.1.3换相过电压 (15) 4.1.4关断过电压 (15) 4.2 过电压保护措施 (15) 4.2.1操作过电压的保护 (15) 4.2.2浪涌(雷击)过电压的保护 (15) 4.2.3 过电流保护 (17) 4.4 晶闸管的串、并联 (18) 第五章 晶闸管应用实例 (19) 5.1 单相全控桥式整流电路 (19)

5.2 三相全控桥式整流电路 (20) 总结 (22) 参考文献 (23)

第一章电力电子技术简介及其器件发展 第一章电力电子技术简介及其器件发展 电力电子技术,即由国际电工委员会命名的,一门将电子技术和控制技术引入传统的电力技术领域,利用半导体电力开关器件组成各种电力变换电路进而实现电能的变换和控制的完整学科。突出对“电力”的变换,变换的功率可以大到数百甚至数千兆瓦,也可以小到几瓦或更小。 电力电子技术包括电力电子器件、变流电路和控制技术3个部分,其中电力电子器件是基础,变流电路是电力电子技术的核心。 电力电子技术的发展取决于电力电子器件的研制与应用。它既是电力电子技术的基础,也是电力电子技术发展的动力。早在20世纪三四十年代,人们就开始应用电机组、汞弧整流器、闸流管、电抗器、接触器等进行了对电能的变换和控制。到20世纪50年代第一个晶闸管诞生后,在其后近50年里,电力电子器件如雨后春笋发展起来。以器件为核心的电力电子技术的发展可分为两个阶段:1957—1980年称为传统电力电子技术阶段;1980年至今称为现代电力电子技术阶段。所以晶闸管的诞生与应用在电力电子技术发展史可谓起到承前启后的作用,本论文将主要介绍晶闸管的诞生、发展与应用。 20世纪50年代初,普通的整流器SR开始使用,实际上已经开始取代汞弧整流器。但电力电子技术真正的开始是在由于1957~1958年第一个反向阻断型可控硅SCR的诞生,也就是现在的晶闸管。一方面由于其功率变换能力的突破,另一方面实现了弱电对以晶闸管为核心的强点变换电路的控制,是电子技术步入了功率领域,在工业上引起了一场技术革命。在随后的20年内,随着晶闸管特性不断的改进及功率等级的提高,晶闸管已经形成了从低压小电流到高压大电流的系列产品。同时研制出了一系列晶闸管的派生器件,如不对称晶闸管ASCR、逆导晶闸管RCT、双向晶闸管TRIAC、门极辅助关断晶闸管GATT、光控晶闸管LASCR 等器件,大大地推进了各种电力变换器在冶金、运输、化工、机车牵引、矿山、电力等行业的应用,促进了工业的技术进步,开始了传统的“晶闸管及其应用”的电力电子技术发展的第一阶段,即传统电力电子技术阶段。 20世纪70年代后期,尤其是20世纪80年代以后,各种高速、全控型的器件先后问世,并获得迅速的发展。下表是目前几种晶闸管在国内外的研究水平:

晶闸管电子开关模块的特点与应用

晶闸管电子开关模块的特点与应用 无功补偿是电力系统运行的基本要求。为了在电力系统运行中进行无功平衡,必须对各种电力负荷所需的无功功率进行补偿。无功补偿的方法有调相机补偿和电容器组补偿等,其中最为有效和易于实施的是在靠近负荷点的地方进行就地无功补偿。由于无功补偿挂接在电网上主要是通过自动投入和切除电力电容器来达到补偿效果,因此,控制电容器投切的开关元件性能对整个装置的质量和稳定性起着非常关键的作用。目前,国内的无功补偿产品控制器普遍采用交流接触器或可控硅作为开关元件来控制电容器的通断。礼经电器 1电容补偿装置的投切开关方式和特点 电容式补偿装置的投切开关主要有交流普通接触器、带预设电阻的专用接触器和晶闸管电子开关等方式。 1.1普通交流接触器 交流接触器的价格低、通用性强,但在用于电容器投切时会产生很大的浪涌和脉冲过电压,有时可能导致绝缘击穿或接触器触头烧损,容易造成接触器损坏,从而影响补偿装置的使用。 1.2电容投切专用接触器

