微积分(曹定华)(修订版)课后题答案第二课习题详解

合集下载

微积分第二版课后习题答案

微积分第二版课后习题答案

微积分第二版课后习题答案【篇一:微积分(上册)习题参考答案】0.11.(a)是(b)否(c)是(d)否2.(a)否(b)否(c)否(d)是(e)否(f)否(g)是(h)否(i)是1,2,3},{1,2,4},{1,3,4}, 3.f,{1},{2},{3},{4},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},{{2,3,4},{1,2,3,4}.4. a?b5. a?b6~15. 略。

16. 证明:先证a-(b-c)?(ab)惹(ac).若x?a(b-c),则x蜗a,x①如果x?c,则x蜗a,②如果x?c,则x?b,所以x?aa-(b-c)?(ab)惹(ac).再证a-(b-c)惹(ac)?a(b-c).若x¢?(ab)惹(ac),则,x¢?ab或x¢吻ac.①如果x¢吻ac,有x¢?c,所以,x¢?bc,又x¢?a,于是x¢?a(b-c) ②如果x¢锨ac,x¢?ab,则有x¢?a,x¢?c,x¢?b,所以,x¢?bc,于是x¢?a(b-c). 因此有(a-b)惹(ac)?a(b-c).综上所述,a-(b-c)=(a-b)惹(ac),证毕. 17~19. 略。

20. cda.21. a?b{(1,u),(1,v),(2,u),(2,v),(3,u),(3,v)};禳1镲xx?r,睚2镲铪参考答案禳禳11镲镲,,a?d-1,-,0,1,2,3,?a-c=睚0,-1,-睚镲镲44铪铪禳1镲a=睚-1,-,0,1,2,7.镲4铪xx危r,1x 2}x3,a?b={,a-b={xx?r,2x3}.b-cb-c;(ac),因此有b,也有x?(ab)惹a2={(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)};b2={(u,v),(u,v),(v,u),(v,v)}22. a={(x,y,z)}x,y,z危?.0323~25. 略。

《微积分》课后答案(复旦大学出版社(曹定华_李建平_毛志强_著))第7章

《微积分》课后答案(复旦大学出版社(曹定华_李建平_毛志强_著))第7章
故 a b b c c a
3 . 2
4. 在 xOy 坐标面上求向量 a,使其垂直于向量 b=4i-3j+5k,且|a|=2|b|. 解:设向量 a ( x, y, 0) ,由 a b 得 a b 0 即 4x 3y 0 , 由 | a | 2 | b | 得 解方程组
(6,10, 2) (6, 6, 6) (16, 4, 12) (16, 0, 20)
5.已知两点 M1(0,1,2)和 M2(1,-1,0),求向量 M 1M 2 ,并求 M 1M 2 及与 M 1M 2 平 行的单位向量. 解: M 1M 2 (1 0)i (1 1) j (0 2)k i 2 j 2k (1, 2, 2)


2.试用向量证明:如果平面上一个四边形的对角线互相平分,则该四边形是平行 四边形. 证: (如上题图) ,依题意有 AM MC , DM MB. 于是 AB AM MB MC DM DC. 故 ABCD 是平行四边形. 3.已知向量 a=i-2j+3k 的始点为(1,3,-2),求向量 a 的终点坐标. 解:设 a 的终点坐标为( x, y, z ),则
即与 M 1M 2 平行的单位向量为 ,

1 3
2 2 1 2 2 , 或 , , . 3 3 3 3 3
习题 7-3
) 1. 已知 a =2, b =1, (a,b
解: (1) a a | a | 4
2
,求(1) a·a,(2) a·b,(3) (2a+3b)·(3a-b). 3 ) 2 1 cos π 1 (2) a a | a | | b | cos(a,b 3

