固体催化剂制备原理与技术
固体催化剂制备原理
固体催化剂制备原理1.固体催化剂的原理固体催化剂的作用原理主要涉及到催化剂表面上的活性中心和反应物之间的相互作用过程。
催化剂的活性中心通常是一些具有特定结构和化学性质的表面位点或团簇,它们能够吸附反应物分子,并且在表面上发生化学反应,从而加速反应物之间的相互转化。
在催化剂作用下,反应物分子在活性中心上发生吸附、解离、重组等过程,从而形成新的反应产物。
固体催化剂的活性中心通常具有特定的结构和化学性质,这些特性决定了催化剂对特定反应的催化活性和选择性。
催化剂的化学成分、晶体结构、表面性质等因素都会影响其活性中心的性质。
因此,固体催化剂的制备需要考虑到这些因素,通过选择合适的材料和合适的制备方法,来调控催化剂的表面性质和活性中心的性质,从而实现对特定反应的高效催化。
2.固体催化剂的制备方法固体催化剂的制备方法主要包括物理方法、化学方法和物理化学方法等几种。
物理方法主要是利用物理手段,通过物理过程来制备催化剂,如物理吸附、离子交换、溶胶-凝胶法、固体磺酸法等;化学方法主要是利用化学反应来制备催化剂,如沉淀法、共沉淀法、沉淀-还原法等;物理化学方法则是结合了物理和化学手段,比如物理化学合成法、模板法、微波辐照合成法等。
物理方法是通过物理作用,改变原料的物理性质而实现催化剂的制备。
此类方法适用于制备无机氧化物和复合催化剂。
化学方法是通过化学反应,改变反应物质的化学性质从而制备催化剂。
此类方法适用于制备金属催化剂和贵金属催化剂。
物理化学方法是结合了物理和化学手段,通过物理方法改变原料物理性质,再通过化学反应改变化学性质从而实现催化剂的制备。
此类方法适用于复杂结构的催化剂。
3.固体催化剂的制备原理固体催化剂的制备原理主要涉及到催化剂材料的选择、合成方法的选择和制备过程的条件控制。
首先是选择合适的催化剂材料,催化剂材料一般应具有高的比表面积、良好的热稳定性、合适的孔结构和丰富的活性中心。
其次是选择合适的合成方法,根据所需的催化剂性质和应用需求,选择合适的合成方法。
碳基固体酸催化剂制备及其催化性能分析研究
碳基固体酸催化剂制备及其催化性能分析研究碳基固体酸催化剂在催化领域具有广泛的应用潜力。
它们具有酸性强、稳定性高、孔隙结构合理等优势,可以用于多种催化反应,如酯化、醇醚化、环化反应等。
本文主要介绍了碳基固体酸催化剂的制备方法以及其催化性能的分析研究。
一、碳基固体酸催化剂的制备方法1.碳化物热解法:将含有碳源和酸源的混合物在高温下热解,生成碳基固体酸催化剂。
常用的碳源有蔗糖、蔬菜、木材等,酸源可以是硫酸、磷酸等。
2.碳化转化法:将预制的活性炭或其他含碳材料与酸性气体在高温下反应,生成碳基固体酸催化剂。
酸性气体可以是氢氟酸、硫酸蒸汽等。
3.化学气相沉积法:采用化学气相沉积技术,在高温下使含碳化合物和酸性气体反应,生成碳基固体酸催化剂。
以上制备方法可以根据需要进行改进和调整,以获得更好的催化性能。
1.酸性强度测试:采用一些表征酸性强度的方法,如NH3-TPD(氨气热脱附法)和FT-IR(红外光谱法),测定碳基固体酸催化剂的酸性强度。
这可以帮助了解催化剂中酸性位点的数量和强度。
2.酸性种类分析:利用FT-IR等技术,分析碳基固体酸催化剂的酸性种类。
例如,利用红外光谱来观察吸附在催化剂表面上的吸附物质的变化,可以进一步了解催化剂的酸性种类。
3.比表面积测试:使用比表面积测试仪来测定催化剂的比表面积。
较大的比表面积可以提供更多的活性位点,从而提高催化剂的催化性能。
4.催化性能测试:将碳基固体酸催化剂应用于具体的催化反应中,并通过反应转化率、选择性、稳定性等参数来评价催化性能。
可以进行批量或连续式反应器实验,并进行相应的产物分析,如GC、HPLC等。
通过以上的实验和分析,可以全面评估碳基固体酸催化剂的催化性能,为其在实际应用中的优化提供参考。
此外,还可以通过改变制备方法、调控催化剂结构、引入基团修饰等手段进一步提高碳基固体酸催化剂的性能。
固体超强酸催化剂的制备实验报告
固体超强酸催化剂的制备实验报告一、实验目的本实验旨在通过制备固体超强酸催化剂,掌握固体超强酸催化剂的制备方法和性质,为后续的催化反应研究提供基础。
二、实验原理固体超强酸催化剂是一种具有高催化活性和选择性的催化剂,其制备方法主要有两种:一种是通过将强酸负载在固体载体上制备,另一种是通过化学合成制备。
本实验采用的是化学合成法,即将氯化铟和氯化铵在水溶液中反应,生成氯化铵铟沉淀,再将其在高温下煅烧得到固体超强酸催化剂。
三、实验步骤1.将氯化铟和氯化铵按照1:1的比例加入到500ml三口烧瓶中,加入适量的去离子水,搅拌均匀。
2.将烧瓶放入水浴中,加热至80℃,继续搅拌2小时,使氯化铵铟充分沉淀。
3.将沉淀用去离子水洗涤3次,使其完全去除余氯离子和杂质。
4.将洗涤后的沉淀放入烘箱中干燥至恒重。
5.将干燥后的沉淀放入炉中,在氮气气氛下煅烧4小时,升温速率为5℃/min,煅烧温度为500℃。
6.取出煅烧后的样品,冷却至室温,称取适量样品,用乙醇溶解后进行催化活性测试。
四、实验结果经过催化活性测试,得到的固体超强酸催化剂表现出了较高的催化活性和选择性,对苯甲醇的酯化反应表现出了较好的催化效果。
五、实验结论本实验通过化学合成法制备了固体超强酸催化剂,并对其催化活性进行了测试,结果表明该催化剂具有较高的催化活性和选择性,可用于苯甲醇的酯化反应等催化反应中。
