2013校内数学建模竞赛题范文
2013年江西理工大学数学建模竞赛题:最优灯光照明设计
![2013年江西理工大学数学建模竞赛题:最优灯光照明设计](https://img.taocdn.com/s3/m/9940b9b6c77da26925c5b094.png)
2013年江西理工大学数学建模竞赛题目(请先阅读“江西理工大学数学建模竞赛论文格式规范”)最优灯光照明设计灯光照明是一个灵活富有趣味的设计元素,是气氛的烘托剂和一室的焦点和主题所在,也能加强现有装潢和人们视觉上的层次感。
自古猿人钻木取火以来,人类经历了动物油灯、植物油灯、煤油灯到白炽灯、日光灯,乃至发展到现在琳琅满目的装饰灯、工程灯等。
随着社会的发展和人们生活水平的提高,人们对周围环境的亮化越来越重视。
灯光照明设计是亮化工程的重要组成部分。
一个好的照明设计不仅能保证周围恰当的照度和亮度,还可以体现事物立体感、质感和广告效应,增加事物的艺术感染力。
在现代家居建筑、影剧建筑、商业建筑和娱乐性建筑的环境设计中,灯光照明更成为整体的一部分。
灯具不仅起到保证照明的作用,而且十分讲究其造型、材料、色彩、比例、尺度,灯具已成为室内空间的不可缺少的装饰品。
当你走在繁华的城市夜色中,你看到一个个灯光广告营造了光辉灿烂、富丽堂皇、欢乐喜庆、节奏明快、神秘莫测、扑朔迷离等不同的视觉效果,当你来到商场、电影院、餐厅等场所,温馨柔和、宁静幽雅、怡情浪漫的氛围环绕四周…灯光照明设计包括室外照明、室内照明、舞台灯具和车用灯具等。
这些设计虽然目的不同,但设计方法基本类似。
一般的灯光照明设计过程包括光源选择、位置设计、综合布线和控制设计等。
这些步骤中光源选择和位置设计是设计的核心部分。
以一个长100米、宽80米、高9米的长方体中空体育场馆为例,现有氙灯灯具的功率、光效和价格等参数如下表。
请建立灯光照明设计数学模型,确定如何选择灯具(假设光源为点光源,半球形照射),分别安装在什么位置,使得室内任意位置的光强在8cd~20cd之间,从投资成本上要求总价格最低、从使用成本上总功率最小。
如果灯具光强将随使用时间衰减,试建立使用寿命5年下的室内灯光设计数学模型。
江西理工大学大学生数学建模竞赛论文格式规范●论文用白色A4纸单面打印;上下左右各留出至少2.5厘米的页边距;从左侧装订。
2013全国数学建模竞赛B题优秀论文
![2013全国数学建模竞赛B题优秀论文](https://img.taocdn.com/s3/m/f8c47af1700abb68a982fbd1.png)
基于最小二乘法的碎纸片拼接复原数学模型摘要首先对图片进行灰度化处理,然后转化为0-1二值矩阵,利用矩阵行(列)偏差函数,建立了基于最小二乘法的碎纸片拼接数学模型,并利用模型对图片进行拼接复原。
针对问题一,当两个数字矩阵列向量的偏差函数最小时,对应两张图片可以左右拼接。
经计算,得到附件1的拼接结果为:08,14,12,15,03,10,02,16,01,04,05,09,13,18,11,07,17,00,06。
附件2的拼接结果为:03,06,02,07,15,18,11,00,05,01 ,09,13, 10,08,12,14,17,16,04。
针对问题二,首先根据每张纸片内容的不同特性,对图片进行聚类分析,将209张图片分为11类;对于每一类图片,按照问题一的模型与算法,即列偏差函数最小则进行左右拼接,对于没有拼接到组合里的碎纸片进行人工干预,我们得到了11组碎纸片拼接而成的图片;对于拼接好的11张图片,按照问题一的模型与算法,即行偏差函数最小则进行上下拼接,对于没有拼接到组合里的碎纸片进行人工干预。
我们最终经计算,附件3的拼接结果见表9,附件4的拼接结果见表10。
针对问题三,由于图片区分正反两面,在问题二的基础上,增加图片从下到上的裁截距信息,然后进行两次聚类,从而将所有图片进行分类,利用计算机自动拼接与人工干预相结合,对所有图片进行拼接复原。
经计算,附件5的拼接结果见表14和表15该模型的优点是将图片分为具体的几类,大大的减少了工作量,缺点是针对英文文章的误差比较大。
关键字:灰度处理,图像二值化,最小二乘法,聚类分析,碎纸片拼接一、问题重述碎纸片的拼接复原技术在司法鉴定、历史文献修复与研究、军事情报获取以及故障分析等领域都有着广泛的应用。
近年来,随着德国“斯塔西”文件的恢复工程的公布,碎纸文件复原技术的研究引起了人们的广泛关注。
传统上,拼接复原工作需由人工完成,准确率较高,但效率很低。
特别是当碎片数量巨大,人工拼接很难在短时间内完成任务。
2013数学建模B题国家一等奖
![2013数学建模B题国家一等奖](https://img.taocdn.com/s3/m/19687969783e0912a2162a4b.png)
记下此时的 i 值为 z ,记作第 i 行左端长度为 Z = z 。 ③若 ai72 = 1,则记第 i 行右端长度为Y = 0 。
阵,1 ≤ k ≤ 19 。 ③人工干预:根据右对齐的特点找到第一列,第一列为 003,即第 4 幅图。
④用 Qk 矩阵与 H 4 矩阵分别相加,对应两个元素相等的情况和为 2 或 0,统计 2 与 0
的个数之和,命此值为匹配值。选出匹配值最大的与 003 匹配(类似比武招亲)。 再将此图片定为待匹配矩阵,用剩余 17 个矩阵与新的待匹配矩阵相匹配。依次类似
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包 括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):
B
我们的参赛报名号为(如果赛区设置报名号的话):
所属学校(请填写完整的全名):
ycu
参赛队员 (打印并签名) :1.
