2021届高三物理一轮复习专题分类练习卷:动能定理
2021届高考一轮复习基础练习:动能、动能定理 (word 含答案)
2021届高考一轮复习基础练习:动能、动能定理一、单选题(下列题目中只有一个选项是满足题意的)1.物体从某一高度自由落到直立于地面上的轻弹簧上,如图所示,在A点开始与弹簧接触,到B点物体速度为零,然后被弹回,则( )A.物体A到B的过程中,动能不断减小B.物体从B上升到A的过程中,动能不断增大C.物体从A到B及B上升到A的过程中动能是先变大后变小D.物体在B点的动能不为零2.如图,一半径为R的半圆形轨道竖直固定放置,轨道两端等高;质量为m的质点自轨道端点P由静止开始滑下,滑到最低点Q时,对轨道的正压力为2mg,重力加速度大小为g.质点自P滑到Q的过程中,克服摩擦力所做的功为()A.mgR B.mgR C.mgR D.mgR3.如图所示,ABCD是一条长轨道,其中AB段是倾角为θ的斜面,CD段是水平的,BC段是与AB和CD都相切的一小段圆弧,其长度可以略去不计。
一质量为m的滑块(看做质点)在A点由静止状态释放,沿轨道滑下,最后停在D点,A点和D点的位置如图所示。
现用一方向始终与轨道平行的力推滑块,使它缓慢地由D点推回到A点。
设滑块与轨道间的动摩擦因数为μ,则推力对滑块做的功为()A .mghB .2mghC .()sin hmg s μθ+D .μmgs +μmgh cotθ 4.如图所示,AB 为14圆弧轨道,BC 为水平直轨道,圆弧的半径为R ,BC 的长度也是R ,一质量为m 的物体,与两个轨道的动摩擦因数都为μ,当它由轨道顶端A 从静止下滑时,恰好运动到C 处停止,那么物体在AB 段克服摩擦力做功为( )A .12μmgR B .12mgR C .mgRD .()1mgR μ-5.如图所示,一轻绳系着可视为质点的小球在竖直平面内做圆周运动,已知绳长为l ,重力加速度为g ,小球在最低点Q 的速度为0v ,则( )A .小球运动到最低点Q 时,处于失重状态B .小球的速度v 0越大,则在P 、Q 两点绳对小球的拉力差越大C .当0v >PD .当0v >时,轻绳始终处于绷紧状态6.质量为m 的物体,在汽车的牵引下由静止开始运动,当物体上升h 高度时,汽车的速度为v ,细绳与水平面间的夹角为θ,则下列说法中正确的是( )A .此时物体的速度大小为sin v θB .此时物体的速度大小为cos vθC .汽车对物体做的功为2(cos )2mmgh v θ+D .若汽车做匀速运动,则绳子上的拉力等于物体重力7.如图所示,一质量为m 的小球固定于轻质弹簧的一端,弹簧的另一端固定于O 点处。
2021届物理一轮总复习40分钟巩固提升训练动能和动能定理
2021届物理一轮总复习40分钟巩固提升训练训练:*动能和动能定理*一、选择题1.如图所示,轻质弹簧一端固定,另一端与一质量为小套在粗糙竖直固定杆A处的圆环相连,弹簧水平且处于原长.圆环从A处由静止开始下滑,经过B处的速度最大,到达C处的速度为零,AC=h,此为过程I;若圆环在C处获得一竖直向上的速度v,则恰好能回到A处,此为过程II.已知弹簧始终在弹性范围内,重力加速度为g,则圆环()A.在过程I中,加速度一直减小B.在过程I中,克服摩擦力做的功为2 mv 2C.在C处,弹簧的弹性势能为4mv2—mghD.在过程I、过程1中克服摩擦力做功相同2.韩晓鹏是我国首位在冬奥会雪上项目夺冠的运动员.他在一次自由式滑雪空中技巧比赛中沿“助滑区”保持同一姿态下滑了一段距离,重力对他做功1 900人他克服阻力做功100 J.韩晓鹏在此过程中()A.动能增加了1 900 JB.动能增加了2 000 JC重力势能减少了1 900 JD.重力势能减少了2 000 J3.有两个物体a和b,其质量分别为m a和m b,且m a>m b,它们的初动能相同,若a和b分别受到不变的阻力F a和F b的作用,经过相同的时间停下来,它们的位移分别为5a和%,则()A F a>F b且5a<Sb BF a>F b且 %>%CF a<F b且5a>Sb D. F a<F b且S.<%4.如图,一半径为尺、粗糙程度处处相同的半圆形轨道竖直固定放置,直径尸0Q水平.一质量为m的质点自尸点上方高为R处由静止开始下落,恰好从P点进入轨道.质点滑到轨道最低点N时,对轨道的压力为4mg, g为重力加速度的大小.用W表示质点从P点运动到N点的过程中克服摩擦力所做的功.则()A.W =1机gR,质点恰好可以到达Q点B.W>2作R质点不能到达Q点C.W=1小蝇,质点到达Q点后,继续上升一段距离D.W<1加冰,质点到达Q点后,继续上升一段距离5.如图所示,足球从草皮上的①位置被踢出后落在草皮上③位置,空中到达的最高点为②位置,则()A.②位置足球动能等于0B.①位置到③位置过程只有重力做功C.①位置到②位置的过程足球的动能全部转化为重力势能D.②位置到③位置过程足球动能的变化量等于合力做的功6.一小物块沿斜面向上滑动,然后滑回到原处.物块初动能为E k0,与斜面间的动摩擦因数不变,则该过程中,物块的动能E k与位移x关系的图线是()7.(多选)如图所示,水平传送带由电动机带动,并始终保持以速度v匀速运动,现将质量为m 的某物块由静止释放在传送带上的左端,过一会儿物块能保持与传送带相对静止,设物块与传送带间的动摩擦因数为.对于这一过程,下列说法正确的是()A.摩擦力对物块做的功为0.5mv28.物块对传送带做功为0.5mv2C.系统摩擦生热为0.5mv2D.电动机多做的功为mv28.(多选)如图是某缓冲装置,劲度系数足够大的轻质弹簧与直杆相连,直杆可在固定的槽内移动,与槽间的滑动摩擦力恒为力直杆质量不可忽略.一质量为m的小车以速度v0撞击弹簧,最终以速度V弹回.直杆足够长,且直杆与槽间的最大静摩擦力等于滑动摩擦力,不计小车与地面间的摩擦.则()直杆小军'WWVWI八"八"1r l«"「!""*(■ I*"*.A.小车被弹回时速度V一定小于V08.直杆在槽内移动的距离等于{2 mv 0—2 mv 21C.直杆在槽内向右运动时,小车与直杆始终保持相对静止D.弹簧的弹力可能大于直杆与槽间的最大静摩擦力9.(多选)一质量为m的物体以速度V0在足够大的光滑水平面上运动,从零时刻起,对该物体施,.一,, ................ . ....... ... .,,3 ,一一,. __________ ____ , 一加一水平恒力凡经过时间t,物体的速度大小减小到最小值5V0,此后速度大小不断增大.则()10水平恒力F大小为2mvB.水平恒力作用21时间,物体速度大小为V08C.在t时间内,水平恒力做的功为一手mv03D.若水平恒力大小为2F,方向不变,物体运动过程中的最小速度仍为铲010.(多选)如图所示,一根细绳的上端系在O点,下端系一重球B,放在粗糙的斜面体A上.现用水平推力F向右推斜面体使之在光滑水平面上向右匀速运动一段距离(细绳尚未到达平行于斜面的位置).在此过程中()A. B做匀速圆周运动B.摩擦力对重球B做正功仁水平推力F和重球B对A做的功的大小相等D. A对重球B所做的功与重球B对A所做的功大小相等11.(多选)如图甲所示,物体以一定初速度从倾角—37。
2021高三物理人教版一轮练习: (15) 动能定理及其应用 Word版含解析
练案[15]第2讲 动能定理及其应用一、单项选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2020·大庆中学模拟)如图所示,倾角为30°的斜面末端与水平地面相连,将一小球(可看成质点)从斜面顶端以3 J 的初动能水平抛出,不计空气阻力,经过一段时间,小球以6 J 的动能第一次落在接触面上。
若将此小球以6 J 的初动能水平从斜面顶端抛出,则小球第一次落在接触面上的动能为( A )A .9 JB .12 JC .16 JD .条件不足,无法判断[解析] 设小球第一次落在斜面上,速度与水平方向的夹角为α, 则cos α=v 0v 因为12m v2012m v 2=36=12,解得v 0v =22则α=45°。
因为小球速度方向与水平方向夹角的正切值是位移与水平方向夹角正切值的两倍,若小球落在斜面上,位移与水平方向的夹角正切值为tan 30°=33, 而tan α=1,不是位移与水平方向夹角正切值的2倍,所以小球落在水平面上。
根据动能定理得,mgh =E k2-E k1=6-3 J =3 J ,则以6 J 的动能水平抛出,一定落在水平面上,根据动能定理得,mgh =E k2′﹣E k1′,解得E k2′=(3+6)J =9 J ,故A 正确,B 、C 、D 错误。
2. (2020·河南模拟)如图所示,质量为m 的小球,从离地面H 高处由静止开始释放,落到地面后继续陷入泥中h 深度而停止,设小球受到空气阻力为f ,重力加速度为g ,则下列说法正确的是( C )A .小球落地时动能等于mgHB .小球陷入泥中的过程中克服泥的阻力所做的功小于刚落到地面时的动能C .整个过程中小球克服阻力做的功等于mg (H +h )D .小球在泥土中受到的平均阻力为mg (1+Hh)[解析] 小球从静止开始释放到落到地面的过程,由动能定理得mgH -fH =12m v 20,选项A 错误;设泥的平均阻力为f 0,小球陷入泥中的过程,由动能定理得mgh -f 0h =0-12m v 20,解得f 0h =mgh +12m v 20,f 0=mg (1+H h ) -fHh ,选项B 、D 错误;全过程应用动能定理可知,整个过程中小球克服阻力做的功等于mg (H +h ),选项C 正确。
2021届高三物理一轮复习力学功和能动能定理专题练习
2021届高三物理一轮复习力学功和能动能定理专题练习一、填空题1.人站在h 高处的平台上,水平抛出一个质量为m 的物体,物体落地时的速度为v ,以地面为重力势能的零点,不计空气阻力,则小球抛出时的动能是_______。
小球落地时的机械能是_______。
2.如图所示,某物体在一个与水平方向成θ角的恒力F 的作用下做匀加速直线运动,发生的位移为s ,在此过程中,恒力F 对物体所做的功为_______,若地面光滑,物体动能的变化量为________.3.一物体的质量为m ,在水平恒力F 作用下发生了一段位移S ,始末状态的速度分别是1υ和2υ,如图所示。
(1)该过程中恒力F 对物体所做的功W =______________;(2)物体始末状态的动能1k E =_______、2k E =_______;(3)恒力F 对物体所做的功W 与物体动能的变化k E ∆的关系式是___________________。
(以上填空内容均要求用已知物理量的字母表示)。
(4)请根据牛顿第二定律和运动学规律,写出上述关系式的推导过程。
4.某人将重物由静止举高h ,获得的速度为v ,则物体所受合外力对它做的功________物体的动能增量. 5.某同学用图示实验装置来测量物块与木板之间的动摩擦因数,一带有窄片的物块被一弹簧弹射装置弹射出去,沿水平木板滑行,途中安装一光电门,标记为O 点。
设重力加速度为g 。
(1)测得窄片的宽度为L ,记下窄片通过光电门的时间△t ,还需要测量的物理有 。
(标明相关物理量的符号)(2)物块和木板间的动摩擦因数= 。