六、实验注意事项1.实验过程中应注意安全,避免接触氯化铟和氯化铵等有毒物质。
2.制备过程中应注意控制反应温度和时间,避免过度煅烧导致催化剂失活。
3.催化活性测试时应注意控制反应条件,避免影响测试结果。
4.实验结束后应及时清洗实验器材,保持实验室环境整洁。
催化剂常用制备方法
催化剂常用制备方法固体催化剂的构成●载体(Al2O3 )●主催化剂(合成NH3中的Fe)●助催化剂(合成NH3中的K2O)●共催化剂(石油裂解SiO2-Al2O3催化剂制备的要点●多种化学组成的匹配–各组分一起协调作用的多功能催化剂●一定物理结构的控制–粒度、比表面、孔体积基本制备方法:⏹浸渍法(impregnating)⏹沉淀法(depositing)⏹沥滤法(leaching)⏹热熔融法(melting)⏹电解法(electrolyzing)⏹离子交换法(ion exchanging)⏹其它方法固体催化剂的孔结构(1)比表面积Sg比表面积:每克催化剂或吸附剂的总面积。
测定方法:根据多层吸附理论和BET方程进行测定和计算注意:测定的是总表面积,而具有催化活性的表面积(活性中心)只占总表面的很少一部分。
内表面积越大,活性位越多,反应面越大。
(2)催化剂的孔结构参数密度:堆密度、真密度、颗粒密度、视密度比孔容(Vg):1克催化剂中颗粒内部细孔的总体积.孔隙率(θ):颗粒内细孔的体积占颗粒总体积的分数.(一) 浸渍法⏹通常是将载体浸入可溶性而又易热分解的盐溶液(如硝酸盐、醋酸盐或铵盐等)中进行浸渍,然后干燥和焙烧。
⏹由于盐类的分解和还原,沉积在载体上的就是催化剂的活性组分。
浸渍法的原理●活性组份在载体表面上的吸附●毛细管压力使液体渗透到载体空隙内部●提高浸渍量(可抽真空或提高浸渍液温度)●活性组份在载体上的不均匀分布浸渍法的优点⏹第一,可使用现成的有一定外型和尺寸的载体材料,省去成型过程。
(如氧化铝,氧化硅,活性炭,浮石,活性白土等)⏹第二,可选择合适的载体以提供催化剂所需的物理结构待性.如比表面、孔径和强度等。
⏹第三,由于所浸渍的组分全部分布在载体表面,用量可减小,利用率较高,这对贵稀材料尤为重要。
⏹第四,所负载的量可直接由制备条件计算而得。
浸渍的方法⏹过量浸渍法⏹等量浸渍法⏹喷涂浸渍法⏹流动浸渍法1.1、过量浸渍法⏹即将载体泡入过量的浸渍液中,待吸附平衡后,过滤、干燥及焙烧后即成。
工业催化--第八章 工业催化剂制备原理
– 待沉淀析出后,加入较大量热水稀释,以减少杂 质在溶液中的浓度,同时使一部分被吸附的杂质 转入溶液。
加入热水后,一般不宜放置,而应立即过滤,以防沉 淀进一 步凝聚,并避免表面吸附的杂质包裹在沉淀内 部不易洗净。
洗涤操作的主要目的是除去沉淀中的杂质。
均匀沉淀法常用的类似沉淀母体见下表:
4、浸渍沉淀法
浸渍沉淀法是在普通浸渍法的基础上辅以沉淀 法发展起来的一种新方法。
– 待盐溶液浸渍操作完成之后,再加沉淀剂,而使待 沉淀组分沉积在载体上。
5、导晶沉淀法
借助晶化导向剂(晶种)引导非晶型沉淀转化为 晶型沉淀的快速而有效的方法。
– 普遍用来制备以水玻璃为原料的高硅钠型分子筛, 包括丝光沸石,Y型与X型合成分子筛。
对沉淀剂选择有以下要求:
(1) 尽可能使用易分解并含易挥发成分的沉淀剂
– 常用的沉淀剂有:
碱类(NH4OH、NaOH、KOH); 碳酸盐[(NH4)2CO4、Na2CO4、CO2]; 有机酸(乙酸、草酸)等。 最处理常时用容的易是除NH去4O,H一和般(N不H会4)2遗CO留4,在因催为化铵剂盐中在,洗使涤催和化热剂
如此反复溶解、沉积的结果,消除了细晶体,获得了颗 粒大小均匀的粗晶体。
此时孔隙结构和表面积也发生了相应的变化。
–粗晶体表面积较小,吸附杂质少,吸留在细晶粒之 中的杂质也随溶解过程转入溶液。
– 老化的时间、温度及母液pH值等为老化应考虑的 几项影响因素。
在晶形催化剂制备过程中,老化对催化剂性 能的影响显著。
凝胶法特别适用于主要成分是氧化铝或二氧化 硅的催化剂或载体。
凝胶过程大致可分为缩合与凝结二个阶段。
第九章 催化剂制备基本原理资料
第九章催化剂制备基本原理第一课时:固体催化剂一般制备方法及晶体沉淀过程教学目的:了解固体催化剂孔结构与反应的关系及晶体沉淀过程教学难点:晶体沉淀过程知识重点:孔结构与反应的关系及晶体沉淀过程优良的工业催化剂须具有活性、选择性好,寿命长,机械强度高,容易再生,成本价廉,原料自给等各方面的先进指标。
要达到这些指标,都要经历一个周密的筛选和反复试制的过程。
已经投产的催化剂,也有必要通过改造、革新,不断地提高上述某一方面或几方面的性能。
以前研制一种催化剂,要经过数以万计的配方试验,盲目性很大,然而,半个多世纪以来,人们从大量的实践经验逐渐总结出了催化剂的制备规律,并通过基础研究的配合,逐渐建立起有一定科学依据的催化反应与催化剂的分类;而且由于有了比较有效的现代物理、化学的检验和评价方法,现在催化剂制备中的盲目性大大地减少了。
目前工业上使用的催化剂,大多数是固体催化剂,本章介绍的催化剂制备,除特别指出者外,都限于此类型。
催化剂制备一般经过三个步骤:(1) 选择原料及原料溶液配制。
选择原料必须考虑原料纯度(尤其是毒物的最高限量)及催化剂制备过程中原料互相起化学作用后的副产物(正、负离子)的分离或蒸发去除的难易。