微积分曹定华修订版课后题答案习题详解

微积分曹定华修订版课后题答案习题详解

第9章习题9-11. 判定下列级数的收敛性:(1) 115n n a ∞=⋅∑(a >0); (2) ∑∞=-+1)1(n n n ;(3) ∑∞=+131n n ; (4) ∑∞=-+12)1(2n nn ; (5) ∑∞=+11ln n n n ; (6) ∑∞=-12)1(n n;(7) ∑∞=+11n nn ; (8) 0(1)21n n n n ∞=-⋅+∑.解:(1)该级数为等比级数,公比为1a ,且0a >,故当1||1a <,即1a >时,级数收敛,当1||1a≥即01a <≤时,级数发散. (2)(1n S n =++++∴1n ∞=∑发散.(3)113n n ∞=+∑是调和级数11n n ∞=∑去掉前3项得到的级数,而调和级数11n n ∞=∑发散,故原级数113n n ∞=+∑发散.(4)1112(1)1(1)222n n nn n n n ∞∞-==⎛⎫+--=+ ⎪⎝⎭∑∑ 而1112n n ∞-=∑,1(1)2m nn ∞=-∑是公比分别为12的收敛的等比级数,所以由数项级数的基本性质知111(1)22n n n n ∞-=⎛⎫-+ ⎪⎝⎭∑收敛,即原级数收敛.(5)lnln ln(1)1nn n n =-++ 于是(ln1ln 2)(ln 2ln 3)[ln ln(1)]n S n n =-+-+-+故lim n n S →∞=-∞,所以级数1ln 1n nn ∞=+∑发散.(6)2210,2n n S S +==-∴ lim n n S →∞不存在,从而级数1(1)2nn ∞=-∑发散.(7)1lim lim10n n n n U n→∞→∞+==≠∴ 级数11n n n ∞=+∑发散. (8) (1)(1)1, lim 21212n n n n n n U n n →∞--==++∴ lim 0n x U →∞≠,故级数1(1)21n n nn ∞=-+∑发散.2. 判别下列级数的收敛性,若收敛则求其和:(1) ∑∞=⎪⎭⎫ ⎝⎛+13121n n n ; (2) ※∑∞=++1)2)(1(1n n n n ;(3) ∑∞=⋅12sin n n n π; (4) 0πcos 2n n ∞=∑.解:(1)1111, 23n n n n ∞∞==∑∑都收敛,且其和分别为1和12,则11123n n n ∞=⎛⎫+ ⎪⎝⎭∑收敛,且其和为1+12=32.(2)11121(1)(2)212n n n n n n ⎛⎫=-+ ⎪++++⎝⎭1lim 4n n S →∞=故级数收敛,且其和为14. (3)πsin 2n U n n =,而πsinππ2lim lim 0π222n n n U n→∞→∞=⋅=≠,故级数1πsin2n n n ∞=⋅∑发散. (4)πcos 2n n U =,而4lim limcos2π1k k k U k →∞→∞==,42lim limcos(21)π1k k k U k +→∞→∞=+=-故lim n n U →∞不存在,所以级数πcos2n n ∞=∑发散. 3※. 设1nn U∞=∑ (U n >0)加括号后收敛,证明1nn U∞=∑亦收敛.证:设1(0)nn n UU ∞=>∑加括号后级数1n n A ∞=∑收敛,其和为S .考虑原级数1n n U ∞=∑的部分和1n k k S U ∞==∑,并注意到0(1,2,)k U k >=,故存在0n ,使又显然1n n S S +<对一切n 成立,于是,{}n S 是单调递增且有上界的数列,因此,极限lim n n S →∞存在,即原级数1nn U∞=∑亦收敛.习题9-21. 判定下列正项级数的收敛性:(1) ∑∞=++1n n n )2)(1(1; (2) ∑∞=+1n n n1;(3) ∑∞=++1n n n n )2(2; (4) ∑∞=+1n n n )5(12;(5) 111nn a ∞=+∑ (a >0); (6) ∑∞=+1n n ba 1(a , b >0); (7)()∑∞=--+1n a n a n22(a >0); (8) ∑∞=-+1n n n 1214; (9) ∑∞=⋅1n nn n 23; (10) ※∑∞=1n n n n !; (11) ∑∞=+⋅⋅⋅⋅+⋅⋅⋅⋅1n n n )13(1074)12(753 ; (12) ∑∞=1n n n3;(13) ※∑∞=1n n n 22)!(2; (14) ∑∞=⎪⎭⎫⎝⎛+1n nn n 12;(15)∑∞=1πn nn3sin2; (16) ∑∞=1πn n n n 2cos 32.解:(1)因为211(1)(2)n n n <++而211n n ∞=∑收敛,由比较判别法知级数11(1)(2)n n n ∞=++∑收敛.(2)因为lim 10n n n U →∞==≠,故原级数发散. (3)因为21(1)(1)1n n n n n n n +>=+++,而111n n ∞=+∑发散,由比较判别法知,级数12(1)n n n n ∞=++∑发散.(4)321n<=,而1n ∞=是收敛的p -级数3(1)2p =>,由比较判别法知,级数1n ∞=收敛.(5)因为111lim lim lim(1)111n n n n n n n n a a a aa→∞→∞→∞+==-++ 而当1a >时,11n n a ∞=∑收敛,故111nn a ∞=+∑收敛;当1a =时,11n n a ∞=∑= 11n ∞=∑发散,故111nn a∞=+∑发散; 当01a <<时1lim101n n a →∞=≠+,故1lim1nn a →∞+发散; 综上所述,当01a <≤时,级数1lim 1n n a →∞+发散,当1a >时,1lim 1nn a →∞+收敛. (6)因为1lim lim lim(1)1n n n n n n n n b aa b a b a bb→∞→∞→∞+==-++ 而当1b >时, 11n n b ∞=∑收敛,故11nn a b ∞=+∑收敛; 当1b =时,1111n n n b ∞∞===∑∑发散,故而由0a >, 101a <<+∞+,故11nn a b ∞=+∑也发散; 当01b <<时,11lim 0n n a b a →∞=≠+故11n n a b ∞=+∑发散; 综上所述知,当01b <≤时,级数11n n a b ∞=+∑发散;当b >1时,级数11nn a b∞=+∑收敛. (7)因为lim 1n n n→∞=而11n n ∞=∑发散,故级数10)n a ∞=>∑发散. (8)因为434431121lim lim 1212n n n n n n n n →∞→∞++-==-而311n n∞=∑收敛,故级数21121n n n ∞=+-∑收敛.(9)因为1113233lim lim lim 1(1)232(1)2n n n n n n n n nU n n U n n +++→∞→∞→∞⋅⋅==>+⋅+由达朗贝尔比值判别法知,级数132n nn n ∞=⋅∑发散.(10)因为11(1)!1lim lim lim(1)1(1)!n nn n n n n nU n n e U n n n ++→∞→∞→∞+=⋅=+=>+,由达朗贝尔比值判别法知,级数1!n n n n ∞=∑发散.(11)因为1357(21)(23)4710(31)limlim 4710(31)(34)357(21)n n n nU n n n U n n n +→∞→∞⋅⋅⋅⋅+⋅+⋅⋅⋅⋅+=⋅⋅⋅⋅⋅+⋅+⋅⋅⋅⋅+232lim1343n n n →∞+==<+,由达朗贝尔比值判别法知原级数收敛.(12)因为111311lim lim lim 1333n n n n n n nU n n U n n ++→∞→∞→∞++=⋅==<,由达朗贝尔比值判别法知,级数13n n n ∞=∑收敛.(13)因为22221221(1)[(1)!]2(1)lim lim lim (!)22n n n n n n n nU n n U n +++→∞→∞→∞++=⋅= 由2212121(1)2(1)1lim lim lim 222ln 22ln 2x x x x x x x x x +++→∞→+∞→+∞+++==⋅⋅2121lim 022(ln 2)x x +→+∞==⋅知2121(1)lim lim 012n n n n nU n U ++→∞→∞+==<由达朗贝尔比值判别法知,级数221(!)2n n n ∞=∑收敛.