可靠性技术

合集下载

可靠性分析技术(评估)

可靠性分析技术(评估)
通过可靠性评估得到的产品可靠性参数值,可作为当前产品的 冗余设计、维修策略设计和备件方案设计的重要依据,也可以作为 后续产品的可靠性指标论证的技术依据。可靠性评估是对产品的可 靠性定量评价,辅助或代替可靠性鉴定。
1 可靠性数据的收集和整理
可靠性数据的来源及特点 试验数据和现场数据 故障数据的判定
可靠性数据的来源
寿命分布检验
分布参数的估计
可靠性参数计算
故障率
根据规定可接受的 故障率计算使用寿命
平均寿命
可靠度
给定可靠度计算 可靠寿命
经典可靠性评估流程
内厂可靠性试验
数据收集、整理
外场数据
经验分布函数或可靠度观测值计算 寿命分布检验
分布参数的估计
可靠性参数计算
故障率
平均寿命
根据规定可接受的 故障率计算使用寿命
可靠度
给定可靠度计算 可靠寿命
分布参数点估计
极大似然法 图估法 最小二乘法
分布参数估计-(供参考)
极大似然估计(Maximum Likelihood Estimation--MLE)
设总体的分布密度函数为f(t,θ),其中θ为待估参数,
从总体中得到一组样本,其次序统计量的观测值为
t(1) , t(2) ,, t(n)
失效率函数
(t)
f (t) R(t )
(t )/
1 (t )
确定电子管的寿命分布
20个电子管在某次试验中共发生5次故障,记录如下表
序号
1
2
3
4
5
故障时间
26
64
119
145
182
经验假设电子管寿命服从指数分布
经典可靠性评估流程

提高产品质量与可靠性的技术与方法

提高产品质量与可靠性的技术与方法

提高产品质量与可靠性的技术与方法随着消费者对产品质量与可靠性的要求不断提高,企业在产品研发和生产过程中需要采取一系列技术与方法来提高产品质量与可靠性,以满足市场需求。

