2012年高考真题——理科数学(上海卷)Word版含答案

合集下载

2012年高考真题——理科数学(山西省) Word版含答案

2012年高考真题——理科数学(山西省) Word版含答案

绝密*启用前2012年普通高等学校招生全国统一考试理科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.问答第Ⅰ卷时。

选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动.用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效.3.回答第Ⅱ卷时。

将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。

第一卷一. 选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

(1) 已知集合个数为(A )3 (B )6 (C) 8 (D )10(2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有(A )12种 (B )10种 (C) 9种 (D )8种(3)下面是关于复数的四个命题为:P 1:|z|=2, P 2:z 2=2i,P 3:z 的共轭复数为1+I, p 4:z 的虚部为-1, 期中的真命题为(A )p 2,p 3 (B)P 1,P 2 (C)P 2,P 4 (D)P 3,P 4(4)设12F F 是椭圆E :2222(0)x y a b a b +=>>的左、右焦点,P 为直线32ax =上一点,21F PF 是底角为30的等腰三角形,则E 的离心率为()(A )12 (B )23 (C )34 (D )45(5)已知{}n a 为等比数列,332a a +=,568a a =-,则110a a +=() (A )7 (B )5 (C )-5 (D )-7(6)如果执行右边的程序框图,输入正整数(2)N N ≥和市属12,,...,n a a a ,输出A,B,则(A )A+B 为12,,...,n a a a 的和 (B )2A B为12,,...,n a a a 的算术平均数 (C )A 和B 分别是12,,...,n a a a 中最大的数和最小的数 (D )A 和B 分别是12,,...,n a a a 中最小的数和最大的数 (7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为 (A )6 (B )9 (C )12 (D )18(8)等轴双曲线 C 的中心在原点,检点在X 轴上,C 与抛物线的准线交于A ,B 两点,,则C 的实轴长为(A )(B )(C )4 (D )8(9)已知w>0,函数f(x)=sin(wx+)在(,π)单调递减。

2012年高考真题汇编——理科数学(解析版)14:推理与证明

2012年高考真题汇编——理科数学(解析版)14:推理与证明

2012高考真题分类汇编:推理与证明1.【2012高考真题江西理6】观察下列各式:221,3,a b a b +=+=3344554,7,11,a b a b a b +=+=+= 则1010a b +=A .28B .76C .123D .199 【答案】C【命题立意】本题考查合情推理中的归纳推理以及递推数列的通项公式。

【解析】等式右面的数构成一个数列1,3,4,7,11,数列的前两项相加后面的项,即21++=+n n n a a a ,所以可推出12310=a ,选C.2.【2012高考真题全国卷理12】正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF =73.动点P 从E 出发沿直线喜爱那个F 运动,每当碰到正方形的方向的边时反弹,反弹时反射等于入射角,当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为 (A )16(B )14(C )12(D)10 【答案】B【解析】结合已知中的点E,F 的位置,进行作图,推理可知,在反射的过程中,直线是平行的,那么利用平行关系,作图,可以得到回到EA 点时,需要碰撞14次即可.3.【2012高考真题湖北理10】我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径. “开立圆术”相当于给出了已知球的体积V ,求其直径d的一个近似公式d ≈. 人们还用过一些类似的近似公式. 根据π =3.14159 判断,下列近似公式中最精确的一个是11.d ≈ B.d C.d ≈ D.d ≈ 【答案】D 【解析】346b 69()d ,===3.37532b 16616157611==3==3.14,==3.142857230021d a V A a B D πππππππ⨯==⨯⨯⨯由,得设选项中常数为则;中代入得,中代入得,C 中代入得中代入得,由于D 中值最接近的真实值,故选择D 。

2012年高考真题汇编——理科数学(解析版)12:统计

2012年高考真题汇编——理科数学(解析版)12:统计

2012高考真题分类汇编:统计1.【2012高考真题上海理17】设443211010≤<<<≤x x x x ,5510=x ,随机变量1ξ取值54321x x x x x 、、、、的概率均为2.0,随机变量2ξ取值222221554433221x x x x x x x x x x +++++、、、、的概率也均为2.0,若记21ξξD D 、分别为21ξξ、的方差,则( )A .21ξξD D >B .21ξξD D =C .21ξξD D < D .1ξD 与2ξD 的大小关系与4321x x x x 、、、的取值有关【答案】A【解析】由题意可知21ξξE E =,又由题意可知,1ξ的波动性较大,从而有21ξξD D >. 注意:本题也可利用特殊值法。

2.【2012高考真题陕西理6】从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为x 甲,x 乙,中位数分别为m 甲,m 乙,则( ) A. x x <甲乙,m甲>m 乙 B. x x <甲乙,m 甲<m 乙 C. x x >甲乙,m 甲>m 乙 D. x x >甲乙,m 甲<m 乙 【答案】B.【解析】根据平均数的概念易计算出乙甲x x <,又2022218=+=甲m ,2923127=+=乙m 故选B.3.【2012高考真题山东理4】采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[]1,450的人做问卷A ,编号落入区间[]451,750的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为(A )7 (B ) 9 (C ) 10 (D )15 【答案】C【解析】从960中用系统抽样抽取32人,则每30人抽取一人,因为第一组号码为9,则第二组为39,公差为30.所以通项为2130)1(309-=-+=n n a n ,由7502130451≤-≤n ,即302125302215≤≤n ,所以25,17,16 =n ,共有1011625=+-人,选C.4.【2012高考真题江西理9】样本(12,,,n x x x )的平均数为x ,样本(12,,m y y y )的平均数为()y x y ≠,若样本(12,,,n x x x ,12,,m y y y )的平均数(1)z ax a y =+-,其中102α<<,则n,m 的大小关系为 A .n m < B .n m > C .n m = D .不能确定 【答案】A【解析】由题意知样本),,,(11m n y y x x 的平均数为y nm mx n m n n m y m x n z +++=++=,又y x z )1(αα-+=,即n m m n m n +=-+=αα1,。

2012年上海高考理科数学试卷及解析

2012年上海高考理科数学试卷及解析

2012年上海市高考数学试卷(理科)一、填空题( 分):.( 上海)计算: ( 为虚数单位)..( 上海)若集合 > , ﹣ < ,则 ..( 上海)函数 ( ) 的值域是 ..( 上海)若 (﹣ , )是直线 的一个法向量,则 的倾斜角的大小为 (结果用反三角函数值表示)..( 上海)在的二项展开式中,常数项等于..( 上海)有一列正方体,棱长组成以 为首项、为公比的等比数列,体积分别记为 , , , , ,则( )..( 上海)已知函数 ( ) ﹣ ( 为常数).若 ( )在区间 , )上是增函数,则 的取值范围是 ..( 上海)若一个圆锥的侧面展开图是面积为 的半圆面,则该圆锥的体积为 ..( 上海)已知 ( ) 是奇函数,且 ( ) ,若 ( ) ( ) ,则 (﹣ ) ..( 上海)如图,在极坐标系中,过点 ( , )的直线 与极轴的夹角 ,若将 的极坐标方程写成 ( )的形式,则 ( )..( 上海)三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是 (结果用最简分数表示)..( 上海)在平行四边形 中, ,边 、 的长分别为 、 ,若 、 分别是边 、 上的点,且满足 ,则的取值范围是 ..( 上海)已知函数 ( )的图象是折线段 ,其中 ( , )、 (, )、 ( , ),函数 ( )( )的图象与 轴围成的图形的面积为 ..( 上海)如图, 与 是四面体 中互相垂直的棱,,若 ,且 ,其中 、 为常数,则四面体 的体积的最大值是 .二、选择题( 分):.( 上海)若 是关于 的实系数方程 的一个复数根,则(). , . ﹣ , . ﹣ , ﹣ . , ﹣.( 上海)在 中,若 < ,则的形状是().锐角三角形 .直角三角形 .钝角三角形 .不能确定.( 上海)设 < < < , ,随机变量 取值 、 、 、 、 的概率均为 ,随机变量 取值、、、、的概率也均为 ,若记 、 分别为 、的方差,则(). >.. <. 与 的大小关系与 、 、 、 的取值有关.( 上海)设 , ,在 ,, 中,正数的个数是(). . . .三、解答题(共 小题,满分 分).( 上海)如图,在四棱锥 ﹣ 中,底面 是矩形, 底面 , 是 的中点,已知 , , ,求:( )三角形 的面积;( )异面直线 与 所成的角的大小..( 上海)已知 ( ) ( )( )若 < ( ﹣ )﹣ ( )< ,求 的取值范围;( )若 ( )是以 为周期的偶函数,且当 时, ( ) ( ),求函数 ( )( , )的反函数..( 上海)海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为 轴正方向建立平面直角坐标系(以 海里为单位长度),则救援船恰好在失事船正南方向 海里 处,如图,现假设:失事船的移动路径可视为抛物线;定位后救援船即刻沿直线匀速前往救援;救援船出发 小时后,失事船所在位置的横坐标为( )当 时,写出失事船所在位置 的纵坐标,若此时两船恰好会合,求救援船速度的大小和方向.( )问救援船的时速至少是多少海里才能追上失事船?.( 上海)在平面直角坐标系 中,已知双曲线 : ﹣.( )过 的左顶点引 的一条渐进线的平行线,求该直线与另一条渐进线及 轴围成的三角形的面积;( )设斜率为 的直线 交 于 、 两点,若 与圆 相切,求证: ;( )设椭圆 : ,若 、 分别是 、 上的动点,且 ,求证: 到直线 的距离是定值..( 上海)对于数集 ﹣ , , , , ,其中 < < < < , ,定义向量集 ( , ), , ,若对任意,存在,使得,则称 具有性质 .例如 ﹣ , , 具有性质 .( )若 > ,且 ﹣ , , , 具有性质 ,求 的值;( )若 具有性质 ,求证: ,且当 > 时, ;( )若 具有性质 ,且 、 ( 为常数),求有穷数列 , , , 的通项公式.年上海市高考数学试卷(理科)参考答案与试题解析一、填空题( 分):.( 上海)计算: ﹣ ( 为虚数单位).考点:复数代数形式的乘除运算。

2012年高考真题汇编——理科数学(解析版)15:程序框图

2012年高考真题汇编——理科数学(解析版)15:程序框图

2012高考真题分类汇编:程序框图1.【2012高考真题新课标理6】如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和 ()B2A B+为12,,...,n a a a 的算术平均数 ()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数 ()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数【答案】C【解析】根据程序框图可知,这是一个数据大小比较的程序,其中A 为最大值,B 为最小值,选C.2.【2012高考真题陕西理10】右图是用模拟方法估计圆周率π的程序框图,P 表示估计结果,则图中空白框内应填入( ) A. 1000NP =B. 41000NP = C. 1000MP =D. 41000MP =【答案】D.【解析】根据第一个条件框易知M 是在圆内的点数,N 是在圆外的点数,而空白处是要填写圆周率的计算公式,由几何概型的概念知10004M P =,所以10004M P =.故选D. 3.【2012高考真题山东理6】执行下面的程序图,如果输入4a =,那么输出的n 的值为(A )2 (B )3 (C )4 (D )5 【答案】B【解析】当4=a 时,第一次1,3,140====n Q P ,第二次2,7,441====n Q P ,第三次3,15,1642====n Q P ,此时Q P <不满足,输出3=n ,选B.4.【2012高考真题辽宁理9】执行如图所示的程序框图,则输出的S 的值是(A) -1 (B) 23(C)32(D) 4 【答案】D【解析】根据程序框图可计算得24,1;1,2;,3;3s i s i s i ===-=== 3,4;4,5,2s i s i ====由此可知S 的值呈周期出现,其周期为4,输出时9i = 因此输出的值与1i =时相同,故选D【点评】本题主要考查程序框图中的循环结构、数列的周期性以及运算求解能力, 属于中档题。

2012年高考真题汇编理科数学解析版集合与简易逻辑

2012年高考真题汇编理科数学解析版集合与简易逻辑

一、集合与常用逻辑用语一、选择题1.(重庆理2)“”是“”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要【答案】A2.(天津理2)设则“且”是“”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .即不充分也不必要条件 【答案】A3.(浙江理7)若为实数,则“”是的 A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A4.(四川理5)函数,在点处有定义是在点处连续的 A .充分而不必要的条件 B .必要而不充分的条件 C .充要条件 D .既不充分也不必要的条件 【答案】B【解析】连续必定有定义,有定义不一定连续。

5.(陕西理1)设是向量,命题“若,则∣∣= ∣∣”的逆命题是A .若,则∣∣∣∣B .若,则∣∣∣∣C .若∣∣∣∣,则D .若∣∣=∣∣,则= -【答案】D6.(陕西理7)设集合M={y|y=x —x|,x ∈R},N={x||x —,i 为虚数单位,x ∈R},则M ∩N 为 A .(0,1) B .(0,1]C .[0,1)D .[0,1]【答案】C7.(山东理1)设集合 M ={x|},N ={x|1≤x ≤3},则M ∩N =A .[1,2)B .[1,2]C .( 2,3]D .[2,3] 【答案】A8.(山东理5)对于函数,“的图象关于y 轴对称”是“=是奇函数”的 A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要【答案】B9.(全国新课标理10)已知a ,b 均为单位向量,其夹角为,有下列四个命题x <-1x 2-1>0,,x y R ∈2x ≥2y ≥224x y +≥,a b 01m ab <<11a b b a <或>()f x 0x x =()f x 0x x=,a b a b =-a b a b ≠-a ≠b a b =-a ≠b a ≠b a b ≠-a b a b 2cos 2sin 1i 260x x +-<(),y f x x R =∈|()|y f x =y ()f x θ12:||1[0,)3p a b πθ+>⇔∈22:||1(,]3p a b πθπ+>⇔∈13:||1[0,)3p a b πθ->⇔∈4:||1(,]3p a b πθπ->⇔∈其中真命题是 (A ) (B ) (C ) (D )【答案】A10.(辽宁理2)已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若,则(A )M (B )N(C )I(D )【答案】A11.(江西理8)已知,,是三个相互平行的平面.平面,之间的距离为,平面,之间的距离为.直线与,,分别相交于,,,那么“=”是“”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】C12.(湖南理2)设集合则 “”是“”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件 【答案】A13.(湖北理9)若实数a,b 满足且,则称a 与b 互补,记,那么是a 与b 互补的A .必要而不充分的条件B .充分而不必要的条件C .充要条件D .即不充分也不必要的条件【答案】C14.(湖北理2)已知,则=A .B .C .D .【答案】A15.(广东理2)已知集合∣为实数,且,为实数,且,则的元素个数为A .0B .1C .2D .3【答案】C16.(福建理1)i 是虚数单位,若集合S=,则A .B . C.D .【答案】B17.(福建理2)若a R ,则a=2是(a-1)(a-2)=0的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 C .既不充分又不必要条件14,p p 13,p p 23,p p 24,p p N ð=M I∅=N M ∅1a 2a 3a 1a 2a 1d 2a 3a 2d l 1a 2a 3a 1p 2p 3p 12PP 23P P 12d d ={}{}21,2,,M N a ==1a =N M ⊆0,0,a b ≥≥0ab=(,),a b a b ϕ=-(),0a b ϕ={}21|log ,1,|,2U y y x x P y y x x ⎧⎫==>==>⎨⎬⎩⎭U C P 1[,)2+∞10,2⎛⎫ ⎪⎝⎭()0,+∞1(,0][,)2-∞+∞(){,A x y =,x y }221x y +=(){,B x y =,x y}y x =A B ⋂}{1.0.1-i S ∈2i S ∈3i S ∈2S i ∈∈【答案】A 18.(北京理1)已知集合P={x ︱x 2≤1},M={a }.若P ∪M=P ,则a 的取值范围是 A .(-∞, -1] B .[1, +∞) C .[-1,1] D .(-∞,-1] ∪[1,+∞) 【答案】C 19.(安徽理7)命题“所有能被2整聊的整数都是偶数”的否定是 (A )所有不能被2整除的数都是偶数 (B )所有能被2整除的整数都不是偶数 (C )存在一个不能被2整除的数都是偶数 (D )存在一个能被2整除的数都不是偶数 【答案】D 20.(广东理8)设S 是整数集Z 的非空子集,如果有,则称S 关于数的乘法是封闭的.若T,V 是Z 的两个不相交的非空子集,且有有,则下列结论恒成立的是A .中至少有一个关于乘法是封闭的B .中至多有一个关于乘法是封闭的C .中有且只有一个关于乘法是封闭的D .中每一个关于乘法都是封闭的 【答案】A 二、填空题 21.(陕西理12)设,一元二次方程有正数根的充要条件是=【答案】3或4 22.(安徽理8)设集合则满足且的集合为 (A )57 (B )56(C )49(D )8【答案】B23.(上海理2)若全集,集合,则 。