6,建立 19 幅图的三维矩 阵 U( Zni , Yni , n ), zni 代表第 n 幅图片的第 i 行的左端长度,
yni 代表第 n 幅图片的第 i 行的
右端长度,将处理后得出来的 所有数据导入此矩阵之中。
7,人工干预:由于汉字 的左对齐特点,很容易找到整篇文章的最左列,即第一列为附件 1 中编号 008 的图片。
3.1.1、附件 1 汉字拼接的模型建立:
2013B数学建模国赛论文
![2013B数学建模国赛论文](https://img.taocdn.com/s3/m/188178dcc1c708a1284a44f7.png)
dist Oder
跳变距离,与英文字母之间的行距和字母大小相关
存储图片拼合顺序的矩阵 拼接正确数目比 标准化处理后的变量 样本与聚类中心的欧式距离 效率因子
(0)
z ij
min F
(t)
五、模型的建立与求解
一、模型一的建立与求解 1.1 基于 canny 边缘检测算子的二值化处理 Canny 边缘检测是高斯函数的一阶导数,是对信噪比与定位能力的乘积的最优化 逼近算子,广泛运用于图像处理和模式识别问题中。在本题中,需要通过获取每个字 的边界来获取其位置信息,所以利用 Canny 算子进行边缘检测,确定每个字的边界。 Canny 算子的边缘检测最优性与以下标准有关: (1)好的信噪比,即非边缘点判为边缘点或将边缘点判为非边缘点的概率低。信噪 比越大,则边缘提取质量越好。 (2)好的定位性能,即检测出的边缘点要尽可能在实际边缘的中心。 (3)对单一边缘具有唯一响应,并且对虚假边缘响应应得到最大抑制。 算法步骤如下:
M [ x, y ] G x ( x, y ) 2 G y ( x, y ) 2
[ x, y ] arctan(Gx ( x, y ) / G y ( x, y )) M [ x, y ] 反映了图像的边缘强度, [ x, y ] 反映了图像的边缘方向。使得 M [ x, y ] 取得局部 最大值的方向角 [ x, y ] ,就反映了边缘的方向。
三、模型假设
1.假设每一个字体的大小可有一个正方形将其完全包含,而且这个正方形的长宽是固 定值。 2.假设和每个包含字的正方形都并行排列 (其底边在一条直线上) , 即不可能出现正方 形的底边在这条直线的下方或者是上方。 3.假设人工干预所做的处理都是有效的
3
四、符号说明
2013全国数模竞赛A题优秀论文祥解
![2013全国数模竞赛A题优秀论文祥解](https://img.taocdn.com/s3/m/cf3caaf35022aaea998f0fbe.png)
2013高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):车道被占用对城市道路通行能力的影响摘要本文主要研究车道被占用对城市道路通行能力的影响并建立了相应的数学模型。
针对问题一,考虑到交通信号灯的周期,我们选择1分钟为周期,结合不同车辆的标准车当量的折算系数,求出每个采样点的交通量,通过MATLAB作图,从定性方面对道路通行能力进行分析,然后通过基本通行能力和4个修正系数建立动态通行能力的模型。
图像显示,事故发生后(采样点5附近),实际通行能力下降至一个较低水平,并且横断面处的实际能力变化过程呈先下后上的波形变化,在事故解决(第20个采样点)以后,由图像看出实际通行能力持续上升。
针对问题二,利用问题一建立的模型,结合视频二,比较交通事故所占不同车道时横断面的实际通行能力,可以发现二者实际通行能力变化趋势大致相同,但视频二实际通行能力大于视频一实际通行能力。
可见占用车流量大的车道使道路通行能力降低更多。
针对问题三,首先我们建立单车道排队车辆数目的积分模型,单个车道的滞留车辆为上游车流量和实际通行能力的差值。
我们以30s为一个时间段,对视频一中的车流量进行统计,得到横截面处每个监测段的实际通行能力。
本题要求考虑三车道,总体排队长度不容易通过积分模型确定,所以我们将队列长度问题转化为车辆数目问题,通过视频资料统计120米对应24辆车,据此关系转换,从而得到车辆排队长度与事故横断面实际通行能力、事故持续时间和上游车流量的关系。
针对问题四,在对问题3研究的基础上,根据问题3建立的数学模型,建立起某一段时间间隔车辆排队的长度,然后,通过求得的关系得到当排队长度为140m的时候所对应的时间段,由于每段时间间隔设为30s,因此,可以求得排队长度到达上游时用的时间为347.7273s。
关键词:交通事故车道占用通行能力排队论一、问题的重述车道被占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面通行能力在单位时间内降低的现象。
【2013年高教社杯全国大学生数学建模竞赛赛题C】CUMCM2013C
![【2013年高教社杯全国大学生数学建模竞赛赛题C】CUMCM2013C](https://img.taocdn.com/s3/m/83e38316e3bd960590c69ec3d5bbfd0a7956d51a.png)
【2013年高教社杯全国大学生数学建模竞赛赛题C】
CUMCM2013C
全国大学生数学建模竞赛真题试卷复习材料2013高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)
C题古塔的变形
由于长时间承受自重、气温、风力等各种作用,偶然还要受地震、飓风的影响,古塔会产生各种变形,诸如倾斜、弯曲、扭曲等。
为保护古塔,文物部门需适时对古塔进行观测,了解各种变形量,以制定必要的保护措施。
某古塔已有上千年历史,是我国重点保护文物。
管理部门委托测绘公司先后于1986年7月、1996年8月、2009年3月和2011年3月对该塔进行了4次观测。
请你们根据附件1提供的4次观测数据,讨论以下问题:
1. 给出确定古塔各层中心位置的通用方法,并列表给出各次测量的古塔各层中心坐标。
2. 分析该塔倾斜、弯曲、扭曲等变形情况。
3. 分析该塔的变形趋势。
2013数学建模校赛题[精彩]