(2) 通过诸如沉淀、共沉淀、浸溃、离子交换、化学交联中的一种或几种方法,将原料转变为微粒大小、孔结构、相结构、化学组成合乎要求的基体材科。
(3) 通过物理方法(诸如洗涤、过滤、干燥、再结晶、研磨、成型)及化学方法(诸如分子间缩合、离子交换、加热分解、氧化还原)把基体材料中的杂质去除,并转变为宏观结构、微观结构以及表面化学状态都符合要求的成品。
在这些步骤中涉及化学过程(晶形沉淀或共沉淀,胶凝或共胶凝,复分解,氧化还原,表面官能团交联),流体动力学过程(液体混合,悬浮液分离、扩散、沉降),热过程(加热、冷却、蒸发、凝缩、结晶、吸附、干燥、灼烧),以及机械过程(固体物料的混合、研磨、选粒、成型)。
本章主要叙述制备中为达到一定的宏观与微观结构所要求的化学过程原理及其有关流体动力学过程、热过程、机械过程的某些必要知识。
固体超强酸系列催化剂制备
1. 稀土固体超强酸S2O82- / Sb2O3 / La3+催化剂制备:将8g SbC13溶于40mL乙醇和20mL苯的混合液中,搅拌充分溶解后得透明锑醇液,再向溶液中加入10mL异丙醇,使醇化反应进行得更彻底,然后加入少量阴离子表面活性剂,并滴加氨水,使之发生水解反应,得到胶状沉淀,低温化12h左右,多次洗涤至无Cl-检出。
滤饼于110℃烘干后,研磨过100目筛。
搅拌下将Sb2O3浸渍在一定浓度的(NH4)2S2O8溶液中lh,用量为每克Sb2O3用15mL(NH4)2S2O8溶液,抽滤,烘干,置于马弗炉中焙烧,得S2O82-/ Sb203催化剂。
将Sb2O3浸渍在一定浓度的(NH4)2S2O8和一定浓度的La(NO3)3的混合液1h,抽滤、烘干置于马弗炉在不同的温度和时间下焙烧,得一系列S2O82-/ Sb2O3 / La3+固体超强酸催化剂,置于干燥器中备用。
以代号表示不同制备条件下所得催化剂。
参考文献:稀土固体超强酸S2O82- / Sb2O3 / La3+的制备及催化性能研究舒华1,连亨池2,闫鹏2,文胜2,郭海福2(1.学院生化系,554300;2.学院化学化工学院,526061)稀土,2008.12(29卷第6期)2. 稀土固体超强酸SO42-/TiO2-La2O3制备:将一定量La203溶于浓度为3.0 mol·L-1的稀盐酸中,配成La3+溶液,再按一定量比量取TiC14与La3+溶液混合,用NH4·H 0[ w(NH3)=12%]水解至溶液呈碱性,控制pH值在8~9,沉淀完全,静置24 h后进行抽滤,并用蒸馏水不断洗涤至沉淀无Cl-存在(用0.1 mol·L-1的AgNO3检验),于105℃烘干后研细.再将该粉末浸泡于浓度为0.8 mol·L-1的稀H2SO4中24 h,然后抽滤,放入干燥箱中在110℃烘干,于一定的温度下焙烧活化3 h,冷却后置于干燥器中备用。
固体催化剂的制备方法
固体催化剂的制备方法
固体催化剂的制备方法很多,通常可以分为物理法、化学法和生物法三种类型。
1. 机械混合法
机械混合法是通过粉末磨机、球磨机和高速剪切混合机等机械设备进行材料混合的方法,它可以快速、简便地制备固体催化剂。
机械混合法可以大大降低催化剂的制备成本,但其合成的催化剂粒度分布较广,需要进一步进行热处理。
2. 物理吸附法
物理吸附法是将活性组分直接吸附在载体表面,通常使用颗粒化的活性组分覆盖在载体上形成载体/活性组分组合物。
这种方法可以制备出粒径小而表面积大的催化剂,但由于活性组分粒径不均,其催化效果与均质混合法差异较大。
1. 沉淀法
沉淀法是将活性组分和载体分别分散在溶液中,然后通过将两者混合,加热、搅拌等方法使其沉淀在一起形成固体催化剂。
该方法具有制备工艺简单、操作方便、成本低等优点,可以制备出具有高度纯度和均匀分布的催化剂。
2. 溶胶-凝胶法
溶胶-凝胶法是将活性组分和载体分别分散在溶液中,形成胶体,通过淋洗、离心、干燥等方法,从而形成具有肖楞结构的带有孔道的高表面积催化剂。
该方法具有制备工艺精细、催化剂性能优良等优点,但对于某些组分需要煅烧或二次合成。
生物法制备固体催化剂采用生物技术将活性组分整合到载体中。
生物制备可以快速、可控地制备出催化剂,其制备过程中不需要高温、高压等条件,不会产生废水和废气,符合绿色环保要求。
三氧化二铝催化剂材料的制备—催化剂制备原理及其工艺技术
(4)干燥、焙烧和活化
焙烧的目的:
• ①通过物料的热分解,除去化学结合水和挥发性 杂质(如CO2、NO2、NH3),使之转化为所需要 的化学成分,其中可能包括化学价态的变化。
• ②借助固态反应、互溶、再结晶,获得一定的晶 型、微粒粒度、孔径和比表面积等。
• ③让微晶适度地烧结,提高产品的机械强度。
a)成型前物料的物理性质; b)成型后催化剂的物理、化学性质,选择适宜的 成型方法; c)催化剂运输、压力降等; d)催化剂使用条件。
3)成型用助剂
a)粘结剂 粘结剂的作用主要是增加固体催化剂的机械
强度; b)润滑剂
润滑剂的作用主要是降低成型时物料内部或 物料与模具间的摩擦力,使成型压力均匀,产 品容易脱模。
1. 混合法生产DBP催化剂
1.1 催化剂生产方法