产品质量与可靠性是企业生存与发展的基石,直接关系到企业的声誉和市场竞争力。

因此,如何提高产品质量与可靠性成为了企业在竞争激烈的市场中必须要重视的问题。

一、产品质量与可靠性的概念产品质量是指产品所具有的满足用户期望的各项特性,包括外观质量、功能性质量、性能质量等。

而产品的可靠性则是产品在规定的使用条件下,在一定时间内完成所需要的功能而不发生故障的能力。

提高产品质量与可靠性不仅可以减少售后服务成本,提高用户满意度,还能提升企业的品牌形象,增强市场竞争力。

二、提高产品质量与可靠性的重要性1. 提升用户满意度:优质可靠的产品能够满足用户的需求,获得用户的信任和认可,提升用户满意度。

2. 减少售后服务成本:质量可靠的产品少出现故障,可以降低售后服务成本,提高企业的盈利能力。

3. 提升企业形象:高质量的产品能够树立企业的良好形象,增强品牌的竞争力,吸引更多的消费者。

三、1. 制定质量管理体系:建立质量管理体系是提高产品质量与可靠性的基础。

通过建立完善的质量管理体系,确保产品从设计、生产到售后服务全过程的质量可控。

2. 引入先进技术:在产品设计和生产过程中,引入先进的技术和设备,提高产品的设计水平和生产工艺,确保产品质量的稳定性和可靠性。

3. 强化过程控制:加强过程控制是提高产品质量与可靠性的关键。

通过对关键工艺环节进行严格控制,确保产品在生产过程中质量稳定。

4. 实施全面质量管理:全面质量管理是提高产品质量与可靠性的有效手段。

通过设立质量目标、制定质量标准、开展质量培训等措施,全面提升产品质量与可靠性。

5. 建立质量反馈机制:建立完善的质量反馈机制是提高产品质量与可靠性的重要保障。

及时收集用户反馈意见、产品质量数据,不断改进产品设计和生产工艺。

根据技术可靠性9个等级划分

根据技术可靠性9个等级划分

根据技术可靠性9个等级划分根据技术可靠性的9个等级划分1. 引言本文档旨在介绍根据技术可靠性划分的9个等级,以便评估和评价技术系统的可靠性和稳定性。

这些等级将有助于确定系统所面临的潜在风险和可能的故障。

2. 技术可靠性等级一览以下是根据技术可靠性划分的9个等级:1. 等级 A:技术系统非常可靠,几乎没有故障的发生。

2. 等级 B:技术系统较为可靠,故障发生的概率很低。

3. 等级 C:技术系统可靠性一般,偶尔会发生故障。

4. 等级 D:技术系统的可靠性较低,经常出现故障。

5. 等级 E:技术系统的可靠性很低,故障频繁发生。

6. 等级 F:技术系统极不可靠,故障频率非常高。

7. 等级 G:技术系统几乎无法正常运行,持续出现严重故障。

8. 等级 H:技术系统无法达到可靠性标准,故障严重且不可修复。

9. 等级 I:技术系统已经失效,无法正常运行。

3. 判断技术可靠性等级的标准根据技术可靠性等级的划分,以下是通常用于判断技术系统可靠性的标准:- 等级 A-B:系统几乎没有故障的发生,响应时间非常短,出现故障时能够快速恢复,同时具备良好的监控和预警机制。

- 等级 C-D:系统在正常运行过程中可能会出现故障,但故障不会对系统整体功能造成重大影响,可以通过日常维护和修复来解决问题。

- 等级 E-F:系统故障频繁发生,严重影响系统功能,需要频繁的维修和修复,同时需要重视系统的监控和预警。

- 等级 G-H:系统难以正常运行,故障频率高且严重影响系统功能,可能需要进行重大改造或更换部分关键组件。

- 等级 I:系统已经失效,无法正常运行,需要进行全面的重建或替换。

4. 结论通过技术可靠性等级的划分,可以帮助评估和评价技术系统的可靠性和稳定性。

根据不同等级的标准,可以采取适当的措施来提高系统的可靠性和稳定性,确保系统能够正常运行并满足需求。

同时,定期检查和维护系统,及时解决故障,可以降低系统故障的概率,提高系统的可靠性。

《可靠性技术基础》PPT课件

《可靠性技术基础》PPT课件
可靠性技术基础
可靠性工程室
二○○五年八月二十七日
主要内容
1、可靠性发展历史 2、可靠性基本概念 3、可靠性工作内容 4、软件可靠性概念 5、软件测试技术 6、软件可靠性测试 7、软、硬件可靠性比较 8、结束语
1. 可靠性发展历史
1.可靠性发展史
◆第二次世界大战期间:可靠性概念最早来源于航 空领域,空中飞行事故不断增加,要求计算在一段飞 行时间内不发生故障的概率,这便是可靠性的初始概 念。40年代是可靠性萌芽时期,雷达等各种复杂电子 设备相继出现,电子设备的可靠性问题严重地影响了 武器装备的效能。在第二次世界大战期间,美国60% 的机载电子设备运到远东后不能使用,50%的电子设 备在贮存期间失效,其主要原因是电子管可靠性太差。
神舟五号飞船圆满成功,终于实现了中华民族千年 的飞天梦想。神舟系列飞船的成功是无数奋斗在航天 战线科技人员爱国、敬业、创新、奉献精神的体现。 神舟飞船的成功中,无数在航天科技领域从事可靠性 工作的技术人员功不可没,他们和所有其他航天 科技工作者都是站在航天英雄杨立伟身后的英雄。
1.可靠性发展史
载人航天器安全性以及载人航天工程的圆满成功,乃 至整个航天领域在几十年间所取得的卓越成就,它们 的重要保障技术之一就是可靠性工程技术。可靠性工 程在航天领域向来都是极为重要的技术。我国载人航 天科技进一步将研制空间站和空间实验室。
2.可靠性基本概念
◆产品:指作为单独研究和分别试验对象的任何元 件、器件、设备和系统,可表示为产品的总体或样品。
由定义可以看出产品的可靠性与“规定条件”是分 不开的,这里说的规定条件,包括使用时的环境条件 (但必须注意到运输、贮存以及工艺过程中引入的环 境影响)即所有内部与外部的条件(如温度、湿度、 辐射、电场、冲击、振动等或其组合)。使用时的应 力条件、维护方法等。

