【精品】2018北京数学初三海淀一模(有答案)

合集下载

海淀区中考一模数学试卷含答案解析

海淀区中考一模数学试卷含答案解析

北京市海淀区2018 年中考一模数学试卷一、选择题(本题共16 分,每题 2 分)1.用三角板作ABC的边 BC 上的高,以下三角板的摆放地点正确的选项是()2.图 1 是数学家皮亚特·海恩(Piet Hein)发明的索玛立方块,它由四个及四个之内大小相同的立方体以面相连结构成的不规则形状组件构成. 图 2 不行能是下边哪个组件的视图()...3.若正多边形的一个外角是120 °,则该正多边形的边数是()4.以下图形中,既是中心对称图形,也是轴对称图形的是()1 ,那么代数式(1b22a25.假如a b 2 )的值是() B.2 D. 1a a b6.实数 a,b,c,d 在数轴上的对应点的地点以下图. 若 b d 0 ,则以下结论中正确的选项是()A. b c0cbc D. a dB.1C. ada b cd a7.在线教育使学生足不出户也能连结全世界优异的教育资源. 下边的统计图反应了我国在线教育用户规模的变化状况.2015-2017年中国在线教育用户规模统计图用户规模 /万人1600013764144261200011014117891199080009798在线教育用户400053034987手机在线教育课程用户2015年2016年2016年2017年时间12月6月12月6月(以上数据摘自《2017 年中国在线少儿英语教育白皮书》)依据统计图供给的信息,以下推测必定不合理的是()...A . 2015 年 12 月至 2017 年 6 月,我国在线教育用户规模渐渐上涨B. 2015 年 12 月至 2017 年 6 月,我国手机在线教育课程用户规模占在线教育用户规模的比率持续上涨C. 2015 年 12 月至 2017 年 6 月,我国手机在线教育课程用户规模的均匀值超出7000 万D. 2017 年 6 月,我国手机在线教育课程用户规模超出在线教育用户规模的70%※ 8.如图 1,矩形的一条边长为X ,周长的一半为y. 定义〔 X , y〕为这个矩形的坐标.如图 2,在平面直角坐标系中,直线X=1 , y=3 将第一象限区分红 4 个地区 .已知矩形 1 的坐标的对应点 A 落在以下图的双曲线上,矩形 2 的坐标的对应点落在地区则下边表达中正确的选项是()④中.A.点AB. 矩形C. 当点的横坐标有可能大于31 是正方形时,点 A 位于地区④A 沿双曲线向上挪动时,矩形 1 的面积减小D.当点 A 位于地区④时,矩形 1 可能和矩形 2 全等二、填空题(本题共 16 分,每题 2 分)9.从 5 张上边分别写着“加”“油”“向”“未”“来”这 5 个字的卡片(大小、形状完好相同)中随机抽取一张,则这张卡片上边恰巧写着“加”字的概率是.10.我国计划 2023 年建成全世界低轨卫星星座——鸿雁星座系统,该系统将为手机网络用户供给无死角全覆盖的网络服务. 2017 年 12 月,我国手机网民规模已达753 000 000 ,将 753 000 000 用科学记数法表示为.B11.如图, AB ∥ DE,若 AC=4 ,BC=2 , DC=1 ,则 EC==.ACE 12.写出一个解为 1 的分式方程:.D 13.京张高铁是2022 年北京冬奥会的重要交通基础设备,考虑到不同路段的特别状况,将依据不同的运转区间设置不同的时速.此中,北京北站到清河段全长11 千米,分为地下清华园地道和地上区间两部分,运转速度分别设计为80 千米 /小时和 120 千米 /小时.按此运转速度,地下地道运转时间比地上大概多 2 分钟(1小时),求清华园地道全长为多少千米.设清华园隧..30道全长为 x 千米,依题意,可列方程为__________ .A D 14.如图,四边形ABCD 是平行四边形,④O经过点 A , C, D,O 与 BC 交于点 E,连结 AE ,若④D = 72 °,则④BAE =°.B E C※ 15.定义:圆中有公共端点的两条弦构成的折线称为圆的一条折弦.阿基米德折弦定理:如图 1,AB 和 BC 构成圆的折弦,AB >BC,M 是弧 ABC 的中点,MF⊥AB于 F,则 AF=FB+BC .M BA 如图 2,④ ABC 中,∠ ABC=60°,AB=8 , BC=6 ,FCD 是 AB 上一点, BD=1 ,作 DE⊥AB 交④ ABC 的AE外接圆于 E,连结 EA ,则∠ EAC==________ °.DB 图 1C图 216.下边是“过圆上一点作圆的切线”的尺规作图过程.请回答尺规作图的依照是.三、解答题(本题共68 分,第 17~22 题,每题 5 分;第 23~26 小题,每题 6 分;第 27~28 小题,每题 7 分)解答应写出文字说明、演算步骤或证明过程.17.计算: (1) 112 3tan 30 | 3 2 | .35x3 3 x 1 ,18.解不等式组:x 23x.2 619.如图, ④ ABC 中,∠ ACB=90°, D 为 AB 的中点 ,连结 CD ,过点 B 作 CD 的平行线EF ,求证: BC 均分∠ ABF .AD CE B F20.对于 x 的一元二次方程 x2(2 m3) x m2 1 0 .( 1)若 m 是方程的一个实数根,求m 的值;(2)若 m 为负数,判断方程根的状况 ...21.如图,□ ABCD 的对角线 AC, BD 订交于点O,且 AE④ BD , BE④ AC, OE = CD.( 1)求证:四边形ABCD 是菱形;( 2)若 AD = 2 ,则当四边形ABCD 的形状是 ______时,四边形AOBE 的面积获得最大值是_____.C BO ED A22.在平面直角坐标系 X Oy 中,已知点 P(2, 2), Q(- 1, 2),函数m y.x( 1)当函数y m的图象经过点P 时,求 m 的值并画出直线y x m .xy m ,( m > 0),求 m 的取值范※( 2)若 P, Q 两点中恰有一个点的坐标( x ,y)知足不等式组xy x m 围.yQ PO x23.如图, AB 是⊙ O 的直径,弦 EF⊥ AB 于点 C,过点 F 作⊙ O 的切线交 AB 的延伸线于点 D.( 1)已知∠ A=α,求∠ D 的大小(用含α 的式子表示);( 2)取 BE 的中点 M ,连结 MF ,请补全图形;若∠A=30°, MF=7 ,求⊙O的半径.EBA DO CF24.某校九年级八个班共有280 名学生,男女生人数大概相同,检查小组为检查学生的体质健康水平,展开了一次检查研究,请将下边的过程补全.采集数据 : 检查小组计划选用40 名学生的体质健康测试成绩作为样本,下边的取样方法中,合理的是 ___________(填字母);A .抽取九年级 1 班、 2 班各 20 名学生的体质健康测试成绩构成样本.B .抽取各班体育成绩较好的学生共40 名学生的体质健康测试成绩构成样本.C.从年级中按学号随机选用男女生各20 名学生学生的体质健康测试成绩构成样本.整理、描绘数据: 抽样方法确立后,检查小组获取了40 名学生的体质健康测试成绩以下:2017年九年级部分学生体质健康成绩直方图频数10864250 55 60 65 70 75 80 85 90 95 100成绩/分整理数据,以下表所示:剖析数据、得出结论:检查小组将统计后的数据与昨年同期九年级的学生的体质健康测试成绩(直方图)进行了对照,你能从中获取的结论是_____________,你的原因是___________________________.体育老师计划依据2018 年的统计数据安排75 分以下的同学参加体质增强训练项目,则整年级约有________名同学参加此项目.25.在研究反比率函数y 1.的图象与性质时,我们对函数分析式进行了深入剖析x第一,确立自变量X 的取值范围是全体非零实数,所以函数图象会被 y 轴分红两部分;其次,剖析分析式,获取y 随 X 的变化趋向:当X > 0 时,跟着 X 值的增大,1 的值减小,且渐渐x靠近于零,跟着X 值的减小,1的值会愈来愈大L,由此,能够大概画出y1在 X>0 时的部分图x x象,如图 1 所示:利用相同的方法,我们能够研究函数1的图象与性质 . 经过剖析分析式画出部分函数图yx1y y象如图 2所示.( 1)请沿此思路在图 2 中完美函数图象的草图并标出此函数图象上横坐标为0的点 A;(画出网格地区内的部分即可)( 2)察看图象,写出该函数的一条性质:____________________;※( 3)若对于 X 的方程1有两个不相等的实数根,联合图象,直接写出实数 a 的取值范围:a( x 1)x 1__________.26.在平面直角坐标系xOy 中,已知抛物线y=X 2– 2aX+b 的极点在 X 轴上, P〔 X 1 , m〕, Q〔 X 2 , m〕(X1< X 2)是此抛物线上的两点.(1)若 a=1,④m b时,求X 1,X 2的值;当=④将抛物线沿 y 轴平移,使得它与x 轴的两个交点间的距离为4,试描绘出这一变化过程;※( 2)若存在实数 c ,使得 X 1≤ c–1,且 X 2≥ c+7 建立,则 m 的取值范围是.27.如图,已知∠ AOB=60°,点 P 为射线 OA 上的一个动点,过点 P 作 PE⊥ OB ,交 OB 于点 E,点 D 在∠AOB 内,且知足∠ DPA= ∠ OPE, DP+PE=6.(1)当 DP=PE 时,求 DE 的长;※( 2)在点 P 的运动过程中,请判断能否存在一个定点M ,使得DM的值不变?并证明你的判断. MEADPO E B28.在平面直角坐标系xOy 中,对于点P 和⊙ C,给出以下定义:若⊙ C 上存在一点T 不与 O 重合,使点 P 对于直线 OT 的对称点P '在⊙ C 上,则称 P 为⊙ C 的反射点.以下图为⊙ C 的反射点 P 的表示图.( 1)已知点 A 的坐标为〔 1, 0〕,⊙ A 的半径为2,④在点 O〔 0, 0〕, M 〔 1, 2〕, N〔 0,–3〕中,⊙ A 的反射点是 ____________ ;※ ④点 P 在直线 y=–X上,若 P 为⊙ A 的反射点,求点P 的横坐标的取值范围;※( 2)⊙ C 的圆心在X 轴上,半径为2,y轴上存在点P 是⊙ C 的反射点,直接写出圆心 C 的横坐标X 的取值范围.yTPC北京市海淀区2018 年中考一模数学试卷参照答案及评分标准一、选择题〔每题 2 分〕二、填空题(本题共16 分,每题 2 分)9.110.× 108 11. 2 12.11(答案不独一)13.x11 x114.36 15.60 5x801203016.与一条线段两个端点距离相等的点,在这条线段的垂直均分线上;经过半径的外端并且垂直于这条半径的直线是圆的切线;两点确立一条直线.※ 8.如图 1,矩形的一条边长为X ,周长的一半为 y.定义〔X , y〕为这个矩形的坐标.如图 2,在平面直角坐标系中,直线X=1 , y=3 将第一象限区分红 4 个地区 .已知矩形 1 的坐标的对应点 A 落在以下图的双曲线上,矩形2的坐标的对应点落在地区④中 .则下边表达中正确的选项是()A.点 A 的横坐标有可能大于 3B.矩形 1 是正方形时,点 A 位于地区④C. 当点 A 沿双曲线向上挪动时,矩形 1 的面积减小D.当点 A 位于地区④时,矩形 1 可能和矩形 2 全等分析:可知双曲线中的 K < 3,∵矩形的一条边长为X ,周长的一半为 y. 另一条边长为y–X∴ y> X①矩形 1 的坐标的对应点 A 〔X , y〕中 Xy 应小于 3; ④假如 X > 3,则 y> 3K=Xy > 9,④A错②矩形 1 是正方形时, y=2X, 据题意点 A 〔 X ,2 X 〕应落在双曲线上 ,而 y=2X 图像在地区④与双曲线无交点,∴ B 错。

【精品】2018年5月北京市海淀区初三数学一模试题含答案

【精品】2018年5月北京市海淀区初三数学一模试题含答案
1 ( 3)分别以点 A, B 为圆心,以大于 AB 长为
2
O P
OP 于 A, B 两点;
半径作弧,两弧交于 M ,N 两点; ( 4)作直线 MN .
则 MN 就是所求作的⊙ O 的切线. 请回答:该尺规作图的依据
M OA
P B
N


三、解答题 (本题共 68 分,第 17~22 题,每小题 5 分;第 23~26 小题,每小题 6 分;第 27~28 小题,每小题 7
A
( 2)在点 P 的运动过程中, 请判断是否存在一个定点 M ,使得 DM 的 ME
( 2)观察图象, 写出该函数的一条性质: ____________________;
( 3)若关于 x 的方程 1
a (x 1) 有两个不相等的实数根,
x1
结 合 图象, 直接 写出 实数 a 的取值 范围 :
___________________________.
y
1
O1
x
初三年级(数学) 第 7 页(共 16 页)
cd
C. ad bc
D. a d
7.在线教育使学生足不出户也能连接全球优秀的教育资源 情况 .
. 下面的统计图反映了我国在线教育用户规模的变化
2015-2017 年中国在线教育用户规模统计图 用户规模 /万人
16000 12000 11014
8000
4000
5303
11789 4987
13764 9798
11 千米,分为地下清华园隧道和地上区间两部分,运行速度分
别设计为 80 千米 /小时和 120 千米 /小时. 按此运行速度,地下隧道运行时间比地上大约多
2

2018北京市海淀区初三(一模)数学

2018北京市海淀区初三(一模)数学

2018海淀区初三(下)期中数学学校:姓名:成绩:考生须知1.本试卷共8页,共三道大题,28道小题,满分100分。

考试时间120分钟。

2.在试卷和答题卡上准确填写学校名称、姓名和稚考证号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,将本试卷、答题卡和草稿纸一并交回。

一、选择题(本题共16分,每小题2分)第1-8题均有四个选项符合以意的选项只有一个.1.用三鱼板作△ABC的边BC上的高,下列三角板的摆放位置正确的是2。

图1是数学家皮亚特的海恩的发明的索玛立方块.它由四个及四个以内大小相同的立方体以面相连接构成的不规则形状组件组成.图2不可能是下面哪个组件的视图3.若正多边形的一个外角是120°,能则该正多边形的边数是A.6B.5C.4D.34.下列图形中,既是中心对称图形,也是轴对称图形的是5.如果a-b=1,那么代数式(1−b2a2)·2a2a+b的值是A.2B.-2C.1D.-16.在实数a、b、c、d在数籼上的对应点的位置如图所示.若b+d=0,则下列结论中正确的是,A.b+c>0B.ca>1 C.ad>bc D.|a|>|d|7.在线教育使学生足不出户也能连接全球优秀的教育资源.下面的统计图反映了我国在线教育用户规模的变化情况。