(14)因为1lim 1212n n n n →∞==<+,由柯西根值判别法知级数121nn n n ∞=⎛⎫ ⎪+⎝⎭∑收敛. (15)因为ππ2sinsin 33lim lim 1π2π33n n nn n n n n→∞→∞==⋅而112233nn n n n ∞∞==⎛⎫= ⎪⎝⎭∑∑是收敛的等比级数,它的每项乘以常数π后新得级数12π3n n n ∞=⋅∑仍收敛,由比较判别法的极限形式知,级数1π2sin3n n n ∞=∑收敛. (16)因为2πcos 322n n n n n ≤而与(12)题类似地可证级数12nn n ∞=∑收敛,由比较判别法知级数1πcos 32n n n n ∞=∑收敛.2. 试在(0,+∞)内讨论x 在什么区间取值时,下列级数收敛:(1) ∑∞=1n n n x ; (2) nn x n ∑∞=⎪⎭⎫⎝⎛123.解:(1)因为11lim lim lim 11n n n n n n nU x n nxx U n x n ++→∞→∞→∞=⋅==++由达朗贝尔比值判别法知,当1x >时,原级数发散;当01x <<时,原级数收敛; 而当1x =时,原级数变为调11n n ∞=∑,它是发散的.综上所述,当01x <<时,级数1nn x n ∞=∑收敛.(2)因为1313(1)2limlim 22n n n n n nx n U xU x n ++→∞→∞⎛⎫+⋅ ⎪⎝⎭==⎛⎫⋅ ⎪⎝⎭,由达朗贝尔比值判别法知,当12x >即2x >时,原级数发散; 当012x<<即02x <<时,原级收敛. 而当12x =即 2x =时,原级数变为31n n ∞=∑,而由3lim n n →∞=+∞知31n n ∞=∑发散,综上所述,当02x <<时,级数31()2nn xn ∞=∑收敛.习题9-31. 判定下列级数是否收敛,如果是收敛级数,指出其是绝对收敛还是条件收敛:(1) ∑∞=--1121)1(n nn ; (2) 11(1)2(1)2n n nn ∞-=-+-⋅∑; (3) ∑∞=12sin n n nx ; (4) 111π(1)sin πn n n n ∞+=-∑; (5) ∑∞=-⎪⎭⎫ ⎝⎛-11210121n n n ; (6) ∑∞=+-1)1(n n x n ;(7) ∑∞=⋅1!)2sin(n n n x .解:(1)这是一个交错级数121n U n =-, 1lim lim 021n n n U n →∞→∞==-, 1112121n n U U n n +=>=-+ 由莱布尼茨判别法知11(1)21nn n ∞=--∑. 又1111(1)2121nn n n n ∞∞==-=--∑∑,由1121lim 12n n n→∞-=,及11n n ∞=∑发散,知级数1121n n ∞=-∑发散,所以级数11(1)21nn n ∞=--∑条件收敛. (2)因为2111(1)211(1)22(1)2n n n n n ----+-=+-⋅-⋅,故 而112n n ∞=∑收敛,故132n n ∞=∑亦收敛,由比较判别法知11(1)2(1)2n n nn ∞-=-+-⋅∑收敛,所以级数11(1)2(1)2n n n n ∞-=-+-⋅∑绝对收敛.(3)因为22sin 1,nx n n ≤而级数211n n∞=∑收敛,由比较判别法知21sin n nx n ∞=∑收敛,因此,级数21sin n nxn ∞=∑绝对收敛.(4)因为121ππ|(1)sin |sin πlimlim 11πn n n n n n n n+→∞→∞-==而211n n∞=∑收敛,由比较判别法的极限形式知,级数111π|(1)sin |πn n n n ∞+=-∑收敛,从而级数11π(1)sin πn n n +-绝对收敛.(5)因为212121111111210210210n n n n n n ----≤+=+,而级数112nn ∞=∑收敛的等比级数1()2q =;由比值判别法,易知级数211110n n ∞-=∑收敛,因而21111210n n n ∞-=⎛⎫+ ⎪⎝⎭∑收敛,由比较判别法知级数21111210n n n ∞-=-∑收敛,所以原级数21111210n n n ∞-=-∑绝对收敛. (6)当x 为负整数时,级数显然无意义;当x 不为负整数时,此交错级数满足莱布尼茨判别法的条件,故它是收敛的,但因11n x n ∞=+∑发散,故原级数当x 不为负整数时仅为条件收敛. (7)因为sin(2)1!!n x n n ⋅≤由比值判别法知11!n n ∞=∑收敛(1(1)!lim 01!n n n →∞+=),从而由比较判别法知1sin(2)!n n x n ∞=⋅∑收敛,所以级数1sin(2)!n n x n ∞=⋅∑,绝对收敛. 2. 讨论级数∑∞=--111)1(n pn n 的收敛性(p >0). 解:当1p >时,由于11111(1)n p p n n n n ∞∞-==-=∑∑收敛,故级数111(1)n p n n ∞-=-∑绝对收敛. 当01p <≤时,由于111,(1)n n p p u u n n +=>=+ lim 0n n u →∞=,由莱布尼茨判别法知交错级数111(1)n p n n ∞-=-∑收敛,然而,当01p <≤时,11111(1)n p p n n n n ∞∞-==-=∑∑发散,故此时,级数111(1)n p n n ∞-=-∑条件收敛. 综上所述,当01p <≤时,原级数条件收敛;当p >1时,原级数绝对收敛.3※. 设级数∑∞=12n na及∑∞=12n nb都收敛,证明级数∑∞=1n nn ba 及()∑∞=+12n n nb a也都收敛.证:因为2222||||110||222n n n n n n a b a b a b +≤≤=+ 而由已知1nn a ∞=∑及21n n b ∞=∑都收敛,故221111,22n n n n a b ∞∞==∑∑收敛,从而2211122n n n a b ∞=⎛⎫+ ⎪⎝⎭∑收敛,由正项级数的比较判别法知1n nn a b∞=∑也收敛,从而级数1n nn a b∞=∑绝对收敛.又由222()2,n n n n n n a b a a b b +=++及2211,n nn n a b∞∞==∑∑,以及1n nn a b∞=∑收敛,利用数项级数的基本性质知,221(2)nn n n n aa b b ∞=++∑收剑,亦即21()n n n a b ∞=+∑收敛.习题9-41. 指出下列幂级数的收敛区间:(1) ∑∞=0!n n n x (0!=1); (2) ∑∞=0!n nn x nn ;(3) ∑∞=⋅022n n n n x ; (4) ∑∞=++-01212)1(n n n n x . (5) ∑∞=⋅+02)2(n n n n x ; (6) ∑∞=-0)1(2n n nx n. 解:(1)因为111(1)!limlim lim 011!n n n n na n p a n n +→∞→∞→∞+====+,所以收敛半径r =+∞,幂级数1!n n x n ∞=∑的收敛区间为(,)-∞+∞.(2)因为-111lim lim lim 1e 11n nn n n n na n p a n n +→∞→∞→∞⎛⎫===-= ⎪++⎝⎭,所以收敛半径1e r p ==. 当x =e 时,级数01!!e n n n n n n n n x n n ∞∞===∑∑,此时11(1)n n n u e u n+=+,因为1(1)n n +是单调递增数列,且1(1)nn +<e所以1n nu u +>1,从而lim 0n n u →∞≠,于是级数当x =e 时,原级数发散.类似地,可证当x =-e 时,原级数也发散(可证lim ||0n n u →∞≠),综上所述,级数0!nnn n x n∞=∑的收敛区间为(-e,e). (3)因为2111limlim ()212n n n n a n p a n +→∞→∞===+,所以收敛半径为r =2. 当2x =时,级数221012n n n n x n n∞∞===⋅∑∑是收敛的p 一级数(p =2>1);当x =-2时,级数22011(1)2n nn n n x n n ∞∞===-⋅⋅∑∑是交错级数,它满足莱布尼茨判别法的条件,故它收敛.综上所述,级数202nn n x n∞=⋅∑的收敛区间为[-2,2].(4)此级数缺少偶次幂的项,不能直接运用定理2求收敛半径,改用达朗贝尔比值判别法求收敛区间.令21(1)21n nn x u n +=-+,则22121lim lim 23n n n nu n x x u n +→∞→∞+=⋅=+.当21x <时,即||1x <时,原级数绝对收敛.