电容投切专用接触器是在普通交流接触器的主触头上加装了限流阻抗器件,这种改进在电容器投切不频繁时能起到一定作用,但其抑制电容器涌流的效果并不理想。当电流较大时,其限流电阻和主触头也常被烧损,特别是在无功负荷波动大和电容器投切频繁的情况下,实际使用寿命往往仅为一年左右。因此,这种专用接触器只适用于符合基本平稳、三相电压基本平衡的理想工作条件。 1.3晶闸管电子开关模块 晶闸管电子开关充分利用了电压过零触发、电流过零切除、开关无触点、响应速度快等晶闸管特性,可使电容上的电压从零快速上升到额定工作电压。而在断开时,晶闸管上的电流过零切除.可实现电容器投入无涌流、切除无过压、投切无电弧的快速动态补偿功能,故能较好地解决电容器投切时产生的暂态冲击问题。但是,晶闸管在导通状态下存在较大的管压降(1V左右),故在工作时,应考虑消耗功率和其产生和散发的大量热量,而这会使运行和维护的成本加大。 1.4接触器与晶闸管控制补偿设备的性能比较 利用接触器控制补偿设备与用晶闸管控制方法来补偿设备的性能比较如表1所列。

MTC90A1600V可控硅晶闸管模块

杭州国晶电子科技有限公司https://www.360docs.net/doc/4912162569.html,

杭州国晶电子科技有限公司https://www.360docs.net/doc/4912162569.html,

杭州国晶电子科技有限公司 https://www.360docs.net/doc/4912162569.html, 模块典型电路 电联结形式 (右图)

模块外型图、安装图 M220M225 使用说明: 一、使用条件及注意事项: 1、使用环境应无剧烈振动和冲击,环境介质中应无腐蚀金属和破坏绝缘的杂质和气氛。 2、模块管芯工作结温:可控硅为-40℃∽125℃;环境温度不得高于40℃;环境湿度小于86%。 3、模块在使用前一定要加装散热器,散热器的选配见下节。散热可采用自然冷却、强迫风冷或水冷。强迫风冷时,风速应大于6米∕秒。 二、安装注意事项: 1、由于MTC可控硅模块是绝缘型(即模块接线柱对铜底板之间的绝缘耐压大于2.5KV有效值),因此可以把多个模块安装在同一散热器上,或装置的接地外壳上。 2、散热器安装表面应平整、光滑,不能有划痕、磕碰和杂物。散热器表面光洁度应小于10μm。模块安装到散热器上时,在它们的接触面之间应涂一层很薄的导热硅脂。涂脂前,用细砂纸把散热器接触面的氧化层去掉,然后用无水乙醇把表面擦干净,使接触良好,以减少热阻。 杭州国晶电子科技有限公司https://www.360docs.net/doc/4912162569.html,

模块紧固到散热器表面时,采用M5或M6螺钉和弹簧垫圈,并以4NM力矩紧固螺钉 与模块主电极的连线应采用铜排,并有光滑平整的接触面,使接触良好。模块工作3小时后,各个螺钉须再次紧固一遍。 模块散热器选择 用户选配散热器时,必须考虑以下因素: ①模块工作电流大小,以决定所需散热面积; ②使用环境,据此可以确定采取什么冷却方式——自然冷却、强迫风冷、还是水冷; ③装置的外形、体积、给散热器预留空间的大小,据此可以确定采用什么形状的散热器。一般而论,大多数用户会选择铝型材散热器。为方便用户,对我公司生产的各类模块,在特性参数表中都给出了所需散热面积。此面积是在模块满负荷工作且在强迫风冷时的参考值。下面给出散热器长度的计算公式: 模块所需散热面积=(散热器周长)×(散热器长度)+(截面积)×2 其中,模块所需散热面积为模块特性参数表中给出的参考值,散热器周长、截面积可以在散热器厂家样本中查到,散热器长度为待求量。 郑重声明:目前市场上充斥着各种劣质散热器,请在购买是注意鉴别,如因使用劣质散热器造成模块损坏或其他严重后果,我公司概不负责。 杭州国晶电子科技有限公司https://www.360docs.net/doc/4912162569.html,