(以上数据摘自《2017年中国在线少儿英语教育自皮书》)根据统计图提供的信息,下列判断一定不合理的是A.2015年12月至2017年6月,我国在线教育用户規模逐渐上升B.2015年12月至2017年6月.我国手机在线教育课程用户规模占在线教育用户规模的比例持续上升C.2015年12月至2017年6月,我国手机在线教育课程用户规模的平均值超过7000万D.2017年6月,我国手机在线教育课程用户规模超过在线教育用户規模的70%8.如图1,矩形的一条边长为x,周长的一半为y,定义(x,y)为这个矩形的坐标.如图2,在平面直鱼坐标系xoy中,直线x=1,y=3 将第一象限划分成4个区域,已知矩形的坐标的对应点A落在如图所示的双曲线上,矩形2的坐标的对应点落在区域④中.则下面叙述中正确的是A.点A的横坐标有可能大于3B.矩形是正方形时,点A位于区域C.当点A沿双曲线向上移动时,矩形1的面积减小D.当点A位于区域①时,矩形1可能和矩形2全等二、填空题(本共16分,每小题2分)9.从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小,形状完全相同)中随机抽取一张。

2018海淀初三数学一模精彩试题及问题详解(word)

2018海淀初三数学一模精彩试题及问题详解(word)

海淀区九年级第二学期期中练习数 学2018.5学校 成绩 考 生须 知1.本试卷共8页,共三道大题,28道小题,满分100分。

考试时间120分钟。

2.在试卷和答题卡上准确填写学校名称、班级和准考证号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,将本试卷、答题卡和草稿纸一并交回。

一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个... 1.用三角板作ABC △的边BC 上的高,下列三角板的摆放位置正确的是A B C D2.图1是数学家皮亚特·海恩(Piet Hein)发明的索玛立方块,它由四个及四个以大小相同的立方体以面相连接构成的不规则形状组件组成.图2不可能...是下面哪个组件的视图C BAA B C A B C C B AC AB CAB C CCBAB CABCCBB C A B C 图2图13.若正多边形的一个外角是120°,则该正多边形的边数是A.6B. 5C. 4D.34.下列图形中,既是中心对称图形,也是轴对称图形的是A .爽弦图B .科克曲线C .河图幻方D .谢尔宾斯基三角形5.如果1a b -=,那么代数式2222(1)b a a a b-⋅+的值是A .2B.2-C.1D.1-6.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示. 若0b d +=,则下列结论中正确的是A.0b c +>B.1c a>C.ad bc >D .a d >7.在线教育使学生足不出户也能连接全球优秀的教育资源. 下面的统计图反映了我国在线教育用户规模的变化情况.b c adA B C D(以上数据摘自《2017年中国在线少儿英语教育白皮书》) 根据统计图提供的信息,下列推断一定不合理...的是 A .2015年12月至2017年6月,我国在线教育用户规模逐渐上升B .2015年12月至2017年6月,我国手机在线教育课程用户规模占在线教育用户规模的比例持续上升C .2015年12月至2017年6月,我国手机在线教育课程用户规模的平均值超过7000万D .2017年6月,我国手机在线教育课程用户规模超过在线教育用户规模的70%8.如图1,矩形的一条边长为x ,周长的一半为y .定义(,)x y 为这个矩形的坐标. 如图2,在平面直角坐标系中,直线1,3x y ==将第一象限划分成4个区域. 已知矩形1的坐标的对应点A 落在如图所示的双曲线上,矩形2的坐标的对应点落在区域④中.图1 图2 则下面叙述中正确的是A. 点A 的横坐标有可能大于3B. 矩形1是正方形时,点A 位于区域②C. 当点A 沿双曲线向上移动时,矩形1的面积减小D. 当点A 位于区域①时,矩形1可能和矩形2全等二、填空题(本题共16分,每小题2分)9. 从5上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小、形状完全相同)中随机抽取一,则这卡片上面恰好写着“加”字的概率是 .10.我国计划2023年建成全球低轨卫星星座——鸿雁星座系统,该系统将为手机网络用户提供无死角全覆盖的2015-2017年中国在线教育用户规模统计图6月12月6月12月x网络服务. 2017年12月,我国手机网民规模已达753 000 000,将753 000 000用科学记数法表示为 . 11.如图,AB DE ∥,若4AC =,2BC =,1DC =,则EC = . 12.写出一个解为1的分式方程: .13.京高铁是2022年冬奥会的重要交通基础设施,考虑到不同路段的特殊情况,将根据不同的运行区间设置不同的时速.其中,北站到清河段全长11千米,分为地下清华园隧道和地上区间两部分,运行速度分别设计为80千米/小时和120千米/小时.按此运行速度,地下隧道运行时间比地上大约多2分钟..(130小时),求清华园隧道全长为多少千米.设清华园隧道全长为x 千米,依题意,可列方程为__________.14.如图,四边形ABCD 是平行四边形,⊙O 经过点A ,C ,D ,与BC 交于点E ,连接AE ,若∠D = 72°,则∠BAE = °.15.定义:圆中有公共端点的两条弦组成的折线称为圆的一条折弦.阿基米德折弦定理:如图1,AB 和BC 组成圆的折弦,AB BC >,M 是弧ABC 的中点,MF AB ⊥于F ,则AF FB BC =+. 如图2,△ABC 中,60ABC ∠=︒,8AB =,6BC =,D 是AB 上一点,1BD =,作DE AB ⊥交△ABC 的外接圆于E ,连接EA ,则EAC ∠=________°.16.下面是“过圆上一点作圆的切线”的尺规作图过程.图2图1EAED CB A请回答:该尺规作图的依据是 . 三、解答题(本题共68分,第17~22题,每小题5分;第23~26小题,每小题6分;第27~28小题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.计算:11()3tan 30|2|3--︒+.18.解不等式组:()5331,263.2x x x x +>-⎧⎪⎨-<-⎪⎩19.如图,△ABC 中,90ACB ∠=︒,D 为AB 的中点,连接CD ,过点B 作CD 的平行线EF ,求证:BC平分ABF ∠.20.关于x 的一元二次方程22(23)10x m x m --++=. (1)若m 是方程的一个实数根,求m 的值; (2)若m 为负.数.,判断方程根的情况.21.如图,□ABCD 的对角线,AC BD 相交于点O ,且AE ∥BD ,BE ∥AC ,OE = CD . (1)求证:四边形ABCD 是菱形;(2)若AD = 2,则当四边形ABCD 的形状是_______________时,四边形AOBE 的面积取得最大值是_________________.22.在平面直角坐标系xOy 中,已知点P (2,2),Q (-1,2),函数my x=. (1)当函数my x=的图象经过点P 时,求m 的值并画出直线y x m =+. (2)若P ,Q 两点中恰有一个点的坐标(x ,y )满足不等式组,m y xy x m⎧>⎪⎨⎪<+⎩(m >0),求m 的取值围.FE DCB AC B EOAD23.如图,AB 是O e 的直径,弦EF AB ⊥于点C ,过点F 作O e 的切线交AB 的延长线于点D . (1)已知A α∠=,求D ∠的大小(用含α的式子表示);(2)取BE 的中点M ,连接MF ,请补全图形;若30A ∠=︒,MF =,求O e 的半径.24. 某校九年级八个班共有280名学生,男女生人数大致相同,调查小组为调查学生的体质健康水平,开展了一次调查研究,请将下面的过程补全.收集数据调查小组计划选取40名学生的体质健康测试成绩作为样本,下面的取样方法中,合理的是___________(填字母);A .抽取九年级1班、2班各20名学生的体质健康测试成绩组成样本B .抽取各班体育成绩较好的学生共40名学生的体质健康测试成绩组成样本C .从年级中按学号随机选取男女生各20名学生学生的体质健康测试成绩组成样本 整理、描述数据抽样方法确定后,调查小组获得了40名学生的体质健康测试成绩如下: 77 83 80 64 86 90 75 92 83 81 85 86 88 62 65 86 97 96 82 73 86 84 89 86 92 73 57 77 87 82 91 81 86 71 53 72 90 76 68 78 整理数据,如下表所示:2018年九年级部分学生学生的体质健康测试成绩统计表分析数据、得出结论调查小组将统计后的数据与去年同期九年级的学生的体质健康测试成绩(直方图)进行了对比,DA你能从中得到的结论是_____________,你的理由是________________________________.体育老师计划根据2018年的统计数据安排75分以下的同学参加体质加强训练项目,则全年级约有________名同学参加此项目.25.在研究反比例函数1y x=的图象与性质时,我们对函数解析式进行了深入分析. 首先,确定自变量x 的取值围是全体非零实数,因此函数图象会被y 轴分成两部分;其次,分析解析式,得到y 随x 的变化趋势:当0x >时,随着x 值的增大,1x近于零,随着x 值的减小,1x 的值会越来越大L ,由此,可以大致画出在0x >时的部分图象,如图1所示:利用同样的方法,我们可以研究函数y 的图象与性质.通过分析解析式画出部分函数图象如图2所示.(1)请沿此思路在图2中完善函数图象的草图并标出此函数图象上横坐标为0的点A ;(画出网格区域的部分即可)(2)观察图象,写出该函数的一条性质:____________________;(3)若关于x (1)a x =-有两个不相等的实数根,/分2017年九年级部分学生体质健康成绩直方图结合图象,直接写出实数a 的取值围:___________________________.26.在平面直角坐标系xOy 中,已知抛物线22y x ax b =-+的顶点在 x 轴上,1(,)P x m ,2(,)Q x m (12x x <)是此抛物线上的两点. (1)若1a =,①当m b =时,求1x ,2x 的值;②将抛物线沿y 轴平移,使得它与x 轴的两个交点间的距离为4,试描述出这一变化过程; (2)若存在实数c ,使得11x c ≤-,且27x c ≥+成立,则m 的取值围是 .27.如图,已知60AOB ∠=︒,点P 为射线OA 上的一个动点,过点P 作AOB ∠,且满足DPA OPE ∠=∠,6DP PE +=.(1)当DP PE =时,求DE 的长;(2)在点P 的运动过程中,请判断是否存在一个定点M ,使得DMME的值不变?并证明你的判断.28.在平面直角坐标系xOy 中,对于点P 和C e ,给出如下定义:若C e 上存在一点T 不与O 重合,使点P 关于直线OT 的对称点'P 在C e 上,则称P 为C e 的反射点.下图为C e 的反射点P 的示意图. (1)已知点A 的坐标为(1,0),A e 的半径为2,①在点(0,0)O ,(1,2)M ,(0,3)N -中,A e 的反射点是____________;②点P 在直线y x =-上,若P 为A e 的反射点,求点P 的横坐标的取值围;(2)C e 的圆心在x 轴上,半径为2,y 轴上存在点P 是C e 的反射点,直接写出圆心C 的横坐标x 的取值围.海淀区九年级第二学期期中练习数学参考答案及评分标准 2018.5一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9.15 10.87.5310⨯ 11.2 12.11x=(答案不唯一)13.1118012030x x --=14.36 15.60 16.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上;经过半径的外端并且垂直于这条半径的直线是圆的切线;两点确定一条直线.三、解答题(本题共68分,第17~22题,每小题5分;第23~26小题,每小题6分;第27~28小题,每小题7分) 17.解:原式=332-- ………………4分 =5- ………………5分 18.解:() 5331, 263. 2x x x x +>-⎧⎪⎨-<-⎪⎩①②解不等式①,得3x >-. ………………2分 解不等式②,得2x <. ………………4分 所以 原不等式组的解集为32x -<<. ………………5分19. 证明:∵90ACB ∠=︒,D 为AB 的中点,∴12CD AB BD ==. ∴ABC DCB ∠=∠. ………………2分 ∵DC EF ∥,∴CBF DCB ∠=∠. ………………3分 ∴CBF ABC ∠=∠.∴BC 平分ABF ∠. ………………5分20.解:(1)∵m 是方程的一个实数根,∴()222310m m m m --++=. ………………1分∴13m =-. ………………3分 (2)24125b ac m ∆=-=-+.∵0m <,∴120m ->.∴1250m ∆=-+>. ………………4分 ∴此方程有两个不相等的实数根. ………………5分21.(1)证明:∵AE BD ∥,BE AC ∥,∴四边形AEBO 是平行四边形. ………………1分 ∵四边形ABCD 是平行四边形,∴DC AB =. ∵OE CD =, ∴OE AB =.∴平行四边形AEBO 是矩形. ………………2分 ∴90BOA ∠=︒.∴AC BD ⊥.∴平行四边形ABCD 是菱形. ………………3分 (2)形; ………………4分2. ………………5分22.解:(1)∵函数my x=的图象经过点()22P ,, ∴2=2m,即4m =. ………………1分 图象如图所示. ………………2分(2)当点()22P ,满足,m y xy x m⎧>⎪⎨⎪<+⎩(m >0)时, 解不等式组2222m m⎧>⎪⎨⎪<+⎩,得04m <<. ………………3分当点()12Q -,满足,m y xy x m⎧>⎪⎨⎪<+⎩(m >0)时, 解不等式组221m m>-⎧⎨<-+⎩,得3m >. ………………4分∵P Q ,两点中恰有一个点的坐标满足,m y xy x m⎧>⎪⎨⎪<+⎩(m >0), ∴m 的取值围是:03m <≤,或4m ≥. ………………5分23.解:(1)连接OE ,OF .∵EF AB ⊥,AB 是O e 的直径, ∴DOF DOE =∠∠.∵2DOE A =∠∠,A α=∠,∴2DOF α=∠. ………………1分 ∵FD 为O e 的切线, ∴OF FD ⊥.∴90OFD ︒=∠.∴+90D DOF ︒=∠∠. 902D α∴∠=︒-. ………………2分(2)图形如图所示.连接OM .∵AB 为O e 的直径,∴O 为AB 中点, 90AEB ∠=︒. ∵M 为BE 的中点, ∴OM AE ∥,1=2OM AE . ………………3分 ∵30A ∠=︒,∴30MOB A ∠=∠=︒. ∵260DOF A ∠=∠=︒ ,∴90MOF ∠=︒. ………………4分∴222+OM OF MF =. 设O e 的半径为r . ∵90AEB ∠=︒,30A ∠=︒,∴cos30AE AB ︒=⋅=.∴OM . ………………5分DADA∵FM∴222)+r =. 解得=2r .(舍去负根)∴O e 的半径为2. ………………6分24.………………1分………………2分 (2)去年的体质健康测试成绩比今年好.(答案不唯一,合理即可) ………………3分去年较今年低分更少,高分更多,平均分更大.(答案不唯一,合理即可)………………4分 (3)70. ………………6分25.(1)如图: ………………2分(2)当1x >时,y 随着x 的增大而减小;(答案不唯一) ………………4分 (3)1a ≥. ………………6分26.解:Q 抛物线22y x ax b =-+的顶点在x 轴上,24(2)04b a --∴=.2b a ∴=. ………………1分(1)1a =Q ,1b ∴=.∴抛物线的解析式为221y x x =-+.① 1m b ==Q ,2211x x ∴-+=,解得10x =,22x =. ………………2分 ②依题意,设平移后的抛物线为2(1)y x k =-+.Q 抛物线的对称轴是1x =,平移后与x 轴的两个交点之间的距离是4,∴(3,0)是平移后的抛物线与x 轴的一个交点.A2(31)0k ∴-+=,即4k =-.∴变化过程是:将原抛物线向下平移4个单位. ………………4分(2)16m ≥. ………………6分27..解:(1)作PF ⊥DE 交DE 于F .∵PE ⊥BO ,60AOB ∠=o, ∴30OPE ∠=o.∴30DPA OPE ∠=∠=o.∴120EPD ∠=o. ………………1分 ∵DP PE =,6DP PE +=, ∴30PDE ∠=o,3PD PE ==.∴cos30DF PD =⋅︒=∴2DE DF ==………………3分 (2)当M 点在射线OA上且满足OM =DMME的值不变,始终为1.理由如下: ………………4分 当点P 与点M 不重合时,延长EP 到K 使得PK PD =. ∵,DPA OPE OPE KPA ∠=∠∠=∠,∴KPA DPA ∠=∠. ∴KPM DPM ∠=∠.∵PK PD =,PM 是公共边, ∴KPM △≌DPM △.∴MK MD =. ………………5分 作ML ⊥OE 于L ,MN ⊥EK 于N .∵60MO MOL =∠=o,∴sin 603ML MO =⋅=o. ………………6分∵PE ⊥BO ,ML ⊥OE ,MN ⊥EK , ∴四边形MNEL 为矩形. ∴3EN ML ==.∵6EK PE PK PE PD =+=+=,∴EN NK =. ∵MN ⊥EK , ∴MK ME =. ∴ME MK MD ==,即1DMME=. 当点P 与点M 重合时,由上过程可知结论成立. ………………7分28.解(1)①A e 的反射点是M ,N . ………………1分 ②设直线y x =-与以原点为圆心,半径为1和3的两个圆的交点从左至右依次为D ,E ,F ,G ,过点D 作⊥DH x 轴于点H ,如图. 可求得点D 的横坐标为322-. 同理可求得点E ,F ,G 的横坐标分别为2-,2,32. 点P 是A e 的反射点,则A e 上存在一点T ,使点P 关于直线OT 的对称点'P 在A e 上,则'OP OP =.∵1'3≤≤OP ,∴13≤≤OP .反之,若13≤≤OP ,A e 上存在点Q ,使得OP OQ =,故线段PQ 的垂直平分线经过原点,且与A e 相交.因此点P 是A e 的反射点. ∴点P 的横坐标x 的取值围是32222≤≤x --,或232≤≤x . ………………4分 (2)圆心C 的横坐标x 的取值围是44≤≤x -. ………………7分。