![2013数学建模校赛题[精彩]](https://img.taocdn.com/s3/m/22805d608f9951e79b89680203d8ce2f01666558.png)
2013数学建模校赛题A题最优网购问题网络购物(网购)由于简便快捷,深受网民的喜爱,已成一种购物时尚。
购物网站为了提高知名度和市场占有率等目的,除了常规的打折之外,还推出了名目繁多的促销活动。
这些活动的规则往往有专门的营销团队根据商品的销售和仓储情况以及顾客的消费心理来制定。
然而,对网民而言,最关心的问题是如何充分利用购物网站的折扣和当前的促销活动以便用尽可能少的钱买到自己喜欢的商品。
通常,一个订单的应付费用(应付款)由该订单的货款和一次运费(配送费)组成。
一个订单的货款即该订单中所有商品的售价之和减去该订单的优惠金额。
现仅考虑四个购物网站A、B、C和D,相关的商品的定价、库存情况和折扣见附件1,上述四个购物网站的单个订单的运费分别为5元、10元、10元和15元。
张三、李四和王五分别打算购买附件2、附件3和附件4中的物品(一人对应一个附件)。
问题1. 若购物网站A、B、C和D除了打折之外均无其它促销活动,请你建立一个数学模型帮上述三人分别制定一个尽量省钱的购物方案。
问题2. 最新消息:购物网站A推出了单张订单货款满59元免运费的活动,购物网站B推出了单张订单货款满99元免运费的活动,购物网站C推出了单张订单货款满99元减10元的活动,购物网站D推出了单张订单货款满200元减30元的活动。
以上活动不以此类推。
请你建立数学模型帮上述三人分别制定一个尽量省钱的购物方案。
B题:招聘问题某单位组成了一个五人专家小组,对101名应试者进行了招聘测试,各位专家对每位应聘者进行了打分(见附表),请你运用数学建模方法解决下列问题:(1)补齐表中缺失的数据,给出补缺的方法及理由。
(2)给出101名应聘者的录取顺序。
(3)五位专家中哪位专家打分比较严格,哪位专家打分比较宽松。
(4)你认为哪些应聘者应给予第二次应聘的机会。
(5)如果第二次应聘的专家小组只由其中的3位专家组成,你认为这个专家组应由哪3位专家组成。
数据附表序号专家甲专家乙专家丙专家丁专家戊1 68 73 85 88 862 92 69 74 65 833 88 76 76 70 804 81 73 84 98 945 83 79 95 83 986 84 67 86 56 667 76 76 68 64 868 53 96 65 95 949 * 97 76 87 6410 66 93 80 90 7311 85 95 81 81 6912 78 66 99 90 7113 58 86 72 63 8114 94 84 70 78 8616 93 66 91 74 9717 63 74 90 63 9218 91 79 83 85 8419 94 95 64 96 9520 56 67 91 97 5621 61 80 79 70 6922 86 96 79 84 7523 69 90 65 65 7624 92 85 82 66 6825 68 * 65 84 8726 71 66 61 75 9427 61 74 76 87 7828 63 80 69 76 8429 86 68 95 71 8430 64 83 61 90 9631 60 85 96 67 8732 82 84 97 78 6033 88 92 66 59 9534 60 91 78 78 8135 59 97 75 76 8836 65 87 86 64 9637 84 78 83 61 8538 65 93 62 99 8339 92 99 79 86 9040 84 82 92 95 7641 94 90 65 66 8442 90 79 85 81 5843 67 89 84 75 9344 63 82 65 69 6645 85 97 83 84 7047 88 88 96 80 8748 62 98 74 93 6249 80 93 85 82 7250 87 84 80 93 6451 94 85 94 74 9352 55 75 93 84 6053 90 68 88 92 8354 59 95 69 75 7455 98 63 80 63 8456 93 55 66 84 9657 75 64 65 94 6358 63 94 * 82 7659 71 82 61 57 6160 55 72 95 85 6461 86 55 67 62 8062 51 65 78 94 8063 81 94 73 63 9564 90 63 95 91 8765 60 83 64 79 8366 74 94 96 89 7667 63 74 91 94 8368 58 63 84 84 7269 68 93 91 82 9170 70 83 75 96 7671 86 73 73 75 9472 97 83 97 64 6873 78 81 87 78 6974 63 71 92 86 6875 67 82 87 63 8676 91 73 90 79 7478 87 83 65 91 6879 65 84 73 87 9880 78 64 82 85 9081 81 92 65 77 8282 90 82 92 66 9083 64 73 84 58 7684 78 94 77 67 9585 61 84 75 69 7286 90 93 72 94 7387 93 73 83 90 9088 69 72 88 94 7489 88 63 88 76 6690 76 56 72 75 8291 82 74 94 89 8792 60 65 84 85 7393 75 84 66 70 7594 79 74 78 63 8595 74 64 91 94 7996 70 55 95 83 6997 93 94 74 73 8598 85 83 79 95 7199 81 63 70 79 95100 86 85 92 87 74101 92 78 85 70 93注:*表示专家有事外出未给应聘者打分。
2013高教社杯全国大学生数学建模竞赛A题论文.