当21x >时,即||1x >时,级数0||n n u ∞=∑发散,从而210(1)21n nn x n +∞=-+∑发散,当1x =时,级数变为01(1)21nn n ∞=-+∑;当1x =-时,级数变为11(1)21n n n ∞+=-+∑;它们都是交错级数,且满足莱布尼茨判别法的条件,故它们都收敛. 综上所述,级数21(1)21n nn x n +∞=-+∑的收敛区间为[-1,1].(5)此级数为(x +2)的幂级数. 因为11limlim 2(1)2n n n n a n p a n +→∞→∞===+. 所以收敛半径12r p==,即|2|2x +<时,也即40x -<<时级数绝对收敛.当|2|2x +>即4x <-或0x >时,原级数发散.当4x =-时,级数变为1(1)nn n∞=-∑是收敛的交错级数, 当x =0时,级数变为调和级数11n n∞=∑,它是发散的. 综上所述,原级数的收敛区间为[-4,0).(6)此级数(x -1)的幂级数 故收敛半径12r =.于是当1|1|2x -<即1322x <<时,原级数绝对收敛. 当1|1|2x ->即12x <或32x >时,原级数发散.当32x =时,原级数变为01n n ∞=∑是调和级数,发散.当12x =时,原级数变为11(1)n n n ∞=-∑,是收敛的交错级数.综上所述,原级数的收敛区间为13,22⎡⎫⎪⎢⎣⎭. 2. 求下列幂级数的和函数:(1) ∑∞=-1)1(n n nn x ; (2) ∑∞=-1122n n nx ;(3) nn x n n ∑∞=+1)1(1; (4) ∑∞=+0)12(n n x n . 解:(1)可求得所给幂级数的收敛半径r =1.设1()(1)n nn x S x n ∞==-∑,则1111()(1)(1)1n n n n n n x S x x n x ∞∞-=='⎡⎤'=-=-=-⎢⎥+⎣⎦∑∑ 又当x =1时,原级数收敛,且()S x 在x =1处连续.(2)所给级数的收敛半经r =1,设211()2n n S x nx∞-==∑,当||1x <时,有于是22222()1(1)x x s x x x '⎛⎫== ⎪--⎝⎭又当1x =±时,原级数发散.故2122122 (||1)(1)n n xnx x x ∞-==<-∑(3)可求所给级数的收敛半径为1.令1111()(0)(1)(1)n n n n x x s x x n n x n n +∞∞====≠++∑∑ 令11()(1)n n x g x n n +∞==+∑,则111()1n n g x x x ∞-=''==-∑所以0()ln(1)d ln(1)ln(1)xg x x x x x x x =--=+---⎰;所以1()11ln(1),||1,S x x x x ⎛⎫=+--< ⎪⎝⎭且0x ≠. 当1x ±时,级数为11(1)n n n ∞=+∑和11(1)(1)n n n n ∞=-+∑,它们都收敛.且显然有(0)0S =. 故111ln(1)(1,0)(0,1)()00,1x x S x x x x ⎧⎛⎫+--∈-⋃⎪ ⎪=⎝⎭⎨⎪=±⎩. (4)可求得所给级数的收敛半径为r =1且1x ±时,级数发散,设10()n n S x nx ∞-==∑,则001()d .1xn n s x x x x∞===-∑⎰ 于是211()()1(1)S x x x '==--,即1211(1)n n nx x ∞-==-∑. 所以1101(21)2n n n n n n n xx nx x ∞∞∞-===+=+∑∑∑ 3. 求下列级数的和: (1) ∑∞=125n n n ; (2) ∑∞=-12)12(1n n n ; (3) ∑∞=--112212n n n ; (4) 1(1)2n n n n ∞=+∑. 解:(1)考察幂级数21n n n x ∞=∑,可求得其收敛半径1r = ,且当1x ±时,级数的通项2n n u n x =,2lim ||lim n n n u n →∞→∞==+∞,因而lim 0n n u →∞≠,故当1x ±时,级数21n n n x ∞=∑发散,故幂级数21n n n x ∞=∑的收敛区间为(-1,1).设21() (||1)n n S x n x x ∞==<∑,则211()n n S x x n x ∞-==∑ 令2111()n n S x n x∞-==∑,则11011()d x n n n n S x x nx x nx ∞∞-====∑∑⎰. 再令121()n n S x nx∞-==∑,则201()d 1x n n x S x x x x∞===-∑⎰. 故221()(||1)1(1)x S x x x x '⎛⎫==< ⎪--⎝⎭,从而有120()d (1)x x S x x x =-⎰.于是 213()() (||1)(1)x x S x xS x x x +==<- 取15x =,则223111()11555()5532115n n n S ∞=+===⎛⎫- ⎪⎝⎭∑. (2)考察幂级数21121n n x n ∞=-∑,可求得收敛半径r =1,设 令21111()21n n S x x n ∞-==-∑,则221211()1n n S x x x ∞-='==-∑. 即 1111()(0)ln (,(0)0)21x S x S s x+-==-. 于是 111()ln ,(||<1)21x S x x x +=-,从而取x =则11(21)21n n S n ∞===--∑(3)考察幂级数211(21)n n n x∞-=-∑,可求得其级数半经为r =1,因为 令2111()2n n S x nx∞-==∑,则221201()d 1x n n x S x x xx ∞===-∑⎰. 所以212222() (||1)1(1)x x S x x x x '⎛⎫==< ⎪--⎝⎭,于是 取12x =,得 3212111()121102212291()2n n n S ∞-=+-⎛⎫=== ⎪⎛⎫⎝⎭- ⎪⎝⎭∑. (4)考察幂级数1(1)n n n n x∞=+∑,可求得其收敛半径r =1. 设1()(1) (||1)n n S x n n xx ∞==+<∑ 则121011()d xn n n n S x x nx x nx ∞∞+-====∑∑⎰.又设111()n n S x nx∞-==∑则101()d 1x n n x S x x x x∞===-∑⎰. 从而121()1(1)x S x x x '⎛⎫== ⎪--⎝⎭, 取12x =,则 习题9-51. 将下列函数展开成x 的幂级数: (1) 2cos 2x ; (2) 2sin x ; (3) 2x x -e ; (4) 211x -; (5)πcos()4x -. 解:(1)2201cos 11cos (1)2222(2)!n n n x x x n ∞=+==+-∑ (2)2101sin (1) ()2(21)!2n n n x x x n +∞=⎛⎫=--∞<<+∞ ⎪+⎝⎭∑ (3)22210011e ()(1) ()!!x n n n n n x x x x x n n ∞∞-+===-=--∞<+∞∑∑ (4)211111211x x x ⎡⎤=+⎢⎥--+⎣⎦(5)πππcos cos cos sin sin 444x x x ⎛⎫-=+ ⎪⎝⎭ 2. 将下列函数在指定点处展开成幂级数,并求其收敛区间: (1)x -31,在x 0=1; (2) cos x,在x 0=3π; (3) 3412++x x ,在x 0=1; (4) 21x, 在x 0=3. 解:(1)因为11113212x x =⋅---,而 0111 (||112212nn x x x ∞=--⎛⎫=< ⎪-⎝⎭-∑即13x -<<). 所以100111(1) (13)3222nnn n n x x x x ∞∞+==--⎛⎫=⋅=-<< ⎪-⎝⎭∑∑. 收敛区间为:(-1,3).(2)πππ2π2cos cos ()cos cos()sin sin()333333x x x x ⎡⎤=+-=---⎢⎥⎣⎦ 收敛区间为(,)-∞+∞.(3)211111111()1143213481124x x x x x x =-=⋅-⋅--++++++ 由112x -<且114x -<得13x -<<,故收敛区间为(-1,3) (4)因为011113(1)()333313n n n x x x ∞=-=⋅=-⋅-+∑ 而21011(3)(1)3n n n n x x x ∞+=''⎡⎤-⎛⎫=-=-- ⎪⎢⎥⎝⎭⎣⎦∑ 由313x -<得06x <<. 故收敛区间为(0,6).。