2012年高考真题汇编——理科数学(解析版)7:立体几何

2012年高考真题汇编——理科数学(解析版)7:立体几何

2012高考真题分类汇编:立体几何一、选择题1.【2012高考真题新课标理7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18【答案】B【解析】由三视图可知,该几何体是三棱锥,底面是俯视图,高为3,所以几何体的体积为93362131=⨯⨯⨯⨯=V ,选B.2.【2012高考真题浙江理10】已知矩形ABCD ,AB=1,BC=2。

将△沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中。

A.存在某个位置,使得直线AC 与直线BD 垂直.B.存在某个位置,使得直线AB 与直线CD 垂直.C.存在某个位置,使得直线AD 与直线BC 垂直.D.对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直 【答案】C【解析】最简单的方法是取一长方形动手按照其要求进行翻着,观察在翻着过程,即可知选项C 是正确的.3.【2012高考真题新课标理11】已知三棱锥S A B C -的所有顶点都在球O 的求面上,A B C ∆是边长为1的正三角形,S C 为球O 的直径,且2SC =;则此棱锥的体积为( )()A 6()B6()C3()D 2【答案】A【解析】A B C ∆的外接圆的半径3r =,点O 到面ABC的距离3d ==,S C 为球O 的直径⇒点S 到面ABC的距离为23d =此棱锥的体积为11233436ABC V S d ∆=⨯=⨯=另:1236ABC V S R ∆<⨯=排除,,B C D ,选A.4.【2012高考真题四川理6】下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行【答案】C【解析】A.两直线可能平行,相交,异面故A 不正确;B.两平面平行或相交;C.正确;D.这两个平面平行或相交.5.【2012高考真题四川理10】如图,半径为R 的半球O 的底面圆O 在平面α内,过点O 作平面α的垂线交半球面于点A ,过圆O 的直径C D 作平面α成45 角的平面与半球面相交,所得交线上到平面α的距离最大的点为B ,该交线上的一点P 满足60BOP ∠= ,则A 、P两点间的球面距离为( )A 、arccos 4R B 、4RπC 、arccos 3R D 、3Rπ【答案】A【解析】根据题意,易知平面AOB ⊥平面CBD,BOP AOB AOP ∠⋅∠=∠∴cos cos cos422122=⋅=,42arccos =∠∴AOP ,由弧长公式易得,A 、P 两点间的球面距离为a r c c o s 4R .6.【2012高考真题陕西理5】如图,在空间直角坐标系中有直三棱柱111ABC A B C -,12C A C C C B ==,则直线1BC 与直线1A B 夹角的余弦值为( )A.5B.3C.5D.355.【答案】A.【解析】设a CB =||,则a CC CA 2||||1==,),2,0(),0,2,0(),,0,0(),0,0,2(11a a B a C a B a A , ),2,0(),,2,2(11a a BC a a a AB -=-=∴,55,cos 111111=>=<∴BC AB ,故选A.7.【2012高考真题湖南理3】某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是【答案】D【解析】本题是组合体的三视图问题,由几何体的正视图和侧视图均如图1所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A,B,C都可能是该几何体的俯视图,D不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩形.【点评】本题主要考查空间几何体的三视图,考查空间想象能力.是近年高考中的热点题型. 8.【2012高考真题湖北理4】已知某几何体的三视图如图所示,则该几何体的体积为A .8π3B .3πC .10π3D .6π【答案】B【解析】显然有三视图我们易知原几何体为 一个圆柱体的一部分,并且有正视图知是一个1/2的圆柱体,底面圆的半径为1,圆柱体的高为6,则知所求几何体体积为原体积的一半为3π.选B.9.【2012高考真题广东理6】某几何体的三视图如图所示,它的体积为A .12π B.45π C.57π D.81π 【答案】C【解析】该几何体的上部是一个圆锥,下部是一个圆柱,根据三视图中的数量关系,可得πππ57533-53312222=⨯⨯+⨯⨯⨯=+=圆柱圆锥V V V .故选C .10.【2012高考真题福建理4】一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是A.球B.三棱柱C.正方形D.圆柱【答案】D.【命题立意】本题考查了空间几何体的形状和三视图的概念,以及考生的空间想象能力,难度一般.【解析】球的三视图全是圆;如图正方体截出的三棱锥三视图全是等腰直角三角形;正方体三视图都是正方形.可以排除ABC ,故选D.11.【2012高考真题重庆理9】设四面体的六条棱的长分别为1,1,1,1和a ,且长为aa 的取值范围是(A ) (B )(0, (C ) (D ) 【答案】A 【解析】因为22211)22(12=-=-=BE 则BE BF <,222=<=BE BF AB ,选A ,12.【2012高考真题北京理7】某三棱锥的三视图如图所示,该三梭锥的表面积是( )A. 28+65B. 30+65C. 56+ 125D. 60+125【答案】B【解析】从所给的三视图可以得到该几何体为三棱锥,如图所示,图中蓝色数字所表示的为直接从题目所给三视图中读出的长度,黑色数字代表通过勾股定理的计算得到的边长。

2012年高考真题汇编——理科数学(解析版)9:直线与圆

2012年高考真题汇编——理科数学(解析版)9:直线与圆

2012高考真题分类汇编:直线与圆1.【2012高考真题重庆理3】任意的实数k ,直线1+=kx y 与圆222=+y x 的位置关系一定是(1) 相离 B.相切 C.相交但直线不过圆心 D.相交且直线过圆心【答案】C【解析】直线1+=kx y 恒过定点)1,0(,定点到圆心的距离21<=d ,即定点在圆内部,所以直线1+=kx y 与圆相交但直线不过圆心,选C.2.【2012高考真题浙江理3】设a ∈R ,则“a =1”是“直线l 1:ax+2y=0与直线l 2 :x+(a+1)y+4=0平行 的A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要条件【答案】A【解析】当1=a 时,直线1l :02=+y x ,直线2l :042=++y x ,则1l //2l ;若1l //2l ,则有012)1(=⨯-+a a ,即022=-+a a ,解之得,2-=a 或1=a ,所以不能得到1=a 。

故选A.4.【2012高考真题陕西理4】已知圆22:40C x y x +-=,l 过点(3,0)P 的直线,则( )A.l 与C 相交B. l 与C 相切C.l 与C 相离D. 以上三个选项均有可能【答案】A.【解析】圆的方程可化为4)2(22=+-y x ,易知圆心为)0,2(半径为2,圆心到点P 的距离为1,所以点P 在圆内.所以直线与圆相交.故选A.5.【2012高考真题天津理8】设R n m ∈,,若直线02)1()1(=-+++y n x m 与圆1)1()1(22=-+-y x 相切,则m+n 的取值范围是(A )]31,31[+- (B )),31[]31,(+∞+⋃--∞(C )]222,222[+- (D )),222[]222,(+∞+⋃--∞【答案】D【解析】圆心为)1,1(,半径为 1.直线与圆相切,所以圆心到直线的距离满足1)1()1(|2)1()1|22=+++-+++n m n m (,即2)2(1n m mn n m +≤=++,设z n m =+,即01412≥--z z ,解得,222-≤z 或,222+≥z6.【2012高考江苏12】(5分)在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是 ▲ . 【答案】43。

