八年级数学画轴对称图形课件
合集下载
沪科版数学八年级上册 15.1 轴对称 课件(共14张PPT)
(1)
(2)
(3)
将白纸对折,利用圆规的针尖扎出一个点,打
开白纸,将折痕两侧的点分别标为A、A ′,这两个
点关于折痕所在的直线成轴对称吗?
画出对称轴l,连接对应点A 、A ′ , A A ′与 l 相
交于点O,图中的线段、直线间存在何种关系?
l
P
AO = OA′
AA′⊥ l
A O
A′
经过线段的中点并垂直于这条
BO1 = O1B′ BB′⊥ l
CO2 = O2C′ CC′⊥ l
C 02 C ′ 用文字语言描述:两个图形成轴对称时,
01
对应点所连线段与对称轴有何关系?
B
B′
l
轴对称的性质
如果两个图形关于某直线对称,那么对称轴是 任何一对对应点所连线段的垂直平分线。
反过来,
如果两个图形各对对应点所连线段被同一条直线 垂直平分,那么这两个图形关于这条直线对称。
轴对称
什么是轴对称图形? 一个图形沿着一条直线折叠,直线两旁部分能
够完全重合。这条直线叫对称轴。
对称轴可能1条,也可能多条。
把一个图形沿着某一条直线折叠后,如果 它能够与另一个图形重合,那么称这两个图 形成轴对称。 这条直线叫做对称轴。
折叠后重合的两点叫做对应点(对称点)。
下列各组中的两个图形是否关于给定 的直线对称?
轴对称
图形
联系
如果把一个轴对称
如果把两个成轴对称
图形沿对称轴看成两部 的图形拼在一起看成一个
分,那么这两个图形就 整体,那么它就是一个轴
关于这条直线成轴对称. 对称图形.
都能沿着一条直线折叠,形成重合
1、今天,我学会 2了、…回…顾今天的学习过程……
八年级上册数学(人教版)课件:13.第1课时 画轴对称图
8.如图所示,在直线MN上求作一点P,使∠MPA=∠NPB.
解:①作点A关于MN的对称点A′; ②连结BA′交MN于点P,连接AP,则∠MPA=∠NPB
9.如图所示,△ABC和△A′B′C′关于直线MN对称,△A′B′C′和 △A″B″C″关于直线EF对称.
(1)画出直线EF; (2)直线MN与EF相交于点O,试探究∠BOB″与直线MN,EF所夹锐角 α的数量关系.
3.如图,分别以直线l为对称轴,所作轴对称图形错误的是( C)
4.以直线l为对称轴画出图形的另一半. 解:图略
5.仔细观察下列图案,并按规律在横线上画出合适的图形.
6.如图,小新把一张含30°角的直角三角形纸板ABC沿较短边的垂 直平分线翻折,则∠BOC的度数为_6_0_°_.
7.如图,在2×2的正方形格点图中,有一个以格点为顶点的△ABC, 请你找出格点图中所有与△ABC成轴对称也以格点为顶点的三角形,这 样的三角形共用__5__个.
Байду номын сангаас
(1)如图,连接B′B″,作线段B′B″的垂直平分线EF,则直线EF是△A′B′C′ 与△A″B″C″的对称轴
(2)连结BO,B′O,B″O,∵△ABC和△A′B′C′关于MN对称,∴∠BOM= ∠B′OM,又∵△A′B′C′和△A″B″C″关于EF对称,∴∠B′OE=∠B″OE, ∴∠BOB″=∠BOB′+∠B′OB″=2∠B′OM+2∠B′OE=2(∠B′OM+ ∠B′OE)=2∠MOE=2α,即∠BOB″=2α
第十二章 全等三角形
13.2 画轴对称图形
第1课时 画轴对称图形
1.已知对称轴l和一点A,要画出点A关于l的对称点A′,可采用以下方 法:过点A作对称轴l的___垂_,线垂足为点O,延长___A_至O ___A_′,使___O_A= _O_A_′_,则点A′就是点A关于直线l的对称点.
解:①作点A关于MN的对称点A′; ②连结BA′交MN于点P,连接AP,则∠MPA=∠NPB
9.如图所示,△ABC和△A′B′C′关于直线MN对称,△A′B′C′和 △A″B″C″关于直线EF对称.
(1)画出直线EF; (2)直线MN与EF相交于点O,试探究∠BOB″与直线MN,EF所夹锐角 α的数量关系.
3.如图,分别以直线l为对称轴,所作轴对称图形错误的是( C)
4.以直线l为对称轴画出图形的另一半. 解:图略
5.仔细观察下列图案,并按规律在横线上画出合适的图形.