2018北京市海淀区初三一模数学

2018北京市海淀区初三一模数学

2018北京市海淀区初三一模数学一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)用三角板作△ABC的边BC上的高,下列三角板的摆放位置正确的是()A.B.C.D.2.(2分)图1是数学家皮亚特•海恩(Piet Hein)发明的索玛立方块,它由四个及四个以内大小相同的立方体以面相连接构成的不规则形状组件组成.图2不可能是下面哪个组件的视图()A.B.C.D.3.(2分)若正多边形的一个外角是120°,则该正多边形的边数是()A.6 B.5 C.4 D.34.(2分)下列图形中,既是中心对称图形,也是轴对称图形的是()A.赵爽弦图B.科克曲线C.河图幻方D.谢尔宾斯基三角形5.(2分)如果a﹣b=1,那么代数式的值是()A.2 B.﹣2 C.1 D.﹣16.(2分)实数a,b,c,d在数轴上的对应点的位置如图所示.若b+d=0,则下列结论中正确的是()A.b+c>0 B.C.ad>bc D.|a|>|d|7.(2分)在线教育使学生足不出户也能连接全球优秀的教育资源.下面的统计图反映了我国在线教育用户规模的变化情况.(以上数据摘自《2017年中国在线少儿英语教育白皮书》)根据统计图提供的信息,下列推断一定不合理的是()A.2015年12月至2017年6月,我国在线教育用户规模逐渐上升B.2015年12月至2017年6月,我国手机在线教育课程用户规模占在线教育用户规模的比例持续上升C.2015年12月至2017年6月,我国手机在线教育课程用户规模的平均值超过7000万D.2017年6月,我国手机在线教育课程用户规模超过在线教育用户规模的70%8.(2分)如图1,矩形的一条边长为x,周长的一半为y.定义(x,y)为这个矩形的坐标.如图2,在平面直角坐标系中,直线x=1,y=3将第一象限划分成4个区域.已知矩形1的坐标的对应点A落在如图所示的双曲线上,矩形2的坐标的对应点落在区域④中.则下面叙述中正确的是()A.点A的横坐标有可能大于3B.矩形1是正方形时,点A位于区域②C.当点A沿双曲线向上移动时,矩形1的面积减小D.当点A位于区域①时,矩形1可能和矩形2全等二、填空题(本题共16分,每小题2分)9.(2分)从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小、形状完全相同)中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是.10.(2分)我国计划2023年建成全球低轨卫星星座﹣﹣鸿雁星座系统,该系统将为手机网络用户提供无死角全覆盖的网络服务.2017年12月,我国手机网民规模已达753 000 000,将753 000 000用科学记数法表示为.11.(2分)如图,AB∥DE,若AC=4,BC=2,DC=1,则EC=.12.(2分)请写出一个根为1的分式方程:.13.(2分)京张高铁是2022年北京冬奥会的重要交通基础设施,考虑到不同路段的特殊情况,将根据不同的运行区间设置不同的时速.其中,北京北站到清河段全长11千米,分为地下清华园隧道和地上区间两部分,运行速度分别设计为80千米/小时和120千米/小时.按此运行速度,地下隧道运行时间比地上大约多2分钟(小时),求清华园隧道全长为多少千米.设清华园隧道全长为x千米,依题意,可列方程为.14.(2分)如图,四边形ABCD是平行四边形,⊙O经过点A,C,D,与BC交于点E,连接AE,若∠D=72°,则∠BAE=°.15.(2分)定义:圆中有公共端点的两条弦组成的折线称为圆的一条折弦.阿基米德折弦定理:如图1,AB和BC组成圆的折弦,AB>BC,M是弧ABC的中点,MF⊥AB于F,则AF=FB+BC.如图2,△ABC中,∠ABC=60°,AB=8,BC=6,D是AB上一点,BD=1,作DE⊥AB交△ABC的外接圆于E,连接EA,则∠EAC=°.16.(2分)下面是“过圆上一点作圆的切线”的尺规作图过程.已知:⊙O和⊙O上一点P.求作:⊙O的切线MN,使MN经过点P.作法:如图2,(1)作射线OP;(2)以点P为圆心,小于OP的长为半径作弧交射线OP于A,B两点;(3)分别以点A,B为圆心,以大于长为半径作弧,两弧交于M,N两点;(4)作直线MN.则MN就是所求作的⊙O的切线.请回答:该尺规作图的依据是.三、解答题(本题共68分,第17~22题,每小题5分;第23~26小题,每小题5分;第27~28小题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5分)计算:.18.(5分)解不等式组:19.(5分)如图,△ABC中,∠ACB=90°,D为AB的中点,连接CD,过点B作CD的平行线EF,求证:BC平分∠ABF.20.(5分)关于x的一元二次方程x2﹣(2m﹣3)x+m2+1=0.(1)若m是方程的一个实数根,求m的值;(2)若m为负数,判断方程根的情况.21.(5分)如图,▱ABCD的对角线AC,BD相交于点O,且AE∥BD,BE∥AC,OE=CD.(1)求证:四边形ABCD是菱形;(2)若AD=2,则当四边形ABCD的形状是时,四边形AOBE的面积取得最大值是.22.(5分)在平面直角坐标系xOy中,已知点P(2,2),Q(﹣1,2),函数y=.(1)当函数y=的图象经过点P时,求m的值并画出直线y=x+m.(2)若P,Q两点中恰有一个点的坐标(x,y)满足不等式组(m>0),求m的取值范围.23.(6分)如图,AB是⊙O的直径,弦EF⊥AB于点C,过点F作⊙O的切线交AB的延长线于点D.(1)已知∠A=α,求∠D的大小(用含α的式子表示);(2)取BE的中点M,连接MF,请补全图形;若∠A=30°,MF=,求⊙O的半径.24.(6分)某校九年级八个班共有280名学生,男女生人数大致相同,调查小组为调查学生的体质健康水平,开展了一次调查研究,请将下面的过程补全.收集数据调查小组计划选取40名学生的体质健康测试成绩作为样本,下面的取样方法中,合理的是(填字母);A.抽取九年级1班、2班各20名学生的体质健康测试成绩组成样本B.抽取各班体育成绩较好的学生共40名学生的体质健康测试成绩组成样本C.从年级中按学号随机选取男女生各20名学生学生的体质健康测试成绩组成样本整理、描述数据抽样方法确定后,调查小组获得了40名学生的体质健康测试成绩如下:77 83 80 64 86 90 75 92 83 8185 86 88 62 65 86 97 96 82 7386 84 89 8 692 73 57 77 87 8291 81 86 71 53 72 90 76 68 78整理数据,如下表所示:2018年九年级部分学生学生的体质健康测试成绩统计表调查小组将统计后的数据与去年同期九年级的学生的体质健康测试成绩(直方图)进行了对比,你能从中得到的结论是,你的理由是.体育老师计划根据2018年的统计数据安排75分以下的同学参加体质加强训练项目,则全年级约有名同学参加此项目.25.(6分)在研究反比例函数y=的图象与性质时,我们对函数解析式进行了深入分析.首先,确定自变量x 的取值范围是全体非零实数,因此函数图象会被y轴分成两部分;其次,分析解析式,得到y随x的变化趋势:当x>0时,随着x值的增大,的值减小,且逐渐接近于零,随着x值的减小,的值会越来越大…,由此,可以大致画出y=在x>0时的部分图象,如图1所示:利用同样的方法,我们可以研究函数y=的图象与性质.通过分析解析式画出部分函数图象如图2所示.(1)请沿此思路在图2中完善函数图象的草图并标出此函数图象上横坐标为0的点A;(画出网格区域内的部分即可)(2)观察图象,写出该函数的一条性质:;(3)若关于x的方程=a(x﹣1)有两个不相等的实数根,结合图象,直接写出实数a的取值范围:.26.(6分)在平面直角坐标系xOy中,已知抛物线y=x2﹣2ax+b的顶点在x轴上,P(x1,m),Q(x2,m)(x1<x2)是此抛物线上的两点.(1)若a=1,①当m=b时,求x1,x2的值;②将抛物线沿y轴平移,使得它与x轴的两个交点间的距离为4,试描述出这一变化过程;(2)若存在实数c,使得x1≤c﹣1,且x2≥c+7成立,则m的取值范围是.27.(7分)如图,已知∠AOB=60°,点P为射线OA上的一个动点,过点P作PE⊥OB,交OB于点E,点D在∠AOB内,且满足∠DPA=∠OPE,DP+PE=6.(1)当DP=PE时,求DE的长;(2)在点P的运动过程中,请判断是否存在一个定点M,使得的值不变?并证明你的判断.28.(7分)在平面直角坐标系xOy中,对于点P和⊙C,给出如下定义:若⊙C上存在一点T不与O重合,使点P 关于直线OT的对称点P'在⊙C上,则称P为⊙C的反射点.下图为⊙C的反射点P的示意图.(1)已知点A的坐标为(1,0),⊙A的半径为2,①在点O(0,0),M(1,2),N(0,﹣3)中,⊙A的反射点是;②点P在直线y=﹣x上,若P为⊙A的反射点,求点P的横坐标的取值范围;(2)⊙C的圆心在x轴上,半径为2,y轴上存在点P是⊙C的反射点,直接写出圆心C的横坐标x的取值范围.数学试题答案一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.【分析】根据高线的定义即可得出结论.【解答】解:B,C,D都不是△ABC的边BC上的高,故选:A.【点评】本题考查的是作图﹣基本作图,熟知三角形高线的定义是解答此题的关键.2.【分析】依次分析所给几何体从正面看及从左面看得到的图形是否与所给图形一致即可.【解答】解:A、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;B、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;C、主视图左往右2列正方形的个数均依次为1,1,不符合所给图形;D、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形.故选:C.【点评】考查由视图判断几何体;用到的知识点为:主视图,左视图分别是从正面看及从左面看得到的图形.3.【分析】利用任意凸多边形的外角和均为360°,正多边形的每个外角相等即可求出答案.【解答】解:多边形的每个外角相等,且其和为360°,据此可得=3,即该正多边形的边数是3.故选:D.【点评】本题主要考查了正多边形外角和的知识,正多边形的每个外角相等,且其和为360°,比较简单.4.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项正确;C、不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.【分析】先计算括号内的减法,再计算乘法,继而将a﹣b=1整体代入计算可得.【解答】解:原式==•=2(a﹣b),当a﹣b=1时,原式=2×1=2,故选:A.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.6.【分析】根据数轴上的点表示的数右边的总比左边的大,可得a<b<0<c<d,根据有理数的运算,可得答案.【解答】解:由数轴上的点表示的数右边的总比左边的大,得a<b<0<c<d,A、b+d=0,∴b+c<0,故A不符合题意;B、<0,故B不符合题意;C、ad<bc<0,故C不符合题意;D、|a|>|b|=|d|,故D正确;故选:D.【点评】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大得出a<b<0<c<d是解题关键,又利用了有理数的运算.7.【分析】根据折线统计图表示出数量的增减变化情况解答.【解答】解:2015年12月至2017年6月,我国在线教育用户规模逐渐上升,A推断合理;2015年12月至2016年6月,我国手机在线教育课程用户规模占在线教育用户规模的比例持续下降,B推断不合理;2015年12月至2017年6月,我国手机在线教育课程用户规模的平均值超过7000万,C推断合理;2017年6月,我国手机在线教育课程用户规模超过在线教育用户规模的70%,D推断合理;【点评】本题考查的是折线统计图,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.8.【分析】A、根据反比例函数k一定,并根据图形得:当x=1时,y<3,得k=xy<3,因为y是矩形周长的一半,即y>x,可判断点A的横坐标不可能大于3;B、根据正方形边长相等得:y=2x,得点A是直线y=2x与双曲线的交点,画图,如图2,交点A在区域③,可作判断;C、先表示矩形面积S=x(y﹣x)=xy﹣x2=k﹣x2,当点A沿双曲线向上移动时,x的值会越来越小,矩形1的面积会越来越大,可作判断;D、当点A位于区域①,得x<1,另一边为:y﹣x>2,矩形2的坐标的对应点落在区域④中得:x>1,y>3,即另一边y﹣x>0,可作判断.【解答】解:设点A(x,y),A、设反比例函数解析式为:y=(k≠0),由图形可知:当x=1时,y<3,∴k=xy<3,∵y>x,∴x<3,即点A的横坐标不可能大于3,故选项A不正确;B、当矩形1为正方形时,边长为x,y=2x,则点A是直线y=2x与双曲线的交点,如图2,交点A在区域③,故选项B不正确;C、当一边为x,则另一边为y﹣x,S=x(y﹣x)=xy﹣x2=k﹣x2,∵当点A沿双曲线向上移动时,x的值会越来越小,∴矩形1的面积会越来越大,故选项C不正确;D、当点A位于区域①时,∵点A(x,y),∴x<1,y>3,即另一边为:y﹣x>2,矩形2落在区域④中,x>1,y>3,即另一边y﹣x>0,∴当点A位于区域①时,矩形1可能和矩形2全等;故选项④正确;故选:D.【点评】本题考查了函数图象和新定义,有难度,理由x和y的意义是关键,并注意数形结合的思想解决问题.二、填空题(本题共16分,每小题2分)9.