6.子弹的质量为20g ,射出时的速度为300m/s ,则子弹的动能为_______J ,枪膛中火药的推力对子弹所做的功为_________J .7.一物体以100J 的初动能从倾角为θ的斜面底端的A 点沿斜面向上匀减速滑行到斜面上B 点时,物体的动能减小了80J ,机械能减小了32J ,则当物体回到A 点时,物体的动能为_________J△8.质量为2 kg 的物体受到一个竖直向上的拉力F△50 N ,物体上升了4 m 的高度,则在这一过程中,重力势能的增量为________J ,动能的增量为________J△(g△10 m/s 2)9.地面上物体在变力 F 作用下由静止开始竖直向上运动,力 F 随 高度 x 的变化关系如图所示,物体能上升的最大高度为 h .若 F 0=15N ,H =1.5m ,h =1m ,g =10m/s 2,则物体运动过程中的最大速度 大小为_____m/s ,最大加速度大小为_____m/s 2.10.将质量为m 的物体从离地面高h 的台面以初速度v 0斜向上抛出,若以台面为零势能面,则当物体到达离台面下2h 时物体的动能为__________________;物体的机械能为___________________。
高考物理一轮复习小题多维练(全国通用)第18练动能定理和机械能守恒定律(原卷版+解析)
专题06 功和能第18练动能定理和机械能守恒定律1.(2021·上海虹口区质检)不同质量的两个物体由同一地点以相同的动能竖直向上抛出,不计空气阻力,则这两个物体()A.所能达到的最大高度和最大重力势能都相同B.所能达到的最大高度和最大重力势能均不同C.所能达到的最大高度不同,但最大重力势能相同D.所能达到的最大高度相同,但最大重力势能不同2.如图所示,一轻弹簧左端固定在长木板M的左端,右端与木块m连接,且m与M及M与地面间光滑.开始时,m与M均静止,现同时对m、M施加等大反向的水平恒力F1和F2.在两物体开始运动以后的整个运动过程中,对m、M和弹簧组成的系统(整个过程弹簧形变不超过其弹性限度),下列说法正确的是()A.由于F1、F2等大反向,故系统机械能守恒B.由于F1、F2分别对m、M做正功,故系统的动能不断增加C.由于F1、F2分别对m、M做正功,故系统的机械能不断增加D.当弹簧弹力大小与F1、F2大小相等时,m、M的动能最大3.如图所示,两光滑斜面的倾角分别为30°和45°、质量分别为2m和m的两个滑块用不可伸长的轻绳通过滑轮连接(不计滑轮的质量和摩擦),分别置于两个斜面上并由静止释放;若交换两滑块位置,再由静止释放,则在上述两种情形中正确的有()A.质量为2m的滑块受到重力、绳的张力、沿斜面的下滑力和斜面的支持力的作用B.质量为m的滑块均沿斜面向上运动C.绳对质量为m的滑块的拉力均大于该滑块对绳的拉力D.在运动过程中系统机械能均守恒1.高空坠物极易对行人造成伤害.若一个50 g的鸡蛋从一居民楼的25层坠下,与地面的撞击时间约为2 ms,则该鸡蛋对地面产生的冲击力约为()A.10 N B.102 N C.103 N D.104 N2.在奥运比赛项目中,高台跳水是我国运动员的强项。
质量为m的跳水运动员进入水中后受到水的阻力而做减速运动,设水对他的阻力大小恒为F,当地的重力加速度为g,那么在他减速下降高度为h的过程中,下列说法正确的是()A.他的动能减少了FhB.他的重力势能增加了mghC.他的机械能减少了(F-mg)hD.他的机械能减少了Fh3.如图所示,斜面体置于光滑水平地面上,其光滑斜面上有一物体由静止沿斜面下滑,在物体下滑过程中,下列说法正确的是()A.物体的重力势能减少,动能不变B.斜面体的机械能不变C.斜面对物体的作用力垂直于接触面,不对物体做功D.物体和斜面体组成的系统机械能守恒4.如图,abc是竖直面内的光滑固定轨道,ab水平,长度为2R,bc是半径为R的四分之一的圆弧,与ab 相切于b点。
2021届高考物理一轮复习阶段测评卷(九)动能定理
2021届高考物理一轮复习阶段测评卷(九)动能定理1.如图所示,水平转台上有一个质量为m的物块,用长为L的细绳将物块连接在转轴上,细线与竖直转轴的夹角为θ角,此时绳中张力为零,物块与转台间动摩擦因数为μ(μ<tanθ),最大静摩擦力等于滑动摩擦力,物块随转台由静止开始缓慢加速转动,则下列说法正确的是()A.转台一开始转动,细绳立即绷直对物块施加拉力B.当绳中出现拉力时,转台对物块做的功为μmgL sinθCD.当转台对物块支持力为零时,转台对物块做的功为2sin 2cos mgLθθ2.从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还受到一大小不变、方向始终与运动方向相反的外力作用。
距地面高度h在3 m以内时,物体上升、下落过程中动能E k随h的变化如图所示。
重力加速度取10 m/s2。
则()A.该物体的质量为2 kgB.空气阻力大小为1NC.物体落回地面时速度大小为m/sD .物体运动过程中克服阻力做功24J3.如图所示的水平面内,电动机通过皮带带动两轻质轮,皮带质量为m ,质量分布均匀,厚度远小于两轮半径,皮带与轮子之间不打滑。
右轮半径是左轮半径的3倍,忽略转轴的摩擦。
A 、B 是放在两轮边缘上质量均为m 的小物块。
启动电动机,使系统从静止逐渐加速动起来,若A 、B 始终未滑动,则以下说法正确的是A .A 、B 的线速度始终相等B .动起来以后,A 、B 的向心加速度大小之比始终为3:1C .当B 的速度由零增加到v 的过程中,它受到的静摩擦力始终指向圆心D .当B 的速度由零增加到v 的过程中,电动机总共对此系统做功为232mv 4.某同学用200N 的力将质量为0.44kg 的足球踢出,足球以10m /s 的初速度沿水平草坪滚出60m 后静止,则足球在水平草坪上滚动过程中克服阻力做的功是( ) A .22 JB .4.4 JC .132 JD .12000 J5.如图所示在足球赛中,红队球员在白队禁区附近主罚定位球,并将球从球门右上角贴着球门射入,球门高度为h ,足球飞入球门的速度为v ,足球质量为m ,则红队球员将足球踢出时对足球做的功W 为(不计空气阻力、足球可视为质点)( )A . 12mv 2 B .mgh C .12mv 2+mgh D .12mv 2+mgh 6.下列说法中,正确的是 ( )A .一定质量的物体,动能不变,则其速度一定也不变B .一定质量的物体,速度不变,则其动能也不变C .一定质量的物体,动能不变,说明物体运动状态没有改变D .一定质量的物体,动能不变,说明物体所受的合外力一定为零7.一质量为m 的小球,用长为l 的轻绳悬挂于O 点,小球在水平力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图所示,则力F 所做的功为( )A .mgl cos θB .Fl sin θC .mgl (1-cos θ)D .Fl8.一个质量为0.3 kg 的弹性小球,在光滑水平面上以6 m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前相同.则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为( ) A .Δv =0B .Δv =12 m/sC .W =0D .W =10.8 J9.倾角为45 的传送带在电动机带动下始终以0v 的速度匀速上行。
2021届高考物理一轮复习考点训练 动能 动能定理
2021年高考物理一轮复习考点优化训练动能动能定理一、单选题1.“歼-20”飞机在航母甲板上降落后,在勾住阻拦索减速滑行的过程中,阻拦索对“歼-20”做功和“歼-20”动能变化的情况分别是()A. 做负动,动能减少B. 做负功,动能增加C. 做正功,动能减少D. 做正功,动能增加2.在离地面高为h处竖直上抛一质量为m的物块,抛出时的速度为v0,当它落到地面时速度为v,用g 表示重力加速度,则在此过程中物块克服空气阻力所做的功等于()A. B.C. D.3.如图所示,一小物块由静止开始沿斜面向下滑动,最后停在水平地面上。
斜面和地面平滑连接,且物块与斜面、物块与地面间的动摩擦因数均为常数。
该过程中,物块的动能与水平位移x关系的图象是()A. B. C. D.4.如图所示,倾角为的传送带以速度v1=2m/s顺时针匀速转动。
将一物块以v2=8m/s的速度从传送带的底端滑上传送带。
已知小物块与传送带间的动摩擦因数,传送带足够长,取,g=10m/s2,下列说法正确的是A. 小物块向上运动过程中的加速度大小为10m/s2B. 小物块向上运动的时间为1. 6sC. 小物块向上滑行的最远距离为3mD. 小物块最终将随传送带一起向上匀速运动5.如图所示,三个相同的小球A、B、C位于同一高度h处,A做自由落体运动,B沿光滑斜面由静止滑下,C做平抛运动,在每个小球落地的瞬间,其重力的功率分别为P A、P B、P C。
下列关系式正确的是()A. P A=P C>P BB. P A=P B>P CC. P A=P B=P CD. P A>P C>P B6.如图甲所示,一可视为质点的小球,沿光滑足够长的斜面由静止开始下滑,其动能与运动位移之间的关系如图乙所示。
则对该图象斜率的物理意义,下列说法中正确的是()A. 表示小球所受合力的大小B. 表示小球的质量C. 表示小球沿斜面下滑的加速度大小D. 表示小球沿斜面下滑的速度大小7.如图所示,用同种材料制成的一个轨道,AB段为圆弧,半径为R,水平放置的BC段长度为R.一小物块质量为m,与轨道间的动摩擦因数为μ,当它从轨道顶端A由静止下滑时,恰好运动到C点静止,那么物块在AB段克服的摩擦力做的功为()A. μmgRB. mgR(1-μ)C. πμmgRD. mgR8.如图所示,一物体分别沿aO、bO轨道由静止滑下至底端,物体与轨道间的动摩擦因数相同。
专题(36)实验五 探究动能定理---2021年高考物理复习专题训练含真题及解析
D.桌面到地面的高度 h E.小物块抛出点到落地点的水平距离 L ②将几次实验中橡皮筋对小物块做功分别记为 W1、W2、W3、……,小物块抛出点到落地点的水平距离分 别记为 L1、L2、L3、…….若功与速度的平方成正比,则应以 W 为纵坐标、________为横坐标作图,才能得 到一条直线. ③由于小物块与桌面之间的摩擦不能忽略,则由此引起的误差属于______________(填“偶然误差”或“系统误 差”). 命题热点二:实验装置的创新 1.装置时代化
2021 年高考物理一轮复习考点全攻关
专题(36)实验五 探究动能定理(原卷版) 双基过关: 基本实验要求 1.实验目的 探究功与物体速度变化的关系. 2.实验原理如图所示
(1)一根橡皮筋作用在小车上移动距离 s——做功为 W. (2)两根橡皮筋作用在小车上移动距离 s——做功应为 2W. (3)三根橡皮筋作用在小车上移动距离 s——做功应为 3W. (4)利用打点计时器求出小车离开橡皮筋时的速度,列表、作图,由图象可以确定功与速度变化的关系. 3.实验器材 橡皮筋、小车、木板、打点计时器、纸带、铁钉、刻度尺等. 4.实验步骤 (1)垫高木板的一端,平衡摩擦力. (2)拉伸的橡皮筋对小车做功: ①用一条橡皮筋拉小车——做功 W. ②用两条橡皮筋拉小车——做功 2W. ③用三条橡皮筋拉小车——做功 3W. (3)测出每次做功后小车获得的速度. (4)分别用各次实验测得的 v 和 W 绘制 W-v 或 W-v2、W-v3、……图象,直到明确得出 W 和 v 的关系. 5.实验结论
1 物体速度 v 与外力做功 W 间的关系 W= mv2.
2 基本实验方法 1.实验注意事项 (1)将木板一端垫高,使小车的重力沿斜面向下的分力与摩擦阻力平衡.方法是轻推小车,由打点计时器打 在纸带上的点的均匀程度判断小车是否做匀速运动,找到长木板的一个合适的倾角. (2)测小车速度时,应选纸带上的点迹均匀的部分,也就是选小车做匀速运动的部分.