6.如图,小新把一张含30°角的直角三角形纸板ABC沿较短边的垂 直平分线翻折,则∠BOC的度数为_6_0_°_.
7.如图,在2×2的正方形格点图中,有一个以格点为顶点的△ABC, 请你找出格点图中所有与△ABC成轴对称也以格点为顶点的三角形,这 样的三角形共用__5__个.
Байду номын сангаас
(1)如图,连接B′B″,作线段B′B″的垂直平分线EF,则直线EF是△A′B′C′ 与△A″B″C″的对称轴
(2)连结BO,B′O,B″O,∵△ABC和△A′B′C′关于MN对称,∴∠BOM= ∠B′OM,又∵△A′B′C′和△A″B″C″关于EF对称,∴∠B′OE=∠B″OE, ∴∠BOB″=∠BOB′+∠B′OB″=2∠B′OM+2∠B′OE=2(∠B′OM+ ∠B′OE)=2∠MOE=2α,即∠BOB″=2α
第十二章 全等三角形
13.2 画轴对称图形
第1课时 画轴对称图形
1.已知对称轴l和一点A,要画出点A关于l的对称点A′,可采用以下方 法:过点A作对称轴l的___垂_,线垂足为点O,延长___A_至O ___A_′,使___O_A= _O_A_′_,则点A′就是点A关于直线l的对称点.
人教八年级数学上册《画轴对称图形》课件(17张)
13.2 画轴对称图形
第1课时 画轴对称图形
课• 件本说节明课内容属于“图形的变化”领域,
画轴对称图 形是继平移变换之后的又一种图形变换,
是利用轴 对称变换设计图案的基础.它是研究几
何问题、发 现几何结论的有效工具.
课件说明
▪ 学习目标: 1.理解图形轴对称变换的性质. 2.能按要求画出一个平面图形关于某直线对称的图 形.
(1)三角形关于直线l 的对称图
B
形是什么形状?
C
(2)三角形的轴对称图形可以由 A
l
哪几个点确定?
(3)如何作一个已知点关于直线
l 的对称点?
画l,画出与△ABC 关于直线l 对称的图形.
画法:(1)如图,过点A 画直
B
线l 的垂线,垂足为点O,在垂线上
由一个平面图形可以得到与它关于一条直线l 对称 的图形,这个图形与原图形的形状、大小完全相同;
新图形上的每一点都是原图形上的某一点关于直线 l 的对称点;
连接任意一对对应点的线段被对称轴垂直平分.
画轴对称图形
如果有一个图形和一条直线,如何作出这个图形关 于这条直线对称的图形呢?
画轴对称图形
例1 如图,已知△ABC 和直线l,画出与△ABC 关于直线l 对称的图形.
谢谢观赏
You made my day!
我们,还在路上……
B
C
A
O
l
A′
C′
B′
画轴对称图形
如何验证画出的图形与△ABC 关于直线l 对称?
B
C
A
O
l
A′
C′
B′
画轴对称图形
已知一个几何图形和一条直线,说一说画一个与该 图形关于这条直线对称的图形的一般方法.
第1课时 画轴对称图形
课• 件本说节明课内容属于“图形的变化”领域,
画轴对称图 形是继平移变换之后的又一种图形变换,
是利用轴 对称变换设计图案的基础.它是研究几
何问题、发 现几何结论的有效工具.
课件说明
▪ 学习目标: 1.理解图形轴对称变换的性质. 2.能按要求画出一个平面图形关于某直线对称的图 形.
(1)三角形关于直线l 的对称图
B
形是什么形状?
C
(2)三角形的轴对称图形可以由 A
l
哪几个点确定?
(3)如何作一个已知点关于直线
l 的对称点?
画l,画出与△ABC 关于直线l 对称的图形.
画法:(1)如图,过点A 画直
B
线l 的垂线,垂足为点O,在垂线上
由一个平面图形可以得到与它关于一条直线l 对称 的图形,这个图形与原图形的形状、大小完全相同;
新图形上的每一点都是原图形上的某一点关于直线 l 的对称点;
连接任意一对对应点的线段被对称轴垂直平分.
画轴对称图形
如果有一个图形和一条直线,如何作出这个图形关 于这条直线对称的图形呢?
画轴对称图形
例1 如图,已知△ABC 和直线l,画出与△ABC 关于直线l 对称的图形.
谢谢观赏
You made my day!
我们,还在路上……
B
C
A
O
l
A′
C′
B′
画轴对称图形
如何验证画出的图形与△ABC 关于直线l 对称?