2012年上海市高考数学试卷(理科)答案与解析

2012年上海市高考数学试卷(理科)答案与解析

2012年上海市高考数学试卷(理科)参考答案与试题解析一、填空题(56分):1.(4分)(2012•上海)计算:=1﹣2i(i为虚数单位).考点:复数代数形式的乘除运算.专题:计算题.分析:由题意,可对复数代数式分子与分母都乘以1﹣i,再由进行计算即可得到答案解答:解:故答案为1﹣2i点评:本题考查复数代数形式的乘除运算,解题的关键是分子分母都乘以分母的共轭,复数的四则运算是复数考查的重要内容,要熟练掌握2.(4分)(2012•上海)若集合A={x|2x+1>0},B={x||x﹣1|<2},则A∩B=(﹣,3).考点:交集及其运算.专题:计算题.分析:由题意,可先将两个数集化简,再由交的运算的定义求出两个集合的交集即可得到答案解答:解:由题意A={x|2x+1>0}={x|x>﹣},B={x||x﹣1|<2}={x|﹣1<x<3},所以A∩B=(﹣,3)故答案为(﹣,3)点评:本题考查交集的运算,解题的关键是熟练掌握交集的定义及运算规则,正确化简两个集合对解题也很重要,要准确化简3.(4分)(2012•上海)函数f(x)=的值域是.考点:二阶矩阵;三角函数中的恒等变换应用.专题:计算题.分析:先根据二阶行列式的运算法则求出函数的解析式,然后化简整理,根据正弦函数的有界性可求出该函数的值域.解答:解:f(x)==﹣2﹣sinxcosx=﹣2﹣sin2x∵﹣1≤sin2x≤1∴﹣≤﹣sin2x≤则﹣≤﹣2﹣sin2x≤﹣∴函数f(x)=的值域是故答案为:点评:本题主要考查了二阶行列式的求解,以及三角函数的化简和值域的求解,同时考查了计算能力,属于基础题.4.(4分)(2012•上海)若=(﹣2,1)是直线l的一个法向量,则l的倾斜角的大小为arctan2(结果用反三角函数值表示).考点:平面向量坐标表示的应用.专题:计算题.分析:根据直线的法向量求出直线的一个方向向量,从而得到直线的斜率,根据k=tanα可求出倾斜角.解答:解:∵=(﹣2,1)是直线l的一个法向量∴可知直线l的一个方向向量为(1,2),直线l的倾斜角为α得,tanα=2∴α=arctan2故答案为:arctan2点评:本题主要考查了方向向量与斜率的关系,以及反三角的应用,同时运算求解的能力,属于基础题.5.(4分)(2012•上海)在的二项展开式中,常数项等于﹣160.考点:二项式定理的应用.专题:计算题.分析:研究常数项只需研究二项式的展开式的通项,使得x的指数为0,得到相应的r,从而可求出常数项.解答:解:展开式的通项为T r+1=x6﹣r(﹣)r=(﹣2)r x6﹣2r令6﹣2r=0可得r=3常数项为(﹣2)3=﹣160故答案为:﹣160点评:本题主要考查了利用二项展开式的通项求解指定项,同时考查了计算能力,属于基础题.6.(4分)(2012•上海)有一列正方体,棱长组成以1为首项、为公比的等比数列,体积分别记为V1,V2,…,V n,…,则(V1+V2+…+V n)═.考点:数列的极限;棱柱、棱锥、棱台的体积.专题:计算题.分析:由题意可得,正方体的体积=是以1为首项,以为公比的等比数,由等不数列的求和公式可求解答:解:由题意可得,正方体的棱长满足的通项记为a n则∴=是以1为首项,以为公比的等比数列则(V1+V2+…+v n)==故答案为:点评:本题主要考查了等比数列的求和公式及数列极限的求解,属于基础试题7.(4分)(2012•上海)已知函数f(x)=e|x﹣a|(a为常数).若f(x)在区间[1,+∞)上是增函数,则a的取值范围是(﹣∞,1].考点:指数函数单调性的应用.专题:综合题.分析:由题意,复合函数f(x)在区间[1,+∞)上是增函数可得出内层函数t=|x﹣a|在区间[1,+∞)上是增函数,又绝对值函数t=|x﹣a|在区间[a,+∞)上是增函数,可得出[1,+∞)⊆[a,+∞),比较区间端点即可得出a的取值范围解答:解:因为函数f(x)=e|x﹣a|(a为常数).若f(x)在区间[1,+∞)上是增函数由复合函数的单调性知,必有t=|x﹣a|在区间[1,+∞)上是增函数又t=|x﹣a|在区间[a,+∞)上是增函数所以[1,+∞)⊆[a,+∞),故有a≤1故答案为(﹣∞,1]点评:本题考查指数函数单调性的运用及复合函数单调性的判断,集合包含关系的判断,解题的关键是根据指数函数的单调性将问题转化为集合之间的包含关系,本题考查了转化的思想及推理判断的能力,属于指数函数中综合性较强的题型.8.(4分)(2012•上海)若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为.考点:旋转体(圆柱、圆锥、圆台).专题:计算题.分析:通过侧面展开图的面积.求出圆锥的母线,底面的半径,求出圆锥的体积即可.解答:解:由题意一个圆锥的侧面展开图是面积为2π的半圆面,因为4π=πl2,所以l=2,半圆的弧长为2π,圆锥的底面半径为2πr=2π,r=1,所以圆锥的体积为:=.故答案为:.点评:本题考查旋转体的条件的求法,侧面展开图的应用,考查空间想象能力,计算能力.9.(4分)(2012•上海)已知y=f(x)+x2是奇函数,且f(1)=1,若g(x)=f(x)+2,则g(﹣1)=﹣1.考点:函数奇偶性的性质;函数的值.专题:计算题.分析:由题意,可先由函数是奇函数求出f(﹣1)=﹣3,再将其代入g(﹣1)求值即可得到答案解答:解:由题意,y=f(x)+x2是奇函数,且f(1)=1,所以f(1)+1+f(﹣1)+(﹣1)2=0解得f(﹣1)=﹣3所以g(﹣1)=f(﹣1)+2=﹣3+2=﹣1故答案为:﹣1.点评:本题考查函数奇偶性的性质,利用函数奇偶性求值,解题的关键是根据函数的奇偶性建立所要求函数值的方程,基本题型.10.(4分)(2012•上海)如图,在极坐标系中,过点M(2,0)的直线l与极轴的夹角a=,若将l的极坐标方程写成ρ=f(θ)的形式,则f(θ)=.考点:简单曲线的极坐标方程.专题:计算题.分析:取直线l上任意一点P(ρ,θ),连接OP,则OP=ρ,∠POM=θ,在三角形POM中,利用正弦定理建立等式关系,从而求出所求.解答:解:取直线l上任意一点P(ρ,θ),连接OP,则OP=ρ,∠POM=θ在三角形POM中,利用正弦定理可知:解得ρ=f(θ)=故答案为:点评:本题主要考查了简单曲线的极坐标方程,以及正弦定理的应用,同时考查了分析问题的能力和转化的思想,属于基础题.11.(4分)(2012•上海)三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是(结果用最简分数表示).考点:古典概型及其概率计算公式.专题:概率与统计.分析:先求出三个同学选择的所求种数,然后求出有且仅有两人选择的项目完全相同的种数,最后利用古典概型及其概率计算公式进行求解即可.解答:解:每个同学都有三种选择:跳高与跳远;跳高与铅球;跳远与铅球三个同学共有3×3×3=27种有且仅有两人选择的项目完全相同有××=18种其中表示3个同学中选2个同学选择的项目,表示从三种组合中选一个,表示剩下的一个同学有2中选择故有且仅有两人选择的项目完全相同的概率是=故答案为:点评:本题主要考查了古典概型及其概率计算公式,解题的关键求出有且仅有两人选择的项目完全相同的个数,属于基础题.12.(4分)(2012•上海)在平行四边形ABCD中,∠A=,边AB、AD的长分别为2、1,若M、N分别是边BC、CD上的点,且满足=,则的取值范围是[2,5].考点:平面向量的综合题.专题:计算题.分析:画出图形,建立直角坐标系,利用比例关系,求出M,N的坐标,然后通过二次函数求出数量积的范围.解答:解:建立如图所示的直角坐标系,则B(2,0),A(0,0),D(),设==λ,λ∈[0,1],M(2+),N(),所以=(2+)•()=﹣λ2﹣2λ+5,因为λ∈[0,1],二次函数的对称轴为:λ=﹣1,所以λ∈[0,1]时,﹣λ2﹣2λ+5∈[2,5].故答案为:[2,5].点评:本题考查向量的综合应用,平面向量的坐标表示以及数量积的应用,二次函数的最值问题,考查计算能力.13.(4分)(2012•上海)已知函数y=f(x)的图象是折线段ABC,其中A(0,0)、B(,5)、C(1,0),函数y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积为.考点:函数的图象.专题:计算题;综合题;压轴题.分析:根据题意求得f(x)=,从而y=xf(x)=,利用定积分可求得函数y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积.解答:解:由题意可得,f(x)=,∴y=xf(x)=,设函数y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积为S,则S=10x2dx+(﹣10x2+10x)dx=10×+(﹣10)×+10×=﹣+5﹣==.故答案为:.点评:本题考查函数的图象,着重考查分段函数的解析式的求法与定积分的应用,考查分析运算能力,属于难题.14.(4分)(2012•上海)如图,AD与BC是四面体ABCD中互相垂直的棱,BC=2,若AD=2c,且AB+BD=AC+CD=2a,其中a、c为常数,则四面体ABCD的体积的最大值是.考点:棱柱、棱锥、棱台的体积.专题:计算题;压轴题.分析:作BE⊥AD于E,连接CE,说明B与C都是在以AD为焦距的椭球上,且BE、CE 都垂直于焦距AD,BE=CE.取BC中点F,推出四面体ABCD的体积的最大值,当△ABD是等腰直角三角形时几何体的体积最大,求解即可.解答:解:作BE⊥AD于E,连接CE,则AD⊥平面BEC,所以CE⊥AD,由题设,B与C都是在以AD为焦点的椭圆上,且BE、CE都垂直于焦距AD,AB+BD=AC+CD=2a,显然△ABD≌△ACD,所以BE=CE.取BC中点F,∴EF⊥BC,EF⊥AD,要求四面体ABCD的体积的最大值,因为AD 是定值,只需三角形EBC的面积最大,因为BC是定值,所以只需EF最大即可,当△ABD是等腰直角三角形时几何体的体积最大,∵AB+BD=AC+CD=2a,∴AB=a,所以EB=,EF=,所以几何体的体积为:×=.故答案为:.点评:本题考查棱柱、棱锥、棱台的体积,考查空间想象能力,逻辑推理能力以及计算能力.二、选择题(20分):15.(5分)(2012•上海)若1+i是关于x的实系数方程x2+bx+c=0的一个复数根,则()A.b=2,c=3 B.b=﹣2,c=3 C.b=﹣2,c=﹣1 D.b=2,c=﹣1考点:复数相等的充要条件.专题:计算题;转化思想.分析:由题意,将根代入实系数方程x2+bx+c=0整理后根据得数相等的充要条件得到关于实数a,b的方程组,解方程得出a,b的值即可选出正确选项解答:解:由题意1+i是关于x的实系数方程x2+bx+c=0∴1+2i﹣2+b+bi+c=0∴,解得b=﹣2,c=3故选B点评:本题考查复数相等的充要条件,解题的关键是熟练掌握复数相等的充要条件,能根据它得到关于实数的方程,本题考查了转化的思想,属于基本计算题16.(5分)(2012•上海)在△ABC中,若sin2A+sin2B<sin2C,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定考点:余弦定理的应用;三角形的形状判断.专题:解三角形.分析:由sin2A+sin2B<sin2C,结合正弦定理可得,a2+b2<c2,由余弦定理可得CosC=可判断C的取值范围解答:解:∵sin2A+sin2B<sin2C,由正弦定理可得,a2+b2<c2由余弦定理可得cosC=∴∴△ABC是钝角三角形故选C点评:本题主要考查了正弦定理、余弦定理的综合应用在三角形的形状判断中的应用,属于基础试题17.(5分)(2012•上海)设10≤x1<x2<x3<x4≤104,x5=105,随机变量ξ1取值x1、x2、x3、x4、x5的概率均为0.2,随机变量ξ2取值、、、、的概率也均为0.2,若记Dξ1、Dξ2分别为ξ1、ξ2的方差,则()A.Dξ1>Dξ2B.Dξ1=Dξ2C.Dξ1<Dξ2D.Dξ1与Dξ2的大小关系与x1、x2、x3、x4的取值有关考点:离散型随机变量的期望与方差;离散型随机变量及其分布列.专题:计算题;压轴题.分析:根据随机变量ξ1、ξ2的取值情况,计算它们的平均数,根据随机变量ξ1、ξ2的取值的概率都为0.2,即可求得结论.解答:解:由随机变量ξ1、ξ2的取值情况,它们的平均数分别为:=(x1+x2+x3+x4+x5),=(++++)=且随机变量ξ1、ξ2的取值的概率都为0.2,所以有Dξ1>Dξ2,故选择A.点评:本题主要考查离散型随机变量的期望和方差公式.记牢公式是解决此类问题的前提和基础,本题属于中档题.18.(5分)(2012•上海)设a n=sin,S n=a1+a2+…+a n,在S1,S2,…S100中,正数的个数是()A.25 B.50 C.75 D.100考点:数列的求和;三角函数的周期性及其求法.专题:计算题;压轴题.分析:由于f(n)=sin的周期T=50,由正弦函数性质可知,a1,a2,…,a24>0,a26,a27,…,a49<0,f(n)=单调递减,a25=0,a26…a50都为负数,但是|a26|<a1,|a27|<a2,…,|a49|<a24,从而可判断解答:解:由于f(n)=sin的周期T=50由正弦函数性质可知,a1,a2,…,a24>0,a25=0,a26,a27,…,a49<0,a50=0且sin,sin…但是f(n)=单调递减a26…a49都为负数,但是|a26|<a1,|a27|<a2,…,|a49|<a24∴S1,S2,…,S25中都为正,而S26,S27,…,S50都为正同理S1,S2,…,s75都为正,S1,S2,…,s75,…,s100都为正,故选D点评:本题主要考查了三角函数的周期的应用,数列求和的应用,解题的关键是正弦函数性质的灵活应用.三、解答题(共5小题,满分74分)19.(12分)(2012•上海)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中点,已知AB=2,AD=2,PA=2,求:(1)三角形PCD的面积;(2)异面直线BC与AE所成的角的大小.考点:直线与平面垂直的性质;异面直线及其所成的角.专题:证明题;综合题;空间位置关系与距离;空间角.分析:(1)可以利用线面垂直的判定与性质,证明出三角形PCD是以D为直角顶点的直角三角形,然后在Rt△PAD中,利用勾股定理得到PD=2,最后得到三角形PCD的面积S;(2)[解法一]建立如图空间直角坐标系,可得B、C、E各点的坐标,从而=(1,,1),=(0,2,0),利用空间向量数量积的公式,得到与夹角θ满足:cosθ=,由此可得异面直线BC与AE所成的角的大小为;[解法二]取PB的中点F,连接AF、EF,△PBC中,利用中位线定理,得到EF∥BC,从而∠AEF或其补角就是异面直线BC与AE所成的角,然后可以通过计算证明出:△AEF是以F为直角顶点的等腰直角三角形,所以∠AEF=,可得异面直线BC与AE所成的角的大小为.解答:解:(1)∵PA⊥底面ABCD,CD⊂底面ABCD,∴CD⊥PA.∵矩形ABCD中,CD⊥AD,PA、AD是平面PDC内的相交直线.∴CD⊥平面PDA,∵PD⊂平面PDA,∴CD⊥PD,三角形PCD是以D为直角顶点的直角三角形.∵Rt△PAD中,AD=2,PA=2,∴PD==2.∴三角形PCD的面积S=×PD×DC=2.(2)[解法一]如图所示,建立空间直角坐标系,可得B(2,0,0),C(2,2,0),E(1,,1).∴=(1,,1),=(0,2,0),设与夹角为θ,则cosθ===,∴θ=,由此可得异面直线BC与AE所成的角的大小为.[解法二]取PB的中点F,连接AF、EF、AC,∵△PBC中,E、F分别是PC、PB的中点,∴EF∥BC,∠AEF或其补角就是异面直线BC与AE所成的角.∵Rt△PAC中,PC==4.∴AE=PC=2,∵在△AEF中,EF=BC=,AF=PB=∴AF2+EF2=AE2,△AEF是以F为直角顶点的等腰直角三角形,∴∠AEF=,可得异面直线BC与AE所成的角的大小为.点评:本题根据一个特殊的四棱锥,求异面直线所成的角和证明线面垂直,着重考查了异面直线及其所成的角和直线与平面垂直的性质等知识,属于中档题.20.(14分)(2012•上海)已知f(x)=lg(x+1)(1)若0<f(1﹣2x)﹣f(x)<1,求x的取值范围;(2)若g(x)是以2为周期的偶函数,且当0≤x≤1时,g(x)=f(x),求函数y=g(x)(x∈[1,2])的反函数.考点:函数的周期性;反函数;对数函数图象与性质的综合应用.专题:计算题.分析:(1)应用对数函数结合对数的运算法则进行求解即可;(2)结合函数的奇偶性和反函数知识进行求解.解答:解:(1)f(1﹣2x)﹣f(x)=lg(1﹣2x+1)﹣lg(x+1)=lg(2﹣2x)﹣lg(x+1),要使函数有意义,则由解得:﹣1<x<1.由0<lg(2﹣2x)﹣lg(x+1)=lg<1得:1<<10,∵x+1>0,∴x+1<2﹣2x<10x+10,∴.由,得:.(2)当x∈[1,2]时,2﹣x∈[0,1],∴y=g(x)=g(x﹣2)=g(2﹣x)=f(2﹣x)=lg(3﹣x),由单调性可知y∈[0,lg2],又∵x=3﹣10y,∴所求反函数是y=3﹣10x,x∈[0,lg2].点评:本题考查对数的运算以及反函数与原函数的定义域和值域相反等知识,属于易错题.21.(14分)(2012•上海)海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A处,如图,现假设:①失事船的移动路径可视为抛物线;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t小时后,失事船所在位置的横坐标为7t(1)当t=0.5时,写出失事船所在位置P的纵坐标,若此时两船恰好会合,求救援船速度的大小和方向.(2)问救援船的时速至少是多少海里才能追上失事船?考点:圆锥曲线的综合.专题:应用题.分析:(1)t=0.5时,确定P的横坐标,代入抛物线方程中,可得P的纵坐标,利用|AP|=,即可确定救援船速度的大小和方向;(2)设救援船的时速为v海里,经过t小时追上失事船,此时位置为(7t,12t2),从而可得vt=,整理得,利用基本不等式,即可得到结论.解答:解:(1)t=0.5时,P的横坐标x P=7t=,代入抛物线方程中,得P的纵坐标y P=3.…2分由|AP|=,得救援船速度的大小为海里/时.…4分由tan∠OAP=,得∠OAP=arctan,故救援船速度的方向为北偏东arctan 弧度.…6分(2)设救援船的时速为v海里,经过t小时追上失事船,此时位置为(7t,12t2).由vt=,整理得.…10分因为,当且仅当t=1时等号成立,所以v2≥144×2+337=252,即v≥25.因此,救援船的时速至少是25海里才能追上失事船.…14分点评:本题主要考查函数模型的选择与运用.选择恰当的函数模型是解决此类问题的关键,属于中档题.22.(16分)(2012•上海)在平面直角坐标系xOy中,已知双曲线C1:2x2﹣y2=1.(1)过C1的左顶点引C1的一条渐近线的平行线,求该直线与另一条渐近线及x轴围成的三角形的面积;(2)设斜率为1的直线l交C1于P、Q两点,若l与圆x2+y2=1相切,求证:OP⊥OQ;(3)设椭圆C2:4x2+y2=1,若M、N分别是C1、C2上的动点,且OM⊥ON,求证:O到直线MN的距离是定值.考点:直线与圆锥曲线的综合问题;圆锥曲线的综合.专题:计算题;压轴题;转化思想.分析:(1)求出双曲线的渐近线方程,求出直线与另一条渐近线的交点,然后求出三角形的面积.(2)设直线PQ的方程为y=kx+b,通过直线PQ与已知圆相切,得到b2=2,通过求解=0.证明PO⊥OQ.(3)当直线ON垂直x轴时,直接求出O到直线MN的距离为.当直线ON不垂直x轴时,设直线ON的方程为:y=kx,(显然|k|>),推出直线OM的方程为y=,利用,求出,,设O到直线MN的距离为d,通过(|OM|2+|ON|2)d2=|OM|2|ON|2,求出d=.推出O到直线MN的距离是定值.解答:解:(1)双曲线C1:左顶点A(﹣),渐近线方程为:y=±x.过A与渐近线y=x平行的直线方程为y=(x+),即y=,所以,解得.所以所求三角形的面积为S=.(2)设直线PQ的方程为y=kx+b,因直线PQ与已知圆相切,故,即b2=2,由,得x2﹣2bx﹣b2﹣1=0,设P(x1,y1),Q(x2,y2),则,又y1y2=(x1+b)(x2+b).所以=x1x2+y1y2=2x1x2+b(x1+x2)+b2=2(﹣1﹣b2)+2b2+b2=b2﹣2=0.故PO⊥OQ.(3)当直线ON垂直x轴时,|ON|=1,|OM|=,则O到直线MN的距离为.当直线ON不垂直x轴时,设直线ON的方程为:y=kx,(显然|k|>),则直线OM的方程为y=,由得,所以.同理,设O到直线MN的距离为d,因为(|OM|2+|ON|2)d2=|OM|2|ON|2,所以==3,即d=.综上,O到直线MN的距离是定值.点评:本题考查直线与圆锥曲线的综合问题,圆锥曲线的综合,向量的数量积的应用,设而不求的解题方法,点到直线的距离的应用,考查分析问题解决问题的能力,考查计算能力.23.(18分)(2012•上海)对于数集X={﹣1,x1,x2,…,x n},其中0<x1<x2<…<x n,n≥2,定义向量集Y={=(s,t),s∈X,t∈X},若对任意,存在,使得,则称X具有性质P.例如{﹣1,1,2}具有性质P.(1)若x>2,且{﹣1,1,2,x}具有性质P,求x的值;(2)若X具有性质P,求证:1∈X,且当x n>1时,x1=1;(3)若X具有性质P,且x1=1、x2=q(q为常数),求有穷数列x1,x2,…,x n的通项公式.考点:数列与向量的综合;元素与集合关系的判断;平面向量的综合题.专题:计算题;证明题;综合题;压轴题.分析:(1)在Y中取=(x,2),根据数量积的坐标公式,可得Y中与垂直的元素必有形式(﹣1,b),所以x=2b,结合x>2,可得x的值.(2)取=(x1,x1),=(s,t)根据,化简可得s+t=0,所以s、t异号.而﹣1是数集X中唯一的负数,所以s、t中的负数必为﹣1,另一个数是1,从而证出1∈X,最后通过反证法,可以证明出当x n>1时,x1=1.(3)[解法一]先猜想结论:x i=q i﹣1,i=1,2,3,…,n.记A k═{﹣1,x1,x2,…,x k},k=2,3,…,n,通过反证法证明出引理:若A k+1具有性质P,则A k也具有性质P.最后用数学归纳法,可证明出x i=q i﹣1,i=1,2,3,…,n;[解法二]设=(s1,t1),=(s2,t2),则等价于,得到一正一负的特征,再记B={|s∈X,t∈X且|s|>|t|},则可得结论:数集X具有性质P,当且仅当数集B关于原点对称.又注意到﹣1是集合X中唯一的负数,B∩(﹣∞,0)={﹣x2,﹣x3,﹣x4,…,﹣x n},共有n﹣1个数,所以B∩(0.+∞)也有n﹣1个数.最后结合不等式的性质,结合三角形数阵加以说明,可得==…=,最终得到数列的通项公式是x k=x1•()k﹣1=q k﹣1,k=1,2,3,…,n.解答:解:(1)选取=(x,2),则Y中与垂直的元素必有形式(﹣1,b),所以x=2b,又∵x>2,∴只有b=2,从而x=4.(2)取=(x1,x1)∈Y,设=(s,t)∈Y,满足,可得(s+t)x1=0,s+t=0,所以s、t异号.因为﹣1是数集X中唯一的负数,所以s、t中的负数必为﹣1,另一个数是1,所以1∈X,假设x k=1,其中1<k<n,则0<x1<1<x n.再取=(x1,x n)∈Y,设=(s,t)∈Y,满足,可得sx1+tx n=0,所以s、t异号,其中一个为﹣1①若s=﹣1,则x1=tx n>t≥x1,矛盾;②若t=﹣1,则x n=sx1<s≤x n,矛盾;说明假设不成立,由此可得当x n>1时,x1=1.(3)[解法一]猜想:x i=q i﹣1,i=1,2,3,…,n记A k═{﹣1,x1,x2,…,x k},k=2,3,…,n先证明若A k+1具有性质P,则A k也具有性质P.任取=(s,t),s、t∈A k,当s、t中出现﹣1时,显然有满足当s、t中都不是﹣1时,满足s≥1且t≥1.因为A k+1具有性质P,所以有=(s1,t1),s1、t1∈A k+1,使得,从而s1、t1其中有一个为﹣1不妨设s1=﹣1,假设t1∈A k+1,且t1∉A k,则t1=x k+1.由(s,t)(﹣1,x k+1)=0,得s=tx k+1≥x k+1,与s∈A k矛盾.所以t1∈A k,从而A k也具有性质P.再用数学归纳法,证明x i=q i﹣1,i=1,2,3,…,n当n=2时,结论显然成立;假设当n=k时,A k═{﹣1,x1,x2,…,x k}具有性质P,则x i=q i﹣1,i=1,2,…,k 当n=k+1时,若A k+1═{﹣1,x1,x2,…,x k+1}具有性质P,则A k═{﹣1,x1,x2,…,x k}具有性质P,所以A k+1═{﹣1,q,q2,…,q k﹣1,x k+1}.取=(x k+1,q),并设=(s,t)∈Y,满足,由此可得s=﹣1或t=﹣1若t=﹣1,则x k+1=,不可能所以s=﹣1,x k+1=qt=q j≤q k且x k+1>q k﹣1,因此x k+1=q k综上所述,x i=q i﹣1,i=1,2,3,…,n[解法二]设=(s1,t1),=(s2,t2),则等价于记B={|s∈X,t∈X且|s|>|t|},则数集X具有性质P,当且仅当数集B关于原点对称注意到﹣1是集合X中唯一的负数,B∩(﹣∞,0)={﹣x2,﹣x3,﹣x4,…,﹣x n},共有n﹣1个数.所以B∩(0,+∞)也有n﹣1个数.由于<<<…<,已经有n﹣1个数对以下三角形数阵:<<<…<,<<<…<…注意到>>>…>,所以==…=从而数列的通项公式是x k=x1•()k﹣1=q k﹣1,k=1,2,3,…,n.点评:本题以向量的数量积的坐标运算为载体,着重考查了数列的通项公式的探索、集合元素的性质和数列与向量的综合等知识点,属于难题.本题是一道综合题,请同学们注意解题过程中的转化化归思想、分类讨论的方法和反证法的运用.。