常见晶闸管的原理与运用

(一)普通晶闸管 普通晶闸管(SCR)是由PNPN四层半导体材料构成的三端半导体器件,三个引出端分另为阳极A、阴极K和门极G、图8-4是其电路图形符号。 普通晶闸管的阳极与阴极之间具有单向导电的性能,其内部可以等效为由一只PNP晶闸管和一只NPN晶闸管组成的组合管,如图8-5所示。 当晶闸管反向连接(即A极接电源负端,K极接电源正端)时,无论门极G 所加电压是什么极性,晶闸管均处于阻断状态。当晶闸管正向连接(即A极接电源正端,K极接电源负端)时,若门极G所加触发电压为负时,则晶闸管也不导通,只有其门极G加上适当的正向触发电压时,晶闸管才能由阻断状态变为导通状态。此时,晶闸管阳极A极与阴极K极之间呈低阻导通状态,A、K 极之间压降约为1V。 普通晶闸管受触发导通后,其门极G即使失去触发电压,只要阳极A和阴极K 之间仍保持正向电压,晶闸管将维持低阻导通状态。只有把阳极A电压撤除或阳极A、阴极K之间电压极性发生改变(如交流过零)时,普通晶闸管才由低阻导通状态转换为高阻阻断状态。普通晶闸管一旦阻断,即使其阳极A与阴极K

之间又重新加上正向电压,仍需在门极G和阴极K之间重新加上正向触发电压后方可导通。 普通晶闸管的导通与阻断状态相当于开关的闭合和断开状态,用它可以制成无触点电子开关,去控制直流电源电路。 (二)双向晶闸管 双向晶闸管(TRIAC)是由NPNPN五层半导体材料构成的,相当于两只普通晶闸管反相并联,它也有三个电极,分别是主电极T1、主电极T2和门极G。图8-6是双向晶闸管的结构和等效电路,图8-7是其电路图形符号。 双向晶闸管可以双向导通,即门极加上正或负的触发电压,均能触发双向晶闸管正、反两个方向导通。图8-8是其触发状态。

第9章--电力二极管、电力晶体管和晶闸管的应用简介讲解学习

目录目录 第9章电力二极管、电力晶体管和晶闸管的应用简介 0 9.1 电力二极管的应用简介 0 9.1.1 电力二极管的种类 0 9.1.2 各种常用的电力二极管结构、特点和用途 0 9.1.3 电力二极管的主要参数 0 9.1.4 电力二极管的选型原则 (1) 9.2 电力晶体管的应用简介 (2) 9.2.1 电力晶体管的主要参数 (2) 9.2.2 电力晶体管的选型原则 (2) 9.3 晶闸管的应用简介 (3) 9.3.1 晶闸管的种类 (3) 9.3.2 各种常用的晶体管结构、特点和用途 (3) 9.3.3 晶闸管的主要参数 (4) 9.3.4 晶闸管的选型原则 (5) 9.4 总结 (6)

第9章电力二极管、电力晶体管和晶闸管的应用简介 9.1 电力二极管的应用简介 电力二极管(Power Diode)在20世纪50年代初期就获得应用,当时也被称为半导体整流器;它的基本结构和工作原理与信息电子电路中的二极管相同,都以半导体PN结为基础,实现正向导通、反向截止的功能。电力二极管是不可控器件,其导通和关断完全是由其在主电路中承受的电压和电流决定的。电力二极管实际上是由一个面积较大的PN结和两端引线以及封装组成的。 9.1.1 电力二极管的种类 电力二极管主要有普通二极管、快速恢复二极管和肖特基二极管。 9.1.2 各种常用的电力二极管结构、特点和用途 名称结构特点、用途实例图片 整流二极管 多用于开关频率不高(1kHz以下)的整流电路中。其反向恢复时间较长,一般在5s以上,其正向电流定额和反向电压定额可以达到很高。 快速恢复二极管 恢复过程很短,特别是反向恢复过程很短(一般在5s以下)。快恢复外延二极管,采用外延型P-i-N结构,其反向恢复时间更短(可低于50ns),正向压降也很低(0.9V左右)。从性能上可分为快速恢复和超快速恢复两个等级。前者反向恢复时间为数百纳秒或更长,后者则在100ns以下,甚至达到20~30ns。 肖特基二极管 优点:反向恢复时间很短(10~40ns),正向恢复过程中也不会有明显的电压过冲;在反向耐压较低的情况下其正向压降也很小,明显低于快恢复二极管;因此,其开关损耗和正向导通损耗都比快速二极管还要小,效率高。 弱点:(1)当所能承受的反向耐压提高时其正向压降也会高得不能满足要求,因此多用于200V以下的低压场合.(2)反向漏电流较大且对温度敏感,因此反向稳态损耗不能忽略,而且必须更严格地限制其工作温度。 9.1.3 电力二极管的主要参数 1.正向平均电流I F(AV)。 正向平均电流指电力二极管长期运行时,在指定的管壳温度(简称壳温,用T C表示)和散热条件下,其允许流过的最大工频正弦半波电流的平均值。其是按照电流的发热效应来定义的,使用时应按有效值相

相关文档
最新文档