B
C
A
O
l
A′
C′
B′
画轴对称图形
已知一个几何图形和一条直线,说一说画一个与该 图形关于这条直线对称的图形的一般方法.
人教版八年级数学上册13.画轴对称图形(第2课时)课件
•课外作业
必做题:1、课本P72 习题13.2 • 第1、2题做在课本上 • 第5、6、7 做在课本上 • 第4题做在作业本上 • 补充题:在平面直角坐标系中先依次连接点A(-
3,5),B(-2,-2),C(1,2),D(1,1), 得到一个几何图形,再画出此图形关于y轴对称的 图形,看看得到的图形像什么?
【课堂练习】
3.点P(-3, 2)与点Q关于y轴对称,则点Q的坐标为 _(_3__,_2__)___.
4.点M(a, -6)与点N(-2, b)关于y轴对称,则a=__2___, b =__-_6__.
(1)本节课学习了哪些内容? (2)在平面直角坐标系中,已知点关于x 轴或y 轴的
对称点的坐标有什么变化规律,如何判断两个 点是否关于x 轴或y 轴对称? (3)说一说画一个图形关于x 轴或y 轴对称的图形的 方法和步骤.
课前回顾
• 1、如何建立平面直角坐标系?各个象限点的坐标的特 征是什么?
• 2、如何在平面直角坐标系中描出点A(-2,3)? • 3、你能画出上图中点A关于X轴对称的点吗?
13.2 画轴对称图形 第2课时
• 1.理解在平面直角坐标系中,已知点关于x 轴或y 轴对称的点的坐标的变化规律.
• 2.掌握在平面直角坐标系中作出一个图形的 轴对称图形的方法..
课堂练习
练习2 若点P(2a+b,-3a)与点P′(8,b+2) 关于x 轴对称,则a = 2 ,b= 4 ;若关于y 轴对 称,则a = 6 ,b=__-_2_0__.
自学指导2:
看课本P70例2,试着完成其中的填空和画图
讨论点拨
例 如图,四边形ABCD 的四个顶点的坐标分别为
A(-5,1),B(-2,1), C(-2,5),D(-5,4), D C y 分别画出与四边形ABCD 关
人教版八年级数学上册《画轴对称图形》轴对称PPT课件
(1)找特殊点 (2)作垂线 (3)截取等长 (4)依次连线
学以致用
1.如图,把下列图形补成关于直线l的对称图形.
学以致用
2.下面是四位同学作△ABC关于直线MN的轴对称图形,其中正
确的是( B )
A.
B.
C.
D.
学以致用
3.如图(1)所示,在3×3的正方形网格中已有两个小正方形被涂 黑,再将图中其余小正方形任意涂黑一个,使整个图案构成一个
轴对称图形的办法有 ( ) C
A.3种 B.4种 C.5种 D.6种
• 克莱因说:“数学是人类最高超的智力成就,也是人类心灵最独特 的创作。音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能扣 人心弦,哲学使人获得智慧,科学可以改善物质生活,但数学却 能提供以上的一切。”
学习目标
1.能够按要求画简单平面图形经过一次对称后的图形。
2.掌握作轴对称图形的方法。
3.通过画轴对称图形,增强学生学习几何的趣味感。
重点
作已知图形的对称图形的一般步骤。
难点
怎样确定已知图形的关键点并根据这些点作出对称图形。
新知引入
这些图案是怎样形成的? 你想学会制作这种图案的方法吗?
)剪出的轴对称图形的点与原图形上的点有什么关系?
新图形上的每一点都是原图形上的某一点关于直线l的对称点。
(3)对应点所连线段与对称轴有什么关系? 连接任意一对对应点的线段被对称轴垂直平分。
新知应用
画一画1:画出一个点关于直线l对称的图形
已知:直线l和一个点A ,作出点A关于直线l的对称点.
并写出你的画法.
作法: (1)如图,过点A画直线l的垂线,垂 足为O;
(2)在垂线上截取OA′=OA; 则点A′就是点A关于直线l的对称点.
学以致用
1.如图,把下列图形补成关于直线l的对称图形.
学以致用
2.下面是四位同学作△ABC关于直线MN的轴对称图形,其中正
确的是( B )
A.
B.
C.
D.