微积分曹定华课后题答案第二章习题详解

微积分曹定华课后题答案第二章习题详解

第二章习题2-11、 试利用本节定义5后面的注(3)证明:若lim n →∞x n =a ,则对任何自然数k ,有lim n →∞x n +k =a 、证:由lim n n x a →∞=,知0ε∀>,1N ∃,当1n N >时,有n x a ε-<取1N N k =-,有0ε∀>,N ∃,设n N >时(此时1n k N +>)有n k x a ε+-<由数列极限的定义得 lim n k x x a +→∞=、2、 试利用不等式A B A B -≤-说明:若lim n →∞x n =a ,则lim n →∞∣x n ∣=|a|、考察数列x n =(-1)n ,说明上述结论反之不成立、证:lim 0,,.使当时,有n x n x aN n N x a εε→∞=∴∀>∃>-<Q而 n n x a x a -≤- 于就是0ε∀>,,使当时,有N n N ∃>n n x a x a ε-≤-< 即 n x a ε-<由数列极限的定义得 lim n n x a →∞=考察数列 (1)nn x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞=,所以前面所证结论反之不成立。

3、 利用夹逼定理证明:(1) lim n →∞222111(1)(2)n n n ⎛⎫+++ ⎪+⎝⎭L =0; (2) lim n →∞2!n n =0、 证:(1)因为222222111112(1)(2)n n n n n n n n n n++≤+++≤≤=+L 而且 21lim0n n →∞=,2lim 0n n→∞=, 所以由夹逼定理,得222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭L 、 (2)因为22222240!1231n n n n n<=<-g g g L g g ,而且4lim 0n n →∞=, 所以,由夹逼定理得2lim 0!nn n →∞= 4、 利用单调有界数列收敛准则证明下列数列的极限存在、 (1) x n =11ne +,n =1,2,…;(2) x 1,x n +1n =1,2,…、 证:(1)略。