2021高考物理一轮复习同步练习卷:动能定理及其应用
动能定理及其应用1.如图为用高速摄影机拍摄到的子弹击穿苹果的照片。
测得子弹击穿苹果前、后的速度分别为100 m/s和60 m/s,已知子弹的质量为40 g,则子弹击穿苹果前后动能减小了()A.32 JB.128 JC.3.2×104 JD.1.28×105 J2.在粗糙水平面上运动的物体,从A点开始受水平恒力F作用直线运动到B点。
已知物体在A,B两点的速度大小相等,则在此过程中()A.物体一定做匀速直线运动B.F的方向始终与摩擦力方向相反C.F可能对物体先做负功,后做正功D.F对物体所做的总功为零3.如图甲所示,静止于光滑水平面上坐标原点处的小物块,在水平拉力F作用下,沿x轴方向运动,拉力F随物块所在位置坐标x的变化关系如图乙所示,图线为半圆。
则小物块运动到x0处时F所做的总功为()A.0B.F m x0C.F m x0D.4.从地面竖直向上抛出一只小球,小球运动一段时间后落回地面。
忽略空气阻力,该过程中小球的动能E k与时间t的关系图象是()5.一小物块沿斜面向上滑动,然后滑回到原处。
物块初动能为E k0,与斜面间的动摩擦因数不变,则该过程中,物块的动能E k与位移x关系的图线是()6.有两条滑雪道平行建造,左侧相同而右侧有差异,一个滑道的右侧水平,另一个的右侧是斜坡。
某滑雪者保持一定姿势坐在雪橇上从h1高处的A点由静止开始沿倾角为θ的雪道下滑,最后停在与A点水平距离为s的水平雪道上。
接着改用另一个滑雪道,还从与A点等高的位置由静止开始下滑,结果能冲上另一个倾角为α的雪道上h2高处的E点停下。
若动摩擦因数处处相同,且不考虑雪橇在路径转折处的能量损失,则()A.动摩擦因数为tan θB.动摩擦因数为C.倾角α一定大于θD.倾角α可以大于θ7.如图所示人用手托着质量为m的苹果,从静止开始沿水平方向运动,前进距离l后,速度为v(苹果与手始终相对静止),苹果与手掌之间的动摩擦因数为μ,则下列说法正确的是()A.手对苹果的作用力方向竖直向上B.苹果所受摩擦力大小为μmgC.手对苹果做的功为mv2D.苹果对手不做功8.如图所示,质量为m的滑块从h高处的a点沿圆弧轨道ab滑入水平轨道bc,滑块与轨道的动摩擦因数相同,滑块在a,c两点时的速度大小均为v,ab弧长与bc长度相等,空气阻力不计,则滑块从a到c的运动过程中()A.滑块的动能始终保持不变B.滑块在bc过程克服摩擦力做的功一定等于mghC.滑块经b点时的速度小于D.滑块经b点时的速度等于9.一个质量为m的小球,用长为l的轻绳悬挂于O点,小球在水平力F的作用下,从平衡位置P缓慢地移动到Q点,如图所示,则力F所做的功为()A.mglcos θB.Flsin θC.mgl(1-cos θ)D.Fl(1-cos θ)10.在平直的公路上,汽车由静止开始做匀加速运动,当速度达到v max后,立即关闭发动机直至静止,其v t图象如图所示。
2021年高考物理一轮复习 5-2动能定理及其应用同步检测试题
年高考物理一轮复习 5-2动能定理及其应用同步检测试题1.关于物体的动能,下列说法中正确的是( )A.物体速度变化,其动能一定变化B.物体所受的合外力不为零,其动能一定变化C.物体的动能变化,其运动状态一定发生改变D.物体的速度变化越大,其动能一定也变化越大解析:A选项中若速度的方向变化而大小不变,则其动能不变化,故A错;B选项中物体受合外力不为零,只要速度大小不变,其动能就不变化,如匀速圆周运动中,物体合外力不为零,但速度大小始终不变,动能不变,故B错;C选项中,物体动能变化,其速度一定发生变化,故运动状态改变,C选项正确;D选项中,物体速度变化若仅由方向变化引起时,其动能不变,如匀速圆周运动中,速度变化,但动能始终不变,故D错.答案:C2.一个小物块冲上一固定的粗糙斜面,经过斜面上A、B两点,到达斜面上最高点后返回时,又通过了B、A两点,如图17-1所示,关于物块上滑时由A到B的过程和下滑时由B到A 的过程,动能的变化量的绝对值ΔE上和ΔE下以及所用时间t上和t下相比较,有( )图17-1A.ΔE上<ΔE下,t上<t下B.ΔE上>ΔE下,t上>t下C.ΔE上<ΔE下,t上>t下D.ΔE上>ΔE下,t上<t下解析:ΔE 上=W 阻+mgh ,ΔE 下=mgh -W 阻, 即ΔE 上>ΔE 下.整个斜面是粗糙的,所以在AB 段v 上>v 下,t 上<t 下. 答案:D3.[xx·安徽卷]如图17-2所示,在竖直平面内有一半径为R 的圆弧轨道,半径OA 水平、OB 竖直,一个质量为m 的小球自A 的正上方P 点由静止开始自由下落,小球沿轨道到达最高点B 时恰好对轨道没有压力.已知AP =2R ,重力加速度为g ,则小球从P 到B 的运动过程中( )图17-2A .重力做功2mgRB .机械能减少mgRC .合外力做功mgRD .克服摩擦力做功12mgR解析:一个小球在A 点正上方由静止释放,刚好通过B 点时恰好对轨道没有压力,只有重力提供向心力,即:mg =mv 2/R ,得v 2=gR ,对全过程运用动能定理可得选项D 正确.答案:D4.(多选题)如图17-3所示,长为L 的长木板水平放置,在木板的A 端放置一个质量为m 的小物块.现缓慢地抬高A 端,使木板以左端为轴转动,当木板转到与水平面的夹角为α时小物块开始滑动,此时停止转动木板,小物块滑到底端的速度为v ,则在整个过程中( )图17-3A .支持力对物块做功为0B .支持力对小物块做功为mgL sin αC .摩擦力对小物块做功为mgL sin αD .滑动摩擦力对小物块做功为12mv 2-mgL sin α解析:缓慢抬高过程中,摩擦力始终跟运动方向垂直,不做功,支持力与重力做功的代数和为零,所以支持力的功等于mgL sin α;下滑过程中支持力跟运动方向始终垂直,不做功,由动能定理可得:mgL sin α+W f =mv 22,解得W f =12mv 2-mgL sin α;综上所述,B 、D 正确. 答案:BD5.刹车距离是衡量汽车安全性能的重要参数之一.如图17-4所示的图线1、2分别为甲、乙两辆汽车在紧急刹车过程中的刹车距离l 与刹车前的车速v 的关系曲线,已知紧急刹车过程中车与地面间是滑动摩擦.据此可知,下列说法中正确的是( )图17-4A .甲车的刹车距离随刹车前的车速v 变化快,甲车的刹车性能好B .乙车与地面间的动摩擦因数较大,乙车的刹车性能好C .以相同的车速开始刹车,甲车先停下来,甲车的刹车性能好D .甲车的刹车距离随刹车前的车速v 变化快,甲车与地面间的动摩擦因数较大解析:在刹车过程中,由动能定理可知:μmgl =12mv 2,得l =v 22μg =v22a 可知,甲车与地面间动摩擦因数小(题图线1),乙车与地面间动摩擦因数大(题图线2),刹车时的加速度a =μg ,乙车刹车性能好;以相同的车速开始刹车,乙车先停下来.B 项正确.答案:B6.(多选题)在新疆旅游时,最刺激的莫过于滑沙运动.某人坐在滑沙板上从沙坡斜面的顶端由静止沿直线下滑到斜面底端时,速度为2v 0,设人下滑时所受阻力恒定不变,沙坡长度为L ,斜面倾角为α,人的质量为m ,滑沙板质量不计,重力加速度为g .则( )A .若人在斜面顶端被其他人推了一把,沿斜面以v 0的初速度下滑,则人到达斜面底端时的速度大小为3 v 0B .若人在斜面顶端被其他人推了一把,沿斜面以v 0的初速度下滑,则人到达斜面底端时的速度大小为5v 0C .人沿沙坡下滑时所受阻力F f =mg sin α-2mv 20/L D .人在下滑过程中重力功率的最大值为2mgv 0图17-5解析:对人进行受力分析如图17-5所示,根据匀变速直线运动的规律有:(2v 0)2-0=2aL ,v 21-v 20=2aL ,可解得v 1=5v 0,所以A 错误,B 正确;根据动能定理有:mgL sin α-F f L =12m (2v 0)2,可解得F f =mg sin α-2mv 20/L ,C 正确;重力功率的最大值为P m =2mgv 0sin α,D 错误.答案:BC图17-67.如图17-6所示,ABCD 是一个盆式容器,盆内侧壁与盆底BC 的连接处都是一段与BC 相切的圆弧,BC 为水平,其距离d =0.50 m ,盆边缘的高度为h =0.30 m .在A 处放一个质量为m 的小物块并让其从静止出发下滑.已知盆内侧壁是光滑的,而盆底BC 面与小物块间的动摩擦因数为μ=0.10.小物块在盆内来回滑动,最后停下来,则停的地点到B 的距离为( )A .0.50 mB .0.25 mC .0.10 mD .0解析:分析小物块的运动过程,可知由于克服摩擦力做功,物块的机械能不断减少.根据动能定理可得mgh -μmgx =0,物块在BC 之间滑行的总路程x =mgh μmg =h μ=0.300.10m =3 m .小物块正好停在B 点,所以选项D 正确.答案:DB 组 能力提升8.[xx·四川省绵阳市南山中学月考]儿童乐园中一个质量为m 的小火车,以恒定的功率P 由静止出发,沿一水平直轨道行驶达到最大速度v m 后做匀速运动,在到达终点前某时刻关闭发动机,小火车又做匀减速直线运动,到达终点时恰好停止.小火车在运动过程中通过的总路程为s ,则小火车运动的总时间为( )A.2s v m +mv 2mPB.s v m +mv 2m PC.2s v mD.msv mP 解析:由动能定理可得:Pt -fs =0,f =Pv m,得t =s v m,这里的t 是在发动机关上前的时间,后来减速的时间是t 2=v m a ,a =f m =P mv m ,t 2=mv 2m P , T =t +t 2=s v m +mv 2mP,故本题选择B.答案:B9.如图17-7甲所示,静置于光滑水平面上坐标原点处的小物块,在水平拉力F 作用下,沿x 轴方向运动,拉力F 随物块所在位置坐标x 的变化关系如图乙所示,图线为半圆.则小物块运动到x 0处时的动能为( )图17-7A .0 B.12F max x 0 C.π4F max x 0 D.π4x 20 解析:根据动能定理,小物块运动到x 0处时的动能为这段时间内力F 所做的功,物块在变力作用下,不能直接用功的公式来计算,但此题可用根据图象求“面积”的方法来解决.力F 所做的功的大小等于半圆的“面积”大小.E k =W =12S 圆=12π⎝ ⎛⎭⎪⎫x 022,又F max =x 02.整理得E k =π4F max x 0=π8·x 20,C选项正确.答案:C10.(多选题)[xx·四川省成都外国语学校月考]如图17-8所示,某生产线上相互垂直的甲、乙传送带等高,宽度均为d ,而且均以大小为v 的速度运行,图中虚线为传送带中线.一工件(视为质点)从甲左端释放,经长时间由甲右端滑上乙,滑至乙中线处时恰好相对乙静止.下列说法中正确的是( )图17-8A .工件在乙传送带上的痕迹为直线,痕迹长为22d B .工件从滑上乙到恰好与乙相对静止所用的时间为d2vC .工件与乙传送带间的动摩擦因数μ=v 2gdD .乙传送带对工件的摩擦力做功为零解析:物体滑上乙时,相对于乙上的那一点的速度分为水平向右的速度v 和向后的速度v ,合速度为2v ,沿着与乙成45°的方向,那么相对于乙的运动轨迹肯定是直线,故A 正确.假设它受滑动摩擦力f =μmg ,方向与合相对速度在同一直线上,则角θ=45°,则相对于乙的加速度也沿这个方向,经过t 后,它滑到乙中线并相对于乙静止,根据牛顿第二定律,有μmg =ma ,解得a =μg ;运动距离L =2×d2=22d ,又L =12at 2,L 和a 代入所以t =d v ,μ=2v2gd ,故B 错误、C 错误.滑上乙之前,工件绝对速度为v ,动能为12mv 2,滑上乙并相对停止后,绝对速度也是v ,动能也是12mv2而在乙上面的滑动过程只有摩擦力做了功,动能没变化,所以乙对工件的摩擦力做功为零,故D 正确.答案:AD11.[xx·黑龙江省庆安县三中月考]飞机若仅依靠自身喷气式发动机推力起飞需要较长的跑道,某同学设计在航空母舰上安装电磁弹射器以缩短飞机起飞距离,他的设计思想如下:如图17-9所示,航空母舰的水平跑道总长l =180 m ,其中电磁弹射器是一种长度为l 1=120 m 的直线电机,这种直线电机从头至尾可以提供一个恒定的牵引力F 牵.一架质量为m =2.0×104kg 的飞机,其喷气式发动机可以提供恒定的推力F 推=1.2×105N .考虑到飞机在起飞过程中受到的阻力与速度大小有关,假设在电磁弹射阶段的平均阻力为飞机重力的0.05倍,在后一阶段的平均阻力为飞机重力的0.2倍.飞机离舰起飞的速度v =100 m/s ,航母处于静止状态,飞机可视为质量恒定的质点.请你求出(计算结果均保留两位有效数字):图17-9(1)飞机在后一阶段的加速度大小; (2)电磁弹射器的牵引力F 牵的大小.解析:(1)令后一阶段飞机加速度为a 2,平均阻力为f 2=0.2mg , 则F 推-f 2=ma 2, 得a 2=4.0 m/s 2.(2)由动能定理:F 牵l 1+F 推l -f 1l 1-f 2(l -l 1)=12mv 2得F 牵=6.8×105 N.答案:(1)4.0 m/s 2(2)6.8×105N12.[xx·浙江省慈溪中学月考]如图17-10所示,一小球从A 点以某一水平向右的初速度出发,沿水平直线轨道运动到B 点后,进入半径R =10 cm 的光滑竖直圆形轨道,圆形轨道间不相互重叠,即小球离开圆形轨道后可继续向C 点运动,C 点右侧有一壕沟,C 、D 两点的竖直高度h =0.8 m ,水平距离s =1.2 m ,水平轨道AB 长为L 1=1 m ,BC 长为L 2=3 m ,小球与水平轨道间的动摩擦因数μ=0.2,重力加速度g =10 m/s 2,求:(1)若小球恰能通过圆形轨道的最高点,求小球在A 点的初速度?(2)若小球既能通过圆形轨道的最高点,又不掉进壕沟,求小球在A 点的初速度的范围是多少?图17-10解析:(1)对圆周最高点应用牛顿第二定律得mg =m v 21R从A 点到最高点应用动能定理得 -mg (2R )-μmgL 1=12mv 21-12mv 20,则A 点的速度v 0=3 m/s.(2)若小球恰好停在C 处,对全程进行研究,则有 -μmg (L 1+L 2)=0-12mv ′2,解得v ′=4 m/s.所以当3 m/s≤v A ≤4 m/s 时,小球停在BC 间. 若小球恰能越过壕沟时,则有:h =12gt 2,s =v C t ,从A 到C 有-μmg (L 1+L 2)=12mv 2C -12mv ″2解得:v ″=5 m/s ,所以当v A ≥5 m/s,小球越过壕沟. 综上,则A 的速度范围是 3 m/s≤v A ≤4 m/s 和v A ≥5 m/s. 答案:(1)v A =3 m/s(2)范围是:3 m/s≤v A ≤4 m/s 和v A ≥5m/s13.[xx·上海市宝山区月考]如图17-11所示,在竖直面内有一光滑水平直轨道与半径为R =0.25 m 的光滑半圆形轨道在半圆的一个端点B 相切,半圆轨道的另一端点为C .在直轨道上距B 点为x (m)的A 点,有一可看做质点、质量为m =0.1 kg 的小物块处于静止状态.现用水平恒力将小物块推到B 处后撤去恒力,小物块沿半圆轨道运动到C 点后,恰好落回到水平面上的A 点,取g =10 m/s 2.求:图17-11(1)水平恒力对小物块做的功W 与x 的关系式. (2)水平恒力做功的最小值. (3)水平恒力的最小值.解析:(1)小物块从C 到A 的运动是平抛运动. 设小物块在C 处的速度为v C ,则由C 到A ,x =v C t2R =12gt 2由以上两式得v 2C =gx 24R,小球从A 到C 有W -2mgR =12mv 2C解得W =mg (2R +x 28R)=(0.5x 2+0.5) J.(2)当W 最小时,物块刚好能够通过C 点,此时mv 2CR=mg由C 到A 仍做平抛运动,所以v 2C =gx 24R仍成立,由以上两式:x =2R代入公式可求得恒力做功的最小值为W min =(0.5+0.5×4×0.252)J =0.625 J(3)由功的公式得F =W F x将W =(0.5x 2+0.5) J ,代入上式得F =⎝⎛⎭⎪⎫0.5x +0.5x N由数学知识可知,当0.5x=0.5x ,即x =1时F 最小F min =1 N.答案:(1)W =()0.5x 2+0.5J (2)0.625 J (3)1 NC组难点突破14.[xx·江苏常州模拟]某滑沙场有两个坡度不同的滑道AB和AB′(均可看作斜面),甲、乙两名旅游者分别乘两个完全相同的滑沙撬从A点由静止开始分别沿AB和AB′滑下,最后都停在水平沙面BC上,如图17-12所示.设滑沙撬和沙面间的动摩擦因数处处相同,斜面与水平面连接处均可认为是圆滑的,滑沙者保持一定姿势坐在滑沙撬上不动.则下列说法中正确的是( )图17-12A.甲滑行的总路程一定大于乙滑行的总路程B.甲在B点的动能一定等于乙在B′点的动能C.甲在B点的速率一定等于乙在B′点的速率D.甲全部滑行的水平位移一定大于乙全部滑行的水平位移解析:由动能定理列方程计算可得两人最后都停在水平沙面B′C上同一点,甲滑行的总路程一定大于乙滑行的总路程,甲全部滑行的水平位移一定等于乙全部滑行的水平位移,选项A正确,D 错误;甲在B点的动能一定大于乙在B′点的动能,甲在B点的速率一定大于乙在B′点的速率,选项B、C错误.答案:A。
2021届高三物理一轮复习力学功和能动能定理的综合应用专题练习
12.物体A、B的质量之比为mA:mB=4:1,使它们以相同的初速度沿水平地面滑行,若它们受到的阻力相等,那么它们停下来所用的时间之比为tA:tB=______,若两物体与地面的动摩擦因数相同,那么它们停下来所用的时间之比为tA:tB =______
(1)求小球运动到B点时的速度大小;
(2)请通过计算说明小球能否离开轨道?