学以致用
3.如图(1)所示,在3×3的正方形网格中已有两个小正方形被涂 黑,再将图中其余小正方形任意涂黑一个,使整个图案构成一个
轴对称图形的办法有 ( ) C
A.3种 B.4种 C.5种 D.6种
• 克莱因说:“数学是人类最高超的智力成就,也是人类心灵最独特 的创作。音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能扣 人心弦,哲学使人获得智慧,科学可以改善物质生活,但数学却 能提供以上的一切。”
学习目标
1.能够按要求画简单平面图形经过一次对称后的图形。
2.掌握作轴对称图形的方法。
3.通过画轴对称图形,增强学生学习几何的趣味感。
重点
作已知图形的对称图形的一般步骤。
难点
怎样确定已知图形的关键点并根据这些点作出对称图形。
新知引入
这些图案是怎样形成的? 你想学会制作这种图案的方法吗?
)剪出的轴对称图形的点与原图形上的点有什么关系?
新图形上的每一点都是原图形上的某一点关于直线l的对称点。
(3)对应点所连线段与对称轴有什么关系? 连接任意一对对应点的线段被对称轴垂直平分。
新知应用
画一画1:画出一个点关于直线l对称的图形
已知:直线l和一个点A ,作出点A关于直线l的对称点.
并写出你的画法.
作法: (1)如图,过点A画直线l的垂线,垂 足为O;
(2)在垂线上截取OA′=OA; 则点A′就是点A关于直线l的对称点.
画轴对称图形 课件 初中数学人教版八年级上册(2021-2022学年)
作已知图形的轴对称图形: (1)对称轴上的点的对称点就是它本身; (2)不同的对称轴对应不同的轴对称图形.
例 如图,是一只停泊在平静水面上的小船,它的“倒
影”应是图中的( B ).
初中数学
l
A
B
C
D
练习 如图,有一个英语单词,三个字母都关于直线 l 对
称,请补全字母,补全后的单词是________. BED
那么这两个图形全等.
P
P′
2. 如果两个图形关于某条直线成轴对称,
那么对称轴是任何一对对应点所连
线段的垂直平分线.
动手操作
如图,在一张半透明的纸的左边部分,画出一只左手印, 如何画出与左手印关于直线 l 对称的右手印呢?
初中数学
P
P′
l
由一个平面图形可以得到与它关于一条 直线 l 对称的图形,
(1)这个图形与原图形的形状、大小完 全相同;
于直线 l 的对称点 A′ ,B′ ,
l 2. 连接A′ B′ ,
A′
则线段 A′ B′ 即为所求.
B′
初中数学
如何验证画出的图形与线段 AB 关于直线 l 对称?
B
A
P
l
A′ P′ B′
初中数学
例 (3)已知: △ABC 和直线 l .
求作: △ABC 关于直线 l 对称的图形.
B
分析:
C
△ABC 可以由三个顶点的
初中数学
丙同学
练习 求作△ABC关于直线 l 对称的△A′ B′ C′.
B
B′
C C′
A
A′
l
规范作图!
初中数学
初中数学
练习 把下列图形补成关于直线 l 对称的图形.
例 如图,是一只停泊在平静水面上的小船,它的“倒
影”应是图中的( B ).
初中数学
l
A
B
C
D
练习 如图,有一个英语单词,三个字母都关于直线 l 对
称,请补全字母,补全后的单词是________. BED
那么这两个图形全等.
P
P′
2. 如果两个图形关于某条直线成轴对称,
那么对称轴是任何一对对应点所连
线段的垂直平分线.
动手操作
如图,在一张半透明的纸的左边部分,画出一只左手印, 如何画出与左手印关于直线 l 对称的右手印呢?
初中数学
P
P′
l
由一个平面图形可以得到与它关于一条 直线 l 对称的图形,
(1)这个图形与原图形的形状、大小完 全相同;
于直线 l 的对称点 A′ ,B′ ,
l 2. 连接A′ B′ ,
A′
则线段 A′ B′ 即为所求.
B′
初中数学
如何验证画出的图形与线段 AB 关于直线 l 对称?
B
A
P
l
A′ P′ B′
初中数学
例 (3)已知: △ABC 和直线 l .
求作: △ABC 关于直线 l 对称的图形.
B
分析:
C
△ABC 可以由三个顶点的
初中数学
丙同学
练习 求作△ABC关于直线 l 对称的△A′ B′ C′.
B
B′
C C′
A
A′
l
规范作图!
初中数学
初中数学
练习 把下列图形补成关于直线 l 对称的图形.
人教版初中数学八年级上册精品教学课件 第13章 轴对称 13.2 第1课时 画轴对称图形
BC连..对对接应应B点点B',交连连对线线称被被轴对对于称称点轴轴O平垂(图分直略平). 分
D过.对点应B,点B'作连B线E,B互'F相与平对称行轴垂直,垂足分别为E和F,
则BE=B'F,
图①关闭图②∴△源自EO≌△B'FO.关闭
∴B BO=B'O.