研究催化剂的制造方法,具有极为重要的现实意义。一方面, 与所有化工产品一样,要从制备、性质和应用这三个基本方面来对 催化剂加以研究;另一方面,工业催化剂又不同于绝大多数以纯化 学品为主要形态的其它化工产品。催化剂(尤其是固体催化剂)多 数有较复杂的化学组成和物理结构,并因此形成千差万别的品种系 列、纷繁用途以及专利特色。因此研究催化剂的制备技术,便会有 更大的价值及更多的特色,而不可简单混同于通用化学品。
(4)干燥、焙烧和活化 焙烧温度的确定: 焙烧温度的下限——取决于干燥后物料中氢氧化物、硝酸 盐、碳酸盐、草酸盐、铵盐之类易分解化合物的分解温 度; 焙烧温度的上限——要结合焙烧时间一并考虑。当焙烧温 度低于烧结温度时,时间愈长,分解愈完全;若焙烧温度 高于烧结温度,时间愈长,烧结愈严重。
活性氧化铝催化剂的制备和性能评价
活性氧化铝催化剂的制备和性能评价活性氧化铝催化剂是目前应用广泛的重要固体催化剂,具有高催化活性、稳定性好等优点,并被广泛应用于石油化学、精细化学品、医药等领域。
本文从催化剂制备和性能评价两方面,探讨了活性氧化铝催化剂的制备及其性能评价。
一、催化剂制备活性氧化铝催化剂的制备涉及多种方法,主要包括溶胶-凝胶法、水热法、共沉淀法、气相沉积法等。
其中比较常用的是溶胶-凝胶法和共沉淀法。
1. 溶胶-凝胶法该方法首先将铝源以酸性或碱性介质中水解形成氢氧化铝,随后将产生的氢氧化铝与其他金属离子或化合物进行共浸渍,最终通过干燥和焙烧等工艺制备出催化剂。
该方法制备的活性氧化铝催化剂,微孔分布均匀,孔径较小,催化反应活性较高。
2. 共沉淀法该方法将含有金属阳离子的溶液与铵氢氧化物混合沉淀,形成沉淀后,加入铝源和硝酸盐,通过反应生成氢氧化物,经过干燥、焙烧等工艺制备催化剂。
该方法制备的催化剂具有较高的比表面积和大的孔径,有利于催化反应物的分子扩散和接触,因此催化反应活性较高。
二、性能评价活性氧化铝催化剂的性能评价主要包括物理性质和催化剂活性等两方面,其中物理性质包括比表面积、孔径、晶体结构、热稳定性等,而催化剂活性则是指催化剂对反应物进行转化的能力。
1. 物理性质评价比表面积是评价催化剂物理性质的重要参数,可以通过多种方法进行测定,如等温吸附法、氮气吸附法、比物法等。
孔径对催化剂的催化活性和选择性影响较大,一般来说,小孔径有利于催化反应物的分子扩散和接触。
晶体结构的稳定性对催化剂的长期稳定性也有很大的影响,一些新型催化剂的开发,也涉及到了晶体结构的优化设计。
热稳定性则是指催化剂在高温下的稳定性,通常通过热重分析等方法进行测定。
2. 催化剂活性评价催化剂活性评价一般是在实验室中进行的,评价方法包括催化反应器实验、微反应器实验、原位傅里叶变换红外光谱法等。
随着研究的深入,越来越多的研究方法可以精确地评价催化剂的活性和选择性,如原位观察技术、催化反应动力学研究等。
第二章:固体催化剂制备技术原理
第二章:固体催化剂制备技术原理
展恩胜;李勇;申文杰
【期刊名称】《工业催化》
【年(卷),期】2015(023)011
【摘要】催化剂和催化反应过程广泛应用于能源转化利用、化学品制造和环境治理等领域。
据估算,约有85%的化学工业过程涉及催化反应过程,因此催化也被认为是现代化学工业的基石。
近年来,提高催化反应过程效率和开发新催化反应已成为实现能源(资源)高效清洁利用和化学/化工生产绿色化的重要途径。
催化过程的核心和物质基础是催化剂,目前约有80%的工业催化过程采用固体催化剂(其余17%为匀相催化,3%为生物催化)。
【总页数】29页(P932-960)
【作者】展恩胜;李勇;申文杰
【作者单位】中国科学院大连化学物理研究所,辽宁大连116023;中国科学院大连化学物理研究所,辽宁大连116023;中国科学院大连化学物理研究所,辽宁大连116023
【正文语种】中文
【相关文献】
1.固体酸多相催化合成松香酯工艺研究(Ⅱ)—ZT-2载体固体酸催化剂制备与活性研究 [J], 宋冶;路安;王玉峰;郑立成;黄殿平
2.固体酸多相催化合成松香酯工艺研究(Ⅲ)--ZT-3载体固体酸催化剂制备与活性研究 [J], 宋冶;王玉峰;李亿;路安
3.发展中国家的固体废弃物管理(第二章确定固体废弃物特性) [J],
4.固体酸和固体超强酸负载CuⅠ的催化剂制备与催化合成碳酸二甲酯 [J], 黄海彬;孟凡会;李威渊;阴丽华;李忠
5.固体催化剂制备技术进展——第五届国际多相催化剂制备科学基础学术会议介绍[J], 钟顺和
因版权原因,仅展示原文概要,查看原文内容请购买。
固体催化剂制备方法及计算化学在催化剂研究中的应用
固体催化剂制备方法及计算化学在催化剂研究中的应用摘要:固体催化剂制备技术是催化剂研发的一个重要方向。
综述了近年来几种固体催化剂常规制备方法,包括溶胶-凝胶法、微波法、微乳液法、等离子体技术、超临界流体法、生物还原法等方法。
在文中还介绍了计算化学在催化剂研究中的相关应用。
关键词:固体催化剂制备方法计算化学进展催化剂曾称触媒,是一类改变化学反应速度而在反应中自身并不消耗的物质。
催化剂在现代化学工业、石油化工、能源、制药和环境保护中起着非常重要的作用,从大规模的石油化工生产到精细的高分子化工、制药过程,绝大部分的化学反应过程都需要催化剂的参与,因此,催化科学技术与国家经济发展、环境保护和人民生活改善紧密相关。
一、固体催化剂制备方法介绍催化科学技术领域的研究包括了新催化过程和新催化剂的开发、催化剂性能的改进、催化剂制备方法的改进和开发、催化剂表征技术的开发等众多方向。