可靠性试验技术

可靠性试验技术

可靠性试验技术可靠性试验就是论证、验证、评价与分析产品的可靠性而进行的各种试验,它是评价分析产品可靠性的必要手段。

在研制阶段,通过改进可靠性试验中暴露的问题而使产品达到预定的可靠性指标;在定型阶段,通过可靠性试验可以全面考核产品的可靠性指标;在稳定生产阶段,通过可靠性试验可以验证质量的稳定程度。

通过可靠性试验还可以了解电子元器件在不同环境和应力条件下的失效模式,分析失效原因,找出薄弱环节,以达到提高可靠性水平的目的。

可靠性试验主要包括可靠性寿命试验、可靠性环境试验、筛选试验等。

可靠性寿命试验用以考核、评价和分析产品的寿命特征及失效规律,以便得出产品的平均寿命和失效率等可靠性数据,并作为可靠性设计、可靠性预测和改进产品质量的依据。

可靠性环境试验是考察和评价产品实际使用、运输和储存环境下的性能,分析、研究环境因素影响程度及其作用机理而进行的一系列试验,如气候(如风、雪等)、机械(如振动、冲击等)、生物(如霉菌)、辐射、电磁、人为因素(如使用、组装等)"试验条件和程序主要依据GJB548A——96微电子器件试验方法和程序的规定来实施。

GJB548A——96包括为确定军用及空间应用的自然因素和条件的抗损坏能力而进行的基本环境试验;物理和电试验;设计、封装和材料的限制;标志的一般要求;工作质量和人员培训程序;以及为保证微电子器件满足预定用途的质量与可靠性水平而必需采取的其他控制和限制。

通过环境试验能够在集成电路研制早期,评价其使用参数对各种环境强度的敏感性,探测可能发生的故障形式。

在研制后期,探索并验证其受环境强度影响下可靠性指标变化的规律。

传统的环境试验是基于真实环境模拟的试验方法,这种试验方法的特点是模拟真实环境,考虑设计裕度,确保试验过关。

其缺陷在于试验的效率低,试验的资源耗费巨大。

加速环境试验是一项新兴的可靠性试验技术,它是利用高应力水平下的平均寿命去外推正常应力水平下的平均寿命,其关键是要建立加速曲线及描述该曲线的数学物理方程。

云计算平台上的数据可靠性保障技术

云计算平台上的数据可靠性保障技术

云计算平台上的数据可靠性保障技术云计算是近年来迅猛发展的新兴技术,为企业和个人提供了灵活、高效、安全的数据存储和处理服务。

云计算平台上的数据可靠性保障技术是保障云服务质量的核心技术之一,关系到云计算服务的稳定性和安全性。

本文将从云计算平台架构、数据可靠性保障技术、应对措施等方面探讨云计算平台上的数据可靠性保障技术。

一、云计算平台架构云计算平台是指由云计算提供商(如腾讯云、华为云、阿里云)提供的一种基础设施,通常包括虚拟化、自动化运维等技术。

云计算平台可以直接提供各种服务(如免租赁服务器、免安装软件等),还可以向客户提供各种云端开发环境和设备。

一般来说,云计算平台是由多个数据中心组成的。

二、数据可靠性保障技术数据可靠性保障技术是指保障云服务数据安全、数据完整性和数据可靠性的技术,通常包括备份、镜像、容灾等措施。

1.备份技术备份技术是指将关键数据进行备份,存储在不同的数据中心、机房或不同的云计算平台上。

备份策略一般是根据用户需求和数据变化来确定,例如按周备份、按日备份、按时备份等。

一些备份技术还可以支持增量备份、指定备份、重启备份等功能,以提高备份效率和可靠性。

2.镜像技术镜像技术是指将服务器上的关键数据复制到秒级别的备用服务器上,以实现高可用性和业务连续性。

镜像技术可以分为同城镜像和异地镜像两种。

同城镜像是指将数据备份到同城另一台设备上,以保证数据的高可用性和快速的灾难恢复;异地镜像是指将数据备份到另一城市或国家的设备上,以应对区域性灾难或人为破坏等情况。