解析 答案
快乐预习感知
1
2
3
4
4.以直线l为对称轴画出下图的另一半.
的一些特殊点(如线段端点)的对称点,连接这些 对称点
,
就可以得到原图形的 轴对称图形 .
快乐预习感知
3.如图,在方格纸中画出与△ABC关于直线MN对称的△A1B1C1.
解 △A1B1C1如图所示.
快乐预习感知
运用轴对称解决实际问题 【例题】
如图,P,Q分别为△ABC的边AB,AC上的两个定点,在BC上求作一 点D,使△DPQ的周长最短.
第1课时 画轴对称图形
快乐预习感知
1.由一个平面图形可以得到与它关于一条直线l对称的图形,这个
图形与原图形的 形状 、 大小 完全相同;新图形上的每一点
都是原图形上的某一点关于直线l的 对称点 ;连接任意一对对
应点的线段被 对称轴 垂直平分.
2.几何图形都可以看作由点组成,对于某些图形,只要画出图形中
快乐预习感知
1
2
3
4
2.如图,在4×4正方形网格中,已有3个小方格涂成了黑色.现在要从
其余13个白色小方格中选出一个也涂成黑色,使整个涂成黑色的图 形成为轴对称图形,这样的白色小方格有( )
如图,有 4 个位置使之成为轴对称图形. A.1个 B.2个 C.3个D.4个
16.1 轴对称课件
等边三角
形是 三条
正六边形
是 六条
正方形
是 四条
圆
是 无数条
圆有无数条 对称轴
知识点2 轴对称
如图,两个图形,沿着图中的虚线对折后, 这两个图形完全重合.
一般地,如果两个图形沿某条 直线对折后,这两个图形能够完全 重合,那么我们就说这两个图形成 轴对称,这条直线叫做对称轴.
关于对称轴对称的点、对称的线段、对称的角分别 叫做对应点、对应线段、对应角.
1.指出下列图形各有几条对称轴,画出每个图形的对称轴.
①
②
③
④
⑤
⑥
⑦
图形代码
①②③
④
⑤
⑥
⑦
对称轴条数 2 2
46
2
3
4
2.下列图形中,不是轴对称图形的是
(C )
3.下列图形中,△A′B′C′与△ABC关于直线MN成轴对称的是( B )
1.请观察下列图形,看这些轴对称图形各有几条对称轴.
6条
1条
成轴对称图形的性质对于轴对称图形同样适用. 垂直且平分一条线段的直线,叫做这条直线的垂 直平分线,简称中垂线.
线段是轴对称图形,线段的中垂线是它的对称轴.
例1 如图(1),已知直线AB和直线l,画出线段AB 关于直线l的对称线段.
解:如图(2). (1)分别过点A和点B画直线l 的垂线段AO和BO',垂足分别 为O和O'. (2)分别延长AO到点A',BO' 到点B',使A'O=AO,B'O'=BO'. (3)连接A'B'. 线段A'B'即为所求.
知识点1 轴对称图形
人教版八年级数学上册《画轴对称图形》轴对称PPT精品课件
画点B、C的对称点F、G,然后顺次连接E、F、G得△
EFG,则△ EFG就是所求.
方法二:也可以利用全等知识进行作图,即先出A、C
的对称点E、G,然后分别以E、G为圆心,AB、CB为
半径作弧,两弧交于点F,则△ EFG就是所求.
知识拓展
二、确定对称点:四边形ABCD和四边形EFGH关于直线MN对称,连
知识梳理
例2:(2)画出△ ABC关于y轴对称的△ A2B2C2;
(3)是否存在点E,使△ ACE和△ ACB全等?若存在,直接写
出所有点E的坐标。
【结论】轴对称变换的作图的步骤是:①
求特殊点的坐标;②描点;③连线.
知识梳理
例3:在平面直角坐标系中,已知点
A( − 3,1),B( −
1,0),C( − 2, − 1),请在下图中画出△ ABC,并画出与
分别为何值.
(1)A、B关于x轴对称;
(2)A、B关于y轴对称。
知识梳理
例2:(1)根据关于x轴对称点的坐标特点横坐标不变、纵坐标互为
相反数可得
2m + n = 1
=1
,解得
− = −2
= −1
(2)根据关于y轴对称点的坐标特点纵坐标不变、横坐标互为
2m + n = −1
= −1
又∵点P(m,n),关于y轴的对称点的坐标为(1,b)
∴m=-1,n=b.