18.如图,可视为质点的小球A、B用不可伸长的细软轻线连接,跨过固定在地面上、半径为R的光滑圆柱,A的质量为B的两倍。当B位于地面时,A恰与圆柱轴心等高。将A和B由静止释放,求:
(1)A落地前瞬间的速度是多少?
(2)B上升的最大高度是多少?
17.某玩具厂设计出如图所示的玩具,轨道固定在高H1的水平台面上,通过在A处压缩弹簧把质量m=0.01kg的小球(可看作质点)从静止弹出,先后经过直线轨道AC、半径R1=0.1m的圆形轨道、长为L1=0.5m的直线轨道CD、以及两段半径R2=1m的圆弧DE、GP,G、E两点等高且两圆弧对应的圆心角都为 ,所有轨道都平滑连接;小球从P点水平抛出后打到固定在Q点的锣上。CD段的动摩擦因数为0.2,其余轨道光滑,在一次测试中测出小球运动到B点时对内轨的作用力为0.064N。(sin =0.6,cos =0.8,g=10m/s2)
13.质量为m的列车,以恒定的功率沿水平直轨道行使,在时间t内行驶的距离s,其速率为 增大到最大值 .为求出机车的功率P和列车受到的恒定阻力f的大小,所需要的物理方程式为:________________和________________。
2021年高考物理一轮复习学与练5.2 动能和动能定理(精练)(解析版)
专题5.2 动能和动能定理【基础测试】1.(2020·山西省长治市六中模拟)质量不等,但有相同动能的两个物体,在动摩擦因数相同的水平地面上滑行,直至停止,则( )A .质量大的物体滑行的距离大B .质量小的物体滑行的距离大C .它们滑行的距离一样大D .它们克服摩擦力所做的功一样多【答案】BD 【解析】由动能定理得-μmgx =-E k ,所以x =E kμmg,知质量小的物体滑行距离大,选项A 、C 错误,B 正确;克服摩擦力做功W f =E k 相同,选项D 正确。
2.(2020·河北省承德一中模拟)如图所示,用细绳通过定滑轮拉物体,使物体在水平面上由静止开始从A 点运动到B 点,已知H =3 m ,m =25 kg ,F =50 N 恒定不变,到B 点时的速度v =2 m/s ,滑轮到物体间的细绳与水平方向的夹角在A 、B 两处分别为30°和45°。
此过程中物体克服阻力所做的功为( )A .50(5-32) JB .50(7-32) JC .50(33-4) JD .50(33-2) J【答案】A 【解析】设物体克服阻力做的功为W f ,由动能定理得F ⎝⎛⎭⎫H sin 30°-H sin 45°-W f =12mv 2,代入数据求得W f =50(5-32) J ,选项A 正确。
3.(2020·吉林省吉林市毓文中学模拟)一个质量为0.5 kg 的物体,从静止开始做直线运动,物体所受合外力F 随物体位移x 变化的图象如图所示,则物体位移x =8 m 时,物体的速度为( )A .2 m/sB .8 m/sC .4 2 m/sD .4 m/s【答案】C 【解析】F -x 图象中图线与横轴所围面积表示功,横轴上方为正功,下方为负功,x =8 m时,可求得W =8 J ;由动能定理有12mv 2=8 J ,解得v =4 2 m/s ,选项C 正确。
2021年新高考物理一轮复习专题训练(20)动能定理
2021年新高考物理一轮复习专题训练专题(20)动能定理一、选择题(本题共8小题,每小题6分,满分48分。
在每小题给出的四个选项中,只有一个选项符合题目要求,选对的得6分,有选错或不答的得0分。
)1.下列关于运动物体所受合外力做功和动能变化的关系正确的是()A.如果物体所受合外力为零,则合外力对物体做的功一定为零B.如果合外力对物体所做的功为零,则合外力一定为零C.物体在合外力作用下做变速运动,动能一定发生变化D.物体的动能不变,所受合外力一定为零【答案】A【解析】如果物体所受合外力为零,则根据W=Fl cos α可知合外力对物体做的功一定为零,A正确;如果合外力对物体所做的功为零,但合外力不一定为零,例如做匀速圆周运动的物体的向心力,B错误;物体在合外力作用下做变速运动,动能不一定发生变化,例如做匀速圆周运动的物体,C错误;物体的动能不变,所受合外力不一定为零,例如做匀速圆周运动的物体,D错误.2.质量不等,但有相同动能的两个物体,在动摩擦因数相同的水平地面上滑行,直至停止,则()A.质量大的物体滑行的距离大B.质量小的物体滑行的距离大C.它们滑行的距离一样大D.它们克服摩擦力所做的功不相等【答案】B【解析】由动能定理可得-F f x=0-E k,即μmgx=E k,由于动能相同,动摩擦因数相同,故质量小的物体滑行的距离大,它们克服摩擦力所做的功都等于E k.故本题只有B项正确.3.如图1所示,质量相同的物体分别自斜面AC和BC的顶端由静止开始下滑,物体与斜面间的动摩擦因数相同,物体滑至斜面底部C 点时的动能分别为E k1和E k2,下滑过程中克服摩擦力所做的功分别为W 1和W 2,则( )图1 A .E k1>E k2,W 1<W 2B .E k1>E k2,W 1=W 2C .E k1=E k2,W 1>W 2D .E k1<E k2,W 1>W 2【答案】B 【解析】设斜面的倾角为θ,斜面的底边长为x ,则下滑过程中克服摩擦力做的功为W =μmg cos θ·x cos θ=μmgx ,所以两种情况下克服摩擦力做的功相等.又由于B 的高度比A 低,所以由动能定理可知E k1>E k2.故选B.4.物体沿直线运动的v -t 关系图象如图2所示,已知在第1秒内合外力对物体做的功为W ,则( )图2A .从第1秒末到第3秒末合外力做功为4WB .从第3秒末到第5秒末合外力做功为-2WC .从第5秒末到第7秒末合外力做功为-WD .从第3秒末到第4秒末合外力做功为-0.75W【答案】D【解析】由动能定理W 合=12mv 22-12mv 12知第1 s 内W =12mv 2.同理可知,D 正确. 5.(2019丽水市质检)如图3为倾角可调的可移动式皮带输送机,适用于散状物料或成件物品的装卸工作.在顺时针(从左侧看)匀速转动的输送带上端无初速度放一货物,货物从上端运动到下端的过程中,其动能E k (选择地面所在的水平面为参考平面)与位移x 的关系图象可能正确的是( )图3【答案】B 【解析】货物从上端运动到下端的过程可能一直匀加速、也可能先加速后匀速或者先做加速度较大的匀加速运动后做加速度较小的匀加速运动,故只有B 正确.6.如图4所示,一个弹簧左端固定于墙上,右端连接物块,物块质量为m ,它与水平桌面间的动摩擦因数为μ.起初用手按住物块,弹簧的伸长量为x ,然后放手,当弹簧的长度回到原长时,物块的速度为v 0,已知重力加速度为g ,则此过程中弹力所做的功为( )图4A.12mv 02+μmgx B.12mv 02-μmgx C.12mv 02 D .μmgx -12mv 02 【答案】A 【解析】当弹簧恢复到原长时,物块对地的位移为x ,根据动能定理有:W 弹+(-μmgx )=12mv 02-0,得W 弹=12mv 02+μmgx ,选项A 正确. 7.一辆汽车以v 1=6 m/s 的速度沿水平路面行驶时,急刹车后能滑行x 1=3.6 m ,如果以v 2=8 m/s 的速度行驶,在同样的路面上急刹车后滑行的距离x 2应为(不计空气阻力的影响)( )A .6.4 mB .5.6 mC .7.2 mD .10.8 m【答案】A 【解析】急刹车后,汽车只受摩擦阻力F f 的作用,且两种情况下摩擦力大小是相同的,汽车的末速度皆为零.由动能定理有-F f x 1=0-12mv 12① -F f x 2=0-12mv 22① 由①①得x 2x 1=v 22v 12 故汽车滑行的距离x 2=v 22v 12x 1=⎝⎛⎭⎫862×3.6 m =6.4 m .故A 正确. 8.如图5所示的滑草运动中,某游客从静止开始由坡顶向坡底下滑,滑到坡底时速度大小为8 m/s ,如果该游客以初速度 6 m/s 沿原来的路线由坡顶滑下,则游客滑到坡底时的速度大小是(设游客所受阻力不变)( )图5A .14 m/sB .10 m/sC .12 m/sD .9 m/s【答案】B【解析】游客由静止从坡顶下滑到坡底的过程中,由动能定理得mgh -F f ·s =12mv 12,游客以6 m/s 的初速度从坡顶下滑到坡底的过程中,由动能定理得mgh -F f ·s =12mv 22-12mv 02,由以上两式解得v 2=10 m/s ,选项B 正确.二、非选择题(本题共4小题,满分52分)9.(12分)如图6所示,轻质弹簧一端固定在墙壁上的O 点,另一端自由伸长到A 点,OA 之间的水平面光滑,固定曲面在B 处与水平面平滑连接.AB 之间的距离s =1 m .质量m =0.2 kg 的小物块开始时静置于水平面上的B 点,物块与水平面间的动摩擦因数μ=0.4.现给物块一个水平向左的初速度v 0=5 m/s ,g 取10 m/s 2.图6(1)求弹簧被压缩到最短时所具有的弹性势能E p ;(2)求物块返回B 点时的速度大小;(3)若物块能冲上曲面的最大高度h =0.2 m ,求木块沿曲面上滑过程因摩擦所产生的热量.【答案】(1)1.7 J (2)3 m/s (3)0.5 J【解析】(1)对小物块从B 点至压缩弹簧最短的过程,由动能定理得:-μmgs -W =0-12mv 02 W =E p代入数据解得E p =1.7 J(2)对小物块从B 点开始运动至返回B 点的过程-μmg ·2s =12mv B 2-12mv 02 代入数据解得v B =3 m/s(3)对小物块沿曲面上滑的过程,由动能定理得:W f -mgh =0-12mv B 2 代入数据解得Q =|W f |=0.5 J.10.(14分)如图7所示,在地面上竖直固定了刻度尺和轻质弹簧,弹簧原长时上端与刻度尺上的A点等高.质量m=0.5 kg的篮球静止在弹簧正上方,其底端距A点的高度h1=1.10 m,篮球静止释放,测得第一次撞击弹簧时,弹簧的最大形变量x1=0.15 m,第一次反弹至最高点,篮球底端距A点的高度h2=0.873 m,篮球多次反弹后静止在弹簧的上端,此时弹簧的形变量x2=0.01 m,弹性势能为E p=0.025 J.若篮球运动时受到的空气阻力大小恒定,忽略篮球与弹簧碰撞时的能量损失和篮球形变,弹簧形变在弹性限度范围内,g取10 m/s2.求:图7(1)弹簧的劲度系数;(2)篮球在运动过程中受到的空气阻力;(3)篮球在整个运动过程中通过的路程;(4)篮球在整个运动过程中速度最大的位置.【答案】(1)500 N/m(2)0.5 N (3)11.05 m(4)第一次下落至A点下方0.009 m处速度最大【解析】(1)由最后静止的位置可知kx2=mg,所以k=500 N/m(2)由动能定理可知,在篮球由静止下落到第一次返弹至最高点的过程中mgΔh-F f·L=12mv22-12mv12整个过程动能变化为0,重力做功mgΔh=mg(h1-h2)=1.135 J 空气阻力恒定,作用距离为L=h1+h2+2x1=2.273 m因此代入可知F f≈0.5 N(3)整个运动过程中,空气阻力一直与运动方向相反根据动能定理有mgΔh′+W f+W弹=12mv2′2-12mv12整个过程动能变化为0,重力做功W=mgΔh′=mg(h1+x2)=5.55 J弹力做功W 弹=-E p =-0.025 J则空气阻力做功W f =-F f s =-5.525 J联立解得s =11.05 m.(4)速度最大的位置是第一次下落到合力为零的位置,即mg =F f +kx 3,得x 3=0.009 m ,即球第一次下落至A 点下方0.009 m 处速度最大.11.(14分)如图8甲所示是游乐园的过山车,其局部可简化为如图乙的示意图,倾角θ=37°的两平行倾斜轨道BC 、DE 的下端与水平半圆形轨道CD 顺滑连接,倾斜轨道BC 的B 端高度h =24 m ,倾斜轨道DE 与圆弧EF 相切于E 点,圆弧EF 的圆心O 1、水平半圆轨道CD 的圆心O 2与A 点在同一水平面上,DO 1的距离L =20 m .质量m =1 000 kg 的过山车(包括乘客)从B 点自静止滑下,经过水平半圆轨道后,滑上另一倾斜轨道,到达圆弧顶端F 时乘客对座椅的压力为自身重力的0.25倍.已知过山车在BCDE 段运动时所受的摩擦力与轨道对过山车的支持力成正比,比例系数μ=132,EF 段摩擦力不计,整个运动过程空气阻力不计.(g =10 m/s 2,sin 37°=0.6,cos 37°=0.8)图8(1)求过山车过F 点时的速度大小;(2)求从B 到F 整个运动过程中摩擦力对过山车做的功;(3)如果过D 点时发现圆轨道EF 段有故障,为保证乘客的安全,立即触发制动装置,使过山车不能到达EF 段并保证不再下滑,则过山车受到的摩擦力至少应多大?【答案】(1)310 m/s (2)-7.5×104 J (3)6×103 N【解析】(1)在F 点由牛顿第二定律得:m 人g -0.25m 人g =m 人v F 2r,r=L sin θ=12 m代入已知数据可得:v F=310 m/s.(2)根据动能定理,从B点到F点:mg(h-r)+W f=12mv F2-0解得W f=-7.5×104 J.