固体催化剂制备方法的研究开发作为催化剂制备技术研究中重要的方向之一,一直以来都备受国内外科研人员的重视,近年来不断有新的研究成果问世。
本文通过对近年来国内外相关文献的查阅和归纳总结,对溶胶-凝胶法、微波法、微乳液法、等离子体技术、超临界流体法等几种关注度较高的固体催化剂常规制备方法的研究进展进行了概述。
1、溶胶-凝胶法溶胶-凝胶法又称胶体化学法,是指金属化合物( 无机或有机) 经过溶液、溶胶和凝胶而固化,再经过热处理而形成氧化物或其他固体化合物的方法。
采用溶胶凝胶法可以使无定形或介态的氧化物达到分子级混合,活性组分( 金属或金属氧化物) 能够有效地嵌入网状结构,不易受到外界影响而聚合长大,有利于提高催化剂的稳定性和分散性。
图1 溶胶凝胶法制备催化剂的工艺流程简图目前,溶胶-凝胶法已经在催化剂制备领域获得了大量的研究和应用,但也仍存在制备成本较高、工艺过程较长、凝胶后处理条件对制品影响较大以及一些工艺原料可能对人体及环境有害等缺点,如何进一步改良溶胶-凝胶技术,克服上述的缺点,扩大其工业应用范围也是今后研究的重点之一。
工业催化原理工业催化剂的制备和成型
4、流化喷洒浸渍法
对于流化床反应器所使用的细粉状催化剂,可在流化床中使载 体在流化状态下直接喷洒浸渍液进行浸渍操作,然后进行干燥 焙烧和活化,即可制备出催化剂。可见,这种方法可使浸渍、 干燥、分解、活化等操作在流化床中一次完成,因此具有工艺 流程简单、操作方便等优点。
化工资源有效利用国家重点实验室 18
浸渍法的最大优点是催化剂的活性组分利用率高,用 量少。因为活性组分大多仅分布在载体的表面,这对 贵金属催化剂有为重要。同时,浸渍法的操作工艺相 对较为简单,制备步骤也较少。
化工资源有效利用国家重点实验室 14
第二节 浸渍法
一、浸渍法的工艺流程
催化剂载体 催化剂活性组分浸渍 干燥
焙烧
负载型催化剂
化工资源有效利用国家重点实验室 15
(2)催化剂的制备 用预定量的铂化合物(如氯铂酸或氯铂酸铵),铼化合物(如高铼酸或 高铼酸铵),盐酸,去离子水混合成浸渍液,浸渍液与载体 γ-Al2O3的体 积比为1.0-2.5,在室温下浸渍12-24 h,然后过滤,60-80℃干燥6-10 h, 100-130℃干燥12-24 h,干空气中450-550℃,气剂比为500-1200的条件系 活化2-12 h,H2中400-500℃还原4 h,即得铂铼重整催化剂制备。
1
化工资源有效利用国家重点实验室
第一节 沉淀法
制备 γ-Al2O3实例:工艺流程示意图
化工资源有效利用国家重点实验室
2
第一节 沉淀法
制备 γ-Al2O3实例:具体过程
将工业硫酸产品粉碎,于 60-70℃温水中溶解,制成相对密度为 1.21-
1.23的Al2(SO4)3溶液,同时配制质量含量为20%的Na2CO3溶液。将此
第一节 沉淀法
固体酸催化剂
固体酸催化剂引言:固体酸催化剂是一种在化学催化中广泛应用的材料,具有高度的催化活性和选择性。
与传统液体酸催化剂相比,固体酸催化剂具有许多显著的优势,如易于分离回收、稳定性好、不易受污染等。
本文将介绍固体酸催化剂的基本概念、制备方法、催化机制以及应用领域等方面的内容。
一、固体酸催化剂的基本概念固体酸催化剂是指以固体物质为载体的酸催化剂,其活性部位通常是由酸性中心(如氧化物、酸基等)组成的。
固体酸催化剂的酸性被认为是由于其表面酸性基团形成的。
在固体酸催化剂中,酸性中心具有一定的酸解离常数和酸位密度,这些特性决定了固体酸催化剂的酸性强弱和催化活性。
酸解离常数越大,酸位密度越高,固体酸催化剂的酸性越强,催化活性也越高。
二、固体酸催化剂的制备方法固体酸催化剂的制备方法多种多样,常见的制备方法包括溶胶-凝胶法、固相法、共沉淀法、离子交换法等。
溶胶-凝胶法是一种常用的固体酸催化剂制备方法。
该方法通过将溶胶中的金属盐与凝胶剂混合,经过溶胶的凝胶化和干燥过程后得到固体酸催化剂。
固相法是一种通过固体相反应制备固体酸催化剂的方法。
该方法一般需要将反应物粉末混合均匀,然后在高温条件下进行反应,最终得到固体酸催化剂。
共沉淀法是一种通过共沉淀沉淀物来制备固体酸催化剂的方法。
该方法通常将金属盐和酸性物质的溶液混合,并通过调节溶液条件使其发生共沉淀反应,沉淀后得到固体酸催化剂。
离子交换法是一种通过固定相(如阳离子交换树脂)与水溶液中的酸性物质之间进行离子交换反应的方法来制备固体酸催化剂。
三、固体酸催化剂的催化机制固体酸催化剂的催化机制主要涉及酸中心与反应物之间的相互作用和反应过程。
固体酸催化剂的酸中心能够吸附反应物,使其发生活化,从而降低了催化反应的活化能。
酸中心还能够通过质子转移或酸碱中心之间的相互作用,参与中间体的形成和转化。
在催化过程中,固体酸催化剂的酸性中心可能发生脱附、失活、重组等反应。
这些反应可影响催化剂的活性和稳定性,甚至导致催化剂的失活。
催化剂制备原理-沉淀法
速
率
快,易产生错位和晶格缺陷,但 也易包藏杂质、晶粒较小 沉淀剂应在搅拌下均匀缓慢加 入,以免局部过浓
非晶形沉淀应在较浓溶液中进
溶液过饱和度
行,沉淀剂应在搅拌下迅速加 入
生成速率或长大速率
➢ 温度
晶
晶核生成速率
核
长
大
速
率
晶体颗粒大小
温度