微积分(曹定华)(修订版)课后题答案第一章习题详解

微积分(曹定华)(修订版)课后题答案第一章习题详解

第一章习题1-11.用区间表示下列不等式的解2(1)9;(2)1;1(3)(1)(2)0;(4)00.011 x x x x x ≤>--+<<<+ 解 (1)原不等式可化为(3)(3)0x x -+≤,其解为33x -≤≤,用区间表示是[-3,3].(2)原不等式可化为11x ->或11x -<-,其解为2x >或0x <,用区间表示是(-∞,0)∪(2,+ ∞).(3)原不等式的解为21x -<<,用区间表示是(-2,1).(4)原不等式可化为0.0110.0110x x -<+<⎧⎨+≠⎩即 1.010.991x x -<<-⎧⎨≠⎩ 用区间表示是(-1.01,-1)∪(-1,-0.99).2.用区间表示下列函数的定义域:1(1)(2)arcsin(1)lg(lg );1(3).ln(2) y y x x x y x ==-+=- 解 (1)要使函数有意义,必须2010x x ≠⎧⎨-≥⎩即011x x ≠⎧⎨-≤≤⎩所以函数的定义域为[-1,0)∪(0,1].(2)要使函数有意义,必须111lg 00x x x -≤-≤⎧⎪>⎨⎪>⎩即0210x x x ≤≤⎧⎪>⎨⎪>⎩所以函数的定义域是12x <≤,用区间表示就是(1,2].(3)要使函数有意义,必须2650ln(2)020x x x x ⎧--≥⎪-≠⎨⎪->⎩即6112x x x -≤≤⎧⎪≠⎨⎪<⎩所以函数的定义域是-6≤x <1,用区间表示就是[-6,1).3.确定下列函数的定义域及求函数值f (0),ff (a )(a 为实数),并作出图形(1)1,0,2,011,12x x y x x x ⎧<⎪⎪=⎨≤<⎪⎪<≤⎩; (2)y=211,12x x x ⎧≤⎪⎨-<<⎪⎩解 (1)函数的定义域(){|0}{|01}{|12}{|112}(,1)(1,2]或D f x x x x x x x x x =<≤<<≤=<<≤=-∞1(0)200,1,()201112a af f f a a a a ⎧<⎪⎪=⨯===⎨≤<⎪⎪<≤⎩,图1-1 图1-2(2)函数的定义域(){|1}{|12}{|2}(2,2)D f x x x x x x =≤<<=<=-221(0)1,11,()112a f f f a a a ≤===-==-<<⎪⎩4※.设1,1()1,1x f x x ⎧≤⎪=⎨->⎪⎩,求f (f (x )).解 当|x |≤1时, f (x )=1, f (f (x ))= f (1)=1;当|x |>1时, f (x )=-1, f (f (x ))= f (-1)=1,综上所述f (f (x ))=1(x ∈R ).5.判定下列函数的奇偶性:(1) f (x )=21cos x x -; (2)f (x )=(x 2+x )sin x ;(3) ※ f (x )=1e ,0e 1,0x x x x -⎧-≤⎨->⎩解 (1) ∵221()1()()cos()cos x x f x f x x x----===- ∴f (x )是偶函数.(2)∵222()[()()]sin()()(sin )()sin ()f x x x x x x x x x x f x -=-+--=--=--≠ 且()()f x f x -≠-,∴f (x )是非奇非偶函数.(3) ※当x <0时,-x >0, ()1(1)()e e x x f x f x ---=-=--=-; 当x ≥0时,-x ≤0, ()()11(1)()e e e x x x f x f x ---=-=-=--=-,综上所述, x ∀∈R ,有f (-x )=-f (x ),所以f (x )是奇函数.6.设f (x )在区间(-l ,l )内有定义,试证明:(1) f (-x )+f (x )为偶函数; (2) f (-x ) -f (x )为奇函数.证 (1)令()()()F x f x f x =-+(,)x l l ∀∈-有()[()]()()()()F x f x f x f x f x F x -=--+-=+-=所以()()()F x f x f x =-+是偶函数;(2)令()()()F x f x f x =--,(,)x l l ∀∈-有()[()]()()()[()()]()F x f x f x f x f x f x f x F x -=----=--=---=-所以()()()F x f x f x =--是奇函数.7. 试证:(1) 两个偶函数的代数和仍为偶函数; (2) 奇函数与偶函数的积是奇函数. 证 (1)设f (x ),g (x )均为偶函数,令()()()F x f x g x =±则 ()()()()()()F x f x g x f x g x F x -=-±-=±=,所以()()f x g x ±是偶函数,即两个偶函数的代数和仍为偶函数.(2)设f (x )为奇函数,g (x )为偶函数,令()()()F x f x g x =⋅,则 ()()()()()()F x f x g x f x g x F x -=-⋅-=-=-,所以()()f x g x ⋅是奇函数,即奇函数与偶函数之积是奇函数.8. 求下列函数的反函数:22(1)2sin 3,,;(2);66212101,(3)()2(2)1 2.xx y x x y x x f x x x ππ⎡⎤=∈-=⎢⎥+⎣⎦-≤≤⎧=⎨--<≤⎩解 (1)由2sin3y x =得1arcsin 32yx =所以函数2sin3y x =的反函数为1arcsin (22)32xy x =-≤≤.(2)由221xx y =+得21x y y =-,即2log 1yx y =-. 所以函数221x x y =+的反函数为2log (01)1xy x x =<<-.(3) ※当01x ≤≤时,由21y x =-得1,112yx y +=-≤≤;当12x <≤时,由22(2)y x =--得22x y =<≤;于是有1112212yy x y +⎧-≤≤⎪=⎨⎪<≤⎩,所以函数22101()2(2)12x x f x x x -≤≤⎧=⎨--<≤⎩的反函数是1112()212x x f x x +⎧-≤≤⎪=⎨⎪<≤⎩.9. 将y 表示成x 的函数,并求定义域:222(1)10,1;(2)ln ,2,sin ;(3)arctan ,(). 为实数u v y u x y u u v x y u u v a x a ==+======+解 (1)211010u x y +==,定义域为(-∞,+∞);(2) sin ln ln 2ln 2sin ln 2v x y u x ====⋅定义域为(-∞,+∞);(3) arctan y u ===(a 为实数),定义域为(-∞,+∞).习题1-21.下列初等函数是由哪些基本初等函数复合而成的?(1) y= ; (2) y =sin 3ln x ;(3) y = tan 2x a ; (4) y =ln [ln 2(ln 3x )].解 (1)令arcsin x u a =,则y ,再令xv a =,则arcsin u v =,因此y =是由基本初等函数arcsin ,x y u v v a ===复合而成的.(2)令sin ln u x =,则3y u =,再令ln v x =,则sin u v =.因此3sin ln y x =是由基本初等函数3,sin ,ln y u u v v x ===复合而成.(3)令2tan u x =,则u y a =,再令2v x =,则tan u v =,因此2tan x y a =是由基本初等函数2,tan ,u y a u v v x ===复合而成.(4)令23ln (ln )u x =,则ln y u =,再令3ln(ln )v x =则2u v =,再令3ln w x =,则ln v w =,再令ln t x =,则3w t =,因此23ln[ln (ln )]y x =是由基本初等函数2ln ,,ln ,y u u v v w === 3,ln w t t x ==复合而成.2.设f (x )的定义域为[0,1],分别求下列函数的定义域:(1) f (x 2); (2) f (sin x );(3) f (x +a ),(a >0); (4) f (e x +1).解 (1)由f (x )的定义域为[0,1]得0≤x 2≤1,于是-1≤x ≤1,所以f (x 2)的定义域为[-1,1].(2)由f (x )的定义域为[0,1]得0≤sin x ≤1,于是2k π≤x ≤(2k +1)π,k ∈z ,所以f (sin x )的定义域为[2k π,(2k +1) π], k ∈Z .(3)由f (x )的定义域为[0,1]得0≤x+a ≤1即-a ≤x ≤1-a 所以f (x+a )的定义域为[-a ,1-a ].(4)由f (x )的定义域为[0,1]得0≤e x +1≤1,解此不等式得x ≤-1,所以f (e x +1)的定义域为(-∞,-1].3. 求下列函数的表达式:(1) 设ϕ(sin x )=cos 2x +sin x +5,求ϕ(x );(2) 设g (x -1)=x 2+x +1,求g (x );(3) 设1()f x x +=x 2+21x,求f (x ). 解 (1)法一:令sin t x =,则222cos 1sin 1x x t =-=-,代入函数式,得:22()156t t t t t ϕ=-++=+-,即 2()6x x x ϕ=++.法二:将函数的表达式变形得:22(sin )(1sin )sin 56sin sin x x x x x ϕ=-++=+-令sin t x =,得 2()6t t t ϕ=+-,即 2()6x x x ϕ=+-.(2)法一:令1t x =-,则1x t =+,将其代入函数式,得22()(1)(1)133g t t t t t =++++=++即 2()33g x x x =++.法二:将函数表达式变形,得22(1)(21)(33)3(1)3(1)3g x x x x x x -=-++-+=-+-+令1x t -=,得 2()33g t t t =++,即 2()33g x x x =++.(3)法一:令1x t x +=,两边平方得22212x t x ++= 即22212x t x+=-,将其代入函数式,得2()2f t t =-,即2()2f x x =-. 法二:将函数表达式变形,得222111222f x x x x x x ⎛⎫⎛⎫⎛⎫=-=-++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 令1x t x+=,得2()2f t t =-,即2()2f x x =-.习题1-31.设销售商品的总收入是销售量x 的二次函数,已知x =0,2,4时,总收入分别是0,6,8,试确定总收入函数TR(x ).解 设2()TR x ax bx c =++,由已知(0)0,(2)6,(4)8TR TR TR === 即 04261648c a b c a b c =⎧⎪++=⎨⎪++=⎩ 解得 1240a b c ⎧=-⎪⎪⎨=⎪⎪=⎩ 所以总收入函数21()42TR x x x =-+. 2.设某厂生产某种产品1000吨,定价为130元/吨,当一次售出700吨以内时,按原价出售;若一次成交超过700吨时,超过700吨的部分按原价的9折出售,试将总收入表示成销售量的函数.解 设销售量为x ,实际每吨售价为P 元,由题设可得P 与x 间函数关系为1307001177001000x P x ≤⎧=⎨<≤⎩,总收入 130700()130700(700)1177001000TR x x x x x ≤⎧=⎨⨯+-⨯<≤⎩,即 130700()91001177001000TR x x x x x ≤⎧=⎨+<≤⎩.3. 已知需求函数为105Q P =-,成本函数为C =50+2Q ,P 、Q 分别表示价格和销售量.写出利润L 与销售量Q 的关系,并求平均利润.解 由题设知总收入2()105Q R Q PQ Q ==- ,则 总利润 ()221()()()8505021055Q L Q R Q C Q Q Q Q Q ⎛⎫=-=-=--+- ⎪⎝⎭, 平均利润 ()150()85L Q AL Q Q Q Q==--. 4. 已知需求函数Q d 和供给函数Q s ,分别为Q d =100233P -,Q s =-20+10P ,求相应的市场均衡价格.解 当d s Q Q =时供需平衡,由d s Q Q =得1002201033P P -=-+,解得5P = 所以市场均衡价格5P =.。