(3)在没有故障时,物体到达D点的速度为v D,根据动能定理-mgr-μmg cos 37°·L DE=12mv F2-12mv D2L DE=L cos 37°=16 m,发现故障之后,过山车不能到达EF段,设刹车后恰好到达E点速度为零,在此过程中,过山车受到的摩擦力为F f1,根据动能定理-mgL DE sin 37°-F f1L DE=0-12mv D2,联立各式解得F f1=4.6×103 N使过山车能停在倾斜轨道上的摩擦力至少为F f2,则有F f2-mg sin θ=0,解得F f2=6×103 N综上可知,过山车受到的摩擦力至少应为6×103 N.12.(12分)如图9所示为一遥控电动赛车(可视为质点)和它的运动轨道示意图.假设在某次演示中,赛车从A位置由静止开始运动,经2 s后关闭电动机,赛车继续前进至B点后水平飞出,赛车能从C点无碰撞地进入竖直平面内的圆形光滑轨道,D点和E点分别为圆形轨道的最高点和最低点.已知赛车在水平轨道AB段运动时受到的恒定阻力为0.4 N,赛车质量为0.4 kg,通电时赛车电动机的输出功率恒为2 W,B、C两点间高度差为0.45 m,C与圆心O的连线和竖直方向的夹角α=37°,空气阻力忽略不计,g=10 m/s2,sin 37°=0.6,cos 37°=0.8,求:图(1)赛车通过C 点时的速度大小;(2)赛道AB 的长度;(3)要使赛车能通过圆轨道最高点D 后回到水平赛道EG ,其半径需要满足什么条件.【答案】(1)5 m/s (2)2 m (3)0<R ≤2546m 【解析】(1)赛车在BC 间做平抛运动,则竖直方向v y =2gh =3 m/s.由图可知:v C =v y sin 37°=5 m/s(2)赛车在B 点的速度v 0=v C cos 37°=4 m/s则根据动能定理:Pt -F f l AB =12mv 02,得l AB =2 m. (3)当赛车恰好通过最高点D 时,有:mg =m v D 2R从C 到D ,由动能定理:-mgR (1+cos 37°)=12mv D 2-12mv C 2,解得R =2546m , 所以轨道半径需满足0<R ≤2546m(可以不写0).。
2021届高考物理一轮复习第5章机械能第2讲动能定理及其应用课时作业(含解析)
2021届高考物理一轮复习第5章机械能第2讲动能定理及其应用课时作业(含解析)[基础训练]1.关于运动物体所受的合外力、合外力做的功及动能变化的关系,下列说法正确的是( )A .合外力为零,则合外力做功一定为零B .合外力做功为零,则合外力一定为零C .合外力做功越多,则动能一定越大D .动能不变,则物体合外力一定为零答案:A 解析:由W =Fl cos α可知,物体所受合外力为零,合外力做功一定为零,但合外力做功为零,可能是α=90°,故A 正确,B 错误;由动能定理W =ΔE k 可知,合外力做功越多,动能变化量越大,但动能不一定越大,动能不变,合外力做功为零,但合外力不一定为零,C 、D 均错误.2.如图所示,ABCD 是一个盆式容器,盆内侧壁与盆底BC 的连接处差不多上一段与BC 相切的圆弧,B 、C 在水平线上,其距离d =0.5 m .盆边缘的高度为h =0.3 m .在A 处放一个质量为m 的小物块并让其由静止下滑.已知盆内侧壁是光滑的,而盆底BC 面与小物块间的动摩擦因数为μ=0.1.小物块在盆内来回滑动,最后停下来,则停下的位置到B 的距离为( )A .0.5 mB .0.25 mC .0.1 mD .0答案:D 解析:由mgh =μmgx ,得x =3 m ,而x d =3 m0.5 m=6,即3个来回后,小物块恰停在B 点,选项D 正确.3.(2020·辽宁沈阳质检)一木块静止在光滑的水平面上,将一个大小恒为F 的水平拉力作用在该木块上,通过位移x 时,拉力的瞬时功率为P ;若将一个大小恒为2F 的水平拉力作用在该木块上,使该木块由静止开始运动,通过位移x 时,拉力的瞬时功率是( )A.2P B .2P C .22P D .4P答案:C 解析:对第一个过程,依照动能定理,有Fx =12mv 21,通过位移x 时的瞬时功率P =Fv 1=F ·2Fxm ;同理,对第二个过程有2Fx =12mv 22,通过位移x 时的瞬时功率P ′=2Fv 2=4F ·Fxm;因此P ′=22P ,C 项正确. 4.(2020·山东济南模拟)光滑斜面上有一个小球自高为h 的A 处由静止开始滚下,到达光滑的水平面上的B 点时速率为v 0.光滑水平面上每隔相等的距离设置了一个与小球运动方向垂直的阻挡条,如图所示,小球越过n 条阻挡条后停下来.若让小球从2h 高处以初速度v 0滚下,则小球能越过阻挡条的条数为(设小球每次越过阻挡条时缺失的动能相等)( )A .nB .2nC .3nD .4n答案:C 解析:设每条阻挡条对小球做的功为W ,小球自高为h 的A 处由静止开始滚下到B 处,由动能定理有mgh =12mv 20,当小球在水平面上滚动时,由动能定理有-nW =0-12mv 20;让小球从2h 高处以初速度v 0滚下到停止,由动能定理有mg ·2h -n ′W =0-12mv 20,三式联立解得n ′=3n ,因此选项C 正确.5.用水平力F 拉一物体,使物体在水平地面上由静止开始做匀加速直线运动,t 1时刻撤去拉力F ,物体做匀减速直线运动,到t 2时刻停止,其速度—时刻图象如图所示,且α>β,若拉力F 做的功为W 1,平均功率为P 1,物体克服摩擦阻力F 1做的功为W 2,平均功率为P 2,则下列选项正确的是( )A .W 1>W 2, F =2F fB .W 1=W 2,F >2F fC .P 1<P 2,F >2F fD .P 1=P 2,F =2F f答案:B 解析:整个运动过程中,依照动能定理有W 1-W 2=0,因此W 1=W 2,又P 1=W 1t 1,P 2=W 2t 2,t 2>t 1,因此P 1>P 2.依照牛顿第二定律,施加拉力F 时,加速度大小a 1=F -F fm,撤去拉力后加速度大小a 2=F fm,v t 图线斜率的绝对值表示加速度的大小,依照题图可知a 1>a 2,即F -F f m >F fm,可得F >2F f ,综上分析,B 正确. 6.(2020·吉林摸底)如图所示,将质量为m 的小球以速度v 0由地面竖直向上抛出.小球落回地面时,其速度大小为34v 0.设小球在运动过程中所受空气阻力的大小不变,则空气阻力的大小等于( )A.34mgB.316mgC.716mgD.725mg 答案:D 解析:对小球向上运动,由动能定理有,-(mg +f )H =0-12mv 20,对小球向下运动,由动能定理有,(mg -f )H =12m ⎝ ⎛⎭⎪⎫34v 02,联立解得f =725mg ,故D 正确.7.(2020·河北保定调研)(多选)如图所示,长为L 的轻质硬杆A 一端固定小球B ,另一端固定在水平转轴O 上.现使轻杆A 绕转轴O 在竖直平面内匀速转动,轻杆A 与竖直方向夹角α从0°增加到180°的过程中,下列说法正确的是( )A .小球B 受到的合力的方向始终沿着轻杆A 指向轴O B .当α=90°时,小球B 受到轻杆A 的作用力方向竖直向上C .轻杆A 对小球B 做负功D .小球B 重力做功的功率不断增大答案:AC 解析:小球做匀速圆周运动,受到的合外力总是指向圆心O ,选项A 对;转过90°时,轻杆对小球的弹力的水平分力提供小球做圆周运动的向心力,竖直分力平稳小球重力,小球受到杆的作用力指向左上方,选项B 错;在转动过程中小球的重力做正功,动能不变,应用动能定理可知轻杆对小球做负功,选项C 对;小球竖直方向的分速度先增大后减小,小球重力做功的功领先增大后减小,选项D 错.[能力提升]8.如图所示,一质量m =0.75 kg 的小球在距地面高h =10 m 处由静止开释,落到地面后反弹,碰撞时无能量缺失.若小球运动过程中受到的空气阻力f 大小恒为2.5 N ,取g =10 m/s 2.求:(1)小球与地面第一次碰撞后向上运动的最大高度;(2)小球从静止开始运动到与地面发生第五次碰撞时通过的总路程. 答案:(1)5 m (2)28.75 m解析:(1)设小球与地面第一次碰撞后向上运动的高度为h 2,从开始由静止开释到第一次碰撞后运动高度h 2的过程,由动能定理可得mg (h -h 2)-f (h +h 2)=0解得h 2=mg -fmg +fh =5 m. (2)设小球与地面第二次碰撞后向上运动的距离为h 3,从第一次碰撞后运动的高度h 2处静止下落到第二次碰撞后向上运动距离h 3的过程,由动能定理可得,mg (h 2-h 3)-f (h 2+h 3)=0解得h 3=mg -f mg +f h 2=⎝ ⎛⎭⎪⎫mg -f mg +f 2h同理得h n =⎝⎛⎭⎪⎫mg -f mg +f n -1h 小球从静止开始运动到与地面发生第五次碰撞时通过的总路程s =h +2(h 2+h 3+h 4+h 5)=28.75 m.9.(2020·陕西一测)如图所示,一个小球由A 静止开始沿粗糙的14圆周轨道顶端运动到底端B 时速度为v 1,克服摩擦力做功W 1;以速度v 2从底端B 动身,恰好能运动到顶端A ,克服摩擦力做功为W 2,则( )A .v 1>v 2,W 1>W 2B .v 1=v 2,W 1>W 2C .v 1=v 2,W 1=W 2D .v 1<v 2,W 1<W 2答案:D 解析:对小球由14圆周轨道的顶端A 静止开始的下滑过程,由动能定理,mgR-W 1=12mv 21;对小球由14圆周轨道的底端B 动身的运动过程,由动能定理,-mgR -W 2=0-12mv 22;明显v 1<v 2.把14圆周轨道分割成专门多微元,两个过程在对应微元上,第二个过程的速度较大,对轨道的压力较大,所受的滑动摩擦力较大,克服摩擦力做功较多,即W 1<W 2,选项D 正确.10.(2020·吉林三校联考)如图所示,竖直平面内放一直角杆MON ,OM 水平,ON 竖直且光滑,用不可伸长的轻绳相连的两小球A 和B 分别套在OM 和ON 杆上,B 球的质量为2 kg ,在作用于A 球的水平力F 的作用下,A 、B 均处于静止状态,现在OA =0.3 m ,OB =0.4 m ,改变水平力F 的大小,使A 球向右加速运动,已知A 球向右运动0.1 m 时速度大小为 3 m/s ,则在此过程中绳的拉力对B 球所做的功为(取g =10 m/s 2)( )A .11 JB .16 JC .18 JD .9 J答案:C 解析:A 球向右运动0.1 m 时,v A =3 m/s ,OA ′=0.4 m ,OB ′=0.3 m ,设现在∠BAO =α,则有tan α=34.v A cos α=v B sin α,解得v B =4 m/s.此过程中B 球上升高度h =0.1 m ,由动能定理,W -mgh =12mv 2B ,解得绳的拉力对B 球所做的功为W =mgh +12mv 2B=2×10×0.1 J+12×2×42J =18 J ,选项C 正确.11.(2020·广东清远三中质检)(多选)如图所示,长为L 的长木板水平放置,在木板的A 端放置一个质量为m 的小物块,现缓慢地抬高A 端,使木板以左端为轴转动,当木板转到与水平面的夹角为α时小物块开始滑动,现在停止转动木板,小物块滑到底端的速度为v ,则在整个过程中( )A .木板对小物块做功为12mv 2B .摩擦力对小物块做功为mgL sin αC .支持力对小物块做功为0D .滑动摩擦力对小物块做功为12mv 2-mgL sin α答案:AD 解析:设在整个过程中,木板对物块做功为W ,整个过程中重力做功为零,则依照动能定理得:W =12mv 2,故A 正确.在木板从水平位置开始转动到与水平面的夹角为α的过程中,摩擦力不做功,物块沿木板下滑过程中,摩擦力对物块做功.由于摩擦力小于重力沿斜面向下的分力,即f <mg sin α,则摩擦力对物块做功W f =-fL ≠-mgL sin α,故B 错误.在木板从水平位置开始转动到与水平面的夹角为α的过程中,支持力对物块做功,设为W N ,依照动能定理得:W N -mgL sin α=0,得W N =mgL sin α,故C 错误.在物块下滑的过程中,依照动能定理得:mgL sin α+W f =12mv 2-0,则W f =12mv 2-mgL sin α,故D正确.12.(2020·江西吉安期末)(多选)如图所示,质量为m 的小球(可视为质点)用长为L 的细线悬挂于O 点,自由静止在A 位置.现用水平力F 缓慢地将小球从A 拉到B 位置而静止,细线与竖直方向夹角为θ=60°,现在细线的拉力为T 1,然后撤去水平力F ,小球从B 返回到A 点时细线的拉力为T 2,则( )A .T 1=T 2=2mgB .从A 到B ,拉力F 做功为mgLC .从B 到A 的过程中,小球受到的合外力大小不变D .从B 到A 的过程中,小球重力的瞬时功领先增大后减小答案:AD 解析:分析小球在B 点受力可得T 1=2mg ,撤去拉力后,依照动能定理,mgL (1-cos θ)=12mv 2,在A 点,T 2-mg =m v 2L ,可得T 2=2mg ,W F -mgL (1-cos θ)=0,W F =12mgL ,选项A 正确,B 错误;从B 到A 过程中,在A 、B 两点重力的瞬时功率都等于零,D 正确;在B 点小球所受合外力为mg sin θ,在A 点的合外力为mg ,选项C 错误.13.泥石流是在雨季由于暴雨、洪水将含有沙石且松软的土质山体经饱和稀释后形成的洪流,它的面积、体积和流量都较大.泥石流流淌的全过程尽管只有专门短时刻,但由于其高速前进,具有强大的能量,因而破坏性极大.某课题小组对泥石流的威力进行了模拟研究,如图甲所示,在水平地面上放置一个质量为m =5 kg 的物体,让其在随位移平均减小的水平推力作用下运动,推力F 随位移变化如图乙所示,已知物体与地面间的动摩擦因数为μ=0.6,取g =10 m/s 2.求:甲乙(1)物体在运动过程中的最大加速度为多大? (2)在距动身点多远处,物体的速度达到最大? (3)物体在水平面上运动的最大位移是多大? 答案:(1)10 m/s 2(2)2.5 m (3)5.33 m 解析:(1)当推力F 最大时,加速度最大 由牛顿第二定律得F -μmg =ma得a =10 m/s 2.(2)由图象可知:F 随x 变化的函数方程为F =80-20x速度最大时,合外力为零 即F =μmg 因此x =2.5 m.(3)位移最大时,末速度一定为0 由动能定理可得W F -μmgs =0由图象可知,力F 做的功为W F =12Fx =160 J因此s =16030 m =5.33 m.。