【分析】由在“加”“油”“向”“未”“来”这5个字的卡片中只有1张写有“加”字,利用概率公式计算可得.【解答】解:∵在“加”“油”“向”“未”“来”这5个字的卡片中只有1张写有“加”字,∴这张卡片上面恰好写着“加”字的概率是,故答案为:.【点评】本题考查了统计与概率中概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.10.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:753 000 000=7.53×108.故选:7.53×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.【分析】由AB∥DE,即可证得△ABC∽△ECD,然后由相似三角形的对应边成比例,即可求得CE的长.【解答】解:∵AB∥DE,∴△ABC∽△ECD,∴,∵AC=4,BC=2,DC=1,∴,解得:CE=2.故答案为:2【点评】此题考查了相似三角形的判定与性质.此题比较简单,注意掌握数形结合思想的应用.12.【分析】分式方程的根就是能够使方程左右两边相等的未知数的值.【解答】解:把x=1代入方程+k=0中,得k=﹣1,则有方程﹣1=0.故答案为﹣1=0,此题答案不唯一.【点评】本题考查了分式方程的解,此题答案不唯一,紧扣分式方程的定义,写出一个比较简单的方程即可.13.【分析】设清华园隧道全长为x千米,根据“,地下隧道运行时间比地上大约多2分钟(小时)”列出方程.【解答】解:设清华园隧道全长为x千米,则地上区间全长为(11﹣x)千米,依题意得:.故答案是:.【点评】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.14.【分析】根据平行四边形的性质得到∠DCB=(180°﹣∠D)=108°,根据圆内接四边形的性质得到∠AEB=∠D=72°,由三角形的内角和即可得到结论.【解答】解:∵四边形ABCD是平行四边形,∠D=72°,∴∠DCB=(180°﹣∠D)=108°,∵四边形AECD是圆内接四边形,∴∠AEB=∠D=72°,∠DAC=180°﹣∠DCB=72°∴∠BAE=180°﹣72°﹣72°=36°,故答案为:36【点评】本题考查了平行四边形的性质,三角形的内角和,圆内接四边形的性质,熟练掌握平行四边形的性质是解题的关键.15.【分析】如图2,连接OA、OC、OE,先计算得到AD=BD+BC=7,则根据阿基米德折弦定理得到点E为弧ABC 的中点,即弧AE=弧CE,根据圆心角、弧、弦的关系得到∠AOE=∠COE,接着利用圆周角得到∠AOC=2∠ABC =120°,则可得到∠AOE=∠COE=120°,然后再利用圆周角定理得到∠CAE的度数.【解答】解:如图2,连接OA、OC、OE,∵AB=8,BC=6,BD=1,∴AD=7,BD+BC=7,∴AD=BD+BC,而ED⊥AB,∴点E为弧ABC的中点,即弧AE=弧CE,∴∠AOE=∠COE,∵∠AOC=2∠ABC=2×60°=120°,∴∠AOE=∠COE=120°,∴∠CAE=∠COE=60°.故答案为60°.【点评】本题考查了三角形的外接圆与外心:熟练掌握三角形外心的定义和外心的性质.也考查了圆周角定理.16.【分析】根据两点确定一条直线、线段的垂直平分线的性质和切线的判定定理进行作图.【解答】解:利用两点确定一条直线画OP,利用与一条线段两端点距离相等的点在这条线段的垂直平分线上画MN⊥AB于P,利用经过半径的外端并且垂直于这条半径的直线是圆的切线确定MN为⊙O的切线.故答案为两点确定一条直线;与一条线段两个端点距离相等的点,在这条线段的垂直平分线上;经过半径的外端并且垂直于这条半径的直线是圆的切线.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了切线的判定与性质.三、解答题(本题共68分,第17~22题,每小题5分;第23~26小题,每小题5分;第27~28小题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.【分析】直接利用特殊角的三角函数值以及负指数幂的性质和绝对值的性质化简得出答案.【解答】解:原式=3﹣2+3×+2﹣=5﹣2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.【分析】根据一元一次不等式的解法分别解出两个不等式,根据不等式的解集的确定方法得到不等式组的解集.【解答】解:解不等式①,得x>﹣3,解不等式②,得x<2,所以原不等式组的解集为﹣3<x<2.【点评】本题考查的是一元一次不等式组的解法,掌握确定解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到是解题的关键.19.【分析】根据直角三角形的性质得到CD=BD,根据等边对等角得到∠ABC=∠DCB,根据平行线的性质证明即可.【解答】证明:∵∠ACB=90°,D为AB的中点,∴,∴∠ABC=∠DCB,∵DC∥EF,∴∠CBF=∠DCB,∴∠CBF=∠ABC.∴BC平分∠ABF.【点评】本题考查的是直角三角形的性质、平行线的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.20.【分析】(1)由方程根的定义,代入可得到关于m的方程,则可求得m的值;(2)计算方程根的判别式,判断判别式的符号即可.【解答】解:(1)∵m是方程的一个实数根,∴m2﹣(2m﹣3)m+m2+1=0,∴;(2)△=b2﹣4ac=﹣12m+5,∵m<0,∴﹣12m>0.∴△=﹣12m+5>0.∴此方程有两个不相等的实数根.【点评】本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.21.【分析】(1)根据平行四边形的性质和菱形的判定证明即可;(2)根据正方形的判定和性质解答即可.【解答】(1)证明:∵AE∥BD,BE∥AC,∴四边形AEBO是平行四边形,∵四边形ABCD是平行四边形,∴DC=AB.∵OE=CD,∴OE=AB.∴平行四边形AEBO是矩形,∴∠BOA=90°.∴AC⊥BD.∴平行四边形ABCD是菱形;(2)当AD=2时,四边形ABCD的形状是正方形,AB=AD=2,OE=AB=2,即四边形AOBE的面积取得最大值是2.故答案为:正方形,2【点评】此题考查菱形的判定和性质,解本题的关键是根据平行四边形的性质和菱形的判定解答.22.【分析】(1)依据函数的图象经过点P(2,2),即可得到m=4.进而得出函数y=x+4的图象;(2)当点P(2,2)满足(m>0)时,解不等式组得0<m<4.当点Q(﹣1,2)满足(m>0)时,解不等式组得m>3.即可得到m的取值范围.【解答】解:(1)∵函数的图象经过点P(2,2),∴,即m=4.∴y=x+4,当x=0时,y=4;当y=0时,x=﹣4,图象如图所示.(2)当点P(2,2)满足(m>0)时,解不等式组得0<m<4.当点Q(﹣1,2)满足(m>0)时,解不等式组得m>3.∵P,Q两点中恰有一个点的坐标满足(m>0),∴m的取值范围是:0<m≤3,或m≥4.【点评】本题考查待定系数法求反比例函数的解析式,解决本题的关键是明确反比例函数图象上点的坐标特征.23.【分析】(1)连接OE,OF,如图,利用等腰三角形的性质得到∠DOF=∠DOE.而∠DOE=2∠A,所以∠DOF=2α,再根据切线的性质得∠OFD=90°.从而得到∠D=90°﹣2α;(2)连接OM,如图,利用圆周角定理得到∠AEB=90°.再证明OM∥AE得到∠MOB=∠A=30°.而∠DOF=2∠A=60°,所以∠MOF=90°,设⊙O的半径为r,利用含30度的直角三角形三边的关系得OM=BM=r,然后根据勾股定理得到即(r)2+r2=()2,再解方程即可得到⊙O的半径.【解答】解:(1)连接OE,OF,如图,∵EF⊥AB,AB是⊙O的直径,∴∠DOF=∠DOE.∵∠DOE=2∠A,∠A=α,∴∠DOF=2α,∵FD为⊙O的切线,∴OF⊥FD.∴∠OFD=90°.∴∠D+∠DOF=90°,∴∠D=90°﹣2α;(2)连接OM,如图,∵AB为⊙O的直径,∴O为AB中点,∠AEB=90°.∵M为BE的中点,∴OM∥AE,∵∠A=30°,∴∠MOB=∠A=30°.∵∠DOF=2∠A=60°,∴∠MOF=90°,设⊙O的半径为r,在Rt△OMB中,BM=OB=r,OM=BM=r,在Rt△OMF中,OM2+OF2=MF2.即(r)2+r2=()2,解得r=2,即⊙O的半径为2.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了圆周角定理和垂径定理.24.【分析】收集数据:根据抽样调查的可靠性解答可得;整理、描述数据:根据所给数据计数即可得;分析数据、得出结论:将2017、2018两年的数据比较即可得(合理即可),再用总人数乘以2018年75分以下的同学数占被调查人数的比例可得.【解答】解:收集数据:取样方法中,合理的是:C.从年级中按学号随机选取男女生各20名学生学生的体质健康测试成绩组成样本,故选:C;整理、描述数据:由所给数据补全统计表如下:去年的体质健康测试成绩比今年好,理由:去年较今年低分更少,高分更多,平均分更大.280×=70(人),即全年级约有70名同学参加此项目故答案为:去年的体质健康测试成绩比今年好、去年较今年低分更少,高分更多,平均分更大、70.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.25.【分析】(1)根据题意:x≥0,且≠1,所以要画的图象是0≤x<1的部分.(2)由图象可以得.(3)设y1=,y2=a(x﹣1),由关于x的方程=a(x﹣1)有两个不相等的实数根可得两图象有两个交点,将特殊点A代入可得a=1,绕着(1,0)旋转y2图象可得范围.【解答】解:(1)(2)当x>1时,y随着x的增大而减小(3)设y1=,y2=a(x﹣1)∴y2过定点(1,0)∵关于x的方程=a(x﹣1)有两个不相等的实数根∴y1的图象与y2的图象有两个交点.若交点为A(0,﹣1),则a=1,∴由图象可得a≥1【点评】本题考查了反比例函数图象上点的坐标特征,关键是能根据解析式画出图象.26.【分析】由抛物线顶点在x轴上,即可得出b=a2.(1)当a=1时,b=1,由此可得出抛物线的解析式为y=x2﹣2x+1.①由m=b=1,可得出关于x的一元二次方程,解之即可得出x1、x2的值;②设平移后的抛物线为y=(x﹣1)2+k,由平移后的抛物线与x轴的两个交点的距离为4,可得出(3,0)是平移后的抛物线与x轴的一个交点,将其代入y=(x﹣1)2+k即可求出结论;(2)解x2﹣2ax+a2=m可得出PQ=2,由x1、x2的范围可得出关于m的不等式,解之即可得出m的取值范围.【解答】解:∵抛物线y=x2﹣2ax+b的顶点在x轴上,∴,∴b=a2.(1)∵a=1,∴b=1,∴抛物线的解析式为y=x2﹣2x+1.①∵m=b=1,∴x2﹣2x+1=1,解得:x1=0,x2=2.②设平移后的抛物线为y=(x﹣1)2+k.∵抛物线的对称轴是x=1,平移后与x轴的两个交点之间的距离是4,∴(3,0)是平移后的抛物线与x轴的一个交点,∴(3﹣1)2+k=0,即k=﹣4,∴变化过程是:将原抛物线向下平移4个单位.(2)∵x2﹣2ax+a2=m,解得:x1=a﹣,x2=a+,∴PQ=2.又∵x1≤c﹣1,x2≥c+7,∴2≥(c+7)﹣(c﹣1)=8,∴m≥16.【点评】本题考查了抛物线与x轴的交点、二次函数的性质、二次函数图象上点的坐标特征以及二次函数图象与几何变换,解题的关键是:(1)①通过解一元二次方程求出x1、x2的值;②利用二次函数图象上点的坐标特征求出k值;(2)通过解方程求出PQ=2.27.【分析】(1)如图1,连接DE,作PF⊥DE交DE于F.根据三角形的内角和得到∠OPE=30°,∠EPD=120°,解直角三角形即可得到结论;(2)如图2,当点P与点M不重合时,延长EP到K使得PK=PD.等量代换得到∠KPA=∠DPA,求得∠KPM=∠DPM,根据全等三角形的性质得到MK=MD,作ML⊥OE于L,MN⊥EK于N.解直角三角形得到ML=MO•sin60°=3,根据矩形的性质得到EN=ML=3.于是得到结论.【解答】解:(1)如图1,连接DE,作PF⊥DE交DE于F.∵PE⊥BO,∠AOB=60°,∴∠OPE=30°,∴∠DPA=∠OPE=30°,∴∠EPD=120°,∵DP=PE,DP+PE=6,∴∠PDE=30°,PD=PE=3,∴DF=PD•cos30°=,∴DE=2DF=3;(2)当M点在射线OA上且满足om=2时,的值不变,始终为1.理由如下:如图2,当点P与点M不重合时,延长EP到K使得PK=PD.∵∠DPA=∠OPE,∠OPE=∠KPA,∴∠KPA=∠DPA,∴∠KPM=∠DPM,∵PK=PD,PM是公共边,∴△KPM≌△DPM(SAS),∴MK=MD,作ML⊥OE于L,MN⊥EK于N.∵MO=2,∠MOL=60°,∴ML=MO•sin60°=3,∵PE⊥BO,ML⊥OE,MN⊥EK,∴四边形MNEL为矩形.∴EN=ML=3.∵EK=PE+PK=PE+PD=6,∴EN=NK.∵MN⊥EK,∴MK=ME.∴ME=MK=MD,即=1.当点P与点M重合时,由上过程可知结论成立.【点评】本题考查了全等三角形的判定和性质,特殊角的三角函数,矩形的判定和性质,含30°直角三角形的性质,正确的作出辅助线是解题的关键.28.【分析】(1)①根据⊙A的反射点的定义,画出图形即可判断;②设直线y=﹣x与以原点为圆心,半径为1和3的两个圆的交点从左至右依次为D,E,F,G,过点D作DH⊥x轴于点H,如图.求出点D、E、F、G的横坐标,结合反射点的定义即可解决问题;(3)如图3中,当C坐标为(4,0)时,⊙C的反射点P是以C′为圆心的⊙C′,此时⊙C′与y轴相切,由此即可判断;【解答】解(1)①如图1中,。