《微积分》课后答案(复旦大学出版社(曹定华_李建平_毛志强_著))第11章

《微积分》课后答案(复旦大学出版社(曹定华_李建平_毛志强_著))第11章
(3) a 1 , f (t ) 2 于是由非齐次方程的特解公式 (11 2 5) 有:
t t 1 t 1 1 1 yt (1)i 2t i 1 2t 1 ( )i 2t 2 3 i 0 i 0
由 (11 2 4) 式,得所给方程的通解
1 yt A(1)t 2t 3
(A 为任意常数)
*
(4)对应齐次差分方程为 yt 1 yt 0 ,其通解为 yt A , 设原方程特解为
yt 2t ( B1 cos πt B2 sin πt ) 代入原方程得:
2t 1[ B1 cos π(t 1) B2 sin π(t 1)] 2t ( B1 cos πt B2 sin πt ) 2t cos πt
yt 1
1 4 yt ,其中 3 3
1 4 a , b ,由通解公式 (11 2 7) 得原方程的通解为: 3 3
1 yt y A (t ) yt A( )t 1 (A 为任意常数) 3 1 3 t 1 3 1 (2)方程可化为 yt 1 yt ,其中 a , b0 , b1 ,故由通解公式 2 2 2 2 2 2 (11 2 9) 得方程的通解为: 3 1 1 1 t 1 7 t yt A( ) 2 2 2 t 即 yt A( )t . 1 1 1 2 9 3 2 1 (1 ) 2 1 2 2 2
t
(4) a 4 , π , b1 0 , b2 3 , D (4 cos π) sin π=9 0 ,且
2 2
由公式 (11 2 14) 得 = [0 (4 cos π) 3 sin π]=0 , = [3(4 cos π) 0 sin π]=1 , 方程通解为 yt A(4) sin πt ,以 t 0 时 y0 1 代入上式,得 A 1 ,故原方程特解为:

曹定华版《微积分》课后习题答案(上)

曹定华版《微积分》课后习题答案(上)

2.用区间表示下列函数的定义域:1(1)(2)arcsin(1)lg(lg );1(3).ln(2) y y x x xy x ==-+=-(3)要使函数有意义,必须2650ln(2)020x x x x ⎧--≥⎪-≠⎨⎪->⎩即6112x x x -≤≤⎧⎪≠⎨⎪<⎩所以函数的定义域是-6≤x <1,用区间表示就是[-6,1].8. 求下列函数的反函数:22(1)2sin 3,,;(2);66212101,(3)()2(2)1 2.xx y x x y x x f x x x ππ⎡⎤=∈-=⎢⎥+⎣⎦-≤≤⎧=⎨--<≤⎩(2)由221x x y =+得21xy y =-,即2log 1y x y =-.所以函数221xx y =+的反函数为2log (01)1x y x x =<<-. 习题1-21.下列初等函数是由哪些基本初等函数复合而成的? (1) y=; (2) y =sin 3ln x ;(3) y = tan 2x a ; (4) y =ln [ln 2(ln 3x )].解 (1)令arcsin xu a =,则y =,再令xv a =,则arcsin u v =,因此y =是由基本初等函数arcsin ,x y u v v a ===复合而成的.(4)令23ln (ln )u x =,则ln y u =,再令3l n (l n )v x =则2u v =,再令3ln w x =,则ln v w =,再令ln t x =,则3w t =,因此23ln[ln (ln )]y x =是由基本初等函数2l n ,,l n,y u u v v w === 3,ln w t t x ==复合而成.3. 利用夹逼定理证明:(1) lim n →∞222111(1)(2)n n n ⎛⎫+++ ⎪+⎝⎭=0; (2) lim n →∞2!nn =0.证:(1)因为222222111112(1)(2)n n nn n n n n nn++≤+++≤≤=+而且 21lim0n n →∞=,2lim 0n n→∞=, 所以由夹逼定理,得222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭. (2)因为22222240!1231n n n n n<=<-,而且4lim 0n n →∞=,所以,由夹逼定理得2lim 0!nn n →∞= 4.利用单调有界数列收敛准则证明下列数列的极限存在. (1) x n =11ne +,n =1,2,…; (2) x 1x n +1,n =1,2,…. 证:(1)略。