∴m=-1,n=2,故m+n=1.
知识梳理
例4:若点A(m + 2,3)与点B( − 4,n + 5)关于y轴对称,则
m+n= 0 .
+2=4
=2
根据
;解得
;故m + n = 0
EFG,则△ EFG就是所求.
方法二:也可以利用全等知识进行作图,即先出A、C
的对称点E、G,然后分别以E、G为圆心,AB、CB为
半径作弧,两弧交于点F,则△ EFG就是所求.
知识拓展
二、确定对称点:四边形ABCD和四边形EFGH关于直线MN对称,连
知识梳理
例2:(2)画出△ ABC关于y轴对称的△ A2B2C2;
(3)是否存在点E,使△ ACE和△ ACB全等?若存在,直接写
出所有点E的坐标。
【结论】轴对称变换的作图的步骤是:①
求特殊点的坐标;②描点;③连线.
知识梳理
例3:在平面直角坐标系中,已知点
A( − 3,1),B( −
1,0),C( − 2, − 1),请在下图中画出△ ABC,并画出与
分别为何值.
(1)A、B关于x轴对称;
(2)A、B关于y轴对称。
知识梳理
例2:(1)根据关于x轴对称点的坐标特点横坐标不变、纵坐标互为
相反数可得
2m + n = 1
=1
,解得
− = −2
= −1
(2)根据关于y轴对称点的坐标特点纵坐标不变、横坐标互为
2m + n = −1
= −1
又∵点P(m,n),关于y轴的对称点的坐标为(1,b)
∴m=-1,n=b.
∴m=-1,n=2,故m+n=1.
知识梳理
例4:若点A(m + 2,3)与点B( − 4,n + 5)关于y轴对称,则
m+n= 0 .
+2=4
=2
根据
;解得
;故m + n = 0
新人教版八年级上册数学132画轴对称图形精品PPT课件
C′( -6,5 ) C″( 6,-5)
D′(0.5,-1 ) E′( 4,0 ) D″(- 0.5,1 ) E″(- 4,0 )
在平面直角坐标系中,
关于x轴对称的点横坐标相等,纵坐标互为相反数. 关于y轴对称的点横坐标互为相反数,纵坐标相等.
点(x, y)关于x轴对称的点的坐标为_(_x_,_-_y_) _.
的点分别为A’( 5 , 1 ),
B’( 2 , 1 ),C’( 2 , 5 ), A
B B
A
D’( 5 , 4 ),依次连接即
可得到关于y轴对称的 A
B
四边形A’B’C’D’.
D
C
练习:P70-71 2 、3
14
(1,2)
·
··
·· ·
这节课你学到了什么?
1、学习了在平面直角坐标系中,关于x轴和y轴 对称的点的坐标的特点。 关于x轴对称的点横坐标相等,纵坐标互为相反数. 关于y轴对称的点横坐标互为相反数,纵坐标相等.
利用轴对称,可以设计出精美的图案。请你用所 学的知识来欣赏下列美丽的图案
花边艺术
练习 1.如图,把下列图形补成关于直线l对称的图形。
2.用纸片剪一个三角形,分别沿它一边的中线、 高、角平分线对折,看看哪些部分能够重合, 哪些部分不能重合.
对于这类问题,根据对称性质, 只要先求出已知图形中的一 些特殊点(如多边形的顶点)的 对应点的坐标,描出并连接这 些点,就可以得到这个图形的 轴对称图形.
小球运动轨迹是(3,0)→(0,3)
l
→(1,4)→(5,0)→(8,3)
4
→(7,4)→(3,0)
3
关于l对称的点有(5,0)→(8,3) →(7,4)→(3,0)→(0,3) →(1,4)
新人教版八年级数学上册《画轴对称图形》精品课件
下面的图形哪些是轴对称图形?
(是)
(是)
(是)
(是)
(不是) (是) (是)
连一连。
下面的图形各是从哪张纸上剪下来的? 你能连一连吗?
3 画出下面图形的另一半.
在方格纸上画出轴对称图形的另一半。
课堂活动 画出下面图形的另一半.
练一练
在方格纸上画出下面图形的另一半.
10
不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月12日星期二2022/4/122022/4/122022/4/12 书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/122022/4/122022/4/124/12/2022 正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/122022/4/12April 12, 2022 书籍是屹立在时间的汪洋大海中的灯塔。
谢谢观赏
You made my day!
(是)
(是)
(是)
(是)
(不是) (是) (是)
连一连。
下面的图形各是从哪张纸上剪下来的? 你能连一连吗?