结论: 晶核生成速率、长大速率存 在极大值〔晶核生成速率最 大时的温度比晶核长大速率 最大时的温度低得多〕 低温有利于晶核生成,不利于 晶核长大,一般得到细小颗粒 晶形沉淀应在较热溶液中进 行,并且热溶液中沉淀吸附杂 质少、沉淀时间短〔一般7080 oC〕
导向剂
• 配位〔共〕沉淀法
先在金属盐溶液中加入配位剂,形成金属配位物溶液,然后与沉淀剂一起并 流到沉淀槽中进行沉淀.由于配位剂的加入,控制金属离子的浓度,使得沉 淀物的粒径分布均匀
• 沉淀的后处理过程
➢ 老化 ➢ 过滤 ➢ 洗涤 ➢ 干燥 ➢ 焙烧 ➢ 成型 ➢ 活化
小结:
晶形沉淀形成条件: 沉淀应在稀溶液中进行 沉淀剂应在搅拌下均匀缓慢加入 较热溶液中进行 老化 非晶形沉淀形成条件: 沉淀应在较浓溶液中进行 沉淀剂应在搅拌下迅速加入 沉淀后,加入较大量热水稀释〔减少杂质〕,
〔防止形成结构或组成不均匀的沉淀〕
Ni(NO3)2 + HNO3溶液 = 1.1
NaNO3溶液 = 1.2
Na2SiO3溶液 = 1.3
Ni/SiO2制备 〔苯选择加氢催化剂〕
形成均匀的水溶胶或胶冻,再经分离、 洗涤、干燥、焙烧、还原即得催化剂
• 导晶沉淀法
借助晶化导向剂〔晶种〕引导非晶型沉淀转化为晶型沉淀的快速有效 方法 — 预加少量晶种引导结晶快速完整形成 例:制备高硅钠型分子筛〔丝光沸石、X型、Y型分子筛〕
固体超强酸光催化剂的制备及其光催化降解性能的研究(完稿)
摘要纳米二氧化钛具有价格低廉无污染,较高的光催化活性等优点,近年来得到广泛的研究。
由于它的量子效率低、太阳能的利用率低,限制了它的广泛应用。
因此,本实验对其进行超强酸改性,以提高它的光催化量子效率。
本文采用购买的商品化TiO2粉末(p25)为基体光催化材料,以超强酸SO42-加以改性。
即以每克P25加入到不同浓度的H2SO4中配置乳浊液,把乳浊液放在不同瓦数的微波水热条件下反应一定时间,再将其烘干并研磨得到SO42-/ TiO2催化剂。
实验中以甲基橙为模拟废水降解物进行光催化降解实验,对影响甲基橙光催化降解的因素进行了讨论,如微波的瓦数、H2SO4的量、制备固体催化剂的方法等。
结果表明:光催化剂对甲基橙有一定的吸附性能;在一定条件下,微波瓦数对催化的性能有明显影响;对于微波制备的催化剂和传统浸渍所制备的催化剂,微波条件的比较好,除此之外,H2SO4的浓度对催化剂的光催化性能也有一定影响。
关键词:二氧化钛;改性;固体超强酸;甲基橙;光催化降解ABSTRACTNano-titanium dioxide is low-cost, non-pollution, high photocatalytic activity, etc., and has been widely studied in recent years. Because of low quantum efficiency and low utilization of solar energy, its wide application is limited. Therefore, the modification is carried out, in order to improve photocatalytic quantum efficiency and solar energy utilization.Based on the purchase of the commercial TiO2(p25) as the matrix powder photocatalytic materials, modification of superacid SO42-. As per gram of p25 H2SO4 into different concentration of configuration in the emulsion, the emulsion in different wattage microwave hydrothermal reaction under the condition of a certain time, drying and grinding the SO42- / TiO2 catalysts.Experiment used for photocatalytic degradation of methyl orange as simulated wastewater degradation experiment, the factors affecting the photocatalytic degradation of methyl orange were discussed, such as microwave wattage、H2SO4 concentration、the preparation of solid catalysts, etc. The results show that Photocatalyst has certain adsorption performance of methyl orange; under certain condition, microwave wattage have obvious influence on the performance of the catalyst. Microwave preparation of catalyst is better than traditional impregnation method effect. In addition to, H2SO4concentration has some influence the photocatalytic performance of the catalysts.