3.容灾技术容灾技术是指通过冗余机房、容灾数据中心、灾难恢复计划等方式,实现云计算平台上关键数据的备份、恢复和保护。

容灾技术可以将源数据(主服务器)同步到备份数据(备份服务器)中,实现数据在两个服务器之间的快速切换,以保证业务的持续性和稳定性。

容灾技术还可以结合镜像技术和备份技术,实现数据的更高可靠性和恢复速度。

三、应对措施云计算平台上的数据可靠性保障技术,虽然可以有效提高服务质量和数据安全性,但在实际应用过程中,还需通过一些措施来应对各种风险和威胁。

可靠性的技术的应用及其评价方法

可靠性的技术的应用及其评价方法

可靠性的技术的应用及其评价方法2007-07-02 22:34:05| 分类:知识仓储| 标签:嵌入式|字号大中小订阅一、可靠性评价分析技术的应用由于设计阶段对产品的可靠性将起到奠基作用,故在设计过程中,应不断对产品的可靠性进行定性和定量的评价分析)以便及时了解产品的可靠性指标是否有了保证,所采取的各种可靠性设计措施是否有效,有效程度如何,设计中是否还存在薄弱环节和潜在缺陷,产品在今后使用中可能会发生什么样的故障,以及故障一旦发生时,其影响和危害程度如何等等。

弄清以上问题将有助于及时发现缺陷,及时改进设计,防止“带病”投产,保证预定的可靠性指标得到满足。

下面介绍几种主要的评价分析技术的应用:1 .可靠性预计与分配可靠性预计是在设计阶段,根据设计中所选用的电路程式、元器件、可靠性结构模型、工作环境、工作应力以及过去积累的统计数据,推测产品可能达到的可靠性水平。

预计的目的不是在于了解在什么时候将发生什么样的失效,而是在于从设计开始就采取措施以防止失效的发生,并用定量的方法评价可靠性设计的效果。

可靠性分配是将可靠性指标或预计所能达到的目标值加以分解,用科学的方法,合理分配给分系统、设备、部件直至各元器件和每一个连接点、焊接点,以保证可靠性既定目标得以实现。

通过分配,不仅可以层层落实设计指标,还可发现设计的薄弱环节和尚能挖掘的潜力。

可靠性预计的方法一般有相似设备法、相似电路法。

有源器件法、元器件计数法及元器件应力分析法等,它们分别适用于不同的设计阶段:当产品处于方论证阶段时,可用相似设备法、相似电路法、有源器件法等快速预计法进行可行性预计,以评价设计方案的可行性;当产品处于旱期的详细设计阶段时,可用元器件计数法进行初步设计预计,以了解元器件的初步选择是否恰当,并为可靠性分配打下预计的基础,而当产品处于详细设计阶段的中期和后期,可用元器件应力分析法进行详细的设计预计,以便及时发现设计的薄弱环节或潜在能力,及时改进设计,以期达到优化设计的目的。