2012年高考真题——理科数学试题及答案(天津卷、山东卷、上海卷、全国新课标卷、大纲版)解析版

2012年高考真题——理科数学试题及答案(天津卷、山东卷、上海卷、全国新课标卷、大纲版)解析版

2012年普通高等学校招生全国统一考试(天津卷)数 学 (理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:本卷共8小题,每小题5分,共40分.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)i 是虚数单位,复数ii+-37= (A ) 2 + i (B )2 – i (C )-2 + i (D )-2 – i【解析】复数i ii i i i i i -=-=+---=+-2101020)3)(3()3)(7(37,选B. 【答案】B(2)设,R ∈ϕ则“0=ϕ”是“))(cos()(R x x x f ∈+=ϕ为偶函数”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分与不必要条件【解析】函数)cos()(ϕ+=x x f 若为偶函数,则有Z k k ∈=,πϕ,所以“0=ϕ”是“)cos()(ϕ+=x x f 为偶函数”的充分不必要条件,选A.【答案】A(3)阅读右边的程序框图,运行相应的程序,当输入x 的值为-25时,输出x 的值为(A )-1 (B )1 (C )3 (D )9【解析】第一次循环,415125=-=--=x ,第二次循环11214=-=-=x ,第三次循环不满足条件输出3112=+⨯=x ,选C.【答案】C(4)函数22)(3-+=x x f x在区间(0,1)内的零点个数是 (A )0 (B )1 (C )2 (D )3【解析】因为函数22)(3-+=x x f x的导数为032ln 2)('2≥+=x x f x,所以函数22)(3-+=x x f x 单调递增,又0121)0(<-=-=f ,01212)1(>=-+=f ,所以根据根的存在定理可知在区间)1,0(内函数的零点个数为1个,选B. 【答案】B(5)在52)12(xx -的二项展开式中,x 的系数为(A )10 (B )-10 (C )40 (D )-40【解析】二项展开式的通项为k k k k k k kk x C xx C T )1(2)1()2(310555251-=-=---+,令1310=-k ,解得3,93==k k ,所以x x C T 40)1(232354-=-=,所以x 的系数为40-,选D.【答案】D(6)在ABC ∆中,内角A ,B ,C 所对的边分别是c b a ,,,已知8b=5c ,C=2B ,则cosC=(A )257 (B )257- (C )257± (D )2524【解析】因为B C 2=,所以B B B C cos sin 2)2sin(sin ==,根据正弦定理有BbC c sin sin =,所以58sin sin ==B C b c ,所以545821sin 2sin cos =⨯==B C B 。

2016年高考真题——理科数学(上海卷)Word版含解析

2016年高考真题——理科数学(上海卷)Word版含解析

【说【参考版答案】非官方版正式答案,有可能存在少量错误,仅供参考使用2016年上海高考数学(理科)真题一、解答题(本大题共有14题,满分56分)1.设x • R ,则不等式 x -3 :::1的解集为 ____________________【答案】(2,4)【解析】-1 :::x -3 :::1,即 2 ::: x ::: 4,故解集为(2,4)2. 设z= _2i ,其中i 为虚数单位,则 lmz= ________________________ i【答案】占【解析】z = -i (3 - 2i ) =2 -3i ,故 Imz = -34. 某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77,则这组数据的 中位数是_(米)【答案】1.765. _________________________________________________________________________ 已知点(3,9)在函数f(x)=1+a x 的图像上,贝U f(x)的反函数f 」(x)= _______________________________【答案】log 2(x-1)【解析】a 3 • 1 =9,故 a =2 , f (x) =1 2x••• x =log 2(y -1)f ,(x) =log 2(x -1)6. 如图,在正四棱柱ABCD -A B 1C 1D 1中,底面ABCD 的边长为3 , BD 1与底面所成角的大小 为 arcta n , 3 则该正四棱柱的高等于 __________________________【答案】2,2【解析】 BD =3 ..2 , DD 1 =BD 2 =2 • 2 37.方程3sin x=1 +cos2x 在区间[0,2 n 上的解为3. l i : 2x y -1 =0,12 : 2x y 1 =0, 则hl 的距离为 ________________________【答案】 =1 1 _2、522 12 5Ci____________________________________________________________________ 【答案】x= n,5n6 6【解析】3sinx=2-2sin2x,即2sin2 x 3sin x-2=0(2sin x -1)(sin x 2) =0.. 1…sin x =-2. n 5 n…X 二一,-6 68.在3x -- 的二项式中,所有项的二项式系数之和为256 ,则常数项等于\ x丿【答案】112【解析】2n =256,n =88 _r 8 _4r通项C;•(-?)「=C;(-2)r x=x取r =2常数项为C2(-2)2=1129.已知L ABC的三边长为3,5,7,则该三角形的外接圆半径等于【答案】7.33【解析】2 2 2a b - c 1a =3,b =5,c =7 , cosC2ab 2 …sinC -■2• r c 7 亦…R —2sin C 3ax y = 110. 设a 0,b 0,若关于x,y的方程组乂"厂1无解,则a b的取值范围是【解析】由已知,ab =1,且a冷,.a b • 2,ab = 211. 无穷数列由k个不同的数组成,S n为沐[的前n项和,若对任意n N* , S n {2,3}, 则k的最大值为 ____________【答案】412. 在平面直角坐标系中,已知A(1,0), B(0,-1), p 是曲线y = 1 — x 2上一个动点,则 BP BA 的取值范围是 _____________【答案】[0,1 .2]【解析】设 P(cos: ,sin :),二三[0, n , BA =(1,1), BP =(cos : ,sin 二亠1)BP BA =cos ::£ 亠 sin 二 T = 2 sin (: 丄)1 三[0,1 :』2]4 …n 13. 设a, b,三R , c :=[0,2 n ,若对任意实数 x 都有2sin(3x )=asin(bx • c),则满足条件的有序实数组 (a,b,c)的组数为 __________________【答案】4【解析】(i)若a =:2若 b =3,贝U c =心;若 b = —3,贝y c = &3 3n2 n (ii)若 a - 2,若 b - -3,则 c = 一 ;若 b =3,则 c 二—3 3共4组 14. 如图,在平面直角坐标系 xOy 中,O 为正八边形 AAJHA 8的中心,A(1,0),任取不同的呻两点A,A j ,点P 满足OP+OA +OA j =0,则点P 落在第一象限的概率是 ____________________________5_ 285 52 _ C 8 28二、选择题(本大题共有4题,满分20分)15.设 a ・ R ,则“ a 1 ”是“ a 2 1 ”的()A.充分非必要条件B.必要非充分条件 也非必要条件【答案】A 16.下列极坐标方程中,对应的曲线为右图的是 () A. 6 5cos^ B. 6 5sin^C. 6-5cosrD. :' = 6-5sin 二【答案】D 【答案】 C.充要条件 D.既非充分【解析】”-n时,'达到最大2。

2012年高考真题——理科数学(全国卷)Word版(附答案)

2012年高考真题——理科数学(全国卷)Word版(附答案)

2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。

考试结束,务必将试卷和答题卡一并上交。

第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。

考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准该条形码上的准考证号、姓名和科目。

2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试题卷上作答无效.........。

3.第I 卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题(1)复数131i i-+=+ (A )2i + (B )2i - (C )12i + (D )12i -(2)已知集合{A =,{1,}B m =,A B A =U ,则m =(A )0(B )0或3 (C )1(D )1或3(3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A B C D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )1(5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为(A )100101 (B )99101(C )99100 (D )101100(6)ABC ∆中,AB 边的高为CD ,若CB a =u u u r r ,CA b =u u u r r ,0a b ⋅=r r ,||1a =r ,||2b =r ,则AD =u u u r(A )1133a b -r r (B )2233a b -r r (C )3355a b -r r (D )4455a b -r r(7)已知α为第二象限角,sin cos αα+=,则cos2α=(A ) (B ) (C (D (8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e -=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x <<(10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。

2012年高考真题——数学理(全国卷新课标版)word版含答案

2012年高考真题——数学理(全国卷新课标版)word版含答案

绝密*启用前2012年普通高等学校招生全国统一考试理科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.问答第Ⅰ卷时。

选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动.用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效.3.回答第Ⅱ卷时。

将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。

第一卷选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

(1)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3 ()B 6 ()C 8 ()D 10【解】选D(2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动, 每个小组由1名教师和2名学生组成,不同的安排方案共有( )()A 12种 ()B 10种 ()C 9种 ()D 8种【解】选A(3)下面是关于复数21z i =-+的四个命题:其中的真命题为( )1:2p z =22:2p z i=3:p z的共轭复数为1i +4:p z的虚部为1-()A 23,p p ()B12,p p ()C ,p p 24()D ,p p 34【解】选C(4)设12F F 是椭圆2222:1(0)x y E a b ab+=>>的左、右焦点,P 为直线32ax =上一点,∆21F P F 是底角为30的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34 ()D 45【解】选C (5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7 ()B 5 ()C -5()D -7【解】选D(6)如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,na a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和()B 2A B+为12,,...,na a a 的算术平均数()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数 ()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数【解】选C(7)如图,网格纸上小正方形的边长为1,粗线画出的 是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18【解】选B(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线xy162=的准线交于,A B两点,AB =C 的实轴长为( )()A ()B ()C 4 ()D 8【解】选C(9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。