![2013高教社杯全国大学生数学建模竞赛A题论文.](https://img.taocdn.com/s3/m/2923f42e964bcf84b9d57ba1.png)
2013高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):吉林医药学院参赛队员(打印并签名) :1. 于邦文2. 薛盈军3. 杨国庆指导教师或指导教师组负责人(打印并签名):霍俊爽(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期: 2013 年 9 月 16 日赛区评阅编号(由赛区组委会评阅前进行编号):2013高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):车道被占用对城市道路通行能力的影响摘要本文通过对城市中车道因交通事故被占用问题的分析,探讨了事故所处道路横断面的实际通行能力的变化过程,并依据事故路段车辆排队长度与实际通行能力、事故持续时间、路段上游车辆流量之间的关系,最后针对各个问题建立模型并求解。
2013数学建模美赛题目(中文版)[1]
![2013数学建模美赛题目(中文版)[1]](https://img.taocdn.com/s3/m/2a43be292f60ddccda38a018.png)
2013 ICM问题problem A:当用矩形平底锅高温加热物品时,热量一般集中于4个角落,因而在角落的物品会被焙烧过度(较小程度在角落的物品一部分会被焙烧过度)。
当用一个圆锅加热物品时,热量是均匀分布在整个外缘,因而物品不会在边缘被焙烧过度。
然而,大多数烤箱是长方形的,而圆型的锅被认为效率低的。
建立一个模型以显示不同形状如矩形圆形或者其他介于两者之间的形状的锅在整个外缘的热量分布。
假设1长方形烤箱的宽/长=W/L ;2 每个锅的面积是确定的常熟A;3 最初,烤箱里的烤架两两之间间隔均匀。
建立一个模型,该模型可用于在下列条件之下选择最佳形状的锅:1烤箱中,锅数量(N)最大;2均匀分布的热量(H)最大的锅;3 优化组合条件1和条件2,以比重p和(1-p)的不同分配来说明结果与W/L 和p的不同值的关系。
problem B :对世界来说,新鲜的水资源是限制发展的制约因素。
对2013年建立一个确实有效的,可行的和具有成本效益的水资源战略数学模型,以满足2025年[从下面的列表选择一个国家]预计的用水需求,并确定最佳水资源战略。
尤其是,你的数学模型必须解决水的存储,运动,盐碱化和保护等问题。
如果可能的话,用你的模型,探讨经济,物理和环境对于你的战略的影响。
提供一个非技术性的文件,向政府领导介绍你的方法,介绍其可行性和成本,以及为什么它是“最好的的水战略选择。
”国家有:美国,中国,俄罗斯,埃及,沙特阿拉伯3.网络建模的地球的健康背景:社会是感兴趣的发展和使用模型来预测生物和环境卫生条件我们的星球。
许多科学研究认为越来越多的压力在地球的环境和生物吗系统,但是有很少的全球模型来测试这些索赔。
由联合国支持的年生态系统评估综合报告》显示,近三分之二的地球的维持生命的生态系统——包括干净的水,纯净的空气,和稳定的气候-正在退化,被不可持续的使用。
人类是归咎于很多这次的损坏。
不断飙升的要求食品、新鲜水、燃料和木材有贡献到戏剧性的环境变化,从森林砍伐,空气,土地和水的污染。
2013高教社杯全国大学生数学建模竞赛A题
![2013高教社杯全国大学生数学建模竞赛A题](https://img.taocdn.com/s3/m/db2fd2b78762caaedd33d4dc.png)
2013高教社杯全国大学生数学建模竞赛A题2013高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》。
我们完全明白,在竞赛开始后参赛队员不能以任何方式与队外的任何人研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料,必须按照规定的面的车辆数。
实际通行车流量的采集与处理视频1中出现车辆多种多样,要统计车流量数据,需先统一车流标准,把视频中出现的车辆进行折算,以小轿车做为标准,对各个型号车辆进行折算[2],折算系数如表1所示。
表1 车辆折算系数附件中出现汽车小轿车中型车大客车车辆折算系数在事故发生前,道路的通行能力足以应对上游车流量,当发生事故时,事故点上游共有10辆小轿车与5辆大客车,车流量为20pcu。
之后一分钟(16:42:32-16:43:32),上游又有车流量21pcu,但只通过了21pcu,说明造成了交通拥堵和排队情况。
“附件5”可知,相位时间为30s,红灯时间为30s,即60s为一个周期,进行统计时间周期也为60s,不会造成因交通灯引起的误差。
实际通行流量是指折算后通过事故横断面的车流,上游车流量是指折算后从各个路口驶入事故横断面的车流。
对附件1中事故横断面处的车流量进行统计,得出实际通行车流量情况,并统计横断面上游的车流量,在统计过程中发现视频并不是完全连续的,例如在16:49:40时出现了突变,直接到16:50:04,跳跃间隔为24s,但于堵车情况较重,可以根据车流量守恒原则和车辆追踪,统计出通过横断面处的车流量及上游车流量。
但16:56:04等时间,跳跃时间较长,近2分钟,无法精确统计,如表2处“空缺”所示。
在17:00:07到17:01:20时视频发生跳变,在此期间事故车辆驶离道路,之后为事故恢复时间。
为了描述事故发生开始到车辆离开车道全程的实际通行能力变化情况,将视频中空缺数据通过灰色预测(程序见附录)进行填补,结果如表2所示。
2013年 深圳杯 数学建模 C题论文
![2013年 深圳杯 数学建模 C题论文](https://img.taocdn.com/s3/m/e66a8f01fad6195f312ba6bf.png)