2018年北京海淀区中考数学一模试题有答案及评分标准精品

2018年北京海淀区中考数学一模试题有答案及评分标准精品

A
D
B
所以直线 AD 即为所求.
C
l
老师说:“小云的作法正确. ” 请回答:小云的作图依据是 ________________________________________ .
三、解答题(本题共 72 分,第 17~26 题,每小题 5 分,第 27 题 7 分,第 28 题 7 分,第 29 题 8 分)
亿元票房夺冠, 《熊出没 2》比 2018 年第一部的票房又增长了 20%,《十万个冷笑话》 以 1. 2 亿元票房成绩勉强破亿. 另外 5 部来自海外动画电影, 其中美国两部全球热映的
动画电影《超能陆战队》 和《小黄人大眼萌》 在中国内地只拿下 5. 26 亿元和 4. 36 亿元 票房,而同样来自美国的《精灵旅社 2》收获 1. 2 亿元票房,日本的《哆啦 A 梦之伴我
3.一个不透明的口袋中装有 3 个红球和 12 个黄球,这些球除了颜色 外,无其他差别,从中随机摸出一个球,恰好是红球的概率为
A. 1B. 3 44
C. 1 5
D. 4 5
4.下列图形中,是轴对称图形但不是中心对称图形的是
A . B. C. D. 5.如图,在 ABCD 中, AB= 3, BC=5 ,∠ ABC 的平分线
海淀区九年级第二学期期中练习
数学
学校班级 ___________姓名成绩
2018.5
考 1.本试卷共 8 页,共三道大题, 29 道小题,满分 120 分,考试时间 120 分钟。 生 2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。 须
14.在下列函数①
y
2x 1;② y
x2
2x ;③ y

北京市海淀区2018届中考数学一模试卷(解析版)

北京市海淀区2018届中考数学一模试卷(解析版)

2018年北京市海淀区中考数学一模试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.请将正确选项填涂在答题卡相应的位置.1.10月1日,约110 000名群众观看了天安门广场的升旗仪式.将110 000用科学记数法表示应为()A.11×104 B.1.1×105C.1.1×104D.0.11×1062.下列四个图形依次是北京、云南、西藏、安徽四个省市的图案字体,其中是轴对称图形的是()A. B.C.D.3.五边形的内角和为()A.360°B.540°C.720° D.900°4.用配方法解方程x2﹣4x﹣1=0,方程应变形为()A.(x+2)2=3 B.(x+2)2=5 C.(x﹣2)2=3 D.(x﹣2)2=55.下列选项中,左边的平面图形能够折成右边封闭的立体图形的是()A.B.C.D.6.如图,在Rt△ABC中,∠BAC=90°,AB=AC,点A,点C分别在直线a,b上,且a∥b.若∠1=60°,则∠2的度数为()A.75°B.105°C.135° D.155°7.如图,AB为⊙O的直径,点C在⊙O上,若∠ACO=50°,则∠B的度数为()A.60°B.50°C.40°D.30°8.如图,数轴上A,B两点所表示的数互为倒数,则关于原点的说法正确的是()A.一定在点A的左侧B.一定与线段AB的中点重合C.可能在点B的右侧D.一定与点A或点B重合9.二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关.当春分、秋分时,昼夜时长大致相等;当夏至时,白昼时长最长.如图是一年中部分节气所对应的白昼时长示意图.在下列选项中白昼时长超过13小时的节气是()A.惊蛰B.小满C.秋分D.大寒10.如图为2009年到2015年中关村国家自主创新示范区企业经营技术收入的统计图.下面四个推断:①2009年到2015年技术收入持续增长;②2009年到2015年技术收入的中位数是4032亿;③2009年到2015年技术收入增幅最大的是2015年;④2009年到2011年的技术收入增长的平均数比2013年到2015年技术收入增长的平均数大.其中,正确的是()A.①③B.①④C.②③D.③④二、填空题(本题共18分,每小题3分)11.分解因式:a2b+4ab+4b=.12.如图,AB,CD相交于O点,△AOC∽△BOD,OC:OD=1:2,AC=5,则BD 的长为.13.图中的四边形均为矩形.根据图形,写出一个正确的等式:.14.某小组做“用频率估计概率”的试验时,统计了某一事件发生的频率,绘制了如图所示的折线图.该事件最有可能是(填写一个你认为正确的序号).①掷一个质地均匀的正六面体骰子,向上一面的点数是2;②掷一枚硬币,正面朝上;③暗箱中有1个红球和2个黄球,这些球除了颜色外无其他差别,从中任取一球是红球.15.如图,在平面直角坐标系xOy中,A(1,1),B(2,2),双曲线y=与线段AB有公共点,则k的取值范围是.16.下面是“作三角形一边中线”的尺规作图过程.已知:△ABC(如图),求作:BC边上的中线AD.作法:如图2,(1)分别以点B,C为圆心,AC,AB长为半径作弧,两弧相交于P点;(2)作直线AP,AP与BC交于D点.所以线段AD就是所求作的中线.请回答:该作图的依据是.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.(5分)计算:()﹣1+2cos45°+|﹣1|﹣(3.14﹣π)0.18.(5分)解不等式3(x﹣1)≤,并把它的解集在数轴上表示出来.19.(5分)如图,在△ABC中,D,E是BC边上两点,AD=AE,∠BAD=∠CAE.求证:AB=AC.20.(5分)关于x的方程x2﹣ax+a=0有两个相等的实数根,求代数式?的值.21.(5分)在平面直角坐标系xOy中,直线l1:y=k1x+b过A(0,﹣3),B(5,2),直线l2:y=k2x+2.(1)求直线l1的表达式;(2)当x≥4时,不等式k1x+b>k2x+2恒成立,请写出一个满足题意的k2的值.22.(5分)某校八年级共有8个班,241名同学,历史老师为了了解新中考模式下该校八年级学生选修历史学科的意向,请小红,小亮,小军三位同学分别进行抽样调查.三位同学调查结果反馈如下:小红、小亮和小军三人中,你认为哪位同学的调查结果较好地反映了该校八年级同学选修历史的意向,请说出理由,并由此估计全年级有意向选修历史的同学的人数.23.(5分)如图,在?ABCD中,AE⊥BC于点E点,延长BC至F点使CF=BE,连接AF,DE,DF.(1)求证:四边形AEFD是矩形;(2)若AB=6,DE=8,BF=10,求AE的长.24.(5分)阅读下列材料:厉害了,我的国!近年来,中国对外开放的步伐加快,与世界经济的融合度日益提高,中国经济稳定增长是世界经济复苏的主要动力.“十二五”时期,按照2010年美元不变价计算,中国对世界经济增长的年均贡献率达到30.5%,跃居全球第一,与“十五”和“十一五”时期14.2%的年均贡献率相比,提高16.3个百分点,同期美国和欧元区分别为17.8%和4.4%.分年度来看,2011、2012、2013、2014、2015年,中国对世界经济增长的贡献率分别为28.6%、31.7%、32.5%、29.7%、30.0%,而美国分别为11.8%、20.4%、15.2%、19.6%、21.9%.2016年,中国对世界经济增长的贡献率仍居首位,预计全年经济增速为 6.7%左右,而世界银行预测全球经济增速为 2.4%左右.按2010年美元不变价计算,2016年中国对世界经济增长的贡献率仍然达到33.2%.如果按照2015年价格计算,则中国对世界经济增长的贡献率会更高一点,根据有关国际组织预测,2016年中国、美国、日本经济增速分别为 6.7%、1.6%、0.6%.根据以上材料解答下列问题:(1)选择合适的统计图或统计表将2013年至2015年中国和美国对世界经济增长的贡献率表示出来;(2)根据题中相关信息,2016年中国经济增速大约是全球经济增速的倍(保留1位小数);(3)根据题中相关信息,预估2017年中国对世界经济增长的贡献率约为,你的预估理由是.25.(5分)如图,在△ABC中,点O在边AC上,⊙O与△ABC的边BC,AB分别相切于C,D两点,与边AC交于E点,弦CF与AB平行,与DO的延长线交于M点.(1)求证:点M是CF的中点;(2)若E是的中点,BC=a,写出求AE长的思路.26.(5分)有这样一个问题:探究函数y=的图象与性质.下面是小文的探究过程,请补充完整:(1)函数y=的自变量x的取值范围是;(2)如表是y与x的几组对应值.x…﹣3﹣2﹣102345…y…﹣﹣﹣02…如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.①观察图中各点的位置发现:点A1和B1,A2和B2,A3和B3,A4和B4均关于某点中心对称,则该点的坐标为;②小文分析函数y=的表达式发现:当x<1时,该函数的最大值为0,则该函数图象在直线x=1左侧的最高点的坐标为;(3)小文补充了该函数图象上两个点(,﹣),(,),①在上图中描出这两个点,并画出该函数的图象;②写出该函数的一条性质:.27.(7分)平面直角坐标系xOy中,抛物线y=mx2﹣2m2x+2交y轴于A点,交直线x=4于B点.(1)抛物线的对称轴为x=(用含m的代数式表示);(2)若AB∥x轴,求抛物线的表达式;(3)记抛物线在A,B之间的部分为图象G(包含A,B两点),若对于图象G 上任意一点P(x p,y p),y p≤2,求m的取值范围.28.(7分)在?ABCD中,点B关于AD的对称点为B′,连接AB′,CB′,CB′交AD 于F点.(1)如图1,∠ABC=90°,求证:F为CB′的中点;(2)小宇通过观察、实验、提出猜想:如图2,在点B绕点A旋转的过程中,点F始终为CB′的中点.小宇把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:过点B′作B′G∥CD交AD于G点,只需证三角形全等;想法2:连接BB′交AD于H点,只需证H为BB′的中点;.想法3:连接BB′,BF,只需证∠B′BC=90°…请你参考上面的想法,证明F为CB′的中点.(一种方法即可)(3)如图3,当∠ABC=135°时,AB′,CD的延长线相交于点E,求的值.29.(8分)在平面直角坐标系xOy中,若P,Q为某个菱形相邻的两个顶点,且该菱形的两条对角线分别与x轴,y轴平行,则称该菱形为点P,Q的“相关菱形”.图1为点P,Q的“相关菱形”的一个示意图.已知点A的坐标为(1,4),点B的坐标为(b,0),(1)若b=3,则R(﹣1,0),S(5,4),T(6,4)中能够成为点A,B的“相关菱形”顶点的是;(2)若点A,B的“相关菱形”为正方形,求b的值;(3)⊙B的半径为,点C的坐标为(2,4).若⊙B上存在点M,在线段AC 上存在点N,使点M,N的“相关菱形”为正方形,请直接写出b的取值范围.参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.请将正确选项填涂在答题卡相应的位置.1.2016年10月1日,约110 000名群众观看了天安门广场的升旗仪式.将110 000用科学记数法表示应为()A.11×104 B.1.1×105C.1.1×104D.0.11×106【考点】1I:科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:110000=1.1×105.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键.2.下列四个图形依次是北京、云南、西藏、安徽四个省市的图案字体,其中是轴对称图形的是()A. B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选A.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形。