2012年高考真题——理科数学(四川卷) (word版) (有答案)

2012年高考真题——理科数学(四川卷) (word版) (有答案)

2012年普通高等学校招生全国统一考试(四川卷)数学(理工类)参考公式:如果事件互斥,那么球的表面积公式()()()P A B P A P B+=+24S Rp=如果事件相互独立,那么其中R表示球的半径()()()P A B P A P B? 球的体积公式如果事件A在一次试验中发生的概率是p,那么343V Rp=在n次独立重复试验中事件A恰好发生k次的概率其中R表示球的半径()(1)(0,1,2,,)k k n kn nP k C p p k n-=-=…第一部分(选择题共60分)注意事项:1、选择题必须使用2B铅笔将答案标号涂在机读卡上对应题目标号的位置上。

2、本部分共12小题,每小题5分,共60分。

一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。

1、7(1)x+的展开式中2x的系数是()A、42B、35C、28D、212、复数2(1)2ii-=()A、1B、1-C、iD、i-3、函数29,3()3ln(2),3xxf x xx x⎧-<⎪=-⎨⎪-≥⎩在3x=处的极限是()A、不存在B、等于6C、等于3D、等于04、如图,正方形ABCD的边长为1,延长BA至E,使1AE=,连接EC、ED则sin CED∠=()A B C D5、函数1(0,1)xy a a aa=->≠的图象可能是()6、下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行7、设a 、b 都是非零向量,下列四个条件中,使||||a ba b =成立的充分条件是( )A 、a b =-B 、//a bC 、2a b =D 、//a b 且||||a b =8、已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。

2012年普通高等学校招生全国统一考试 理数(上海卷)(含答案)

2012年普通高等学校招生全国统一考试 理数(上海卷)(含答案)

(D)
(A)25.
(B)50.
(C)75.
三、解答题(本大题共有 5 题,满分 74 分)
(D)100. P
19.如图,在四棱锥 P-ABCD 中,底面 ABCD 是矩形,
PA⊥底面 ABCD,E 是 PC 的中点.已知 AB=2,
AD=2 2 ,PA=2.求: (1)三角形 PCD 的面积;(6 分)
21.海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为 y 轴
正方向建立平面直角坐标系(以 1 海里为单位长度),则救援船恰在失事船的正南方向 12

里 A 处,如图. 现假设:①失事船的移动路径可视为抛物线
y
12 49
x2
;②定位后救援船即刻沿直线匀速前往救援;③救
y P
援船出发 t 小时后,失事船所在位置的横坐标为 7t .
(1)若 x>2,且{1, 1, 2, x} ,求 x 的值;(4 分)
(2)若 X 具有性质 P,求证:1 X,且当 xn>1 时,x1=1;(6 分) (3)若 X 具有性质 P,且 x1=1,x2=q(q 为常数),求有穷数列 x1, x2 , , xn 的通 项公式.(8 分)
2012 年上海高考数学(理科)试卷解答
l
6
.若将 l 的极坐标方程写成
f ( ) 的形式,则
f ( )
1
sin(
6
)
.
O
M
x
11.三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有
两人选择的项目完全相同的概率是
2 3
(结果用最简分数表示).
12.在平行四边形
ABCD

2012上海市高考数学理科试卷及参考答案

2012上海市高考数学理科试卷及参考答案

2012年上海高考数学(理科)试卷及参考答案一、填空题(本大题共有14题,满分56分)1.计算:ii +-13= (i 为虚数单位).2.若集合}012|{>+=x x A ,}21|{<-=x x B ,则B A = . 3.函数1sin cos 2)(-=x xx f 的值域是 .4.若)1,2(-=n 是直线l 的一个法向量,则l 的倾斜角的大小为 (结果用反三角函数值表示).5.在6)2(xx -的二项展开式中,常数项等于 .6.有一列正方体,棱长组成以1为首项,21为公比的等比数列,体积分别记为V 1,V 2,…,V n ,…,则=+++∞→)(lim 21n n V V V .7.已知函数||)(a x e x f -=(a 为常数).若)(x f 在区间[1,+∞)上是增函数,则a 的取值范围是 . 8.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为 . 9.已知2)(x x f y +=是奇函数,且1)1(=f .若2)()(+=x f x g ,则=-)1(g . 10.如图,在极坐标系中,过点)0,2(M 的直线l6πα=.若将l 的极坐标方程写成)(θρf =的形式,则 =)(θf .11.三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是 (结果用最简分数表示). 12.在平行四边形ABCD 中,∠A=3π, 边AB 、AD 的长分别为2、1. 若M 、N 分别是边BC 、CD 上的点,||||CD CN BC BM ,则AN AM ⋅的取值范围是 .13.已知函数)(x f y =的图像是折线段ABC ,若中A (0,0),B (21,5),C (1,0).函数)10()(≤≤=x x xf y 的图像与x 轴围成的图形的面积为 . 14.如图,AD 与BC 是四面体ABCD 中互相垂直的棱,BC=2.若AD=2c ,且AB+BD=AC+CD=2a ,其中a 、c 为常数,则四面体ABCD 的体积的最大值是 .二、选择题(本大题共有4题,满分20分)15.若i 21+是关于x 的实系数方程02=++c bx x 的一个复数根,则( )(A )3,2==c b . (B )3,2=-=c b . (C )1,2-=-=c b .(D )1,2-==c b . 16.在ABC ∆中,若C B A 222sin sin sin <+,则ABC ∆的形状是( )(A )锐角三角形. (B )直角三角形. (C )钝角三角形. (D )不能确定. 17.设443211010≤<<<≤x x x x ,5510=x . 随机变量1ξ取值1x 、2x 、3x 、4x 、5x 的概率均为0.2,随机变量2ξ取值221x x +、232x x +、243x x +、254x x +、215x x +的概率也为0.2. 若记1ξD 、2ξD 分别为1ξ、2ξ的方差,则( )(A )1ξD >2ξD . (B )1ξD =2ξD . (C )1ξD <2ξD .(D )1ξD 与2ξD 的大小关系与1x 、2x 、3x 、4x 的取值有关.18.设251sin πnn n a =,n n a a a S +++= 21. 在10021,,,S S S 中,正数的个数是 ( )(A )25. (B )50. (C )75. (D )100.三、解答题(本大题共有5题,满分74分)19.如图,在四棱锥P -ABCD 中,底面ABCD 是矩形, PA ⊥底面ABCD ,E 是PC 的中点.已知AB=2, AD=22,PA=2.求:(1)三角形PCD 的面积;(6分)(2)异面直线BC 与AE 所成的角的大小.(6分)ABC D A B CD P E20.已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 的取值范围;(6分)(2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =])2,1[(∈x 的反函数.(8分)21.海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰在失事船的正南方向12海里A 处,如图.24912x y =援船出发t 小时后,失事船所在位置的横坐标为t 7.(1)当5.0=t 时,写出失事船所在位置P 的纵坐标. 两船恰好会合,求救援船速度的大小和方向;(6分)(222.在平面直角坐标系xOy 中,已知双曲线12:221=-y x C .(1)过1C 的左顶点引1C 的一条渐近线的平行线,求该直线与另一条渐近线及x 轴围成的三角形的面积;(4分)(2)设斜率为1的直线l 交1C 于P 、Q 两点,若l 与圆122=+y x 相切,求证:OP ⊥OQ ;(6分)(3)设椭圆14:222=+y x C . 若M 、N 分别是1C 、2C 上的动点,且OM ⊥ON , 求证:O 到直线MN 的距离是定值.(6分)23.对于数集},,,,1{21n x x x X -=,其中n x x x <<<< 210,2≥n ,定义向量集},),,(|{X t X s t s a a Y ∈∈==. 若对于任意Y a ∈1,存在Y a ∈2,使得021=⋅a a ,则称X 具有性质P. 例如}2,1,1{-=X 具有性质P.(1)若x >2,且},2,1,1{x -,求x 的值;(4分)(2)若X 具有性质P ,求证:1∈X ,且当x n >1时,x 1=1;(6分)(3)若X 具有性质P ,且x 1=1,x 2=q (q 为常数),求有穷数列n x x x ,,,21 的通项公式.(8分)2012年上海高考数学(理科)试卷解答一、填空题(本大题共有14题,满分56分) 1. 1-2i 2. )3,(21- . 3. ],[2325-- . 4. arctan2 5. -160 . 6. 78 . 7. (-∞, 1] . 8. π33.9. -1 .10. )sin(16θπ- .11. 32 12. [2, 5] . 13. 45.14.12232--c a c .二、选择题(本大题共有4题,满分20分) 15. B ; 16. C ; 17. A ; 18. D ;三、解答题(本大题共有5题,满分74分)19. [解](1)因为PA ⊥底面ABCD ,所以PA ⊥CD ,又AD ⊥CD ,所以CD ⊥平面PAD ,从而CD ⊥PD . ……3分 因为PD=32)22(222=+,CD =2,所以三角形PCD 的面积为32221=⨯⨯分 (2)[解法一] 则B (2, 0, 0),C (2, 22,0),E )1,2,1(=AE ,)0,22,0(=BC 设AE 与BC 的夹角为θ,则y222224||||cos ===⨯⋅BC AEBCAE θ,θ=4π. 由此可知,异面直线BC 与AE 所成的角的大小是4π ……12分 [解法二]取PB 中点F ,连接EF 、AF ,则EF ∥BC ,从而∠AEF(或其补角)是异面直线 BC 与AE 所成的角 ……8分在AEF ∆中,由EF =2、AF =2、AE =2知AEF ∆是等腰直角三角形,所以∠AEF =4π. 因此异面直线BC 与AE 所成的角的大小是4π ……12分 20[解](1)由⎩⎨⎧>+>-01022x x ,得11<<-x .由1lg )1lg()22lg(0122<=+--<+-x x x x 得101122<<+-x x . ……3分 因为01>+x ,所以1010221+<-<+x x x ,3132<<-x . 由⎩⎨⎧<<-<<-313211x x 得3132<<-x . ……6分 (2)当x ∈[1,2]时,2-x ∈[0,1],因此)3lg()2()2()2()(x x f x g x g x g y -=-=-=-==. ……10分 由单调性可得]2lg ,0[∈y .因为y x 103-=,所以所求反函数是x y 103-=,]2lg ,0[∈x . ……14分21.[解](1)5.0=t 时,P 的横坐标x P =277=t ,代入抛物线方程24912x y = 中,得P 的纵坐标y P =3. ……2分 由|AP |=2949,得救援船速度的大小为949海里/时. ……4分 由tan∠OAP =30712327=+,得∠OAP =arctan 307,故救援船速度的方向为北偏东arctan 307弧度6分(2)设救援船的时速为v 海里,经过t 小时追上失事船,此时位置为)12,7(2t t . 由222)1212()7(++=t t vt ,整理得337)(1442122++=t t v .……10分 因为2212≥+t t ,当且仅当t =1时等号成立,所以22253372144=+⨯≥v ,即25≥v . 因此,救援船的时速至少是25海里才能追上失事船. ……14分A B CD P EF22. [解](1)双曲线1:21212=-y C x ,左顶点)0,(22-A ,渐近线方程:x y 2±=.过点A 与渐近线x y 2=平行的直线方程为)(222+=x y ,即12+=x y .解方程组⎩⎨⎧+=-=122x y x y ,得⎪⎩⎪⎨⎧=-=2142y x . ……2分 所以所求三角形的面积1为8221||||==y OA S . ……4分 (2)设直线PQ 的方程是b x y +=.因直线与已知圆相切,故12||=b ,即22=b . ……6分由⎩⎨⎧=-+=1222y x b x y ,得01222=---b bx x . 设P (x 1, y 1)、Q (x 2, y 2),则⎩⎨⎧--==+1222121b x x bx x .又2,所以221212121)(2b x x b x x y y x x OQ OP +++=+=⋅022)1(2222=-=+⋅+--=b b b b b ,故OP ⊥OQ . ……10分(3)当直线ON 垂直于x 轴时,|ON |=1,|OM |=22,则O 到直线MN 的距离为33. 当直线ON 不垂直于x 轴时,设直线ON 的方程为kx y =(显然22||>k ),则直线OM 的方程为x y k1-=. 由⎩⎨⎧=+=1422y x kx y ,得⎪⎩⎪⎨⎧==++22242412k k k y x ,所以22412||k k ON ++=.同理121222||-+=k k OM . ……13分设O 到直线MN 的距离为d ,因为22222||||)|||(|ON OM d ON OM =+,所以3133||1||1122222==+=++k k ON OM d ,即d =33.综上,O 到直线MN 的距离是定值. ……16分 23. [解](1)选取)2,(1x a =,Y 中与1a 垂直的元素必有形式),1(b -. ……2分 所以x =2b ,从而x =4. ……4分 (2)证明:取Y x x a ∈=),(111.设Y t s a ∈=),(2满足021=⋅a a . 由0)(1=+x t s 得0=+t s ,所以s 、t 异号.因为-1是X 中唯一的负数,所以s 、t 中之一为-1,另一为1,故1∈X . ……7分 假设1=k x ,其中n k <<1,则n x x <<<101.选取Y x x a n ∈=),(11,并设Y t s a ∈=),(2满足021=⋅a a ,即01=+n tx sx , 则s 、t 异号,从而s 、t 之中恰有一个为-1. 若s =-1,则2,矛盾;若t =-1,则n n x s sx x ≤<=1,矛盾.所以x 1=1. ……10分(3)[解法一]猜测1-=i i q x ,i =1, 2, …, n . ……12分 记},,,1,1{2k k x x A -=,k =2, 3, …, n .先证明:若1+k A 具有性质P ,则k A 也具有性质P.任取),(1t s a =,s 、t ∈k A .当s 、t 中出现-1时,显然有2a 满足021=⋅a a ; 当1-≠s 且1-≠t 时,s 、t ≥1.因为1+k A 具有性质P ,所以有),(112t s a =,1s 、1t ∈1+k A ,使得021=⋅a a ,从而1s 和1t 中有一个是-1,不妨设1s =-1.假设1t ∈1+k A 且1t ∉k A ,则11+=k x t .由0),1(),(1=-⋅+k x t s ,得11++≥=k k x tx s ,与s ∈k A 矛盾.所以1t ∈k A .从而k A 也具有性质P. ……15分 现用数学归纳法证明:1-=i i q x ,i =1, 2, …, n . 当n =2时,结论显然成立;假设n=k 时,},,,1,1{2k k x x A -=有性质P ,则1-=i i q x ,i =1, 2, …, k ; 当n=k +1时,若},,,,1,1{121++-=k k k x x x A 有性质P ,则},,,1,1{2k k x x A -=也有性质P ,所以},,,,1,1{111+-+-=k k k x q q A .取),(11q x a k +=,并设),(2t s a =满足021=⋅a a ,即01=++qt s x k .由此可得s与t 中有且只有一个为-1.若1-=t ,则1,不可能;所以1-=s ,k k k q q q qt x =⋅≤=-+11,又11-+>k k q x ,所以k k q x =+1. 综上所述,1-=i i q x 1-=i i q x ,i =1, 2, …, n . ……18分 [解法二]设),(111t s a =,),(222t s a =,则021=⋅a a 等价于2211s t t s -=. 记|}|||,,|{t s X t X s B t s >∈∈=,则数集X 具有性质P 当且仅当数集B 关于 原点对称. ……14分注意到-1是X 中的唯一负数,},,,{)0,(32n x x x B ---=-∞ 共有n -1个数,所以),0(∞+ B 也只有n -1个数. 由于1221x x x x x x x xn n n n n n <<<<-- ,已有n -1个数,对以下三角数阵1221x x x x x x x x n n n n n n <<<<--113121x x x x x xn n n n n -----<<<……12x x注意到12111x x x x x x n n >>>- ,所以12211x x x x x xn n n n ===--- ,从而数列的通项公式为111)(12--==k k x xk q x x ,k =1, 2, …, n . ……18分。