目录第1章概述 (1)1.1 纳米材料 (1)1.2 光催化技术的研究与发展概况 (2)1.3 纳米二氧化钛光催化性能的研究 (3)1.4 影响TiO2光催化效率的因素 (5)1.5 提高TiO2光催化剂活性的方法 (7)1.6 光催化剂的制备方法 (11)第2章实验方法 ....................................................................... 错误!未定义书签。
固体催化剂制备原理
固体催化剂制备原理固体催化剂制备原理主要包括一系列化学和物理过程,旨在获得具有特定化学组分、几何尺寸和物理结构的催化剂。
制备过程中涉及的关键原理和方法有浸渍法、溶胶-凝胶法、机械混合法、物理吸附法等。
首先,制备合格的固体催化剂需要经历制备、成型和活化等步骤。
制备步骤主要是使催化剂具有所需的化学组分,这通常通过选择合适的原料和化学反应来实现。
成型步骤则是使催化剂的几何尺寸和外形满足要求,以便在反应过程中能够有效地与反应物接触。
活化步骤则是通过特定的处理,使催化剂的化学形态和物理结构达到活泼态催化剂的要求。
浸渍法是一种常用的制备固体催化剂的方法,其原理是将含有活性组分(或连同助催化剂组分)的液态(或气态)物质浸载在固态载体表面上。
这种方法的优点在于可以使用外形与尺寸合乎要求的载体,省去催化剂成型工序,同时可以选择合适的载体,为催化剂提供所需的宏观结构特性。
溶胶-凝胶法是另一种重要的制备技术,其原理是将滚液中的化合物逐渐变成溶胶,然后溶胶粒子交联形成凝胶,并最终转化成固态干胶或气溶胶。
这种方法能够制备出具有肖楞结构的带有孔道的高表面积催化剂,有利于提高催化剂的活性和选择性。
机械混合法则是通过机械设备进行材料混合,快速、简便地制备固体催化剂。
物理吸附法则是将活性组分直接吸附在载体表面,制备出粒径小而表面积大的催化剂。
在制备过程中,助催化剂和载体的选择也至关重要。
助催化剂的加入可以改变催化剂的化学组成、晶体结构等,从而提高催化剂的活性和选择性。
而载体则主要用于分散和支撑活性组分,提高催化剂的机械强度和耐磨性。
综上所述,固体催化剂的制备原理涉及化学和物理学的多个领域,包括化学反应原理、材料成型原理、表面化学原理等。
通过选择合适的制备方法和条件,可以制备出具有优良性能的固体催化剂,满足各种化学反应的需求。
催化剂制备原理
催化剂制备原理
催化剂制备原理是通过特定的方法和条件,将一定的原料进行处理和加工,以得到具有催化活性和选择性的固体、液体或气体物质。
催化剂的制备过程通常包括以下几个步骤:
1. 原料选择:根据所需催化反应的特点和催化剂的应用环境,选择合适的原料作为催化剂的基础材料。
常见的原料包括金属、金属氧化物、配位化合物等。
2. 原料预处理:对选定的原料进行预处理,以提高其催化活性和稳定性。
预处理的方法包括洗涤、过滤、干燥、分散等,可去除原料中的杂质,调整其粒径和表面性质。
3. 催化剂形态设计:根据催化反应的需求和催化剂的载体设计,选择合适的形态结构。
常见的形态有粉末、颗粒、膜、纤维等。
形态设计可以调控催化剂的比表面积、孔结构、分散度等,从而影响其催化性能。
4. 活性组分引入:将活性组分引入到催化剂中,提高催化剂的催化活性。
活性组分可以是金属、金属氧化物、化学物质等。
引入方法包括共沉淀法、浸渍法、离子交换法等。
5. 后处理和表面改性:对制备好的催化剂进行后处理和表面改性,以进一步提高其催化性能和稳定性。
后处理方法包括还原、氧化、硫化、酸洗等,表面改性可通过调控催化剂的酸碱性、孔径分布、表面活性位点等。
催化剂制备原理的核心在于通过合适的化学、物理处理手段,调控催化剂的结构和性质,以实现所需的催化反应。
制备好的催化剂通常具有高的催化活性、选择性和稳定性,能有效降低反应温度、提高反应速率,并且可重复使用,具有重要的应用价值。
新型固体磺酸催化剂的制备研究
新型固体磺酸催化剂的制备研究引言新型固体磺酸催化剂具有广泛的应用潜力,对催化领域的发展具有重要意义。
本文将深入探讨新型固体磺酸催化剂的制备方法及相关研究进展,旨在为催化剂的合成提供参考和指导。
作用机制磺酸催化剂能够通过质子酸性位点在反应中发挥催化作用,从而加速化学反应速率。
其作用机制主要包括质子酸性位点的提供、反应物吸附和解离、催化剂与反应物的协同作用等。
固体磺酸催化剂的制备方法固体磺酸催化剂的制备方法有很多种,常见的包括固定型、可转移型和用作浸渍基质的磺化合物等。
以下将分别介绍这些方法。
固定型磺酸催化剂的制备固定型磺酸催化剂制备的一种常见方法是通过在底物分子中引入磺酸团来合成。
这可以通过将底物分子与磺化试剂反应得到。
此外,还可以通过合成固定型材料并将其与磺化试剂反应来制备固定型催化剂。
可转移型磺酸催化剂的制备可转移型磺酸催化剂的制备方法主要包括在溶液中合成和固定型催化剂的后处理两种。
在溶液中合成可转移型磺酸催化剂的方法较为简单,一般通过在溶液中加入磺酸试剂和底物分子,反应一定时间后得到催化剂。