答卷编号(参赛学校填写):答卷编号(竞赛组委会填写):论文题目:(标明A、B、C、D之一)C 垃圾减量分类活动中社会及个体因素的量化分析组别:(填写研究生、本科生、专科生或中学生)本科生参赛队员信息(必填):参赛学校:黑龙江工程学院答卷编号(参赛学校填写):答卷编号(竞赛组委会填写):评阅情况(学校评阅专家填写):学校评阅1.学校评阅2.学校评阅3.评阅情况(联赛评阅专家填写):联赛评阅1.联赛评阅2.联赛评阅3.垃圾减量分类活动中社会及个体因素的量化分析摘要随着社会的不断发展,垃圾的数量越来越多,面对这一令人头疼的问题,为了更好地保护环境,我们应尽量减少垃圾并对已有的垃圾及时分类整理再循环利用。
目前,深圳是正在进行垃圾减量分类试点工作,通过天景花园和阳光家园减量分类工作的经验,两个小区分别采用个各自的方法对垃圾进行减量分类,效果显著,说明采用正确的做法对控制垃圾的量是有效果的。
通过对实际情况的规范性作出合理的假设,结合现有的处理垃圾理论,对比我们建立一个对垃圾减量过程的层次分析模型,并对数据进行分析、总结、对比、设立参数,较方便的描述了天景花园和阳光家园减量分类过程并反应了社会因素和个体因素对垃圾总量的影响。
针对所有问题①通过分析比较,用层次分析模型描述深圳天景花园和阳光家园垃圾减量分类过程,用假定的参数描述了社会因素和个体因素,较为合理。
②通过统计回归模型,利用MATLAB统计工具箱中的命令,得到回归系数及其方程,由此来计算两试点小区垃圾数量问题的相关性以及进行垃圾减量分类效果分析,得出深圳市未来5年推进减量分类工作关键措施及其得到的结果。
关键词减量分类量化分析回收利用问题重述垃圾减量分类活动是社会通过教育、督导、激励等措施影响个人及家庭的垃圾产生动因(个体因素),最终减少垃圾总量并分类回收良性结果的控制过程。
(1)构建一个量化模型描述深圳天景花园、阳光家园分类过程。
(2)分析小区内四组垃圾组分本身的数量存在什么样的相关性。
2013年深圳杯数学建模B题参考论文
![2013年深圳杯数学建模B题参考论文](https://img.taocdn.com/s3/m/101e4f8edc3383c4bb4cf7ec4afe04a1b071b0cc.png)
2013年深圳杯数学建模B题参考论文2013年山西赛区数学建模联赛承诺书我们仔细阅读了山西赛区数学建模联赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):B我们的参赛报名号为:参赛队员(打印并签名) :目录一、摘要 (3)二、关键词 (3)三、问题重述与分析 (3)四、模型假设 (3)五、符号说明 (9)六、模型的建立与求解 (9)七、模型的检验 (10)八、模型的优缺点分析 (10)九、求解 (10)十、合理化建议 (12)参考文献 (13)深圳关内外交通拥堵探究与治理一、摘要交通拥堵是目前中国各大城市面临的共同难题,但拥堵的成因各不相同,因而需要在摸清规律的基础上有针对性地提出解决方案。
就深圳而言,交通堵塞对人们出行造成了较大的影响,造成深圳城市交通拥堵主要原因:1、城市功能区构建。
2、城市公交发展相对迟缓,市民出行系统结构不合理。
随着深圳城市的不断扩大,市民出行距离的加大,公交车辆还远不能满足市民上下班或者出行的需要,城市公交发展却相对迟缓,市民出行系统结构不合理,导致了交通环境的进一步恶化。
3、城市道路交通规划滞后。
例如老城区路幅不宽,支路多、小街小巷多而且与主干道衔接相通,车辆交汇频繁致使交通不畅,成为“瓶颈”路口。
4、城市道路资源时常被侵占。
5、部分路段红绿灯过多。
6、市内停车供求矛盾突出。
7、市民交规意识薄弱。
公共空间中以各种方式进行的空间移动(即交通)的需求,它具有需求时间和空间的不均匀性、需求目的的差异性等特征。
2013数学建模竞赛B组获奖论文
![2013数学建模竞赛B组获奖论文](https://img.taocdn.com/s3/m/0569f8dfb14e852458fb57c2.png)
承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):数学建模指导小组(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期:2013年 9月 16 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):碎纸片的拼接复原模型摘要本文针对碎片拼接问题,根据碎片图像的边缘特征,对碎片图像的灰度矩阵排列重组,得到原图像的灰度矩阵,进而恢复了原图像。
针对问题一,利用图像的灰度矩阵,对每张碎片的左侧向量与剩余碎片的右侧向量分别求相关系数,对相关系数进行分析得到每张碎片的左侧碎片,以此类推,借助Matlab程序最终将所有碎片拼接并还原得到原图像。
2013全国大学生数学建模山西赛区山西财经大学华商第43队论文----C题-古塔变形
![2013全国大学生数学建模山西赛区山西财经大学华商第43队论文----C题-古塔变形](https://img.taocdn.com/s3/m/6c4ca2745acfa1c7aa00cc0b.png)
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): C我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):山西财经大学华商学院参赛队员(打印并签名) :1. 胡珺怡2. 赵萌3. 陈茜指导教师或指导教师组负责人(打印并签名):张培强日期: 2013 年 9 月 16 日赛区评阅编号(由赛区组委会评阅前进行编号):2013高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):古塔的变形分析摘要本文针对古塔的变形这,由于长时间承受自重、气温、风力等各种作用,偶然还要受地震,飓风的影响,古塔会产生各种变形,为保护古塔,文物部门需要对古塔进行观测,了解古塔的变形情况。