2012年-2021年(10年)全国高考数学真题分类汇编(理科) 不等式选讲(精解精析版)

2012年-2021年(10年)全国高考数学真题分类汇编(理科) 不等式选讲(精解精析版)

2012-2021十年全国高考数学真题分类汇编(理科)不等式选讲(精解精析版)1.(2021年高考全国乙卷理科)已知函数()3f x x a x =-++.(1)当1a =时,求不等式()6f x ≥的解集;(2)若()f x a >-,求a 的取值范围.【答案】(1)(][),42,-∞-+∞ .(2)3,2⎛⎫-+∞ ⎪⎝⎭.解析:(1)当1a =时,()13f x x x =-++,13x x -++表示数轴上的点到1和3-的距离之和,则()6f x ≥表示数轴上的点到1和3-的距离之和不小于6,故4x ≤-或2x ≥,所以()6f x ≥的解集为(][),42,-∞-+∞ .(2)依题意()f x a >-,即3a x a x -+>-+恒成立,333x a x x a a x -++-+=≥++,故3a a +>-,所以3a a +>-或3a a +<,解得32a >-.所以a 的取值范围是3,2⎛⎫-+∞ ⎪⎝⎭.【点睛】解绝对值不等式的方法有零点分段法、几何意义法.2.(2020年高考数学课标Ⅰ卷理科)已知函数()|31|2|1|f x x x =+--.(1)画出()y f x =的图像;(2)求不等式()(1)f x f x >+的解集.【答案】(1)详解解析;(2)7,6⎛⎫-∞-⎪⎝⎭.【解析】(1)因为()3,1151,1313,3x x f x x x x x ⎧⎪+≥⎪⎪=--<<⎨⎪⎪--≤-⎪⎩,作出图象,如图所示:(2)将函数()f x 的图象向左平移1个单位,可得函数()1f x +的图象,如图所示:由()3511x x --=+-,解得76x =-.所以不等式()(1)f x f x >+的解集为7,6⎛⎫-∞-⎪⎝⎭.【点睛】本题主要考查画分段函数的图象,以及利用图象解不等式,意在考查学生的数形结合能力,属于基础题.3.(2020年高考数学课标Ⅱ卷理科)已知函数2()|21|f x x a x a =-+-+.(1)当2a =时,求不等式()4f x 的解集;(2)若()4f x ,求a 的取值范围.【答案】(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞ .解析:(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥;综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.(2)()()()()22222121211f x x a x a x a x a a a a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞ .【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型.4.(2020年高考数学课标Ⅲ卷理科)设a ,b ,c ∈R ,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c 【答案】(1)证明见解析(2)证明见解析.解析:(1)2222()2220a b c a b c ab ac bc ++=+++++= ,()22212ab bc ca a b c ∴++=-++.1,,,abc a b c =∴ 均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<;(2)不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--= ,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=.当且仅当b c =时,取等号,a ∴≥,即max{,,}a b c .【点睛】本题主要考查了不等式的基本性质以及基本不等式的应用,属于中档题.5.(2019年高考数学课标Ⅲ卷理科)设,,x y z R ∈,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a -≤或1a -≥.【答案】【答案】(1)43;(2)见详解.【官方解析】(1)由于2[(1)(1)(1)]x y z -++++222(1)(1)(1)2[(1)(1)(1)(1)(1)(1)]x y z x y y z z x =-+++++-++++++-2223(1)(1)(1)x y z ⎡⎤-++++⎣⎦故由已知得232(1)(1)143()x y z -++++≥,当且仅当511,,333x y z ==-=-时等号成立.所以232(1)(1)(1)x y z -++++的最小值为43.(2)由于2[(2)(1)()]x y z a -+-+-222(2)(1)()2[(2)(1)(1)()()(2)]x y z a x y y z a z a x =-+-+-+--+--+--2223(2)(1)()x y z a ⎡⎤-+-+-⎣⎦故由已知得2222(2)(2)(1)()3a x y z a +-+-+-,当且仅当4122,,333aa a x y z ---===时等号成立.因此222(2)(1)()x y z a -+-+-的最小值为2(2)3a +由题设知2(2)133a +,解得3a -≤或1a -≥.【解法2】柯西不等式法(1)22222222[(1)(1)(1)](111)[(1)(1)(1)](1)4x y z x y z x y z -++++++-++++=+++=≥,故2224(1)(1)(1)3x y z -++++≥,当且仅当511,,333x y z ==-=-时等号成立.所以222(1)(1)(1)x y z -++++的最小值为43.(2)2221(2)(1)()3x y z a -+-+-≥,所以222222[(2)(1)()](111)1x y z a -+-+-++≥.当且仅当4122,,333aa a x y z ---===时等号成立.22222222[(2)(1)()](111)(21)(2)x y z a x y z a a -+-+-++=-+-+-=+成立.所以2(2)1a +≥成立,所以有3a -≤或1a -≥.【点评】本题两问思路一样,既可用基本不等式,也可用柯西不等式求解,属于中档题型.6.(2019年高考数学课标全国Ⅱ卷理科)已知函数()()2f x x a x x x a =-+--.()1当1a =时,求不等式()0f x <的解集;()2当(),1x ∈-∞时,()0f x <,求a 的取值范围.【答案】()1(),1-∞;()2[)1,+∞【官方解析】()1当1a =时,()=|1| +|2|(1)f x x x x x ---.当1x <时,2()2(1)0f x x =--<;当1x ≥时,()0f x ≥.所以,不等式()0f x <的解集为(,1)-∞.()2因为()=0f a ,所以1a ≥.当1a ≥,(,1)x ∈-∞时,()=() +(2)()=2()(1)<0f x a x x x x a a x x -----所以,a 的取值范围是[1,)+∞.【分析】()1根据1a =,将原不等式化为()1210x x x x -+--<,分别讨论1x <,12x <≤,2x ≥三种情况,即可求出结果;()2分别讨论1a ≥和1a <两种情况,即可得出结果.【解析】()1当1a =时,原不等式可化为()1210x x x x -+--<;当1x <时,原不等式可化为,即()210x ->,显然成立,此时解集为(),1-∞;当12x <≤时,原不等式可化为()()()1210x x x x -+--<,解得1x <,此时解集为空集;当2x ≥时,原不等式可化为()()()1210x x x x -+--<,即()210x -<,显然不成立;此时解集为空集;综上,原不等式的解集为(),1-∞;()2当1a ≥时,因为(),1x ∈-∞,所以由()0f x <可得()()()20a x x x x a -+--<,即()()10x a x -->,显然恒成立;所以1a ≥满足题意;当1a <时,()()()2,1()21,x a a x f x x a x x a-<⎧⎪=⎨--<⎪⎩≤,因为1a x <≤时,()0f x <显然不能成立,所以1a <不满足题意;综上,a 的取值范围是[)1,+∞.【点评】本题主要考查含绝对值的不等式,熟记分类讨论的方法求解即可,属于常考题型.7.(2019年高考数学课标全国Ⅰ卷理科)已知a ,b ,c 为正数,且满足1abc =.证明:(1)222111a b c a b c++++≤;(2)333()()()24a b b c c a +++++≥.【答案】解:(1)因为2222222,2,2a b ab b c bc c a ac +++≥≥≥,又1abc =,故有222111ab bc ca a b c ab bc ca abc a b c ++++++==++≥.所以222111a b c a b c++++≤.(2)因为, , a b c 为正数且1abc =,故有333()()()a b b c c a +++++≥3(+)(+)(+)a b b c a c=324⨯⨯⨯=≥所以333()()()24a b b c c a +++++≥.8.(2018年高考数学课标Ⅲ卷(理))【选修4—5:不等式选讲】(10分)设函数()211f x x x =++-.(1)画出()y f x =的图象;(2)当[)0,x ∈+∞时,()f x ax b ≤+,求a b +的最小值.【答案】【官方解析】(1)()13,212,123,1x x f x x x x x ⎧-<-⎪⎪⎪=+-≤<⎨⎪≥⎪⎪⎩()y f x =的图像如图所示(2)由(1)知,()y f x =的图像与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当3a ≥且2b ≥时,()f x ax b ≤+在[)0,+∞成立,因此a b +的最小值为5.【民间解析】(1)()211f x x x =++-3,112,12132x x x x x x ⎧⎪>⎪⎪=+-≤≤⎨⎪⎪-<-⎪⎩,可作出函数()f x的图象如下图(2)依题意可知()f x ax b ≤+在[)1,+∞上恒成立,在[)0,1上也恒成立当1x ≥时,()3f x x ax b =≤+恒成立即()30a x b -+≥在[)1,+∞上恒成立所以30a -≥,且30a b -+≥,此时3a ≥,3a b +≥当01x ≤<时,()2f x x ax b =+≤+即()120a x b -+-≥恒成立结合3a ≥,可知20b -≥即2b ≥综上可知32a b ≥⎧⎨≥⎩,所以当3a =,2b =时,a b +取得最小值5.9.(2018年高考数学课标Ⅱ卷(理))[选修4-5:不等式选讲](10分)设函数()5|||2|f x x a x =-+--.(1)当1a =时,求不等式()0f x ≥的解集;(2)若()1f x ≤,求a 的取值范围.【答案】解析:(1)当1a =时,24,1,()2,12,26, 2.x x f x x x x +-⎧⎪=-<⎨⎪-+>⎩≤ ≤可得()0≥f x 的解集为{}|23≤≤x x -.(2)()1f x ≤等价于|||2|4≥x a x ++-.而|||2||2|≥x a x a ++-+,且当2x =时等号成立,故()1f x ≤等价于|2|4≥a +.由|2|4≥a +可得6≤a -或2≥a ,所以a 的取值范围是(][),62,-∞-+∞ .10.(2018年高考数学课标卷Ⅰ(理))[选修4–5:不等式选讲](10分)已知()|1||1|f x x ax =+--.(1)当1a =时,求不等式()1f x >的解集;(2)若(0,1)x ∈时不等式()f x x >成立,求a 的取值范围.【答案】解析:(1)当1a =时,()|1||1|f x x x =+--,即2,1,()2,11,2, 1.x f x x x x -≤-⎧⎪=-<<⎨⎪≥⎩故不等式()1f x >的解集为1{|}2x x >.(2)当(0,1)x ∈时|1||1|x ax x +-->成立等价于当(0,1)x ∈时|1|1ax -<成立.若0a ≤,则当(0,1)x ∈时|1|1ax -≥;若0a >,|1|1ax -<的解集为20x a <<,所以21a≥,故02a <≤.综上,a 的取值范围为(0,2].11.(2017年高考数学新课标Ⅰ卷理科)[选修4—5:不等式选讲]已知函数()24f x x ax =-++,()11g x x x =++-.(1)当1a =时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[]1,1-,求a 的取值范围2017年高考数学新课标Ⅰ卷理科【答案】(1)112x x ⎧-+⎪-≤≤⎨⎬⎪⎪⎩⎭;(2)[]1,1-.【分析】(1)将1a =代入,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤,对x 按1x <-,11x -≤≤,1x >讨论,得出最值的解集;(2)当[1,1]x ∈-时,()2g x =.若()()f x g x ≥的解集包含[1,1]-,等价于当[]1,1x ∈-时,()2f x ≥,则()f x 在[]1,1-的最小值必为()1f -与()1f 之一,所以()12f -≥且()12f ≥,得11a -≤≤,所以a的取值范围为[]1,1-.【解析】(1)当1a =时,不等式()()f x g x ≥等价于21140x x x x -+++--<①当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而11712x -+<≤所以不等式()()f x g x ≥的解集为11712x x ⎧-+⎪-≤≤⎨⎪⎪⎩⎭(2)当[]1,1x ∈-时,()2g x =所以()()f x g x ≥的解集包含[]1,1-,等价于当[]1,1x ∈-时,()2f x ≥又()f x 在[]1,1-的最小值必为()1f -与()1f 之一,所以()()1212f f -≥⎧⎪⎨≥⎪⎩,得11a -≤≤.所以a 的取值范围为[]1,1-.【考点】绝对值不等式的解法,恒成立问题【点评】零点分段法是解答绝对值不等式问题的常用方法,也可以将绝对值函数转化为分段函数,借助图像解题.12.(2017年高考数学课标Ⅲ卷理科)[选修4—5:不等式选讲](10分)已知函数()12f x x x =+--.(1)求不等式()1f x ≥的解集;(2)若不等式()2f x x x m ≥-+的解集非空,求m 的取值范围.【答案】(Ⅰ){}1x x ≥;(Ⅱ)5-,4⎛⎤∞ ⎥⎝⎦【解析】(1)因为()3, 11221, 123, 2x f x x x x x x -<-⎧⎪=+--=-≤≤⎨⎪>⎩所以不等式()1f x ≥等价于131x <-⎧⎨-≥⎩或12211x x -≤≤⎧⎨-≥⎩或231x >⎧⎨≥⎩由131x <-⎧⎨-≥⎩⇒x 无解;由1222x x -≤≤⎧⎨≥⎩12x ⇒≤≤;由231x >⎧⎨≥⎩2x ⇒≥综上可得不等式()1f x ≥的解集为[)1,+∞.(2)解法一:先求不等式()2f x x x m ≥-+的解集为空集时m 的取值范围不等式()2f x x x m ≥-+的解集为空集等价于不等式()2m f x x x >-+恒成立记()()2F x f x x x =-+2223, 131, 123, 2x x x x x x x x x ⎧-+-<-⎪-+-≤≤⎨⎪-++>⎩,则()maxm F x >⎡⎤⎣⎦当1x <-时,()()2211131524F x x x x F ⎛⎫=-+-=---<-=- ⎪⎝⎭当12x -≤≤时,()223535312424F x x x x F ⎛⎫⎛⎫=-+-=--+≤=⎪ ⎪⎝⎭⎝⎭当2x >时,()()2211332124F x x x x F ⎛⎫=-++=--+<= ⎪⎝⎭所以()max 3524F x F ⎛⎫==⎡⎤⎪⎣⎦⎝⎭所以不等式()2f x x x m ≥-+的解集为空集时,54m >所以不等式()2f x x x m ≥-+的解集非空时,m 的取值范围为5,4⎛⎤-∞ ⎥⎝⎦.解法二:原式等价于存在x R ∈,使2()f x x x m -+≥成立,即2max [()]f x x x m-+≥设2()()g x f x x x=-+由(1)知2223,1()31,123,2x x x g x x x x x x x ⎧-+-≤-⎪=-+--<<⎨⎪-++≥⎩当1x ≤-时,2()3g x x x =-+-,其开口向下,对称轴112x =>-所以()()11135g x g ≤-=---=-当12x -<<时,()231g x x x =-+-,其开口向下,对称轴为32x =所以()399512424g x g ⎛⎫≤=-+-=⎪⎝⎭当2x ≥时,()23g x x x =-++,其开口向下,对称轴为12x =所以()()24231g x g ≤=-++=综上()max 54g x =⎡⎤⎣⎦所以m 的取值范围为5,4⎛⎤-∞ ⎥⎝⎦.【考点】绝对值不等式的解法【点评】绝对值不等式的解法有三种:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.13.(2017年高考数学课标Ⅱ卷理科)[选修4-5:不等式选讲](10分)已知330,0,2a b a b >>+=,证明:(1)33()()4a b a b ++≥;(2)2a b +≤.【答案】【命题意图】不等式证明,柯西不等式【基本解法】(1)解法一:由柯西不等式得:55222222332()()))()4a b a b a b a b⎡⎤⎡⎤++=+⋅+≥+=⎣⎦⎣⎦解法二:5566553325533()()()2a b a b a b ab a b a b ab a b a b++=+++=+++-33233332()2()4a b a b a b ≥++-=+=解法三:()()()()()2555533553342a b a b a b a b a bab a b a b ++-=++-+=+-又0,0a b >>,所以()255332220ab a b a b ab a b +-=-≥.当a b =时,等号成立.所以,()()5540a b a b++-≥,即55()()4a b ab ++≥.(2)解法一:由332a b +=及2()4a b ab +≤得2222()()()()3a b a b ab a b a b ab ⎡⎤=+⋅+-=+⋅+-⎣⎦2233()()()4()4a b a b a b a b ⎡⎤+≥+⋅+-⎢⎥⎣⎦+=所以2a b +≤.解法二:(反证法)假设2a b +>,则2a b >-,两边同时立方得:3323(2)8126a b b b b >-=-+-,即3328126a b b b +>-+,因为332a b +=,所以261260b b -+<,即26(1)0b -<,矛盾,所以假设不成立,即2a b +≤.解法三:因为332a b +=,所以:()()()3333322333843344a b a b a baa b ab b a b +-=+-+=+++--()()()()222333a b a b a b a b a b =-+-=-+-.又0,0a b >>,所以:()()230a b a b -+-≤。