2021年高考物理一轮复习学与练5.2 动能和动能定理(精讲)(原卷版)
第 1 页 共 7 页专题5.2 动能和动能定理【考情分析】1.掌握动能和动能定理;2.能运用动能定理解答实际问题。
【重点知识梳理】知识点一 动能(1)定义:物体由于运动而具有的能。
(2)公式:E k =12mv 2,v 为瞬时速度,动能是状态量。
(3)单位:焦耳,1 J =1 N·m =1 kg·m 2/s 2。
(4)标矢性:动能是标量,只有正值。
(5)动能的变化量:ΔE k =E k2-E k1=12mv 22-12mv 21。
知识点二 动能定理(1)内容:合外力对物体所做的功等于物体动能的变化。
(2)表达式:W =ΔE k =12mv 22-12mv 21。
(3)物理意义:合外力对物体做的功是物体动能变化的量度。
(4)适用条件①既适用于直线运动,也适用于曲线运动。
②既适用于恒力做功,也适用于变力做功。
③力可以是各种性质的力,既可以同时作用,也可以不同时作用。
【典型题分析】高频考点一 动能定理的理解及应用【例1】(2020·天津卷)复兴号动车在世界上首次实现速度350km/h 自动驾驶功能,成为我国高铁自主创新的又一重大标志性成果。
一列质量为m 的动车,初速度为0v ,以恒定功率P 在平直轨道上运动,经时间t 达到该功率下的最大速度m v ,设动车行驶过程所受到的阻力F 保持不变。
动车在时间t 内( )第 2 页 共 7 页A. 做匀加速直线运动B. 加速度逐渐减小C. 牵引力的功率m P Fv =D. 牵引力做功22m 01122W mvmv =- 【举一反三】(2018·全国卷Ⅰ·18)如图,abc 是竖直面内的光滑固定轨道,ab 水平,长度为2R ;bc 是半径为R 的四分之一圆弧,与ab 相切于b 点.一质量为m 的小球,始终受到与重力大小相等的水平外力的作用,自a 点处从静止开始向右运动.重力加速度大小为g .小球从a 点开始运动到其轨迹最高点,机械能的增量为( )A .2mgRB .4mgRC .5mgRD .6mgR【方法技巧】应用动能定理解题的基本思路(1)选取研究对象,明确它的运动过程.(2)分析研究对象的受力情况和各力的做功情况.受哪些力→各力是否做功→做正功还是负功→做多少功→各力做功的代数和(3)明确物体在过程始末状态的动能E k1和E k2.(4)列出动能定理的方程W 合=E k2-E k1及其他必要的解题方程进行求解.【变式探究】(2018·江苏卷·7)(多选)如图所示,轻质弹簧一端固定,另一端连接一小物块,O 点为弹簧在原长时物块的位置.物块由A 点静止释放,沿粗糙程度相同的水平面向右运动,最远到达B 点.在从A 到B 的过程中,物块( )A .加速度先减小后增大B.经过O点时的速度最大C.所受弹簧弹力始终做正功D.所受弹簧弹力做的功等于克服摩擦力做的功高频考点二动能定理在多过程综合问题中的应用【例2】(2018·全国卷Ⅲ)如图,在竖直平面内,一半径为R的光滑圆弧轨道ABC和水平轨道P A在A点相切,BC为圆弧轨道的直径,O为圆心,OA和OB之间的夹角为α,sin α=35.一质量为m的小球沿水平轨道向右运动,经A点沿圆弧轨道通过C点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用.已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g.求(1)水平恒力的大小和小球到达C点时速度的大小;(2)小球到达A点时动量的大小;(3)小球从C点落至水平轨道所用的时间.【方法技巧】利用动能定理求解多过程问题的基本思路(1)弄清物体的运动由哪些过程组成.(2)分析每个过程中物体的受力情况.(3)各个力做功有何特点,对动能的变化有无影响.(4)从总体上把握全过程,表达出总功,找出初、末状态的动能.(5)对所研究的全过程运用动能定理列方程.【变式探究】(2017·上海卷·19)如图所示,与水平面夹角θ=37°的斜面和半径R=0.4 m的光滑圆轨道相切于B点,且固定于竖直平面内.滑块从斜面上的A点由静止释放,经B点后沿圆轨道运动,通过最高点C时轨道对滑块的弹力为零.已知滑块与斜面间动摩擦因数μ=0.25.(g取10 m/s2,sin 37°=0.6,cos 37°=0.8)求:第 3 页共7 页(1)滑块在C点的速度大小v C;(2)滑块在B点的速度大小v B;(3)A、B两点间的高度差h.高频考点三动能定理与图象结合【例3】(2020·江苏卷)如图所示,一小物块由静止开始沿斜面向下滑动,最后停在水平地面上。
2021届人教版新高三高考物理一轮复习题型练习卷:动能定理及其应用
动能定理及其应用题型一对动能的理解mv2,只与运动物体的质量及速率有关,而与其运动方向无关,物体运动仅1.动能是状态量,E k=12速度的方向发生变化时,动能不变。
而做功是过程量。
2.动能及动能的变化ΔE k均是标量,只有大小,没有方向。
动能的变化量为正值,表示物体的动能增加了,对应于合力对物体做正功;动能的变化量为负值,表示物体的动能减少了,对应于合力对物体做负功,或者说物体克服合力做功。
[典例1] 关于动能的理解,下列说法错误的是( )A.动能是普遍存在的机械能的一种基本形式,凡是运动的物体都具有动能B.动能总是正值,但对于不同的参考系,同一物体的动能大小是不同的C.一定质量的物体,动能变化时,速度一定变化,但速度变化时,动能不一定变化D.动能不变的物体,一定处于平衡状态变式1:一个质量为0.3 kg的弹性小球,在光滑水平面上以6 m/s的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前相同,则碰撞前后小球速度变化量的大小Δv和碰撞过程中小球的动能变化量ΔE k为( )A.Δv=0B.Δv=12 m/sC.ΔE k=1.8 JD.ΔE k=10.8 J题型二对动能定理的理解和应用1.对动能定理的理解(1)动能定理公式中等号表明了合力做功与物体动能的变化间的两个关系:①数量关系:即合力所做的功与物体动能的变化具有等量代换关系。
可以通过计算物体动能的变化,求合力做的功,进而求得某一力做的功。
②因果关系:合力做功是引起物体动能变化的原因。
(2)动能定理中涉及的物理量有F,l,m,v,W,E k等,在处理含有上述物理量的问题时,优先考虑使用动能定理。
2.运用动能定理需注意的问题(1)应用动能定理解题时,在分析过程的基础上无需深究物体运动过程中状态变化的细节,只需考虑整个过程的功及过程初末的动能。
(2)若过程包含了几个运动性质不同的分过程,既可分段考虑,也可整个过程考虑。
但求功时,有些力不是全过程都作用的,必须根据不同的情况分别对待求出总功,计算时要把各力的功连同正负号一同代入公式。
2021届高考物理一轮复习计算题专项训练:动能、动量综合
(2)为使小物块击中挡板,求拉力F作用的距离范围;
(3)改变拉力F的作用时间,使小物块击中挡板的不同位置,求击中挡板时小物块动能的最小值.(结果可保留根式)
5.如图所示, 为倾角 的斜面轨道,轨道的 部分光滑, 部分粗糙, 为圆心角等于 、半径 的竖直光滑圆弧形轨道,两轨道相切于 点, 两点在同一竖直线上,轻弹簧一端固定在 点,另一端在斜面上 点处,现有一质量 的小物块(可视为质点)在 点以初速度 沿斜面向下运动,压缩弹簧到 点时速度为0,已知斜面 部分长度 , ,小物块与斜面 部分间的动摩擦因数 , , , 取 ,试求:
(1)求小物块运动到D点时的速度大小;
(2)求小物块从A点运动到B点所用的时间;
(3)若小物块通过B点后立即受到一个水平向左、大小为 的外力,要使小物块仍能通过D点,试求 两点间的距离应满足的条件。(结果保留三位有效数字)
2.如图所示,固定不动的光滑四分之一圆弧轨道底端水平,半径 ,轨道底端与静止在光滑水平面上的长木板A端紧靠在一起且两者等高,距长木板B端为 远处的C点竖直固定一挡板。现将质量为 的小滑块从圆弧轨道的最高点由静止释放,当滑块a滑上长木板后,立即将圆弧轨道撤去。已知长木板的质量为 ,长木板足够长且与滑块a间的动摩擦因数 ,长木板与挡板发生碰撞的时间极短,且碰撞时无能量损失,重力加速度取 。
两式联立并代入数据解得
(2)设小物块运动到B点时的速度大小为 ,由机械能守恒定律可得
设小物块在倾斜轨道上下滑时的加速度大小为a,则有
设小物块从A点运动到B点所用的时间为 ,则有
联立代入数据解得
(3)由题意可知,小物块受到的外力F与其重力 的合力大小为 ,斜向左下方,设与竖直方向的夹角为α,则 ,即合力沿 方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动能定理题型一 动能定理的理解【例1】 (2018·高考全国卷Ⅱ)如图,某同学用绳子拉动木箱,使它从静止开始沿粗糙水平路面运动至具有某一速度.木箱获得的动能一定( )A .小于拉力所做的功B .等于拉力所做的功C .等于克服摩擦力所做的功D .大于克服摩擦力所做的功【变式】关于运动物体所受的合外力、合外力做的功及动能变化的关系.下列说法正确的是( )A .合外力为零,则合外力做功一定为零B .合外力做功为零,则合外力一定为零C .合外力做功越多,则动能一定越大D .动能不变,则物体合外力一定为零题型二 动能定理在直线运动中的应用【例2】(2019·吉林大学附中模拟)如图所示,小物块从倾角为θ的倾斜轨道上A 点由静止释放滑下,最终停在水平轨道上的B 点,小物块与水平轨道、倾斜轨道之间的动摩擦因数均相同,A 、B 两点的连线与水平方向的夹角为α,不计物块在轨道转折时的机械能损失,则动摩擦因数为( )A .tan θB .tan αC .tan(θ+α)D .tan(θ-α)【变式1】如图所示,质量为m 的小球,从离地面H 高处从静止开始释放,落到地面后继续陷入泥中h 深 度而停止,设小球受到空气阻力为f ,重力加速度为g ,则下列说法正确( )A .小球落地时动能等于mgHB .小球陷入泥中的过程中克服泥的阻力所做的功小于刚落到地面时的动能C .整个过程中小球克服阻力做的功等于mg (H +h )D .小球在泥土中受到的平均阻力为mg (1+H h) 【变式2】如图为某同学建立的一个测量动摩擦因数的模型.物块自左侧斜面上A 点由静止滑下,滑过下面一段平面后,最高冲至右侧斜面上的B 点.实验中测量出了三个角度,左、右斜面的倾角α和β及AB 连线与水平面的夹角为θ.物块与各接触面间动摩擦因数相同且为μ,忽略物块在拐角处的能量损失,以下结论正确的是 ( )A .μ=tan αB .μ=tan βC .μ=tan θD .μ=tanα-β2题型三 动能定理在曲线运动中的应用 【例3】.如图,一半径为R 、粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ 水平.一质量为m 的质点自P 点上方高度R 处由静止开始下落,恰好从P 点进入轨道.质点滑到轨道最低点N 时,对轨道的压力为4mg ,g 为重力加速度的大小.用W 表示质点从P 点运动到N 点的过程中克服摩擦力所做的功.则( )A .W =12mgR ,质点恰好可以到达Q 点B .W >12mgR ,质点不能到达Q 点 C .W =12mgR ,质点到达Q 点后,继续上升一段距离 D .W <12mgR ,质点到达Q 点后,继续上升一段距离 【变式】如图,一固定容器的内壁是半径为R 的半球面;在半球面水平直径的一端有一质量为m 的质点P . 它在容器内壁由静止下滑到最低点的过程中,克服摩擦力做的功为W .重力加速度大小为g .