北京海淀区2018-2019届初三第一次统练数学试卷及答案

北京海淀区2018-2019届初三第一次统练数学试卷及答案

2019 北京市海淀区初三数学一模试卷2019.5一、选择题(本题共 16 分,每小题 2 分)第 1-8 题均有四个选项,符合题意的选项只有一个.1. 如图是圆规示意图,张开的两脚所形成的角大约是A. 90B. 60C. 45D. 302. 若 x 1 在实数范围内有意义,则实数 x 的取值范围是A. x ≥1B. x ≤1C. x <1D. x ≠13. 实数a ,b ,c 在数轴上的对应点的位置如图所示,若| a |= | b |,则下列结论中错误的是A. a b >0B. a c >0C. b c >0D. ac <04.若正多边形的内角和是 540°,则该正多边形的一个外角为 A. 45B. 60C. 72D. 905. 2019 年 2 月,美国宇航局(NASA)得卫星监测数据显示地球正在变绿,分析发现是中 国和印度的行动主导了地球变绿.尽管中国和印度的土地面积加起来只占全球的 9%,但过去 20 年间地球三分之一的新增植被是两国贡献的,面积相当于一个亚马逊雨林.已知 亚马逊雨林的面积为 6560 000m 2,则过去 20 年间地球新增植被的面积约为A. 6.56 106 m 2B. 6.56 107 m 2C. 2 107 m 2D. 2 108 m 26. 如果a 2ab 1 0 ,那么代数式 a b 2 2ab(a ) 的值是a b aA. 1B. 1C. 3D. 327.下面的统计图反映了我国出租车(巡游出租车和网约出租车)客运量结构变化. 2015-2018 年巡游出租车和网约出租车客运量统计图(以上数据摘自《中国共享经济发展年度报告(2019)》)根据统计图提供的信息,下列推断合理的是A.2018 年与2017 年相比,我国网约出租车客运量增加了20%以上B.2018 年,我国巡游出租车客运量占出租车客运总量的比例不足60%C.2015 年至2018 年,我国出租车客运的总量一直未发生变化D.2015 年至2018 年,我国巡游出租车客运量占出租车客运总量的比例逐年增加8.如图1,一辆汽车从点M 处进入路况良好的立交桥,图2 反映了它在进入桥区行驶过程中速度(千米/时)与行驶路程(米)之间的关系.根据图2,这辆车的行车路线最二、填空题(本题共16 分,每小题2 分)9.右图为某几何体的展开图,该几何体的名称是.10.下面是北京故宫博物院2018 年国庆期间客流指数统计图(客流指数是指景区当日客流量与2018 年10 月1 日客流量的比值).根据图中信息,不考虑其他因素,如果小宇想在今年国庆期间游客较少时参观故宫,最好选择10 月日参观.11.右图是玉渊潭公园部分景点的分布示意图,在图中,分别以正东、正北方向为x轴、y 轴的正方向建立平面直角坐标系,当表示西桥的点的坐标为(-6,1),表示中堤桥的点的坐标为(1, 2)时,表示留春园的点的坐标为.a2 >b2 ”是错误的,这组值可以是a= ,12.用一组a ,b的值说明命题“若a >b ,则b = .13.如图,AB 是⊙O 的直径,C ,D 为⊙O 上的点,若CAB = 20 ,则∠D = .14.如图,在矩形ABCD 中,E 是边CD 的延长线上一点,连接BE交边AD 于点F .若AB =4 , BC = 6,DE = 2,则AF 的长为= .15.2019 年2 月,全球首个5G 火车站在上海虹桥火车站启动.虹桥火车站中5G 网络峰值速率为4G 网络峰值速率的10 倍.在峰值速率下传输8 千兆数据,5G 网络比4G 网络快720 秒,求这两种网络的峰值速率.设4 G 网络峰值速率为每秒传输x 千兆数据,依题意,可列方程为.16.小宇计划在某外卖网站点如下表所示的菜品.已知每份订单的配送费为3 元,商家为了促销,对每份订单的总价(不含配送费)提供满减优惠:满30 元减12 元,满60元减30 元,满100 元减45 元。

2018北京数学初三海淀 一模(有答案)

2018北京数学初三海淀 一模(有答案)

27.如图,已知60AOB∠=︒,点P为射线OA上的一个动点,过点P作PE OB⊥,交OB 于点E,点D在AOB∠内,且满足DPA OPE∠=∠,6DP PE+=.(1)当DP PE=时,求DE的长;(2)在点P的运动过程中,请判断是否存在一个定点M,使得ME的值不变?并证明你的判断.ADP3.知识点:多边形内角和公式:180°(n-2),多边形外角和为360°;15(中);8.(难)14.知识点:圆内接四边形对角互补;19知识点:直角三角形斜边的中线是斜边的一半;21.知识点:菱形的判定:定理1 一组邻边相等的平行四边形是菱形定理2 四边都相等的四边形是菱形定理3 对角线互相垂直的平行四边形是菱形矩形的判定:定理1 有三个角是直角的四边形是矩形定理2 对角线相等的平行四边形是矩形平行四边形的判定:定理1 两组对角分别相等的四边形是平行四边形定理2 两组对边分别相等的四边形是平行四边形定理3 对角线互相平分的四边形是平行四边形定理4 一组对边平行且相等的四边形是平行四边形22(1)(易);(2)(中);23(1)易;(2)(中);24.(易)25(1)(2)易(3)(中)26(1)易(2)(难);27.如图,已知60AOB∠=︒,点P为射线OA上的一个动点,过点P作PE OB⊥,交OB 于点E,点D在AOB∠内,且满足DPA OPE∠=∠,6DP PE+=.(1)当DP PE=时,求DE的长;(2)在点P的运动过程中,请判断是否存在一个定点M,使得DMME的值不变?并证明你的判断.27.(1)易;(2)难(方法一看懂了,方法二,另解未看懂)(另解:未看懂)28、(1)①易;②、(2)难(未做出).'.。

北京市海淀区2018届中考一模数学试题含答案(扫描版)

北京市海淀区2018届中考一模数学试题含答案(扫描版)

∴ MOB A 30 .
∵ DOF 2 A 60 ,
∴ MOF 90 .……………… 4 分
M B D
OC
F
∴ OM 2 +OF 2 MF 2 .
∴四边形 AEBO是平行四边形 .……………… 1 分 ∵四边形 ABCD 是平行四边形, ∴ DC AB . ∵ OE CD , ∴ OE AB . ∴平行四边形 AEBO 是矩形 .……………… 2 分 ∴ BOA 90 . ∴ AC BD . ∴平行四边形 ABCD 是菱形 .……………… 3 分 (2) 正方形; ……………… 4 分
海淀区九年级第二学期期中练习 数学参考答案及评分标准
2018. 5
一、选择题 (本题共 16 分,每小题 2 分)
1
2
3
4
5
6
7
8
A
C
D
B
A
D
B
D
二、填空题 (本题共 16 分,每小题 2 分)
1 9.
10. 7.53
8
10
5
1 11. 2 12. 1(答案不唯一)
x
x 11 x 1 13.
m 4 .……………… 5 分
E
23.解:( 1)连接 OE , OF .
∵ EF⊥ AB , AB 是 O 的直径,
∴ ∠ DOF ∠ DOE . ∵ ∠ DOE 2∠ A , ∠ A , ∴ ∠ DOF 2 .……………… 1 分 ∵ FD 为 O 的切线, ∴ OF ⊥ FD .
∴ ∠ OFD 90 .
∴ m2 2m 3 m m2 1 0.……………… 1 分
∴m
1
.……………… 3 分
3

第1讲 2018北京九年级数学一模分类---8题(答案版)

第1讲 2018北京九年级数学一模分类---8题(答案版)

第1讲 8题分类1.(海淀)如图1,矩形的一条边长为x ,周长的一半为y .定义(,)x y 为这个矩形的坐标. 如图2,在平面直角坐标系中,直线1,3x y ==将第一象限划分成4个区域. 已知矩形1的坐标的对应点A 落在如图所示的双曲线上,矩形2的坐标的对应点落在区域④中.图1 图2 则下面叙述中正确的是A. 点A 的横坐标有可能大于3B. 矩形1是正方形时,点A 位于区域②C. 当点A 沿双曲线向上移动时,矩形1的面积减小D. 当点A 位于区域①时,矩形1可能和矩形2全等 1.D2.(西城)将A ,B 两位篮球运动员在一段时间内的投篮情况记录如下: 投篮次数10 20 30 40 50 60 70 80 90 100A投中次数 7 15 23 30 38 45 53 60 68 75 投中频率0.700 0.7500.7670.7500.7600.7500.7570.750 0.7560.750B投中次数 81423 32 35 43 52 6170 80投中频率0.800 0.7000.767 0.800 0.700 0.717 0.743 0.763 0.778 0.800下面有三个推断:①投篮30次时,两位运动员都投中23次,所以他们投中的概率都是0.767.②随着投篮次数的增加,A 运动员投中频率总在0.750附近摆动,显示出一定的稳定性,可以估计A 运动员投中的概率是0.750.④投篮达到200次时,B 运动员投中次数一定为160次. 其中合理的是( ). A .① B .②C .①③D .②③2.B3121O y x① ④② ③x3.(东城)如图1是一座立交桥的示意图(道路宽度忽略不计),A为入口,F,G为出口,其中直行道为AB,CG,EF,且AB=CG=EF ;弯道为以点O为圆心的一段弧,且BC,CD,DE所对的圆心角均为90°.甲、乙两车由A口同时驶入立交桥,均以10m/s的速度行驶,从不同出口驶出. 其间两车到点O的距离y(m)与时间x(s)的对应关系如图2所示.结合题目信息,下列说法错误..的是A. 甲车在立交桥上共行驶8sB. 从F口出比从G口出多行驶40mC. 甲车从F口出,乙车从G口出D. 立交桥总长为150m3.C4.(朝阳)如图,△ABC是等腰直角三角形,∠A=90°,AB=6,点P是AB边上一动点(点P与点A不重合),以AP为边作正方形APDE,设AP=x,正方形APDE与△ABC重合部分(阴影部分)的面积为y,则下列能大致反映y与x的函数关系的图象是4.C5.(石景山)罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很大.下图是对某球员罚球训练时命中情况的统计:下面三个推断:① 当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822; ② 随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定 性,可以估计该球员“罚球命中”的概率是0.812;③ 由于该球员“罚球命中”的频率的平均值是0.809,所以“罚球命中”的概率是0.809. 其中合理的是 A .①B .②C .①③D .②③5 B 6.(丰台)如图1,荧光屏上的甲、乙两个光斑(可看作点)分别从相距8cm 的A ,B 两点同时开始沿线段AB 运动,运动过程中甲光斑与点A 的距离S 1(cm)与时间t (s)的函数关系图象如图2,乙光斑与点B 的距离S 2(cm)与时间t (s)的函数关系图象如图3,已知甲光斑全程的平均速度为1.5cm/s ,且两图象中△P 1O 1Q 1≌△P 2Q 2O 2.下列叙述正确的是(A )甲光斑从点A 到点B 的运动速度是从点B 到点4倍(B )乙光斑从点A 到B 的运动速度小于1.5cm/s (C )甲乙两光斑全程的平均速度一样(D )甲乙两光斑在运动过程中共相遇3次 6.C 7.(顺义)某超市的某种商品一周内每天的进价与售价信息和实际每天的销售量情况如图表所示,则下列推断不合理的是进价与售价折线图(单位:元/斤)“罚球命中”的频率罚球次数0.8220.8121200110010009008007006001002003005004000图2 图3 图1B A 乙 甲 8cm t (s)8Q 1P 14t 0t 0O 1S 1(cm)S 2(cm)O 2P 2Q 28t (s)实际销售量表(单位:斤)A .该商品周一的利润最小B .该商品周日的利润最大C .由一周中的该商品每天售价组成的这组数据的众数是4(元/斤)D .由一周中的该商品每天进价组成的这组数据的中位数是(3元/斤) 7 D8.(延庆)某游泳池长25米,小林和小明两个人分别在游泳池的A ,B 两边,同时朝着另一边游泳,他们游泳的时间为t (秒),其中0180t ≤≤,到A 边距离为y (米),图中的实 线和虚线分别表示小林和小明在游泳过程中y 与t 的对应关系.下面有四个推断: ①小明游泳的平均速度小于小林游泳的平均速度; ②小明游泳的距离大于小林游泳的距离; ③小明游75米时小林游了90米游泳; ④小明与小林共相遇5次;其中正确的是A .①②B .①③ C.③④ D .②④ 8.D9.(怀柔) 一粒木质中国象棋子“兵”,它的正面雕刻一个“兵”字,它的反面是平的.将它从一定高度下掷,落地反弹后可能是“兵”字面朝上,也可能是“兵”字面朝下.由于棋子的两面不均匀,为了估计“兵”字面朝上的概率,某实验小组做了棋子下掷实验,实验数据如下表:实验次数n2060100120140160500100020005000“兵”字面朝上次数14385266788828055011002750 m“兵”字面朝上频率m0.70.630.520.550.560.550.560.550.550.55n下面有三个推断:①投掷1000次时,“兵”字面朝上的次数是550,所以“兵”字面朝上的概率是0.55②随着实验次数的增加,“兵”字面朝上的频率总在0.55附近,显示出一定的稳定性,可以估计“兵”字面朝上的概率是0.55③当实验次数为200次时,“兵”字面朝上的频率一定是0.55其中合理的是()A.①B. ②C. ①②D. ①③9.B10(平谷)中小学时期是学生身心变化最为明显的时期,这个时期孩子们的身高变化呈现一定的趋势,7~15岁期间生子们会经历一个身高发育较迅速的阶段,我们把这个年龄阶段叫做生长速度峰值段,小明通过上网查阅《2016年某市儿童体格发育调查表》,了解某市男女生7~15岁身高平均值记录情况,并绘制了如下统计图,并得出以下结论:①10岁之前,同龄的女生的平均身高一般会略高于男生的平均身高;②10~12岁之间,女生达到生长速度峰值段,身高可能超过同龄男生;③7~15岁期间,男生的平均身高始终高于女生的平均身高;④13~15岁男生身高出现生长速度峰值段,男女生身高差距可能逐渐加大.以上结论正确的是A.①③B.②③C.②④D.③④10.C11(门头沟)甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,下y/ Array列说法错误的是A.甲的速度是70米/分;B.乙的速度是60米/分;C.甲距离景点2100米;D.乙距离景点420米.11.D下列说法不正确...的是A.当n很大时,估计指针落在“一袋苹果”区域的频率大约是0.70B.假如你去转动转盘一次, 获得“一袋苹果”的概率大约是0.70C.如果转动转盘2 000次, 指针落在“一盒樱桃”区域的次数大约有600次D.转动转盘10次,一定有3次获得“一盒樱桃”12 D13.(房山)小宇在周日上午8:00从家出发,乘车1小时到达某活动中心参加实践活动.11:00时他在活动中心接到爸爸的电话,因急事要求他在12:00前回到家,他即刻按照来活动中心时的路线,以5千米/时的平均速度快步返回.同时,爸爸从家沿同一路线开车接他,在距家20千米处接上了小宇,立即保持原来的车速原路返回.设小宇离家x 小时后,到达离家y千米的地方,图中折线OABCD表示y 与x 之间的函数关系.下列叙述错误..的是A .活动中心与小宇家相距22千米 B.小宇在活动中心活动时间为2小时 C.他从活动中心返家时,步行用了0.4小时 D.小宇不能在12:00前回到家 13 D。