可靠性工程技术基础

可靠性工程技术基础
9 可靠性工程技术基础
2.1.2 可靠性定量要求——主要指标参数
d.平均首次故障前时间 mean time to first failure (MTTFF) 可修复产品的一种基本可靠性参数。其度量方法为:在规
定的条件下,产品从开始使用到出现首次故障时产品寿命单 位总数与产品首次故障总数之比。
e. 故障率 产品可靠性的一种基本参数。其度量方法为:在规定的
表5 可靠性设计(定量)工作内容
合同和研制任 务书中规定的 期望产品达到 的合同指标, 它是承制方进 行可靠性设计 的依据
合同和研制任 务书中规定 的、产品必须 达到的合同指 标,它是进行 厂内考核或验 证的依据
*下面列出可靠性常用的设计指标参数
8 可靠性工程技术基础
2.1.2 可靠性定量要求——主要参数特征量
a. 可靠度 可靠性的概率度量,其符号为R(t) 例如: R(t)=0.95,0.99等。
条件下和规定的期间内,产品的故障总数与寿命单位总数之 比。
10 可靠性工程技术基础
表3
产品层次
可靠性常用的设计指标参数的应用
产品使用特征量
连续或间歇工作 连续或间歇工作 一次性使用
(可修复)
(不可修复)
装备
R(t)或MTBF R(t) 或MTTF
P(S)或P(F)
分系统 设备
R(t)或MTBF
R(t)或λ
1 可靠性工程技术基础
可靠性发展与产品质量的特性关系
产品质量的固有特性包含了产品的性能特性、专门特性、经济性、 时间性、适应性等方面,如图所示。
产品质量的固有特性
性能特性
专门特性
经济性 时间性 适应性
可 安 维 保 测 寿命 靠 全 修 障 试 周期 性 性 性 性 性 费用
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十七章可靠性技术产品的质量指标是产品技术性能指标和产品可靠性指标的综合。

仅仅用产品技术性能指标不能反映产品质量的全貌。

只有具备优良的技术性能指标又具备经久耐用,充分可靠、易维护、易使用等特点的产品,才称得上是一个高质量的产品。

可靠性指标和技术性能指标最大的区别点在于:技术性能不涉及时间因素,它可以用仪器来测量;可靠性与时间紧密联系,它不能直接用仪器测量,要衡量产品的可靠性,必须进行大量的试验分析和统计分析,调查研究以及数学计算。

※本章要求(1)掌握产品可靠性的定义;(2)掌握产品可靠性函数及其计算;(3)掌握产品失效率的计算方法(4)熟悉失效率曲线与类型;(5)掌握常用的失效分布函数;(6)熟悉可靠性分配的概念与等分配方法;(7)了解故障树分析方法。

※本章重点(1)产品可靠性与可靠度函数(2)产品的失效率函数(3)常用的失效分布(4)可靠性预测与分配※本章难点(1)产品的可靠度函数及其计算(2)产品的失效率计算(3)失效分布函数计算§1产品可靠性的概念一、产品可靠性定义所谓可靠性是指产品(包括零件和元器件、整机设备、系统)在规定的条件下和规定的时间内,完成规定的能力。

为了正确理解可靠性的定义,应注意:首先,必须明确产品可靠性研究的对象。

其次,必须明确产品可靠性所规定的条件。

再次,必须明确所规定的时间。

最后,必须明确产品所需完成规定的功能。

对于可修复产品来说,可靠性的含义应指产品在其整个寿命周期内完成规定功能的能力。

其中故障是指产品或产品的一部分不能或将不能完成规定功能的事件或状态叫出故障,对某些产品如电子元器件等亦称失效。

分为:致命性故障,产品不能完成规定任务或可能导致重大损失;系统性故障,由某一固有因素引起,以特定形式出现的;偶然故障,由于偶然因素引起得故障。

可靠性需要满足:1)不发生故障。

2)发生故障后能方便地、及时地修复,以保持良好功能状态能力,即要有良好的维修性。

所谓维修性是指在规定条件下使用的产品在规定的时间内,按规定的程序和方法进行维修时,保持和恢复到能完成规定功能的能力。

二、可靠度函数可靠度是指产品在规定的条件和规定的时间内,完成规定功能的概率。

它是时间的函数,以R(t)表示。

若用T 表示在规定条件下的寿命(产品首次发生失效的时间),则“产品在时间t 内完成规定功能”等价于“产品寿命T 大于t ”。

所以可靠度函数R(t)可以看作事件“T>t ”概率,即)()(t T P t R >==⎰∞t dt t f )( 其中f(t)为概率密度函数, 我们还可以定义分布函数则F(t)称为产品的失效分布函数。