设质点P 在最低 点时,向心加速度的大小为a ,容器对它的支持力大小为( )A .a =2(mgR -W )mRB .a =2mgR -W mRC .N =3mgR -2W RD .N =2(mgR -W )R题型四 动能定理与图象的结合问题 x F 图像【例4】如图甲所示,一质量为4 kg 的物体静止在水平地面上,让物体在随位移均匀减小的水平推力F 作用下开始运动,推力F 随位移x 变化的关系图象如图乙所示,已知物体与面间的动摩擦因数μ=0.5,g 取10 m/s 2,则下列说法正确的是 ( )A .物体先做加速运动,推力为零时开始做减速运动B .物体在水平地面上运动的最大位移是10 mC .物体运动的最大速度为215 m/sD .物体在运动中的加速度先变小后不变【变式】(2019·大连五校联考)在某一粗糙的水平面上,一质量为2 kg 的物体在水平恒定拉力的作用下做匀速直线运动,当运动一段时间后,拉力逐渐减小,且当拉力减小到零时,物体刚好停止运动,图中给出了拉力随位移变化的关系图象.已知重力加速度g =10 m/s 2.根据以上信息能精确得出或估算得出的物理量有( )A.物体与水平面间的动摩擦因数B.合外力对物体所做的功C.物体做匀速运动时的速度D.物体运动的时间tv-图像【例5】(2019·安徽合肥一模)A、B两物体分别在水平恒力F1和F2的作用下沿水平面运动,先后撤去F1、F2后,两物体最终停下,它们的v-t图象如图所示.已知两物体与水平面间的滑动摩擦力大小相等.则下列说法正确的是()A.F1、F2大小之比为1∶2 B.F1、F2对A、B做功之比为1∶2C.A、B质量之比为2∶1 D.全过程中A、B克服摩擦力做功之比为2∶1【变式】(2018·高考全国卷Ⅱ) 地下矿井中的矿石装在矿车中,用电机通过竖井运送到地面.某竖井中矿车提升的速度大小v随时间t的变化关系如图所示,其中图线①②分别描述两次不同的提升过程,它们变速阶段加速度的大小都相同;两次提升的高度相同,提升的质量相等.不考虑摩擦阻力和空气阻力.对于第①次和第②次提升过程()A.矿车上升所用的时间之比为4∶5 B.电机的最大牵引力之比为2∶1C.电机输出的最大功率之比为2∶1 D.电机所做的功之比为4∶5a-图像t【例6】(2019·山西模拟)用传感器研究质量为2 kg的物体由静止开始做直线运动的规律时,在计算机上得到0~6 s 内物体的加速度随时间变化的关系如图所示.下列说法正确的是()A.0~6 s内物体先向正方向运动,后向负方向运动B.0~6 s内物体在4 s时的速度最大C.物体在2~4 s内速度不变D.0~4 s内合力对物体做的功等于0~6 s内合力做的功【变式】质量为m的小球被系在轻绳一端,在竖直平面内做半径为R的圆周运动,运动过程中小球受到空气阻力的作用.设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为 ( )A.14mgRB.310mgRC.12mgR D .mgRx E k 图像【例7】(2017·高考江苏卷)一小物块沿斜面向上滑动,然后滑回到原处.物块初动能为E k0,与斜面间的动摩擦因数不变,则该过程中,物块的动能E k 与位移x 关系的图线是( )【变式】(2018·高考江苏卷)从地面竖直向上抛出一只小球,小球运动一段时间后落回地面.忽略空气阻力,该过程中小球的动能E k 与时间t 的关系图象是 ( )题型五 动能定理在多阶段、多过程综合问题中的应用运用动能定理巧解往复运动问题 【例8】.如图所示装置由AB 、BC 、CD 三段轨道组成,轨道交接处均由很小的圆弧平滑连接,其中轨道AB 、CD 段是光滑的,水平轨道BC 的长度s =5 m ,轨道CD 足够长且倾角θ=37°,A 、D 两点离轨道BC 的高度分别为h 1=4.30 m 、h 2=1.35 m .现让质量为m 的小滑块自A 点由静止释放.已知小滑块与轨道BC 间的动摩擦因数μ=0.5,重力加速度g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)小滑块第一次到达D 点时的速度大小;(2)小滑块最终停止的位置距B 点的距离.【变式】如图所示,ABCD 是一个盆式容器,盆内侧壁与盆底BC 的连接处都是一段与BC 相切的圆弧,BC 是水平的,其距离d =0.50 m .盆边缘的高度为h =0.30 m .在A 处放一个质量为m 的小物块并让其从静止 开始下滑(图中小物块未画出).已知盆内侧壁是光滑的,而盆底BC 面与小物块间的动摩擦因数为 μ=0.10. 小物块在盆内来回滑动,最后停下来,则停止的地点到B 的距离为 ( )A.0.50 m B.0.25 m C.0.10 m D.0动能定理解决平抛、圆周运动相结合的问题【例9】.(2019·桂林质检)如图所示,倾角为37°的粗糙斜面AB底端与半径R=0.4 m的光滑半圆轨道BC平滑相连,O点为轨道圆心,BC为圆轨道直径且处于竖直方向,A、C两点等高,质量m=1 kg的滑块从A点由静止开始下滑,恰能滑到与O点等高的D点,g取10 m/s2,sin 37°=0.6,cos 37°=0.8.(1)求滑块与斜面间的动摩擦因数μ;(2)若使滑块能到达C点,求滑块从A点沿斜面滑下时的初速度v0的最小值;(3)若滑块离开C点的速度大小为4 m/s,求滑块从C点飞出至落到斜面上所经历的时间t.【变式1】(2019·河北衡水中学模拟)如图所示,质量为0.1 kg的小物块在粗糙水平桌面上滑行4 m后以3.0 m/s的速度飞离桌面,最终落在水平地面上,已知物块与桌面间的动摩擦因数为0.5,桌面高0.45 m,若不计空气阻力,取g =10 m/s2,则下列说法错误的是()A.小物块的初速度是5 m/s B.小物块的水平射程为1.2 mC.小物块在桌面上克服摩擦力做8 J的功D.小物块落地时的动能为0.9 J【变式2】如图,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段铺设特殊材料,调节其初始长度为l,水平轨道左侧有一轻质弹簧左端固定,弹簧处于自然伸长状态.可视为质点的小物块从轨道右侧A点以初速度v0冲上轨道,通过圆形轨道、水平轨道后压缩弹簧,并被弹簧以原速率弹回.已知R=0.4 m,l=2.5 m,v0=6 m/s,物块质量m=1 kg,与PQ段间的动摩擦因数μ=0.4,轨道其他部分摩擦不计.g取10 m/s2.求:(1) 物块第一次经过圆轨道最高点B时对轨道的压力;(2) 物块仍以v0从右侧冲上轨道,调节PQ段的长度L,当L长度是多少时,物块恰能不脱离轨道返回A点继续向右运动.参考答案题型一动能定理的理解【例1】(2018·高考全国卷Ⅱ)如图,某同学用绳子拉动木箱,使它从静止开始沿粗糙水平路面运动至具有某一速度.木箱获得的动能一定()A.小于拉力所做的功B.等于拉力所做的功C.等于克服摩擦力所做的功D.大于克服摩擦力所做的功【答案】A【解析】由动能定理W F-W f=E k-0,可知木箱获得的动能一定小于拉力所做的功,A正确.【变式】关于运动物体所受的合外力、合外力做的功及动能变化的关系.下列说法正确的是()A.合外力为零,则合外力做功一定为零B.合外力做功为零,则合外力一定为零C.合外力做功越多,则动能一定越大D.动能不变,则物体合外力一定为零【答案】A.【解析】由W=Fl cos α可知,物体所受合外力为零,合外力做功一定为零,但合外力做功为零,可能是α=90°,故A正确,B错误;由动能定理W=ΔE k可知,合外力做功越多,动能变化量越大,但动能不一定越大,动能不变,合外力做功为零,但合外力不一定为零,C、D均错误.题型二动能定理在直线运动中的应用【例2】(2019·吉林大学附中模拟)如图所示,小物块从倾角为θ的倾斜轨道上A点由静止释放滑下,最终停在水平轨道上的B点,小物块与水平轨道、倾斜轨道之间的动摩擦因数均相同,A、B两点的连线与水平方向的夹角为α,不计物块在轨道转折时的机械能损失,则动摩擦因数为()A.tan θB.tan α C.tan(θ+α) D.tan(θ-α)【答案】B【解析】.如图所示,设B、O间距离为s1,A点离水平面的高度为h,A、O间的水平距离为s2,物块的质量为m,在物块下滑的全过程中,应用动能定理可得mgh-μmg cos θ·s2cos θ-μmg·s1=0,解得μ=hs1+s2=tan α,故选项B正确.【变式1】如图所示,质量为m 的小球,从离地面H 高处从静止开始释放,落到地面后继续陷入泥中h 深 度而停止,设小球受到空气阻力为f ,重力加速度为g ,则下列说法正确( )A .小球落地时动能等于mgHB .小球陷入泥中的过程中克服泥的阻力所做的功小于刚落到地面时的动能C .整个过程中小球克服阻力做的功等于mg (H +h )D .小球在泥土中受到的平均阻力为mg (1+H h) 【答案】C【解析】小球从静止开始释放到落到地面的过程,由动能定理得mgH -fH =12mv 20,选项A 错误;设泥的平均阻力为f 0,小球陷入泥中的过程,由动能定理得mgh -f 0h =0-12mv 20,解得f 0h =mgh +12mv 20=mgh +mgH -fH ,f 0=mg (1+H h )-fH h,选项B 、D 错误;全过程应用动能定理可知,整个过程中小球克服阻力做的功等于mg (H +h ),选项C 正确.【变式2】如图为某同学建立的一个测量动摩擦因数的模型.物块自左侧斜面上A 点由静止滑下,滑过下面一段平面后,最高冲至右侧斜面上的B 点.实验中测量出了三个角度,左、右斜面的倾角α和β及AB 连线与水平面的夹角为θ.物块与各接触面间动摩擦因数相同且为μ,忽略物块在拐角处的能量损失,以下结论正确的是 ( )A .μ=tan αB .μ=tan βC .μ=tan θD .μ=tanα-β2【答案】C【解析】对全过程运用动能定理,结合摩擦力做功的大小,求出动摩擦因数大小.设A 、B 间的水平长度为x ,竖直高度差为h ,对A 到B 的过程运用动能定理得mgh -μmg cos α·AC -μmg ·CE -μmg cos β·EB =0,因为AC ·cos α+CE +EB ·cos β=x ,则有mgh -μmgx =0,解得μ=h x=tan θ,故C 正确. 题型三 动能定理在曲线运动中的应用【例3】.如图,一半径为R 、粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ 水平.一质量为m 的质点自P 点上方高度R 处由静止开始下落,恰好从P 点进入轨道.质点滑到轨道最低点N 时,对轨道的压力为4mg ,g 为重力加速度的大小.用W 表示质点从P 点运动到N 点的过程中克服摩擦力所做的功.则( )A .W =12mgR ,质点恰好可以到达Q 点B .W >12mgR ,质点不能到达Q 点 C .W =12mgR ,质点到达Q 点后,继续上升一段距离 D .W <12mgR ,质点到达Q 点后,继续上升一段距离 【答案】C【解析】.设质点到达N 点的速度为v N ,在N 点质点受到轨道的弹力为F N ,则F N -mg =mv 2N R,已知F N =F ′N =4mg ,则质点到达N 点的动能为E k N =12mv 2N =32mgR .质点由开始至N 点的过程,由动能定理得mg ·2R +W f =E k N -0,解得摩擦力做的功为W f =-12mgR ,即克服摩擦力做的功为W =-W f =12mgR .设从N 到Q 的过程中克服摩擦力做功为W ′,则W ′<W .从N 到Q 的过程,由动能定理得-mgR -W ′=12mv 2Q -12mv 2N ,即12mgR -W ′=12mv 2Q,故质点到达Q 点后速度不为0,质点继续上升一段距离.选项C 正确.【变式】如图,一固定容器的内壁是半径为R 的半球面;在半球面水平直径的一端有一质量为m 的质点P . 它在容器内壁由静止下滑到最低点的过程中,克服摩擦力做的功为W .重力加速度大小为g .设质点P 在最低 点时,向心加速度的大小为a ,容器对它的支持力大小为( )A .a =2(mgR -W )mRB .a =2mgR -W mRC .N =3mgR -2W RD .N =2(mgR -W )R【答案】 AC【解析】质点由半球面最高点到最低点的过程中,由动能定理有:mgR -W =12mv 2,又在最低点时,向心加速度大小a =v 2R ,两式联立可得a =2(mgR -W )mR ,A 项正确,B 项错误;在最低点时有N -mg =m v 2R ,解得N =3mgR -2W R ,C 项正确,D 项错误.题型四 动能定理与图象的结合问题 x F 图像【例4】如图甲所示,一质量为4 kg 的物体静止在水平地面上,让物体在随位移均匀减小的水平推力F 作 用下开始运动,推力F 随位移x 变化的关系图象如图乙所示,已知物体与面间的动摩擦因数μ=0.5,g 取10 m/s 2,则下列说法正确的是 ( )B .物体先做加速运动,推力为零时开始做减速运动 B .物体在水平地面上运动的最大位移是10 mC .物体运动的最大速度为215 m/sD .