因为当3个观测点位于一个圆周上时,可以用图解或解析的方法确定圆心的位置;当观测点数大于3时,可以用最小二乘进行曲线拟合,计算出圆心的坐标。
本文用最小二乘法进行曲线的拟合,得到古塔各层中心点坐标。
使用线性回归,曲线拟合法,梯度下降法得到各层中心所在的直线方程。
对直线进行投影,利用曲率对古塔的变形、弯曲、扭曲进行了研究。
通过对问题一所给数据的处理分析,用matlab对其中已知数据的作图发现所给的数据呈圆形,从而建立圆形塔模型,画出相应图形。
发现题设所给的数据所画的图形拟合程度极高。
2013年全国大学生电工杯数学建模竞赛一等奖论文(B题)
![2013年全国大学生电工杯数学建模竞赛一等奖论文(B题)](https://img.taocdn.com/s3/m/95250b4c33687e21af45a973.png)
%
(1-2b)
化学不完全燃烧热损失是由于烟气中残留有诸如 CO ,H 2 ,CH 4 等可燃气体成分而 未释放出燃烧热就随烟气排出所造成的热损失。 气体不完全燃烧产物为 CO , H 2 , CH 4 等可燃气体,则其热损失应为烟气中各可燃 气体体积与它们的体积发热量乘积的总和。 题中说明过量空气系数对化学不完全燃烧热损失影响较小,故可视为常数处理。所 以,化学不完全燃烧热损失与过量空气系数没有直接关系,故可以假设化学不完全燃烧 热损失 q3 为一常数,即: q3 K (1-3) 5.1.4 机械不完全燃烧热损失 q4 的计算 机械不完全燃烧热损失是由于进入炉膛的燃料中, 有一部分没有参与燃烧或未燃尽 而被排出炉外引起的热损失。论其实质,是包含在灰渣(包括灰渣、漏煤、烟道灰、 飞 灰以及溢流灰、冷灰渣等)中的未燃尽的碳造成的热量的损失。对层燃炉而言,主要由 灰渣、漏煤、和飞灰三项组成。 在实际中因为漏煤的含量相对较少所以本文不考虑漏煤的量,对于运行中的锅炉, 分别收集它的每小时的灰渣和飞灰的质量 Ghz 和 G fh (kg/h) ,同时分析出它们所含可燃 物质的质量百分数 Chz 和 C fh (%)和可燃烧的发热量 Qhz 和 Q fh (kJ/kg)则灰渣和飞灰损
q2 q3 q4 q5 q6 I py
Qgy Qr H Wy Ghz G fh ahz a fh ahz
y
py hz
Ay (c ) hz
hz gl
5.模型的建立和求解
5.1 问题一:确定锅炉运行的最佳过量空气系数 5.1.1 问题的分析 因为 q 2 q3 q 4 先减少后增加,有一个最小值,与此最小值对应的空气系数称为最 佳过量空气系数。 所以首先要求出 q2 、q3 和 q4 的表达式。 然后求得 q 2 q3 q 4 的表达式, 在对这个表达式进行求导,让导数等于 0 这就是最佳过量空气系数。 5.1.2 排烟热损失 q2 的计算 由于技术经济条件的限制,烟气离开锅炉排入大气时,烟气温度比进入锅炉的空气 温度要高得多,排烟所带走的热量损失简称为排烟热损失。 排烟热损失可按如下公式计算[3]: (1-1) Q2 I py pyVk0 (ct ) amb kJ / kg
西安交大2013年数学建模校内赛赛题
![西安交大2013年数学建模校内赛赛题](https://img.taocdn.com/s3/m/65a31b2ea5e9856a561260a0.png)
A题我国中长期人口结构与经济发展研究2013年两会期间传来消息,人口和计划生育委员会将被撤销,其计划生育管理和服务职责将与卫生部合并,组建国家卫生和计划生育委员会。
这被外界认为是中国未来将调整人口政策的信号。
目前,中国的生育率已经远远低于更替水平,未来人口结构极度老化和急剧萎缩不可避免。
如何适度调整人口政策,增加我国的经济活力,使经济能持续发展,是我国当前宏观人口政策研究的一个重要课题。
问题1:请查找相关数据,建立数学模型研究是否应该逐步放宽二胎政策?抑或直接取消计划性政策?问题2:请利用互联网数据,任选一个角度(比如老龄化,延迟退休年龄等),建立数学模型研究人口结构与经济发展的关系。
问题3:基于你的数学模型,说明如何制定有利于经济中长期发展的人口政策,给出你的理由与合理建议,并写封信给国家卫生和计划生育委员会阐述你的观点。
B题深圳关内外交通拥堵探究与治理(选自2013年“深圳杯”数学建模夏令营题目)交通拥堵是目前中国各大城市面临的共同难题,但拥堵的成因各不相同,因而需要在摸清规律的基础上有针对性地提出解决方案。
由于历史的原因,深圳由关内关外两个区域组成。
关外由宝安、龙岗两个行政区和光明新区、龙华新区、坪山新区、大鹏新区四个功能区组成;关内含罗湖、福田、南山、盐田四个行政区。
关外与关内由自然山丘隔开,沟通关内外的主要通道有宝安大道/新安(22.548005,113.902194)、107国道南头(22.552058,113.910531)、同安路荔山(22.558983,113.916094)、广深高速同乐(22.569654,113.923931)、南光高速(22.599412,113.932321)、沙河西路白芒(22.625915,113.938683)、福龙路(22.595767,114.016038)、梅观路(22.595717,114.050027)、清水河(22.618864,114.094852)、布吉关(22.585331,114.115838)、沙湾(22.605763,114.163884)、北山道盐田坳(22.604894,114.218802)、盐坝高速背仔角(22.601422,114.344448)等检查站,括号内为Google地图经纬度坐标。