2012年高考理科数学上海卷-答案

2012年高考理科数学上海卷-答案

2012年普通高等学校招生全国统一考试(上海卷)数学试卷(理工农医类)12AB ⎛-= ⎝【提示】由题意,可先将两个数集化简,再由交的运算的定义求出两个集合的交集即可得到答案arctan2【解析】方向向量(1,2)d =,所以2l k =,倾斜角arctan2α=【提示】根据直线的法向量求出直线的一个方向向量,从而得到直线的斜率,根据tan k α=可求出倾斜角 【考点】平面向量坐标 5.【答案】160-【解析】展开式通项662166(1)2(1)2r r r r r r r r rr T C x x C x ---+=-=-,令620r -=,得3r =,故常数项为3362160C -⨯=-【提示】研究常数项只需研究二项式的展开式的通项,使得x 的指数为0,得到相应的r ,从而可求出常数项【考点】二项式定理6.【答案】8 )1n V ++=【提示】由题意可得,正方体的体积1318n n n V a -⎛⎫== ⎪⎝⎭是以1为首项,以18为公比的等比数,由不等数列的求和公式可求【考点】数列的极限,棱柱,棱锥,棱台的体积. 7.【答案】1a ≤【解析】令()||g x x a =-,则()()e g x f x =,由于底数1e >,故()()f x g x ↑⇔↑,由()g x 的图像知()f x 在区间[1,)+∞上是增函数时,1a ≤【提示】由题意,复合函数()f x 在区间[1,)+∞上是增函数可得出内层函数||t x a =-在区间[1,)+∞上是增函数,又绝对值函数||t x a =-在区间[)a +∞,上是增函数,可得出[1,,)[)a ⊆+∞+∞,比较区间端点即可得出a 的取值范围【考点】指数函数单调性8. 【解析】如图,21π2π22l l=⇒=,又22ππ2π1r l r ==⇒=,所以h 21π3V r h ==【提示】通过侧面展开图的面积.求出圆锥的母线,底面的半径,求出圆锥的体积即可 【考点】旋转体 9.【答案】1-【解析】2()y f x x =+是奇函数,则22(1)(1)[(1)1]4f f -+-=-+=-,所以(1)3f -=-,(1)(1)21g f -=-+=-【提示】由题意,可先由函数是奇函数求出(1)3f -=-,再将其代入(1)g -求值即可得到答案 【考点】函数奇偶性,函数的值 10.【答案】()π61sin θ-【解析】(2,0)M 的直角坐标也是(2)0,,斜率k =2x =,化为极坐标方程为:cos 2ρθθ-=,1cos 12ρθθ⎛⎫= ⎪ ⎪⎝⎭,πsin 16ρθ⎛⎫-= ⎪⎝⎭,()π61sin ρθ=-,即()π61()sin f θθ=-.【提示】取直线l 上任意一点(,)P ρθ,连接OP ,则OP ρ=,POM θ∠=,在三角形POM 中,利用正弦定理建立等式关系,从而求出所求 22233327C C =,求21133218C C =,故2【提示】先求出三个同学选择的所求种数,然后求出有且仅有两人选择的项目完全相同的种数,最后利用古典概型及其概率计算公式进行求解即可 【考点】古典概型,概率计算 [2,5]||||[||||BM CN t BC CD ==∈||BM t =,||2CN t =,所以故22532222t AM AN t t t ⎛⎫⎛=+= ⎪--+⎝⎭max ()AM AN f =min ()(1)AM AN f =【提示】画出图形,建立直角坐标系,利用比例关系,求出M ,N 的坐标,然后通过二次函数求出数量积的范围【考点】平面向量 13.【答案】54133211201122535515510|(10)|10|533212124124x x x =⨯+-⨯+⨯=-+-==故答案为:54【提示】根据题意求得110,02()11010,12x x f x x x ⎧⎛⎫≤≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-≤≤ ⎪⎪⎝⎭⎩,从而22110,02()11010,12x x y xf x x x x ⎧⎛⎫≤≤ ⎪⎪⎪⎝⎭==⎨⎛⎫⎪-≤≤ ⎪⎪⎝⎭⎩,利用定积分可求得函数(),(01)y xf x x =≤≤的图像与x 轴围成的图形的面积319.【答案】(Ⅰ)(Ⅱ)π∴(1,AE =,(0,2BC =,设AE 与BC 夹角为222AE BC AE BC=⨯,由此可得异面直线各点的坐标,从而(1,AE =,(0,2BC =得到AE 与BC 夹角为【考点】直线与平面垂直,异面直线及其所成的角.20.【答案】(Ⅰ)2133x -<<(Ⅱ)310xy =-,0,[]lg2x ∈(Ⅱ)结合函数的奇偶性和反函数知识进行求解. 【考点】函数的周期性,反函数,对数函数图像与性质. 21.【答案】/时 救援船速度的方向为北偏东7arctan30弧度22.【答案】(Ⅰ)双曲线212:111x y C -=左顶点A ⎛⎫ ⎪ ⎪⎝⎭,渐近线方程为:y =.所以12OP OQ x x =20-= (Ⅰ)求出双曲线的渐近线方程,求出直线与另一条渐近线的交点,然后求出三角形的面积. ,通过求解0OP OQ = 轴时,设直线ON 【考点】直线,圆锥曲线.23.【答案】(Ⅰ)选取1(,2)a x =,Y 中与1a 垂直的元素必有形式(1,)b -.,从而4x =(Ⅱ)证明:取11(,a x x =.设2(,)a s t =满足120a a =. 中唯一的负数,所以t 、中之一为,另一为1,故11n x x <<选取11(,a x x =并设2(,)a s t =满足120a a =,即1=-,则1x ,矛盾;,,}k x ,k 先证明:若A 任取1(,)a s t =K s t A ∈、时,显然有2a 满足120a a =; 11k A +具有性质,所以有21(,a s t =,使得120a a =,从而1k x +=.由1)(1,)k x +-=,得1k s tx x +=≥,,}k x 有性质1,,,}k k x x +,,}k x1,1,,,,k k q q x -取11(k a x +=,并设2(,)a s t =满足120a a =,即.由此可得s 与t 中有且只有一个为所以1s =-1k k q q q -≤=,又x q >11 / 11综上所述1i i x q -=,1,2,,i n =⋯【提示】(Ⅰ)在Y 中取1(,2)a x =,根据数量积的坐标公式,可得Y 中与1a 垂直的元素必有形式(1,)b -,所以2x b =,结合2x >,可得x 的值.(Ⅱ)取111(,)a x x =,2(,)a s t =根据120a a =,化简可得0s t +=,所以s t 、异号.而1-是数集X 中唯一的负数,所以s t 、中的负数必为1-,另一个数是1,从而证出1X ∈,最后通过反证法,可以证明出当1n x >时,11x =(Ⅲ)先猜想结论:1i i x q -=,1,2,3,...i n =记2{1,1,,,}k k A x x =-,2,3,,k n =⋯通过反证法证明出引理:若1k A +具有性质P ,则k A 也具有性质P .最后用数学归纳法,可证明出1i i x q -=,1,2,3,...i n =【考点】数列,向量,元素,集合关系.。