3 画出下面图形的另一半.
在方格纸上画出轴对称图形的另一半。
课堂活动 画出下面图形的另一半.
练一练
在方格纸上画出下面图形的另一半.
10
不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月12日星期二2022/4/122022/4/122022/4/12 书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/122022/4/122022/4/124/12/2022 正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/122022/4/12April 12, 2022 书籍是屹立在时间的汪洋大海中的灯塔。
谢谢观赏
You made my day!
人教版数学八年级上册画轴对称图形课件
13.2 画轴对称图形 第2课时
如
已知点A和一条直线MN,你能画出这个 点关于已知直线的对称点吗? 过点A作AO⊥MN于O, 然后延长AO至OA′,使AO=OA′
M
A
O
A′
N
∴ A′就是点A关于直线MN的对称点.
探究1:如图,在平面直角坐标系中你 能画出点A关于x轴的对称点吗?
5 4 3 2
1
人教版数学 八年级上册13.2画轴对称图形课件
人教版数学 八年级上册13.2画轴对称图形课件
归纳:关于y轴对称的点的坐标的特 点是:横坐标互为相反数,纵坐标相等.
(横反纵同)
练习:
1、点P(-5, 6)与点Q关于y轴对称,则点Q的坐标为_(_5__,_6__)_ 2、点M (a, -5)与点N(-2, b)关于y轴对称,则a=_2__, b =_-_5__
· B (-4, 2) 3 2 1
·-4 -3 -2 -1-10 -2
B’ (-4, -2) -3
-4
思考:
·C’(3, 4) 关于x轴 对称的 点的坐 标具有 1 2 3 4 5 怎样的
x 关系?
·C(3, -4)
通过探究你能用语言归纳关于 x 轴对称的点坐标规律吗?
人教版数学 八年级上册13.2画轴对称图形课件
CHale Waihona Puke A〞 AC〞人教版数学 八年级上册13.2画轴对称图形课件
探究并归纳已知点关于坐标轴对称的点 的坐标变化规律
观察关于y 轴对称的每对对称点的坐标有怎样的变 化规律?
y
关于y 轴对称的每 对对称点的横坐标互为 相反数,纵坐标相等.
B B〞
E〞 D〞1 D E O1
x
C
如
已知点A和一条直线MN,你能画出这个 点关于已知直线的对称点吗? 过点A作AO⊥MN于O, 然后延长AO至OA′,使AO=OA′
M
A
O
A′
N
∴ A′就是点A关于直线MN的对称点.
探究1:如图,在平面直角坐标系中你 能画出点A关于x轴的对称点吗?
5 4 3 2
1
人教版数学 八年级上册13.2画轴对称图形课件
人教版数学 八年级上册13.2画轴对称图形课件
归纳:关于y轴对称的点的坐标的特 点是:横坐标互为相反数,纵坐标相等.
(横反纵同)
练习:
1、点P(-5, 6)与点Q关于y轴对称,则点Q的坐标为_(_5__,_6__)_ 2、点M (a, -5)与点N(-2, b)关于y轴对称,则a=_2__, b =_-_5__
· B (-4, 2) 3 2 1
·-4 -3 -2 -1-10 -2
B’ (-4, -2) -3
-4
思考:
·C’(3, 4) 关于x轴 对称的 点的坐 标具有 1 2 3 4 5 怎样的
x 关系?
·C(3, -4)
通过探究你能用语言归纳关于 x 轴对称的点坐标规律吗?
人教版数学 八年级上册13.2画轴对称图形课件
CHale Waihona Puke A〞 AC〞人教版数学 八年级上册13.2画轴对称图形课件
探究并归纳已知点关于坐标轴对称的点 的坐标变化规律
观察关于y 轴对称的每对对称点的坐标有怎样的变 化规律?
y
关于y 轴对称的每 对对称点的横坐标互为 相反数,纵坐标相等.
B B〞
E〞 D〞1 D E O1
x
C
人教版八年级数学上册13.2画轴对称图形ppt精品课件
·A' A · ·A''
第1题
L
E BD
C
A
第2题
课堂小结
1.画轴对称图形,已知图形只是整个图形的一半。 2.因为整个图形是轴对称图形,所以要作的那一半与已知图形是成轴对称 的.
3.画轴对称图形的基础是画已知图形各点的轴对称点。 4.用尺规法画已知图中各点关于直线l的对称点,将对称点连结得到对称线 段,对称线段组成的的图形就是对称图形。
同学们为下面的两张轴对称图形画出对称轴.