显然有可靠度R(t)可以用统计方法来估计。

设有N 个产品在规定的条件下开始使用。

令开始工作的时刻t 取为0,到指定时刻t 时已发生失效数n(t),亦即在此时刻尚能继续工作的产品数为N-n(t),则可靠度的估计值(又称经验可靠度)为 §2失效率和失效率曲线一、产品的失效率失效率是工作到某时刻尚未失效的产品,在该时刻后单位时间内发生失效的概率。

一般记为λ, 它也是时间t 的函数, 故也记为λ(t), 称为失效率函数, 有时也称为故障率函数或风险函数。

为了理解失效率函数的概念,现对它作一个更直观的剖析。

设在t=0时有N 个产品投试,到时刻t 已有n(t)个产品失效,尚有N-n(t) 个产品在工作。

再过Δt 时间,即到t+Δt 时刻, 有Δn(t)=n(t+Δt)-n(t) 个产品失效。

那么,产品在时刻t 前未失效而在时间(t, t +Δt )内失效率为)()(t n N t n -∆。

而在时刻t 前未失效、在时刻t 后的单位时间内发生失效的频率亦即失效率的估计值)(1)()(ˆt n N t t n t -•∆∆=λ。

现在来倒出失效率的数学表达式。

按定义, 失效率是在时刻t 尚未失效产品在t+△t 的单位时间内发生失效的条件概率,即由条件概率公式的性质和时间的包含关系,可知于是这就是失效)(t λ的数学表达式。

从失效率公式的估计公式,可以定出失效率的单位国际上还采用“菲特“(FIT )作为高可靠性产品的失效率单位,为10-9/h, 还可以把1菲特改写为:1菲特=hh 5461010(1101000(1⨯=⨯(个)个)(个)个) 失效率常用来表示高可靠性产品的可靠性产品,它越小可靠性就越高。

二、失效率曲线与失效类型产品的失效率λ(t )随时间t 而变化的规律可用失效率曲线表示,有时形象地称为浴盆曲线。

失效率随时间变化可分为三段时期:(1)早期失效期为递减型。

产品使用的早期,失效率较高而下降很快。

主要由于设计、制造、贮存、运输等形成的缺陷,以及调试、跑合、起动不当等人为因素所造成的。

使产品失效率达到偶然失效期的时间t 0称为交付使用点。

(2)偶然失效期为恒定型,主要由非预期的过载、误操作、意外的天灾以及一些尚不清楚的偶然因素所造成。

由于失效原因多属偶然,故称为偶然失效期。

偶然失效期是能有效工作的时期,这段时间称为有效寿命。

为降低偶然失效期的失效率而增长有效寿命,应注意提高产品的质量,精心使用维护。

(3)耗损失效期,失效率是递增型。

失效率上升较快,这是由于产品已经老化、疲劳、磨损、蠕变、腐蚀等所谓有耗损的原因所引起的,故称为耗损失效期。

针对耗损失效的原因,应该注意检查、监控、预测耗损开始的时间,提前维修,使失效率仍不上升。

当然,修复若需花很大费用而延长寿命不多,则不如报废更为经济。

三、常用的失效分布我们知道 F(t)=1-R(t), 微分后可得)()(''t R t F -=。

可得:解此微分方程,可得可靠度函数:再利用关系式可见只要给出失效函数λ(t ),即可写出相应的失效分布。

(1)指数分布从产品失效率函数曲线看出,当产品进入交付使用点后,产品的失效率可以看作常数,λλ=)(t ,产品寿命的密度函数导出:t e t f λλ-=.)(, t>0其分布函数F(t)与可靠度R(t)分布为:t e t F λ--=1)(,t e t R λ-=)(,这个分布函数为指数分布,它的数学期望(即均值)为:(2)威布尔分布当“失效函数为常数”这个假设不合适时,可选用时间t 的减函数或增函数作为失效函数。