2012年理数高考试题答案及解析-上海

2012年理数高考试题答案及解析-上海

2012上海高考数学试题(理科)答案与解析一.填空题 1.计算:3-i=1+i(i 为虚数单位). 【答案】1-2i 【解析】3-i (3-i)(1-i)2-4i ===1-2i 1+i (1+i)(1-i)2. 【点评】本题着重考查复数的除法运算,首先,将分子、分母同乘以分母的共轭复数,将分母实数化即可.2.若集合}012|{>+=x x A ,}2|1||{<-=x x B ,则=B A .【答案】 ⎪⎭⎫⎝⎛-3,21【解析】根据集合A 210x +>,解得12x >-,由12,,13x x --<<得到,所以⎪⎭⎫⎝⎛-=3,21B A .【点评】本题考查集合的概念和性质的运用,同时考查了一元一次不等式和绝对值不等式的解法.解决此类问题,首先分清集合的元素的构成,然后,借助于数轴或韦恩图解决. 3.函数1sin cos 2)(-= x x x f 的值域是 .【答案】⎥⎦⎤⎢⎣⎡--23,25【解析】根据题目22sin 212cos sin )(--=--=x x x x f ,因为12sin 1≤≤-x ,所以23)(25-≤≤-x f .【点评】本题主要考查行列式的基本运算、三角函数的范围、二倍角公式,属于容易题,难度较小.考纲中明确要求掌握二阶行列式的运算性质.4.若)1,2(-=n 是直线l 的一个法向量,则l 的倾斜角的大小为 (结果用反三角函数值表示).【答案】2arctan【解析】设直线的倾斜角为α,则2arctan ,2tan ==αα.【点评】本题主要考查直线的方向向量、直线的倾斜角与斜率的关系、反三角函数的表示.直线的倾斜角的取值情况一定要注意,属于低档题,难度较小.5.在6)2(xx -的二项展开式中,常数项等于 .【答案】160-【解析】根据所给二项式的构成,构成的常数项只有一项,就是333462C ()160T x x=-=- . 【点评】本题主要考查二项式定理.对于二项式的展开式要清楚,特别注意常数项的构成.属于中档题.6.有一列正方体,棱长组成以1为首项、21为公比的等比数列,体积分别记为 ,,,,n V V V 21,则=+++∞→)(lim 21n n V V V .【答案】78 【解析】由正方体的棱长组成以1为首项,21为公比的等比数列,可知它们的体积则组成了一个以1为首项,81为公比的等比数列,因此,788111)(lim 21=-=+++∞→n n V V V .【点评】本题主要考查无穷递缩等比数列的极限、等比数列的通项公式、等比数列的定义.考查知识较综合.7.已知函数||)(a x e x f -=(a 为常数).若)(x f 在区间),1[+∞上是增函数,则a 的取值范围是 .【答案】(]1,∞-【解析】根据函数,(),x ax ax ae x af x ee x a---+⎧≥⎪==⎨<⎪⎩看出当a x ≥时函数增函数,而已知函数)(x f 在区间[)+∞,1上为增函数,所以a 的取值范围为:(]1,∞- .【点评】本题主要考查指数函数单调性,复合函数的单调性的判断,分类讨论在求解数学问题中的运用.本题容易产生增根,要注意取舍,切勿随意处理,导致不必要的错误.本题属于中低档题目,难度适中.8.若一个圆锥的侧面展开图是面积为π2的半圆面,则该圆锥的体积为 .【答案】33π【解析】根据该圆锥的底面圆的半径为r ,母线长为l ,根据条件得到ππ2212=l ,解得母线长2=l ,1,22===r l r πππ所以该圆锥的体积为:ππ331231S 3122=-⨯==h V 圆锥. 【点评】本题主要考查空间几何体的体积公式和侧面展开图.审清题意,所求的为体积,不是其他的量,分清图形在展开前后的变化;其次,对空间几何体的体积公式要记准记牢,属于中低档题. 9.已知2)(x x f y +=是奇函数,且1)1(=f ,若2)()(+=x f x g ,则=-)1(g .【答案】1-【解析】因为函数2)(x x f y +=为奇函数,所以,3)1(,1)1(,2)1()1(==+=g f f g 所以,又1232)1()1(,3)1(-=+-=+-=--=-f g f .(1)(1).f f -=-【点评】本题主要考查函数的奇偶性.在运用此性质解题时要注意:函数)(x f y =为奇函数,所以有)()(x f x f -=-这个条件的运用,平时要加强这方面的训练,本题属于中档题,难度适中. 10.如图,在极坐标系中,过点)0,2(M 的直线l 与极轴的夹角6πα=,若将l 的极坐标方程写成)(θρf =的形式,则=)(θf .【答案】)6sin(1θπ-【解析】根据该直线过点)0,2(M ,可以直接写出代数形式的方程为:)2(21-=x y ,将此化成极坐标系下的参数方程即可 ,化简得)6sin(1)(θπθ-=f .【点评】本题主要考查极坐标系,本部分为选学内容,几乎年年都有所涉及,题目类型以小题为主,复习时,注意掌握基本规律和基础知识即可.对于不常见的曲线的参数方程不作要求.本题属于中档题,难度适中.11.三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是 (结果用最简分数表示).【答案】32 【解析】一共有27种取法,其中有且只有两个人选择相同的项目的取法共有18种,所以根据古典概型得到此种情况下的概率为32. 【点评】本题主要考查排列组合概率问题、古典概型.要分清基本事件数和基本事件总数.本题属于中档题.12.在平行四边形ABCD 中,3π=∠A ,边AB 、AD 的长分别为2、1,若M 、N 分别是边BC 、CD||||CD BC =⋅的取值范围是 .【答案】[]5,2【解析】以向量AB 所在直线为x 轴,以向量AD 所在直线为y 轴建立平面直角坐标系,如图所示,因为1,2==AD AB ,所以51(0,0),(2,0),(,1)(,1).22A B C D 设1515515151(,1)(), , - , - , (2,()sin ).22224284423N x x BM CN CN x BM x M x x π≤≤===+--则根据题意,有)83235,4821(),1,(xx AM x AN --==→→. 所以83235)4821(x x x AN AM -+-=•→→⎪⎭⎫⎝⎛≤≤2521x ,所以2 5.AM AN →→≤•≤【点评】本题主要考查平面向量的基本运算、概念、平面向量的数量积的运算律.做题时,要切实注意条件的运用.本题属于中档题,难度适中.13.已知函数)(x f y =的图象是折线段ABC ,其中)0,0(A 、)5,21(B 、)0,1(C ,函数)(x xf y =(10≤≤x )的图象与x 轴围成的图形的面积为 .【答案】45 【解析】根据题意得到,110,02()11010,12x x f x x x ⎧≤≤⎪⎪=⎨⎪-+≤⎪⎩从而得到22110,02()11010,12x x y xf x x x x ⎧≤≤⎪⎪==⎨⎪-+<≤⎪⎩所以围成的面积为45)1010(10121221=+-+=⎰⎰dx x x xdx S ,所以围成的图形的面积为45 .【点评】本题主要考查函数的图象与性质,函数的解析式的求解方法、定积分在求解平面图形中的运用.突出体现数形结合思想,本题综合性较强,需要较强的分析问题和解决问题的能力,在以后的练习中加强这方面的训练,本题属于中高档试题,难度较大.14.如图,AD 与BC 是四面体ABCD 中互相垂直的棱,2=BC ,若c AD 2=, 且a CD AC BD AB 2=+=+,其中a 、c 为常数,则四面体ABCD 的体积的最 大值是 .【答案】13222--c a c【解析】据题a CD AC BD AB 2=+=+,也就是说,线段CD AC BD AB ++与线段的长度是定值,因为棱AD 与棱BC 互相垂直,当ABD BC 平面⊥时,此时有最大值,此时最大值为:13222--c a c .【点评】本题主要考查空间四面体的体积公式、空间中点线面的关系.本题主要考虑根据已知条件构造体积表达式,这是解决问题的关键,本题综合性强,运算量较大.属于中高档试题. 二、选择题(20分)15.若i 21+是关于x 的实系数方程02=++c bx x 的一个复数根,则( )A .3,2==c bB .3,2=-=c bC .1,2-=-=c bD .1,2-==c b【答案】 B【解析】根据实系数方程的根的特点1-也是该方程的另一个根,所以b i i -==-++22121,即2-=b ,c i i ==+-3)21)(21(,故答案选择B.【点评】本题主要考查实系数方程的根的问题及其性质、复数的代数形式的四则运算,属于中档题,注重对基本知识和基本技巧的考查,复习时要特别注意.16.在ABC ∆中,若C B A 222sin sin sin <+,则ABC ∆的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定【答案】C【解析】由正弦定理,得,sin 2,sin 2,sin 2C Rc B R b A R a ===代入得到222a b c +<, 由余弦定理的推理得222cos 02a b c C ab+-=<,所以C 为钝角,所以该三角形为钝角三角形.故选择A.【点评】本题主要考查正弦定理及其推理、余弦定理的运用.主要抓住所给式子的结构来选择定理,如果出现了角度的正弦值就选择正弦定理,如果出现角度的余弦值就选择余弦定理.本题属于中档题.17.设443211010≤<<<≤x x x x ,5510=x ,随机变量1ξ取值54321x x x x x 、、、、的概率均为2.0,随机变量2ξ取值222221554433221x x x x x x x x x x +++++、、、、的概率也均为2.0,若记21ξξD D 、分别为21ξξ、的方差,则( )A .21ξξD D >B .21ξξD D =C .21ξξD D < D .1ξD 与2ξD 的大小关系与4321x x x x 、、、的取值有关【答案】 A【解析】 由随机变量21,ξξ的取值情况,它们的平均数分别为:1123451(),5x x x x x x =++++,2334455112211,522222x x x x x x x x x x x x +++++⎛⎫=++++= ⎪⎝⎭且随机变量21,ξξ的概率都为2.0,所以有1ξD >2ξD . 故选择A.【点评】本题主要考查离散型随机变量的期望和方差公式.记牢公式是解决此类问题的前提和基础,本题属于中档题. 18.设25sin1πn n a n =,n n a a a S +++= 21,在10021,,,S S S 中,正数的个数是( ) A .25 B .50 C .75 D .100【答案】C【解析】依据正弦函数的周期性,可以找其中等于零或者小于零的项.【点评】本题主要考查正弦函数的图象和性质和间接法解题.解决此类问题主要找到规律,从题目出发可以看出来相邻的14项的和为0,这就是规律,考查综合分析问题和解决问题的能力. 三、解答题(74分):19.(6+6=12分)如图,在四棱锥ABCD P -中,底面ABCD 是矩形,⊥PA 底面ABCD ,E 是PC 的中点,已知2=AB ,22=AD ,2=PA ,求:(1)三角形PCD 的面积;(2)异面直线BC 与AE 所成的角的大小.【答案及解析】所以三角形PCD 的面积为3232221=⨯⨯................6分【点评】本题主要考查直线与直线、直线与平面的位置关系,考查空间想象能力和推理论证能力.综合考查空间中两条异面直线所成的角的求解,同时考查空间几何体的体积公式的运用.本题源于《必修2》立体几何章节复习题,复习时应注重课本,容易出现找错角的情况,要考虑全面,考查空间想象能力,属于中档题.20.(6+8=14分)已知函数)1lg()(+=x x f . (1)若1)()21(0<--<x f x f ,求x 的取值范围;(2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =(]2,1[∈x )的反函数.【答案及解析】,3132<<-x【点评】本题主要考查函数的概念、性质、分段函数等基础知识.考查数形结合思想,熟练掌握指数函数、对数函数、幂函数的图象与性质,属于中档题.21.(6+8=14分)海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A 处,如图.现假设:①失事船的移动路径可视为抛物线24912x y =;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为t 7.(1)当5.0=t 时,写出失事船所在位置P 的纵坐标.若此时两船恰好会合,求 救援船速度的大小和方向;(2)问救援船的时速至少是多少海里才能追上失事船?22.(4+6+6=16分)在平面直角坐标系xOy 中,已知双曲线1C :1222=-y x .(1)过1C 的左顶点引1C 的一条渐进线的平行线,求该直线与另一条渐进线及x 轴围成的三角形的面积;(2)设斜率为1的直线l 交1C 于P 、Q 两点,若l 与圆122=+y x 相切,求证:OQ OP ⊥; (3)设椭圆2C :1422=+y x ,若M 、N 分别是1C 、2C 上的动点,且ON OM ⊥,求证:O 到直线MN 的距离是定值.【答案及解析】过点A 与渐近线x y 2=平行的直线方程为22,2 1.2y x y x ⎛⎫=+=+ ⎪ ⎪⎭即1=ON ,22=OM ,则O 到直线MN 的距离为33.设O 到直线MN 的距离为d .【点评】本题主要考查双曲线的概念、标准方程、几何性质及其直线与双曲线的关系、椭圆的标准方程和圆的有关性质.特别要注意直线与双曲线的关系问题,在双曲线当中,最特殊的为等轴双曲线,它的离心率为2,它的渐近线为x y ±=,并且相互垂直,这些性质的运用可以大大节省解题时间,本题属于中档题 .23.(4+6+8=18分)对于数集}1{21n x x x X ,,,, -=,其中n x x x <<<< 210,2≥n ,定义向量集},),,(|{X t X s t s a a Y ∈∈==,若对任意Y a ∈1,存在Y a ∈2,使得021=⋅a a ,则称X 具有性质P .例如}2,1,1{-具有性质P .(1)若2>x ,且},2,1,1{x -具有性质P ,求x 的值;(2)若X 具有性质P ,求证:X ∈1,且当1>n x 时,11=x ;(3)若X 具有性质P ,且11=x 、q x =2(q 为常数),求有穷数列n x x x ,,, 21的通项公式. 【答案及解析】必有形式),1(b -显然有2a 满足021=•a a【点评】本题主要考查数集、集合的基本性质、元素与集合的关系等基础知识,本题属于信息给予题,通过定义“X具有性质P”这一概念,考查考生分析探究及推理论证的能力.综合考查集合的基本运算,集合问题一直是近几年的命题重点内容,应引起足够的重视.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012上海高考数学试题(理科)答案与解析
一.填空题
1.计算: ( 为虚数单位).
【答案】
【解析】 .
【点评】本题着重考查复数的除法运算,首先,将分子、分母同乘以分母的共轭复数,将分母实数化即可.
2.若集合 , ,则 .
【答案】
【解析】根据集合A ,解得 ,由 ,所以
.
【点评】本题考查集合的概念和性质的运用,同时考查了一元一次不等式和绝对值不等式的解法.解决此类问题,首先分清集合的元素的构成,然后,借助于数轴或韦恩图解决.
11.三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是(结果用最简分数表示).
【答案】
【解析】一共有27种取法,其中有且只有两个人选择相同的项目的取法共有18种,所以根据古典概型得到此种情况下的概率为 .
【点评】本题主要考查排列组合概率问题、古典概型.要分清基本事件数和基本事件总数.本题属于中档题.
14.如图, 与 是四面体 中互相垂直的棱, ,若 ,
且 ,其中 、 为常数,则四面体 的体积的最
大值是.
【答案】
【解析】据题 ,也就是说,线段 的长度是定值,因为棱 与棱 互相垂直,当 时,此时有最大值,此时最大值为: .
【点评】本题主要考查空间四面体的体积公式、空间中点线面的关系.本题主要考虑根据已知条件构造体积表达式,这是解决问题的关键,本题综合性强,运算量较大.属于中高档试题.
【点评】本题主要考查直线的方向向量、直线的倾斜角与斜率的关系、反三角函数的表示.直线的倾斜角的取值情况一定要注意,属于低档题,难度较小.
5.在 的二项展开式中,常数项等于.
【答案】
【解析】根据所给二项式的构成,构成的常数项只有一项,就是 .
【点评】本题主要考查二项式定理.对于二项式的展开式要清楚,特别注意常数项的构成.属于中档题.
二、选择题(20分)
15.若 是关于 的实系数方程 的一个复数根,则()
A. B. C. D.
【答案】B
【解析】根据实系数方程的根的特点 也是该方程的另一个根,所以
,即 , ,故答案选择B.
【点评】本题主要考查实系数方程的根的问题及其性质、复数的代数形式的四则运算,属于中档题,注重对基本知识和基本技巧的考查,复习时要特别注意.
9.已知 是奇函数,且 ,若 ,则 .
【答案】
【解析】因为函数 为奇函数,所以 .
【点评】本题主要考查函数的奇偶性.在运用此性质解题时要注意:函数 为奇函数,所以有 这个条件的运用,平时要加强这方面的训练,本题属于中档题,难度适中.
10.如图,在极坐标系中,过点 的直线 与极轴的夹角 ,
若将 的极坐标方程写成 的形式,则 .
6.有一列正方体,棱长组成以1为首项、 为公比的等比数列,体积分别记为 ,则 .
【答案】
【解析】由正方体的棱长组成以 为首项, 为公比的等比数列,可知它们的体积则组成了一个以1为首项, 为公比的等比数列,因此, .
【点评】本题主要考查无穷递缩等比数列的极限、等比数列的通项公式、等比数列的定义.考查知识较综合.
13.已知函数 的图象是折线段 ,其中 、 、 ,
函数 ( )的图象与 轴围成的图形的面积为.
【答案】
【解析】根据题意得到, 从而得到 所以围成的面积为 ,所以围成的图形的面积为 .
【点评】本题主要考查函数的图象与性质,函数的解析式的求解方法、定积分在求解平面图形中的运用.突出体现数形结合思想,本题综合性较强,需要较强的分析问题和解决问题的能力,在以后的练习中加强这方面的训练,本题属于中高档试题,难度较大.
7.已知函数 ( 为常数).若 在区间 上是增函数,则 的取值范围是.
【答案】
【解析】根据函数 看出当 时函数增函数,而已知函数 在区间 上为增函数,所以 的取值范围为: .
【点评】本题主要考查指数函数单调性,复合函数的单调性的判断,分类讨论在求解数学问题中的运用.本题容易产生增根,要注意取舍,切勿随意处理,导致不必要的错误.本题属于中低档题目,难度适中.
3.函数 的值域是.
【答案】
【解析】根据题目 ,因为 ,所以 .
【点评】本题主要考查行列式的基本运算、三角函数的范围、二倍角公式,属于容易题,难度较小.考纲中明确要求掌握二阶行列式的运算性质.
4.若 是直线 的一个法向量,则 的倾斜角的大小为(结果用反三角函数值表示).
【答案】
【解析】设直线的倾斜角为 ,则 .
【答案】
【解析】根据该直线过点 ,可以直接写出代数形式的方程为: ,将此化成极坐标系下的参数方程即可,化简得 .
【点评】本题主要考查极坐标系,本部分为选学内容,几乎年年都有所涉及,题目类型以小题为主,复习时,注意掌握基本规律和基础知识即可.对于不常见的曲线的参数方程不作要求.本题属于中档题,难度适中.
16.在 中,若 ,则 的形状是()
A.锐角三角形B.直角三角形C.钝角三角形D.不能确定
【答案】C
【解析】由正弦定理,得 代入得到 ,
由余弦定理的推理得 ,所以C为钝角,所以该三角形为钝角三角形.故选择A.
【点评】本题主要考查正弦定理及其推理、余弦定理的运用.主要抓住所给式子的结构来选择定理,如果出现了角度的正弦值就选择正弦定理,如果出现角度的余弦值就选择余弦定理.本题属于中档题.
8.若一个圆锥的侧面展开图是面积为 的半圆面,则该圆锥的体积为.
【答案】
【解析】根据该圆锥的底面圆的半ቤተ መጻሕፍቲ ባይዱ为 ,母线长为 ,根据条件得到 ,解得母线长 , 所以该圆锥的体积为: .
【点评】本题主要考查空间几何体的体积公式和侧面展开图.审清题意,所求的为体积,不是其他的量,分清图形在展开前后的变化;其次,对空间几何体的体积公式要记准记牢,属于中低档题.
12.在平行四边形 中, ,边 、 的长分别为2、1,若 、 分别是边 、 上的点,且满足 ,则 的取值范围是.
【答案】
【解析】以向量 所在直线为 轴,以向量 所在直线为 轴建立平面直角坐标系,如图所示,因为 ,所以 设 根据题意,有 .
所以 ,所以
【点评】本题主要考查平面向量的基本运算、概念、平面向量的数量积的运算律.做题时,要切实注意条件的运用.本题属于中档题,难度适中.
17.设 , ,随机变量 取值 的概率均为 ,随机变量 取值 的概率也均为 ,若记 分别为 的方差,则()
相关文档
最新文档