问题试:一在试下:如图图中,,实连线所结构对成称的图点形的为线已段知图与形对,称直线轴L有为对何称关轴系,
请画出已知图形的轴对称图形。
L E BD
C A
D'
B'
C' A'
A B
L C
C' A'
B'
结论:连结对称点的线段被对称轴垂直平分。
在格点图中,大家会很容易画出已知图形的轴对称图形,如果没有格 点图,我们还能比较准确地画出已知图形的轴对称图形吗?
13.2
画轴对称图形
学习目标
1、使学生能够按要求作出简单平面图形经过一次对称后的图形。 2、通过画轴对称图形,增强学生学习几何的趣味感,培养审美情 操。
学习重点、难点
重点:让学生识别轴对称图形与画轴对称图形的对称轴. 难点:区别轴对称与轴对称图形两个不同的概念.
创设情境:上节课我们学习了画两个图形或一个图形的对称轴.请
2、如下各图,已知线段AB和直线L,试画出线段AB关于直线 L的对称线段A'B' 。
B
A L
A'
B' ①
L
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
02
教学重点
jiaoxuemubiaojiaoxuem ubiaojiaoxuemubiaojia oxuemubiaoaoxuemub
教学重点
通过在丰富的现实情境中,经历观 察、欣赏、分析、想象、创作等 数学活动过程,逐步发展空间观 念。通过轴对称图形的学习,感 受数学中的美。
03
教学过程
jiaoxuemubiaojiaoxuem ubiaojiaoxuemubiaojia oxuemubiaoaoxuemub
教学过程
观察、思考: 刚才的轴对称图形中,哪些图形只有
一条对称轴?哪些图形有几条对称轴?
看谁最棒!
回忆在学过图形中,哪些图形是轴对称图 形?各有几条对称轴?
教学过程
1、定义 如果一个图形沿着一条直线对折,直
线两侧的图形能够完全重合,这个图形就 是 折痕所在的这条直线叫做 对称轴。
教学过程
例2、先判断哪些图形是轴对称图形,在画出 它们的对称轴。
专家告诉
教后练习 1、找五角星的对称轴。
五角星的对称轴有5条。
教后练习
C
例3、在方格纸上画 出下面图形的另一半。
B
A
教后练习
仔细观察上图,你能在方格纸上画出它的 另一半吗?
1、小组合作交流。 2、小组汇报。 根据对称轴,先找到B点的对应点D,然后把 各点连起来,就得到了一个轴对称图形。
同学们下课休息
画轴对称图形
人教版二年级数学课件 xxxxx
目录
content
教学目标
教学重点
教学过程
教后练习
0 1
教学目标
jiaoxuemubiaojiaoxuem ubiaojiaoxuemubiaojia oxuemubiaoaoxuemub
教学目标
通过生活实例认识“轴对称”现象,理解 “轴对称图形”和“对称轴”的含义。能 够认识轴对称图形并能确定其对称轴。通 过轴对称图形?
教学过程
观察上面六个图形,其中有些就是我 们以前学过的轴对称图形,你能把它 找出来吗?
教学过程
讨论、交流、汇报: 除图形④不是轴对称图形外,其余的五个图形 都是轴对称图形。 这些图形有什么共同特点? 把这些图形左右对折,两边都能完全重合。
教学过程
折出例1中轴对称图形的对称轴
教学过程
讨论、交流: 你是怎样找出它们的对称轴的?
思考: 我们怎样判断自己找到的是不是对称轴呢?
教学过程
在方格纸上画出下面各图形的所有对称轴。
教学过程
C
例3、在方格纸上画出 下面图形的另一半。
B
A
教学过程
仔细观察上图,你能在方格纸上画出它的 另一半吗?
1、小组合作交流。 2、小组汇报。 根据对称轴,先找到B点的对应点D,然后把 各点连起来,就得到了一个轴对称图形。
教学过程
小 结 如果一个图形沿着一条直线对折,直线
两侧的图形能够完全重合,这个图形就是轴对称 图形。
教学过程
小 结 找 对 称 轴 的 方 法 有 对 折 、 放 在 方 格 纸 上 等 。
判断己找到的是不是图形的对称轴,看沿着 这条线对折后两边的部分是否能完全重合。
04
教后练习
jiaoxuemubiaojiaoxuem ubiaojiaoxuemubiaojia oxuemubiaoaoxuemub
人教版二年级数学课件 xxxxx
感谢您的下载观看
MOMODA POWERPOINT
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Fusce id urna blandit, eleifend nulla ac, fringilla purus. Nulla iaculis tempor felis ut cursus.