固定型磺酸催化剂的后处理一般是将其从固体材料中提取出来,并进行适当的处理以增加其活性。
浸渍基质磺酸催化剂的制备浸渍基质磺酸催化剂是一种将磺酸团浸渍到基质上制备的催化剂,常见的基质包括氧化铝、硅胶等。
制备方法一般包括将磺酸试剂溶解在溶剂中,然后将基质放入溶液中浸渍一定的时间,最后进行干燥和煅烧。
固体磺酸催化剂的应用研究进展固体磺酸催化剂在有机合成、环境保护、能源领域等方面有着广泛的应用。
以下将分别介绍这些方面的研究进展。
有机合成领域的应用固体磺酸催化剂在有机合成中起到了重要的催化作用。
例如,可以利用固体磺酸催化剂催化酯化反应、醇醚化反应等。
此外,固体磺酸催化剂还可以催化酮类、醛类和酰胺的合成等。
环境保护领域的应用固体磺酸催化剂在环境保护领域的应用主要体现在有机废水处理、大气污染物净化等方面。
固体磺酸催化剂可以催化有机废水中污染物的降解,使其达到排放标准。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.催化剂的发展离不开催化新材料的开发,例如非晶态材料、纳米材料和介孔分子筛的合成和大量的应用实践。
同时,催化科学还有催化剂表征技术的发展。
2.非晶态材料:非晶态材料也叫无定形或玻璃态材料, 这是一大类刚性固体,具有和晶态物质可相比较的高硬度和高粘滞系数。
普通玻璃是固体吗?你一定会说,当然是固体。
其实,它不是处于固态(结晶态)。
对这一点,你一定会奇怪。
这是因为玻璃与晶体有不同的性质和内部结构。
你可以做一个实验,将玻璃放在火中加热,随温度逐渐升高,它先变软,然后逐步地熔化。
也就是说玻璃没有一个固定的熔点。
此外,它的物理性质也“各向同性”。
这些都与晶体不同。
经过研究,玻璃内部结构没有“空间点阵”特点,而与液态的结构类似。
只不过“类晶区”彼此不能移动,造成玻璃没有流动性。
我们将这种状态称为“非晶态”。
严格地说,“非晶态固体”不属于固体,因为固体专指晶体;它可以看作一种极粘稠的液体。
因此,“非晶态”可以作为另一种物态提出来。
除普通玻璃外,“非晶态”固体还很多,常见的有橡胶、石蜡、天然树脂、沥青和高分子塑料等。
纳米材料:纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。
介孔分子筛:介孔材料是一种孔径介于微孔与大孔之间的具有巨大表面积和三维孔道结构的新型材料。
介孔材料的研究和开发对于理论研究和实际生产都具有重要意义。
它具有其它多孔材料所不具有的优异特性:具有高度有序的孔道结构;孔径单一分布,且孔径尺寸可在较宽范围变化;介孔形状多样,孔壁组成和性质可调控;通过优化合成条件可以得到高热稳定性和水热稳定性。
它的诱人之处还在于其在催化,吸附,分离及光,电,磁等许多领域的潜在应用价值。
3.催化剂颗粒三重结构:crystal(晶体,可以使无孔或有规则孔道的)→grain(晶粒,若干晶体组成)→particle(颗粒)
4.固体催化剂的分类:所催化的反应物质一般是流体(液体或气体),与反应物不处于同一相中,因此为非均相催化剂。
区别于均相催化剂(催化剂与反应物处于同一相)
第二章金属氧化物类
绝大多数固体催化剂都是通过溶液制备的。
对溶液来说,溶质的结晶与温度和溶质的浓度有关。
结晶→过饱和。
过饱和区中,沉淀成粒子分两步:成核、晶粒生长。
沉淀法,氢氧化物和碳酸盐是比较理想的沉淀物。
因为1.过渡金属的这些盐类的溶解度很低,能达到很高的过饱和度,是沉淀获得的粒子比较细2.用加热的方法可以使之很容易分解得到对应高表面积氧化物而没有留下毒物(硫酸盐分解
的硫就是催化剂的毒物)3.氢氧化物和碳酸盐分解产生的安全和环境问题是最小的。
沸石(zeolite)是一种矿石,最早发现于1756年。
瑞典的矿物学家克朗斯提(Cronstedt)发现有一类天然硅铝酸盐矿石在灼烧时会产生沸腾现象,因此命名为“沸石”(瑞典文zeolit)。
在希腊文中意为“沸腾”(zeo)的“石头”(lithos)。
沸石分子筛是结晶铝硅酸金属盐的水合物,其化学通式为:Mx/m[(AlO2)x·(SiO2)y]·zH2O。
M代表阳离子,m表示其价态数,z表示水合数,x和y是整数。
沸石分子筛活化后,水分子被除去,余下的原子形成笼形结构,孔径为3~10Å。
分子筛晶体中有许多一定大小的空穴,空穴之间有许多同直径的孔(也称“窗口”)相连。
由于分子筛能将比其孔径小的分子吸附到空穴内部,而把比孔径大的分子排斥在其空穴外,起到筛分分子的作用,故得名分子筛。
水热法是19 世纪中叶地质学家模拟自然界成矿作用而开始研究的。
1900 年后科学家们建立了水热合成理论,以后又开始转向功能材料的研究。
目前用水热法已制备出百余种晶体。
水热法又称热液法,属液相化学法的范畴。
是指在密封的压力容器中,以水为溶剂,在高温高压的条件下进行的化学反应。
水热反应依据反应类型的不同可分为水热氧化、水热还原、水热沉淀、水热合成、水热水解、水热结晶等。
其中水热结晶用得最多。
水热结晶主要是溶解———再结晶机理。
首先营养料在水热介质里溶解,以离子、分子团的形式进入溶液。
利用强烈对流(釜内上下部分的温度差而在釜内溶液产生) 将这些离子、分子或离子团被输运到放有籽晶的生长区(即低温区) 形成过饱和溶液,继而结晶。