北京市海淀区2018数学一模

北京市海淀区2018数学一模

( 2 )若
为负数,判断方程根的情况.
21. 如图,平行四边形
的对角线 , 相交于点 ,且



( 1 ) 求证:四边形
是菱形.
( 2 )若
,则当四边形


的形状是
时,四边形
的面积最大,最大值
22. 在平面直角坐标系
中,已知点

,反比例函数

( 1 ) 当函数
的图象经过点 时,求 的值并画出直线
( 2 )若
, 两点中恰有一个点的坐标
满足不等式组
值范围.
. ,
,求 的取
23. 如图, 是⊙ 的直径,弦
于点 ,过点 作⊙ 的切线交 的延长线于点 .
( 1 ) 已知
,求 的大小(用含 的式子表示).
( 2 )取
的中点 ,连接 ,请补全图形,若

,求⊙ 的半径.
24. 某校九年级八个班共有
名学生,男女生人数大致相同,调查小组为调查学生的体质健康水平,开展了一次调查研
则下面叙述中正确的是( ).
二、填空题
(本题共16分,每小题2分)
9. 从
张上面分别写着“加”“油”“向”“未”“来”这 个字的卡片(大小、形状完全相同)中
随机抽取一张,则这张卡片上面恰好写着“加”字的概率是

10. 我国计划
年建成全球低轨卫星星座 鸿雁星座系统,该系统将为手机网络用户提供无死角全覆盖的
线上的两点.
( 1 )若

1当
时,求 , 的值.
2 将抛物线沿
轴平移,使得它与 轴的两个交点间的距离为 ,试描述出这一变化过程.
( 2 ) 若存在实数

2018年北京市海淀区中考一模数学试卷含答案解析 精品

2018年北京市海淀区中考一模数学试卷含答案解析 精品

2018届北京市海淀区初三一模数学试卷一、单选题(共10小题)1.“中华人民共和国全国人民代表大会”和“中国人民政治协商会议”于2018年3月3日在北京胜利召开.截止到2018年3月14日,在百度上搜索关键词“两会”,显示的搜索结果约为96 500 000条.将96 500 000用科学记数法表示应为()A.96.5×107B.9.65×107C.9.65×108 D.0.965×109考点:科学记数法和近似数、有效数字答案:B试题解析:科学记数法是一个数表示成a×10的n次幂的形式,其中1≤|a|<10,n为整数,所以根据题意得96 500 000=9.65×107.故选B.2.如图是某个几何体的三视图,该几何体是()A.长方体B.正方体C.圆柱D.三棱柱考点:立体图形的展开与折叠答案:D试题解析:由图可得此为三棱锥,故选D。

3.一个不透明的口袋中装有3个红球和12个黄球,这些球除了颜色外,无其他差别,从中随机摸出一个球,恰好是红球的概率为()A.B.C.D.考点:概率及计算答案:C试题解析:共有15个球,3个红球,则摸出红球的概率为,故选C。

4.下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.考点:中心对称与中心对称图形轴对称与轴对称图形答案:C试题解析:A既不是轴对称图形,也不是中心对称图形;B既是轴对称图形,也是中心对称图形;C 是轴对称图形但不是中心对称图形;D部是轴对称图形但是中心对称图形。

故选C。

5.如图,在四边形ABCD中,AB=3,BC=5,∠ABC的平分线交AD于点E,则DE的长为()A.5B.4C.3D.2考点:平行四边形的性质答案:D试题解析:由题意可得,AB=AE=3,则ED=2,故选D。

6.如图,等腰直角三角板的顶点A,C分别在直线,上.若∥,,则的度数为()A.B.C.D.考点:平行线的判定及性质答案:C试题解析:根据平行线的性质可得:∠1+∠BAC+∠ACB+∠2=180,则∠2=10°。

2018年北京海淀、密云区初三一模数学试卷

2018年北京海淀、密云区初三一模数学试卷

7. 在线教育使学生足不出户也能连接全球优秀的教育资源,下面的统计图反映了我国在线 用户规模的变化情况.
目录
选择题 填空题 解答题
学生版
教师版
答案版
编辑
(以上数据摘自《2017年中国在线少儿英语教育白皮书》) 根据统计图提供的信息,下列推断一定不合理的是( ). A. 2015年12月至2017年6月,我国在线教育用户规模逐渐上升 B. 2015年12月至2017年6月,我国手机在线教育课程用户规模占在线教育用户规模的比例持续上升 C. 2015年12月至2017年6月,我国手机在线教育课程用户规模的平均值超过7000万 D. 2017年6月,我国手机在线教育课程用户规模超过在线教育用户规模的70%
教师版
答案版
∴ , AE = EC
∵ , ED⊥AB F D = BD
∴ , EF = EB
∵ , AF = AD − F D = 6
∴ , AF = BC
∴ ≌ , △AEF △C EB(SSS)
∴ . ∠1 = ∠2
∵ , ∘ ∠ABC = 60
∴ , ∘ ∠2 + ∠3 + ∠4 = 120
∴∘ ∠1 + ∠3 + ∠4 = 120
A. b + c > 0 C. ad > bc
B.
c >1
a
D. |a| > |d|
答案 D
解 析 由b + d = 0 可知,b与d互为相反数,
则原点在b与c的中点处,如图.
, a < b < 0 < c < d
, A |b| > , |c| b + c < 0 ,故A选项错误.

北京市海淀区2018年中考一模数学试题(卷)(含答案)

北京市海淀区2018年中考一模数学试题(卷)(含答案)

市海淀区2018年中考一模数学试卷一、选择题(本题共16分,每小题2分)1.用三角板作ABC △的边BC 上的高,下列三角板的摆放位置正确的是( )2.图1是数学家皮亚特·海恩(Piet Hein)发明的索玛立方块,它由四个及四个以大小相同的立方体以面相连接构成的不规则形状组件组成.图2不可能...是下面哪个组件的视图( )3.若正多边形的一个外角是120°,则该正多边形的边数是( )A.6B. 5C. 4D.34.下列图形中,既是中心对称图形,也是轴对称图形的是( )5.如果1a b -=,那么代数式2222(1)b a a a b-⋅+的值是( )A.2B.2-C.1D.1-6.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示. 若0b d +=,则下列结论中正确的是( )A.0b c +>B.1ca >C.ad bc >D.a d >7.在线教育使学生足不出户也能连接全球优秀的教育资源. 下面的统计图反映了我国在线教育用户规模的变化情况.(以上数据摘自《2017年中国在线少儿英语教育白皮书》) 根据统计图提供的信息,下列推断一定不合理...的是( ) A .2015年12月至2017年6月,我国在线教育用户规模逐渐上升B .2015年12月至2017年6月,我国手机在线教育课程用户规模占在线教育用户规模的比例持续上升C .2015年12月至2017年6月,我国手机在线教育课程用户规模的平均值超过7000万D .2017年6月,我国手机在线教育课程用户规模超过在线教育用户规模的70%bcad2015-2017年中国在线教育用户规模统计图6月12月6月12月8.如图1,矩形的一条边长为x ,周长的一半为y .定义(,)x y 为这个矩形的坐标. 如图2,在平面直角坐标系中,直线1,3x y ==将第一象限划分成4个区域. 已知矩形1的坐标的对应点A 落在如图所示的双曲线上,矩形2的坐标的对应点落在区域④中.则下面叙述中正确的是( ) A. 点A 的横坐标有可能大于3B. 矩形1是正方形时,点A 位于区域②C. 当点A 沿双曲线向上移动时,矩形1的面积减小D. 当点A 位于区域①时,矩形1可能和矩形2全等 二、填空题(本题共16分,每小题2分)9. 从5上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小、形状完全相同)中随机抽取一,则这卡片上面恰好写着“加”字的概率是 .10.我国计划2023年建成全球低轨卫星星座——鸿雁星座系统,该系统将为手机网络用户提供无死角全覆盖的网络服务. 2017年12月,我国手机网民规模已达753 000 000,将753 000 000用科学记数法表示为 .11.如图,AB DE ∥,若4AC =,2BC =,1DC =,则EC = .12.写出一个解为1的分式方程: .13.京高铁是2022年冬奥会的重要交通基础设施,考虑到不同路段的特殊情况,将根据不同的运行区间设置不同的时速.其中,北站到清河段全长11千米,分为地下清华园隧道和地上区间两部分,运行速度分别设计为80千米/小时和120千米/小时.按此运行速度,地下隧道运行时间比地上大约多2分钟..(130EDCBA小时),求清华园隧道全长为多少千米.设清华园隧道全长为x 千米,依题意,可列方程为__________.14.如图,四边形ABCD 是平行四边形,⊙O 经过点A ,C ,D ,与BC 交于点E ,连接AE ,若∠D = 72°,则∠BAE = °.15.定义:圆中有公共端点的两条弦组成的折线称为圆的一条折弦.阿基米德折弦定理:如图1,AB 和BC 组成圆的折弦,AB BC >,M 是弧ABC 的中点,MF AB ⊥于F ,则AF FB BC =+.如图2,△ABC 中,60ABC ∠=︒,8AB =,6BC =,D 是AB 上一点,1BD =,作DE AB ⊥交△ABC 的外接圆于E ,连接EA ,则EAC ∠=________°. 16.下面是“过圆上一点作圆的切线”的尺规作图过程.图2图1E A请回答尺规作图的依据是 .三、解答题(本题共68分,第17~22题,每小题5分;第23~26小题,每小题6分;第27~28小题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.计算:11()3tan 30|2|3--︒+.18.解不等式组:()5331,263.2x x x x +>-⎧⎪⎨-<-⎪⎩19.如图,△ABC 中,90ACB ∠=︒,D 为AB 的中点,连接CD ,过点B 作CD 的平行线EF ,求证:BC 平分ABF ∠.20.关于x 的一元二次方程22(23)10x m x m --++=. (1)若m 是方程的一个实数根,求m 的值; (2)若m 为负数..,判断方程根的情况.21.如图,□ABCD 的对角线,AC BD 相交于点O ,且AE∥BD ,BE∥AC ,OE = CD . (1)求证:四边形ABCD 是菱形;(2)若AD = 2,则当四边形ABCD 的形状是__________时,四边形AOBE 的面积取得最大值是_______.22.在平面直角坐标系xOy 中,已知点P (2,2),Q (-1,2),函数my x=. (1)当函数my x=的图象经过点P 时,求m 的值并画出直线y x m =+. (2)若P ,Q 两点中恰有一个点的坐标(x ,y )满足不等式组,m y xy x m⎧>⎪⎨⎪<+⎩(m >0),求m 的取值围.FE DCB AC B EOAD23.如图,AB 是O e 的直径,弦EF AB ⊥于点C ,过点F 作O e 的切线交AB 的延长线于点D . (1)已知A α∠=,求D ∠的大小(用含α的式子表示);(2)取BE 的中点M ,连接MF ,请补全图形;若30A ∠=︒,MF =,求O e 的半径.24. 某校九年级八个班共有280名学生,男女生人数大致相同,调查小组为调查学生的体质健康水平,开展了一次调查研究,请将下面的过程补全. 收集数据调查小组计划选取40名学生的体质健康测试成绩作为样本,下面的取样方法中,合理的是___________(填字母); A .抽取九年级1班、2班各20名学生的体质健康测试成绩组成样本 B .抽取各班体育成绩较好的学生共40名学生的体质健康测试成绩组成样本 C .从年级中按学号随机选取男女生各20名学生学生的体质健康测试成绩组成样本 整理、描述数据抽样方法确定后,调查小组获得了40名学生的体质健康测试成绩如下:DA整理数据,如下表所示:分析数据、得出结论调查小组将统计后的数据与去年同期九年级的学生的体质健康测试成绩(直方图)进行了对比,你能从中得到的结论是_____________,你的理由是________________________________.体育老师计划根据2018年的统计数据安排75分以下的同学参加体质加强训练项目,则全年级约有________名同学参加此项目. 25.在研究反比例函数1y x=的图象与性质时,我们对函数解析式进行了深入分析. 首先,确定自变量x 的取值围是全体非零实数,因此函数图象会被y 轴分成两部分;其次,分析解析式,得到y 随x 的变化趋势:当0x >时,随着x 值的增大,1x的值减小,且逐渐接近于零,随着x 值的减小,1x 的值会越来越大L ,由此,可以大致画出1y x=在0x >时的部分图象,如图1所示:分2017年九年级部分学生体质健康成绩直方图利用同样的方法,我们可以研究函数y 的图象与性质. 通过分析解析式画出部分函数图象如图2所示.(1)请沿此思路在图2中完善函数图象的草图并标出此函数图象上横坐标为0的点A ;(画出网格区域的部分即可)(2)观察图象,写出该函数的一条性质:____________________; (3)若关于x的方程(1)a x =-有两个不相等的实数根,结合图象,直接写出实数a 的取值围:__________.26.在平面直角坐标系xOy 中,已知抛物线22y x ax b =-+的顶点在 x 轴上,1(,)P x m ,2(,)Q x m (12x x <)是此抛物线上的两点. (1)若1a =,①当m b =时,求1x ,2x 的值;②将抛物线沿y 轴平移,使得它与x 轴的两个交点间的距离为4,试描述出这一变化过程; (2)若存在实数c ,使得11x c ≤-,且27x c ≥+成立,则m 的取值围是 .27.如图,已知60AOB ∠=︒,点P 为射线OA点D 在AOB ∠,且满足DPA OPE ∠=∠,6DP PE +=. (1)当DP PE =时,求DE 的长;(2)在点P 的运动过程中,请判断是否存在一个定点M28.在平面直角坐标系xOy 中,对于点P 和C e ,给出如下定义:若C e 上存在一点T 不与O 重合,使点P 关于直线OT 的对称点'P 在C e 上,则称P 为C e 的反射点.下图为C e 的反射点P 的示意图.(1)已知点A 的坐标为(1,0),A e 的半径为2,①在点(0,0)O ,(1,2)M ,(0,3)N -中,A e 的反射点是____________; ②点P 在直线y x =-上,若P 为A e的反射点,求点P 的横坐标的取值围;(2)C e 的圆心在x 轴上,半径为2,y 轴上存在点P 是C e 的反射点,直接写出圆心C 的横坐标x 的取值围.市海淀区2018年中考一模数学试卷参考答案及评分标准一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9.1510.87.5310⨯ 11.2 12.11x=(答案不唯一)13.1118012030x x--= 14.36 15.6016.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上;经过半径的外端并且垂直于这条半径的直线是圆的切线;两点确定一条直线.三、解答题(本题共68分,第17~22题,每小题5分;第23~26小题,每小题6分;第27~28小题,每小题7分)17.解:原式=3323-⨯+-………………4分=5-分18.解:()5331,263.2x xxx+>-⎧⎪⎨-<-⎪⎩①②解不等式①,得3x>-. ………………2分解不等式②,得2x<. ………………4分所以原不等式组的解集为32x-<<. ………………5分19. 证明:∵90ACB ∠=︒,D 为AB 的中点, ∴12CD AB BD ==. ∴ABC DCB ∠=∠. ………………2分 ∵DC EF ∥,∴CBF DCB ∠=∠. ………………3分 ∴CBF ABC ∠=∠.∴BC 平分ABF ∠. ………………5分 20.解:(1)∵m 是方程的一个实数根,∴()222310m m m m --++=. ………………1分∴13m =-. ………………3分(2)24125b ac m ∆=-=-+. ∵0m <,∴120m ->.∴1250m ∆=-+>. ………………4分 ∴此方程有两个不相等的实数根. ………………5分21.(1)证明:∵AE BD ∥,BE AC ∥,∴四边形AEBO 是平行四边形. ………………1分 ∵四边形ABCD 是平行四边形,∴DC AB =. ∵OE CD =, ∴OE AB =.∴平行四边形AEBO 是矩形. ………………2分 ∴90BOA ∠=︒. ∴AC BD ⊥.∴平行四边形ABCD 是菱形. ………………3分(2) 正方形; ………………4分2. ………………5分 22.解:(1)∵函数my x=的图象经过点()22P ,, ∴2=2m,即4m =. ………………1分 图象如图所示. ………………2分(2)当点()22P ,满足,m y xy x m⎧>⎪⎨⎪<+⎩(m >0)时, 解不等式组2222m m⎧>⎪⎨⎪<+⎩,得04m <<. ………………3分 当点()12Q -,满足,m y xy x m⎧>⎪⎨⎪<+⎩(m >0)时, 解不等式组221m m>-⎧⎨<-+⎩,得3m >. ………………4分∵P Q ,两点中恰有一个点的坐标满足,m y xy x m⎧>⎪⎨⎪<+⎩(m >0), ∴m 的取值围是:03m <≤,或4m ≥. ………………5分23.解:(1)连接OE ,OF .∵EF AB ⊥,AB 是O e 的直径, ∴DOF DOE =∠∠. ∵2DOE A =∠∠,A α=∠,∴2DOF α=∠. ………………1分 ∵FD 为O e 的切线, ∴OF FD ⊥.DA∴90OFD ︒=∠.∴+90D DOF ︒=∠∠. 902D α∴∠=︒-. ………………2分(2)图形如图所示.连接OM .∵AB 为O e 的直径,∴O 为AB 中点, 90AEB ∠=︒. ∵M 为BE 的中点, ∴OM AE ∥,1=2OM AE . ………………3分 ∵30A ∠=︒,∴30MOB A ∠=∠=︒. ∵260DOF A ∠=∠=︒ ,∴90MOF ∠=︒. ………………4分∴222+OM OF MF =. 设O e 的半径为r . ∵90AEB ∠=︒,30A ∠=︒,∴cos30AE AB ︒=⋅=.∴OM . ………………5分∵FM∴222)+r =. 解得=2r .(舍去负根)∴O e 的半径为2. ………………6分 24.C ………………1分………………2分DA(2)去年的体质健康测试成绩比今年好.(答案不唯一,合理即可) ………………3分去年较今年低分更少,高分更多,平均分更大.(答案不唯一,合理即可) ………………4分 (3)70. ………………6分 25.(1)如图: ………………2分(2)当1x >时,y 随着x 的增大而减小;(答案不唯一) ………………4分 (3)1a ≥. ………………6分26.解:Q 抛物线22y x ax b =-+的顶点在x 轴上,24(2)04b a --∴=.2b a ∴=. ………………1分(1)1a =Q ,1b ∴=.∴抛物线的解析式为221y x x =-+.① 1m b ==Q ,2211x x ∴-+=,解得10x =,22x =. ………………2分 ②依题意,设平移后的抛物线为2(1)y x k =-+.Q 抛物线的对称轴是1x =,平移后与x 轴的两个交点之间的距离是4,∴(3,0)是平移后的抛物线与x 轴的一个交点.2(31)0k ∴-+=,即4k =-.∴变化过程是:将原抛物线向下平移4个单位. ………………4分(2)16m ≥. ………………6分27..解:(1)作PF ⊥DE 交DE 于F . ∵PE ⊥BO ,60AOB ∠=o,∴30OPE ∠=o.∴30DPA OPE ∠=∠=o.∴120EPD ∠=o. ………………1分 ∵DP PE =,6DP PE +=, ∴30PDE ∠=o,3PD PE ==.∴cos30DF PD =⋅︒=∴2DE DF ==………………3分 (2)当M 点在射线OA上且满足OM =DMME的值不变,始终为1.理由如下: ………………4分 当点P 与点M 不重合时,延长EP 到K 使得PK PD =. ∵,DPA OPE OPE KPA ∠=∠∠=∠, ∴KPA DPA ∠=∠.∴KPM DPM ∠=∠.∵PK PD =,PM 是公共边, ∴KPM △≌DPM △. ∴MKMD =. ………………5分作ML ⊥OE 于L ,MN ⊥EK 于N .∵60MO MOL =∠=o,∴sin 603ML MO =⋅=o. ………………6分∵PE ⊥BO ,ML ⊥OE ,MN ⊥EK , ∴四边形MNEL 为矩形. ∴3EN ML ==.∵6EK PE PK PE PD =+=+=, ∴EN NK =. ∵MN ⊥EK , ∴MKME =.∴ME MK MD ==,即1DMME=. 当点P 与点M 重合时,由上过程可知结论成立. ………………7分28.解(1)①A e 的反射点是M ,N . ………………1分 ②设直线y x =-与以原点为圆心,半径为1和3的两个圆的交点从左至右依次为D ,E ,F ,G ,过点D 作⊥DH x 轴于点H ,如图.可求得点D 的横坐标为.同理可求得点E ,F ,G 的横坐标分别为 点P 是A e 的反射点,则A e 上存在一点T ,使点P 关于直线OT 的对称点'P 在A e 上,则'OP OP =. ∵1'3≤≤OP ,∴13≤≤OP .反之,若13≤≤OP ,A e 上存在点Q ,使得OP OQ =,故线段PQ 的垂直平分线经过原点,且与A e 相交.因此点P 是A e 的反射点.∴点P 的横坐标x 的取值围是22≤x --22≤x . ………………4分 (2)圆心C 的横坐标x 的取值围是44≤≤x -. ………………7分。