2013年全国大学生数学建模竞赛国家一等奖论文 D题基于统计分析的
![2013年全国大学生数学建模竞赛国家一等奖论文 D题基于统计分析的](https://img.taocdn.com/s3/m/9d94b29f83d049649b66589a.png)
基于统计分析的公共自行车服务系统评价模型研究摘要本文针对温州市鹿城区公共自行车管理中心提供的数据,首先对所给数据进行预处理,建立了相关统计模型,运用SPSS20.0、matlab等软件进行统计分析,最后应用关联度分析法对系统进行评价,并提出改进建议。
针对问题一:在已处理好的数据基础上,建立了频率与频数、用车时长的统计模型,利用SPSS软件分别统计各站点20天中每天及累计的借车及还车频次,得到每天和累计的借车和还车频次(见表五和表六);并对所有站点按累计的借车和还车频次排序(见表七和表八);对每次用车时长的分布情况进行统计分析,画出其分布图(见图一和图二),由图可知:每天用车时长分布形状非常相似且近似服从2 分布。
针对问题二:在已处理好的数据基础上,建立了使用公用自行车的不同借车卡数量的统计模型,利用SPSS统计20天中每天使用不同借车卡数量,其中最大的为第20天的19885;统计了每张借车卡累计借车次数的分布图(见图三),对图形分析可得:借车次数在10次以内的占54.86%,借车次数在10至30次占35.88%,借车次数在30至50次占7.51%,借车次数在50以上占1.75%,最大借车次数高达182次。
针对问题三:根据问题一的分析,已给站点累计所用公共自行车次数最大的一天是第20天。
对于第一小问:利用第20天数据,运用floyd算法求得两站点间最短时间,将站与站间的距离定义为两站间的最短时间与自行车速度之积,同时考虑到了速度和时间的随机误差影响;利用距离的定义,通过matlab计算得两站点最长距离为:675,最短距离为:0.08。
利用问题一中的频数模型,对借还车是同一站点且使用时间在1分钟以上的借还车情况进行统计,得借车频次表(见表十一)和用车时间分布图(见图四)。
对于第二小问:根据问题一的统计,第20天的借车和还车频次最高的站点分别为42(街心公园)和56(五马美食林),利用SPSS统计出两站点借、还车时刻和用车时长的分布图(见图五,图六,图七),由图形分析可知:借还车的高峰期与人们上下班的时间非常吻合,在借还车时间上大体都在一小时以内。
2013数模竞赛论文模板
![2013数模竞赛论文模板](https://img.taocdn.com/s3/m/c735f9b0fd0a79563d1e7204.png)
承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):交巡警服务平台的设置和调动摘要本题中我们采用了0-1整数规划方法,将警力平台优化以及分配问题转化为指派问题,建立多目标优化的数学模型。
本文的优点是计算结果非常详细,思路清晰易行,得到了比较好的优化结果。
对于问题一,我们首先应用DIJKSTRA算法求出A区各路口的最短路径矩阵。
然后以各服务平台为中心,与该服务台距离最短的路口都属于该平台管辖(结果见表1)。
【全国大学生数学建模竞赛获奖优秀论文作品学习借鉴】CUMCM2013A
![【全国大学生数学建模竞赛获奖优秀论文作品学习借鉴】CUMCM2013A](https://img.taocdn.com/s3/m/555e8c4e81c758f5f71f6735.png)
2013高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题车道被占用对城市道路通行能力的影响车道被占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面通行能力在单位时间内降低的现象。
由于城市道路具有交通流密度大、连续性强等特点,一条车道被占用,也可能降低路段所有车道的通行能力,即使时间短,也可能引起车辆排队,出现交通阻塞。
如处理不当,甚至出现区域性拥堵。
车道被占用的情况种类繁多、复杂,正确估算车道被占用对城市道路通行能力的影响程度,将为交通管理部门正确引导车辆行驶、审批占道施工、设计道路渠化方案、设置路边停车位和设置非港湾式公交车站等提供理论依据。
视频1(附件1)和视频2(附件2)中的两个交通事故处于同一路段的同一横断面,且完全占用两条车道。
请研究以下问题:1.根据视频1(附件1),描述视频中交通事故发生至撤离期间,事故所处横断面实际通行能力的变化过程。
2.根据问题1所得结论,结合视频2(附件2),分析说明同一横断面交通事故所占车道不同对该横断面实际通行能力影响的差异。
3.构建数学模型,分析视频1(附件1)中交通事故所影响的路段车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量间的关系。
4.假如视频1(附件1)中的交通事故所处横断面距离上游路口变为140米,路段下游方向需求不变,路段上游车流量为1500pcu/h,事故发生时车辆初始排队长度为零,且事故持续不撤离。
请估算,从事故发生开始,经过多长时间,车辆排队长度将到达上游路口。
附件1:视频1附件2:视频2附件3:视频1中交通事故位置示意图附件4:上游路口交通组织方案图附件5:上游路口信号配时方案图注:只考虑四轮及以上机动车、电瓶车的交通流量,且换算成标准车当量数。
视频1中交通事故位置示意图附件4上游路口信号配时方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年凯里学院校内数学建模竞赛试题
注意事项(请参赛队员详细阅读!)