物体在运动中的加速度先变小后不变【答案】 B【解析】 当推力小于摩擦力时物体就开始做减速运动,选项A 错误;图乙中图线与坐标轴所围成的三角形面积表示推力对物体做的功,由此可得推力做的功为W =12×4×100 J =200 J ,根据动能定理有W -μmgx max =0,得x max =10 m ,选项B 正确;当推力与摩擦力平衡时,加速度为零,速度最大,由题图乙得F =100-25x (N),当F =μmg =20 N时,x =3.2 m ,由动能定理得12(100+20)·x -μmgx =12mv 2max,解得物体运动的最大速度v max =8 m/s ,选项C 错误;当推力由100 N 减小到20 N 的过程中,物体的加速度逐渐减小,当推力由20 N 减小到0的过程中,物体的加速度又反向增大,此后物体的加速度不变,直至物体静止,故D 项错误.【变式】(2019·大连五校联考)在某一粗糙的水平面上,一质量为2 kg 的物体在水平恒定拉力的作用下做匀速直线运动,当运动一段时间后,拉力逐渐减小,且当拉力减小到零时,物体刚好停止运动,图中给出了拉力随位移变化的关系图象.已知重力加速度g =10 m/s 2.根据以上信息能精确得出或估算得出的物理量有( )A .物体与水平面间的动摩擦因数B .合外力对物体所做的功C .物体做匀速运动时的速度D .物体运动的时间【答案】ABC【解析】.物体做匀速直线运动时,拉力F 与滑动摩擦力f 大小相等,物体与水平面间的动摩擦因数为μ=F mg=0.35,A 正确;减速过程由动能定理得W F +W f =0-12mv 2,根据F -x 图象中图线与坐标轴围成的面积可以估算力F 做的功W F ,而W f =-μmgx ,由此可求得合外力对物体所做的功,及物体做匀速运动时的速度v ,B 、C 正确;因为物体做变加速运动,所以运动时间无法求出,D 错误. t v 图像【例5】(2019·安徽合肥一模)A 、B 两物体分别在水平恒力F 1和F 2的作用下沿水平面运动,先后撤去F 1、F 2后,两物体最终停下,它们的v -t 图象如图所示.已知两物体与水平面间的滑动摩擦力大小相等.则下列说法正确的是( )A .F 1、F 2大小之比为1∶2B .F 1、F 2对A 、B 做功之比为1∶2C .A 、B 质量之比为2∶1D .全过程中A 、B 克服摩擦力做功之比为2∶1【答案】C.【解析】由v -t 图象可知,两个匀减速运动的加速度之比为1∶2,由牛顿第二定律可知,A 、B 受摩擦力大小相等,所以A 、B 的质量关系是2∶1,由v -t 图象可知,A 、B 两物体加速与减速的位移之和相等,且匀加速位移之比为1∶2,匀减速运动的位移之比为2∶1,由动能定理可得,A 物体的拉力与摩擦力的关系,F 1·x -F f1·3x =0-0;B 物体的拉力与摩擦力的关系,F 2·2x -F f2·3x =0-0,因此可得:F 1=3F f1,F 2=32F f2,F f1=F f2,所以F 1=2F 2.全过程中摩擦力对A 、B 做功相等,F 1、F 2对A 、B 做功大小相等.故A 、B 、D 错误,C 正确.【变式】(2018·高考全国卷Ⅱ) 地下矿井中的矿石装在矿车中,用电机通过竖井运送到地面.某竖井中矿车 提升的速度大小v 随时间t 的变化关系如图所示,其中图线①②分别描述两次不同的提升过程,它们变速阶 段加速度的大小都相同;两次提升的高度相同,提升的质量相等.不考虑摩擦阻力和空气阻力.对于第① 次和第②次提升过程 ( )A .矿车上升所用的时间之比为4∶5B .电机的最大牵引力之比为2∶1C .电机输出的最大功率之比为2∶1D .电机所做的功之比为4∶5【答案】AC【解析】由图线①知,矿车上升总高度h =v 02·2t 0=v 0t 0. 由图线②知,加速阶段和减速阶段上升高度和h 1=v 022·(t 02+t 02)=14v 0t 0 匀速阶段:h -h 1=12v 0·t ′,解得t ′=32t 0 故第②次提升过程所用时间为t 02+32t 0+t 02=52t 0, 两次上升所用时间之比为2t 0∶52t 0=4∶5,A 对; 对矿车受力分析,当矿车向上做加速直线运动时,电机的牵引力最大,由于加速阶段加速度相同,故加速时牵引力相同,B 错;在加速上升阶段,由牛顿第二定律知,F -mg =ma ,F =m (g +a )第①次在t 0时刻,功率P 1=F ·v 0,第②次在t 02时刻,功率P 2=F ·v 02, 第②次在匀速阶段P 2′=F ′·v 02=mg ·v 02<P 2,可知,电机输出的最大功率之比P 1∶P 2=2∶1,C 对;由动能定理知,两个过程动能变化量相同,克服重力做功相同,故两次电机做功也相同,D 错. t a -图像【例6】(2019·山西模拟)用传感器研究质量为2 kg 的物体由静止开始做直线运动的规律时,在计算机上得到0~6 s 内物体的加速度随时间变化的关系如图所示.下列说法正确的是( )A .0~6 s 内物体先向正方向运动,后向负方向运动B .0~6 s 内物体在4 s 时的速度最大C .物体在2~4 s 内速度不变D .0~4 s 内合力对物体做的功等于0~6 s 内合力做的功【答案】D.【解析】由v =at 可知,a -t 图象中,图线与坐标轴所围面积表示质点的速度,0~6 s 内物体的速度始终为正值,故一直为正方向,A 项错;t =5 s 时,速度最大,B 项错;2~4 s 内加速度保持不变且不为零,速度一定变化,C 项错;0~4 s 内与0~6 s 内图线与坐标轴所围面积相等,故物体4 s 末和6 s 末速度相同,由动能定理可知,两段时间内合力对物体做功相等,D 项对.【变式】质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空 气阻力的作用.设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg ,此后小球继续做圆周运动, 经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为 ( )A.14mgRB.310mgRC.12mgR D .mgR【答案】C【解析】最低点7mg -mg =mv 21R ,则最低点速度为: v 1=6gR最高点mg =mv 22R,则最高点速度为:v 2=gR 由动能定理得:-2mgR +W f =12mv 22-12mv 21 解得:W f =-12mgR ,故克服空气阻力做功W f =12mgR ,故选项C 正确,A 、B 、D 错误. x E k -图像【例7】(2017·高考江苏卷)一小物块沿斜面向上滑动,然后滑回到原处.物块初动能为E k0,与斜面间的动摩擦因数不变,则该过程中,物块的动能E k 与位移x 关系的图线是( )【答案】C. 【解析】设斜面的倾角为θ,物块与斜面间的动摩擦因数为μ,物块质量为m ,小物块沿斜面向上滑动过程,由动能定理得,-(mg sin θ+μmg cos θ)x =E k -E k0,即E k =E k0-(mg sin θ+μmg cos θ)x ;设小物块滑到最高点的距离为L ,小物块沿斜面滑动全过程由能量守恒定律得,E k =E k0-mgx sin θ-μmg cos θ(2L -x )=(E k0-2μmgL cos θ)-(mg sin θ-μmg cos θ)x ,故选项C 正确.【变式】(2018·高考江苏卷)从地面竖直向上抛出一只小球,小球运动一段时间后落回地面.忽略空气阻力,该过程中小球的动能E k 与时间t 的关系图象是 ( )【答案】A【解析】对于整个竖直上抛过程(包括上升与下落),速度与时间的关系为 v =v 0-gt ,v 2=g 2t 2-2v 0gt +v 20,E k =12mv 2,可见动能与时间是二次函数关系,由数学中的二次函数知识可判断A 正确.题型五 动能定理在多阶段、多过程综合问题中的应用运用动能定理巧解往复运动问题【例8】.如图所示装置由AB 、BC 、CD 三段轨道组成,轨道交接处均由很小的圆弧平滑连接,其中轨道AB 、CD 段是光滑的,水平轨道BC 的长度s =5 m ,轨道CD 足够长且倾角θ=37°,A 、D 两点离轨道BC 的高度分别为h 1=4.30 m 、h 2=1.35 m .现让质量为m 的小滑块自A 点由静止释放.已知小滑块与轨道BC 间的动摩擦因数μ=0.5,重力加速度g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)小滑块第一次到达D 点时的速度大小;(2)小滑块最终停止的位置距B 点的距离.【答案】(1)3 m/s (2)1.4 m【解析】(1)小滑块从A →B →C →D 过程中,由动能定理得mg (h 1-h 2)-μmgs =12mv 2D-0 将h 1、h 2、s 、μ、g 代入得:v D =3 m/s.(2)对小滑块运动全过程应用动能定理,设小滑块在水平轨道上运动的总路程为s 总.有:mgh 1=μmgs 总将h 1、μ代入得:s 总=8.6 m故小滑块最终停止的位置距B 点的距离为2s -s 总=1.4 m.【变式】如图所示,ABCD 是一个盆式容器,盆内侧壁与盆底BC 的连接处都是一段与BC 相切的圆弧,BC 是水平的,其距离d =0.50 m .盆边缘的高度为h =0.30 m .在A 处放一个质量为m 的小物块并让其从静止 开始下滑(图中小物块未画出).已知盆内侧壁是光滑的,而盆底BC 面与小物块间的动摩擦因数为 μ=0.10. 小物块在盆内来回滑动,最后停下来,则停止的地点到B 的距离为 ( )A .0.50 mB .0.25 mC .0.10 mD .0【答案】D【解析】设小物块在BC 段通过的总路程为s ,由于只有BC 面上存在摩擦力,其做功为-μmgs ,而重力做功与路径无关,由动能定理得:mgh -μmgs =0-0,代入数据可解得s =3 m .由于d =0.50 m ,所以,小物块在BC 面上经过3次往复运动后,又回到B 点,D 正确.动能定理解决平抛、圆周运动相结合的问题【例9】.(2019·桂林质检)如图所示,倾角为37°的粗糙斜面AB 底端与半径R =0.4 m 的光滑半圆轨道BC 平滑相连,O 点为轨道圆心,BC 为圆轨道直径且处于竖直方向,A 、C 两点等高,质量m =1 kg 的滑块从A 点由静止开始下滑,恰能滑到与O 点等高的D 点,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.(1)求滑块与斜面间的动摩擦因数μ;(2)若使滑块能到达C 点,求滑块从A 点沿斜面滑下时的初速度v 0的最小值;(3)若滑块离开C 点的速度大小为4 m/s ,求滑块从C 点飞出至落到斜面上所经历的时间t .【答案】(1)0.375 (2)2 3 m/s (3)0.2 s【解析】(1)滑块恰能滑到D 点,则v D =0滑块从A →B →D 过程中,由动能定理得mg (2R -R )-μmg cos θ·2R sin θ=0-0 解得μ=0.375.(2)滑块恰能过C 点时,v C 有最小值,则在C 点mg =mv 2C R滑块从A →B →D →C 过程,由动能定理得-μmg cos θ·2R sin θ=12mv 2C -12mv 20解得v 0=2 3 m/s.(3)滑块离开C 点后做平抛运动,设下落的高度为h ,则有h =12gt 2 x =v ′C tx 2R -h=tan 53° 其中v ′C =4 m/s ,联立解得t =0.2 s.【变式1】(2019·河北衡水中学模拟)如图所示,质量为0.1 kg 的小物块在粗糙水平桌面上滑行4 m 后以3.0 m/s 的速度飞离桌面,最终落在水平地面上,已知物块与桌面间的动摩擦因数为0.5,桌面高0.45 m ,若不计空气阻力,取g =10 m/s 2,则下列说法错误的是( )A .小物块的初速度是5 m/sB .小物块的水平射程为1.2 mC .小物块在桌面上克服摩擦力做8 J 的功D .小物块落地时的动能为0.9 J【答案】ABC.【解析】小物块在桌面上克服摩擦力做功W f =μmgL =2 J ,C 错;在水平桌面上滑行,由动能定理得-W f =12mv 2-12mv 20,解得v 0=7 m/s ,A 错;小物块飞离桌面后做平抛运动,有x =vt 、h =12gt 2,联立解得x =0.9 m ,B 错;设小物块落地时动能为E k ,由动能定理得mgh =E k -12mv 2,解得E k =0.9 J ,D 对. 【变式2】如图,在水平轨道右侧固定半径为R 的竖直圆槽形光滑轨道,水平轨道的PQ 段铺设特殊材料, 调节其初始长度为l ,水平轨道左侧有一轻质弹簧左端固定,弹簧处于自然伸长状态.可视为质点的小物块 从轨道右侧A 点以初速度v 0冲上轨道,通过圆形轨道、水平轨道后压缩弹簧,并被弹簧以原速率弹回.已 知R =0.4 m ,l =2.5 m ,v 0=6 m/s ,物块质量m =1 kg ,与PQ 段间的动摩擦因数μ=0.4,轨道其他部分摩擦不计.g 取10 m/s 2.求:(1)物块第一次经过圆轨道最高点B 时对轨道的压力;(2)物块仍以v 0从右侧冲上轨道,调节PQ 段的长度L ,当L 长度是多少时,物块恰能不脱离轨道返回A 点继续向右。