2018年北京各区中考数学一模试卷及答案

2018年北京各区中考数学一模试卷及答案

8
(3)若关于 x 的方程 1 a(x 1) 有两个不相等的实数根,结合图象,直接写出实数 a 的取值范围: x 1
___________________________.
26.在平面直角坐标系 xOy 中,已知抛物线 y x2 2ax b 的顶点在 x 轴上, P(x1, m) ,Q(x2, m) ( x1 x2 )
17.计算: (1)1 12 3 tan 30 | 3 2 | . 3
5x 3 3 x 1,
18.解不等式组:

x
2
2

6

3x.
19.如图,△ ABC 中, ACB 90 , D 为 AB 的中点,连接 CD ,过点 B 作 CD 的平行线 EF ,求证: BC 平分 ABF .
50 x 55 55 x 60 60 x 65 65 x 70 70 x 75 75 x 80 80 x 85 85 x 90 90 x 95 95 x 100
1
1
2
2
4
5
5
2
分析数据、得出结论 调查小组将统计后的数据与去年同期九年级的学生的体质健康测试成绩(直方图)进行了对比,
x
,y
)满足不等式组

y

m x
,
y x m
( m >0),求 m 的取值范围.
6
23.如图, AB 是 O 的直径,弦 EF AB 于点 C ,过点 F 作 O 的切线交 AB 的延长线于点 D . (1)已知 A ,求 D 的大小(用含 的式子表示); (2)取 BE 的中点 M ,连接 MF ,请补全图形;若 A 30 , MF 7 ,求 O 的半径.

第2讲 2018北京九年级数学一模分类---16题(含答案)

第2讲 2018北京九年级数学一模分类---16题(含答案)

第2讲 16题分类1.(海淀)下面是“过圆上一点作圆的切线”的尺规作图过程.请回答:该尺规作图的依据是.1.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上;经过半径的外端并且垂直于这条半径的直线是圆的切线;两点确定一条直线.2.(西城)阅读下面材料:在复习课上,围绕一道作图题,老师让同学们尝试应用学过的知识设计多种不同的作图方法,并交流其中蕴含的数学原理.已知:直线和直线外的一点P.求作:过点P 且与直线l 垂直的直线PQ ,垂足为点Q P 某同学的作图步骤如下:请你根据该同学的作图方法完成以下推理: ∵PA PB =,APQ ∠=∠__________, ∴PQ l ⊥.(依据:__________). 2.BPQ ,等腰三角形三线合一 3.已知正方形ABCD .求作:正方形ABCD 的外接圆. 作法:如图,(1)分别连接AC ,BD ,交于点O ;(2) 以点O 为圆心,OA 长为半径作O .O 即为所求作的圆.请回答:该作图的依据是_____________________________________. 3. 正方形的对角线相等且互相平分,圆的定义4.(朝阳)下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程.请回答:该尺规作图的依据是 .4. 与一条线段两个端点距离相等的点,在这条线段的垂直平分线上;直径所对的圆周角是直角5.(石景山)小林在没有量角器和圆规的情况下,利用刻度尺和一副三角板画出了一个角的平分线,他的做法是这样的:如图, (1)利用刻度尺在AOB ∠的两边OA ,OB 上分别取OM ON =;(2)利用两个三角板,分别过点M ,N 画OM ,ON 的垂线,交点为P ; (3)画射线OP .则射线OP 为AOB ∠的平分线.请写出小林的画法的依据 . 5.(1)斜边和一条直角边分别相等的两个直角三角形全等; (2)全等三角形的对应角相等.6交∠A的两边于B,C两点;(2)以点C为圆心,BC长为半径作弧,与⊙A交于点D,作射线AD.所以∠CAD就是所求作的角.请回答:该尺规作图的依据是.6.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中的一组量相等,那么它们所对应的其余各组量都分别相等.或:同圆半径相等,三条边对应相等的两个三角形全等,全等三角形的对应角相等.7.(顺义)在数学课上,老师提出一个问题“用直尺和圆规作一个矩形”.小华的做法如下:图3图2图1老师说:“小华的作法正确” .请回答:小华的作图依据是.7.同圆半径相等,对角线相等且互相平分的四边形是矩形.(或直径所对的圆周角是直角,三个角是直角的四边形是矩形.等等)8.(延庆)某农科所在相同条件下做玉米种子发芽实验,结果如下:某位顾客购进这种玉米种子10千克,那么大约有____千克种子能发芽.8.8.89. (怀柔)阅读下面材料:小明的作法如下:请回答:该尺规作图的依据是____________________________.9. 到角两边距离相等的点在角平分上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线.10(平谷)下面是“作已知角的角平分线”的尺规作图过程.所以,射线OP即为所求作的射线.请回答:该尺规作图的依据是.10.答案不唯一:到线段两端点距离相等的点在线段的垂直平分线上;等腰三角形三线合11(门头沟)下图是“已知一条直角边和斜边做直角三角形”的尺规作图过程.请回答:该尺规作图的依据是__________.11.等圆的半径相等,直径所对的圆周角是直角,三角形定义12(大兴)下面是“求作∠AOB的角平分线”的尺规作图过程.13.(房山)如图,在平面直角坐标系xOy中,点A(-3,0) ,B(-1,2) .以原点O为旋转中心,将△AOB顺时针旋转90°,再沿x轴向右平移两个单位,得到△A’O’B’,其中点A’与点A对应,点B’与点B对应. 则点A’的坐标为__________,点B’的坐标为__________.13. (2,3),(4,1).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

27.如图,已知
60AOB ,点P 为射线OA 上的一个动点,过点P 作PE OB ,交OB 于点E ,点D 在AOB 内,且满足
DPA OPE ,6DP PE . (1)当DP PE 时,求DE 的长;
(2)在点P 的运动过程中,请判断是否存在一个定点M ,使得DM ME
的值不变?并证明你的判断.
B
A
O E D
P
B
A
O E D
P
3.知识点:多边形内角和公式:180°(n-2),多边形外角和为360°;15(中);
8.(难)
14.知识点:圆内接四边形对角互补;
19知识点:直角三角形斜边的中线是斜边的一半;
21.知识点:
菱形的判定:
定理1 一组邻边相等的平行四边形是菱形
定理2 四边都相等的四边形是菱形
定理3 对角线互相垂直的平行四边形是菱形
矩形的判定:
定理1 有三个角是直角的四边形是矩形
定理2 对角线相等的平行四边形是矩形
平行四边形的判定:
定理1 两组对角分别相等的四边形是平行四边形定理2 两组对边分别相等的四边形是平行四边形定理3 对角线互相平分的四边形是平行四边形
定理4 一组对边平行且相等的四边形是平行四边形22(1)(易);(2)(中);
23(1)易;(2)(中);
24.(易)
25(1)(2)易(3)(中)
26(1)易(2)(难);
27.如图,已知60
AOB,点P为射线OA上的一个动点,过点P作PE OB,交OB 于点E,点D在AOB内,且满足DPA OPE,6
DP PE.
(1)当DP PE时,求DE的长;B
A
O E D
P
(2)在点P的运动过程中,请判断是否存在一个定点M,使得DM
ME
的值不变?并证明你
的判断.
27.(1)易;(2)难(方法一看懂了,方法二,另解未看懂)
(另解:未看懂)
28、(1)①易;②、(2)难(未做出)。

相关文档
最新文档