1)(-⎪⎪⎭⎫ ⎝⎛=m t m t ηηλ,可算得密度函数为:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-m m t t m t f ηηηexp .)(1, t>0 类似可得其分布函数F(t)与可靠度函数R(t):⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎪⎭⎫ ⎝⎛--=m t t F ηexp 1)(, t>0 ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎪⎭⎫ ⎝⎛-=m t t R ηexp )(, t>0 这个分布称为威布尔分布,其中m 称为形状参数,η称为特征寿命。

我国的轴承和一些电子元件的寿命就是服从威布尔分布。

§3系统可靠性研究可靠性可根据不同对象分成单元可靠性与系统可靠性两个方面。

前者把产品作为整体考虑,后者则注重于产品内部的功能关系。

系统的可靠性在很大程度上取决于零部件的可靠性一、可靠性预测所谓可靠性预测是一种根据所得的有效率数据计算器件或系统可能达到的可靠性指标或对于实际应用的产品计算出它在特定条件下完成规定功能的概率的预报方法。

通过预测可以达到如下目的:1)协调设计参数及指标,提高产品的可靠性;2)进行方案比较,选择最佳方案;3)发现薄弱环节,提出改进措施。

可靠性预测方法有多种:1)古典的方法是数学模型法。

2)布尔真值表法,又称状态枚举法。

又称状态枚举法。

系统中每个单元都有“成功”和“失败”两个状态,将系统中所有的组合列出,然后列出系统“成功”和“失败”的状态,最后进行系统可靠度的计算。

若系统有n 个单元,而每个单元又有两个状态,则n 个单元所构成的系统共有2n 个状态。

二、可靠性分配(1)概念所谓可靠性分配,就是把系统的可靠性指标对系统中的子系统或部件进行合理分配的过程。

通常分配应考虑下列原则:①技术水平;②复杂程度;③重要程度;④任务情况。

此外,一般还要受费用、重量、尺寸等条件的约束。

总之,最终都是力求以最小的代价来达到系统可靠性的要求。

(2)分配方法方法有多种,在此只介绍等分配方法:本方法用于设计初期,对各单元可靠性资料掌握很少,故假定各单元条件相同。

①串联系统:n i R R n s i ...,,2,11== ②并联系统:n i R F F n s n i ,..,2,1)1(11=-==③混联系统:一般可化为等效的单元,同级等效单元分配给相同的可靠度。

三、故障树分析故障树分析是在系统设计过程中通过对可能造成系统失效的各种因素(包括硬件、软件、环境、人为因素)进行分析,画出逻辑框图,从而确定系统失效原因的各种可能组合方式或其发生概率,以计算系统失效概率,采取相应的纠正措施,以提高系统可靠性的一种设计分析方法。

英文全名为Fault Tree Analysis ,简称FTA。

故障树分析把系统最不希望发生的故障状态作为逻辑分析的目标,在故障树中称为顶事件,继而找出导致这一故障状态发生的所有可能直接原因,在故障树中称为中间事件。

再跟踪找出导致这些中间故障事件发生的所有可能直接原因。

直追寻到引起中间事件发生的全部部件状态,在故障树中称为底事件。

用相应的代表符号及逻辑们把顶事件、中间事件、底事件连接成树形逻辑图,则称此树形逻辑图为故障树。

故障树是一种特殊的倒立树状逻辑因果关系图,它用事件符号、逻辑门符号和转移符号描述系统中各种事件之间的因果关系。

“底事件”是导致其事件的原因事件,位于所讨论故障树底端。

“结果事件”是由其它事件或事件组合所导致的事件。

它总是位于某个逻辑门的输出端。

故障树分析的大致步骤为:1)熟悉并分析对象;2)选定顶事件;3)故障树的构造与简化;4)计算分析;5)评价改进。

※本章小结:(略)※本章作业:教材P.218“思考题与习题”的第1、2、3、4题。

相关文档
最新文档