1.凯里学院校内数学建模竞赛于2013年6月13日8:00至6月14
日20:00举行。
2.参赛队可在A、B两题中任选其中一题,可以使用各种图书资料、网络信息、计算机和软件以及各种实验手段。
3.答卷论文请提交WORD文档方式的A4纸打印稿和电子稿。
并按下列要求制作。
论文用白色A4纸单面打印;上下左右各留出至少2.5厘米的页边距;从左侧装订。
封面:只需填上所选论文题目(注明A或B)、参赛队姓名与序号,其他一律不要。
首页:论文题目、摘要(含模型的主要特点、建模方法和主要结果)。
正文:问题提出、问题分析、模型假设、符号说明、模型建立、模型求解、计算方法设计和软件实现、模型结果分析和检验、模型优缺点分析等。
4、论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。
论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三级标题用小四号黑体字,左端对齐(不居中)。
论文中其他汉字一律采用小四号宋体字,行距用单倍行距,打印时应尽量避免彩色打印。
提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),
在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。
评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选
引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。
正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。
参考文献按正文中的引用次序列出,其中书籍的表述方式为:
[编号] 作者,书名,出版地:出版社,出版年。
参考文献中期刊杂志论文的表述方式为:
[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。
参考文献中网上资源的表述方式为:
[编号] 作者,资源标题,网址,访问时间(年月日)。
5.竞赛评奖以模型假设的合理性、建模的创造性、结果的正确性、文字表述的清晰程度为主要标准。
6.答卷(打印稿和电子稿)务必于2013年6月14日20:00—21:00交到凯里学院数学实验室潘东云或余英老师处。
凯里学院数学建模教练组
2013凯里学院校内数学建模竞赛试题
A 题 抢渡长江
“渡江”是武汉城市的一张名片。
1934年9
月9日,武汉警备旅官兵与体育界人士联手,在武汉第一次举办横渡长江游泳竞赛活动,
起点为武昌汉阳门码头,终点设在汉口三北码头,全程约5000米。
有44人参加横渡,40人达到终点,张学良将军特意向冠军获得者赠送了一块银盾,上书“力挽狂澜”。
2001年,“武汉抢渡长江挑战赛”重现江城。
2002年,正式命名为“武汉国际抢渡长江挑战赛”,于每年的5月1日进行。
由于水情、水性的不可预测性,这种竞赛更富有挑战性和观赏性。
2002年5月1日,抢渡的起点设在武昌汉阳门码头,终点设在汉阳南岸咀,江面宽约1200米。
据报载,当日的平均水温16.8℃, 江水的平均流速为1.89米/秒。
参赛的国内外选手共186人(其中专业人员将近一半),仅34人到达终点,第一名的成绩为 秒。
除了气象条件外,大部分选手由于路线选择错误,被滚滚的江水冲到下游,而未能准确到达终点。
假设在竞渡区域两岸为平行直线, 它们之间的垂直距离为 1200 米, 从武昌汉阳门的正对岸到汉阳南岸咀的距离为 1020米,见示意图。
请你们通过数学建模来分析上述
情况, 并回答以下问题:
1. 假定在竞渡过程中游泳者的速度大
小和方向不变,且竞渡区域每点的
流速均为 1.89米/秒。
试说明2002
年第一名是沿着怎样的路线前进
的,求她游泳速度的大小和方向。
如何根据游泳者自己的速度选择
游泳方向,试为一个速度能保持在1.6米/秒的人选择游泳方向,并估计他的成绩。
2. 在(1)的假设下,如果游泳者始终以和岸边垂直的方向游, 他(她)们能否到达终点?根据你们的数学模型说明为什么 1934年 和2002年能游到终点的1200m 长江水流方向 终点: 汉阳南岸咀 起点: 武昌汉阳门
创新意识 团队精神 重在参与 公平竞争
人数的百分比有如此大的差别;给出能够成功到达终点的选手的条件。
3. 若流速沿离岸边距离的分布为 (设从武昌汉阳门垂直向上为 y 轴正向) :
1.45/0200()
2.10/2001000
1.45/10001200y v y y y ≤≤⎧⎪=<<⎨⎪≤≤⎩
米秒,米米米秒,米米米秒,米米 游泳者的速度大小(1.6米/秒)仍全程保持不变,试为他选择游泳方向和路线,估计他的成绩。
4. 若流速沿离岸边距离为连续分布, 例如
2.280200
200() 2.2820010002.28(1200)10001200200
y y v y y y y ⎧≤≤⎪⎪=<<⎨⎪⎪-≤≤⎩,,,
或你们认为合适的连续分布,如何处理这个问题。
抢渡长江路线图 抢渡长江竞赛现场
2013凯里学院校内数学建模竞赛试题
B题对学生宿舍设计方案的评价
学生宿舍事关学生在校期间的生活品质, 直接或间接地影响到学生的生活、学习和健康成长。
学生宿舍的使用面积、布局和设施配置等的设计既要让学生生活舒适,也要方便管理, 同时要考虑成本和收费的平衡, 这些还与所在城市的地域、区位、文化习俗和经济发展水平有关。
因此,学生宿舍的设计必须考虑经济性、舒适性和安全性等问题。
经济性:建设成本、运行成本和收费标准等。
舒适性:人均面积、使用方便、互不干扰、采光和通风等。
安全性:人员疏散和防盗等。
附件是四种比较典型的学生宿舍的设计方案。
请你们用数学建模的方法就它们的经济性、舒适性和安全性作出综合量化评价和比较。
创新意识团队精神重在参与公平竞争。