《微积分》课后答案(复旦大学出版社(曹定华_李建平_毛志强_著))第三章

《微积分》课后答案(复旦大学出版社(曹定华_李建平_毛志强_著))第三章

第三章习题3-11.设s =12gt 2,求2d d t s t =.解:22221214()(2)2lim lim 22t t t g g ds s t s dt t t t →→=-⨯-==--21lim (2)22t g t g →=+=2.设f (x )=1x,求f '(x 0)(x 0≠0).解:1211()()()f x x x x--'''===00201()(0)f x x x '=-≠3.试求过点(3,8)且与曲线2y x =相切的直线方程。

解:设切点为00(,)x y ,则切线的斜率为002x x y x ='=,切线方程为0002()y y x x x -=-。

由已知直线过点(3,8),得00082(3)y x x -=-(1)又点00(,)x y 在曲线2y x =上,故200y x =(2)由(1),(2)式可解得002,4x y ==或004,16x y ==,故所求直线方程为44(2)y x -=-或168(4)y x -=-。

也即440x y --=或8160x y --=。

4.下列各题中均假定f ′(x 0)存在,按照导数定义观察下列极限,指出A 表示什么:(1)0limx ∆→00()()f x x f x x-∆-∆=A ;(2)f (x 0)=0,0limx x →0()f x x x-=A ;(3)0limh →00()()f x h f x h h+--=A .解:(1)0000000()()[()]()limlim ()x x f x x f x f x x f x f x xx →-→--+--'=-=-- 0()A f x '∴=-(2)000000()()()limlim ()x x x x f x f x f x f x x x x x →→-'=-=--- 0()A f x '∴=-(3)000()()limh f x h f x h h→+-- 00000[()()][()()]lim h f x h f x f x h f x h→+----=000000()()[()]()lim lim h h f x h f x f x h f x h h →-→+-+--=+-000()()2()f x f x f x '''=+=02()A f x '∴=5.求下列函数的导数:(1)y;(2)y;(3)y2.解:(1)12y x==11221()2y x x -''∴===(2)23y x-=225133322()33y x x x ----''∴==-=-=(3)2152362y x x xx-==15661()6y x x -''∴===6.讨论函数y在x =0点处的连续性和可导性.解:00(0)x f →==000()(0)0lim lim 0x x x f x f x x →→→--===∞-∴函数y =在0x =点处连续但不可导。

微积分(曹定华)(修订版)课后题答案第二章习题详解

微积分(曹定华)(修订版)课后题答案第二章习题详解

第二章习题2-11. 试利用本节定义5后面的注(3)证明:若lim n →∞x n =a ,则对任何自然数k ,有lim n →∞x n +k =a .证:由lim n n x a →∞=,知0ε∀>,1N ∃,当1n N >时,有n x a ε-<取1N N k =-,有0ε∀>,N ∃,设n N >时(此时1n k N +>)有n k x a ε+-<由数列极限的定义得 lim n k x x a +→∞=.2. 试利用不等式A B A B -≤-说明:若li m n →∞x n =a ,则lim n →∞∣x n ∣=|a|.考察数列x n =(-1)n ,说明上述结论反之不成立.证:lim 0,,.使当时,有n x n x aN n N x a εε→∞=∴∀>∃>-<而 n n x a x a -≤- 于是0ε∀>,,使当时,有N n N ∃>n n x a x a ε-≤-< 即 n x a ε-<由数列极限的定义得 lim n n x a →∞=考察数列 (1)nn x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞=,所以前面所证结论反之不成立。

3. 利用夹逼定理证明:(1) lim n →∞222111(1)(2)n n n ⎛⎫+++ ⎪+⎝⎭=0; (2) lim n →∞2!nn =0.证:(1)因为222222111112(1)(2)n n nn n n n n nn++≤+++≤≤=+而且 21lim0n n →∞=,2lim 0n n→∞=, 所以由夹逼定理,得222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭. (2)因为22222240!1231n n n n n<=<-,而且4lim 0n n →∞=,所以,由夹逼定理得2lim 0!nn n →∞= 4. 利用单调有界数列收敛准则证明下列数列的极限存在. (1) x n =11ne +,n =1,2,…;(2) x 1,x n +1n =1,2,…. 证:(1)略。

微积分(曹定华)(修订版)课后题答案第二章习题详解

微积分(曹定华)(修订版)课后题答案第二章习题详解

微积分(曹定华)(修订版)课后题答案第二章习题详解本文将详细解答曹定华《微积分》修订版第二章的课后习题。

第二章主要涉及导数的基本概念和基本公式,包括导数定义、可导性、导数计算公式等。

本章共计43道习题,以下将一一解答。

2.1 导数的定义及其物理隐含义习题2.11. 求函数f(x)=3x2+2的导数。

根据导数公式,对于幂函数y=xn,其导数为y’=nxn-1。

因此,对于本题中的函数f(x)=3x2+2,其导数为f’(x)=6x。

2. 求函数f(x)=x3-5x+1在x=2处的导数。

同样地,根据导数公式,对于幂函数y=xn,其导数为y’=nxn-1。

因此,对于本题中的函数f(x)=x3-5x+1,其导数为f’(x)=3x2-5。

将x=2代入,则得到f’(2)=3*(22)-5=7。

习题2.21. 用导数的定义证明函数f(x)=2x在任意一点处的导数为2。

根据导数的定义,对于函数f(x)在x=a处的导数,有f’(a)=lim(h->0) [(f(a+h)-f(a))/h]。

因此,代入本题中的函数f(x)=2x,得到f’(a)=lim(h->0) [(2(a+h)-2a)/h],化简可得f’(a)=2。

因此,函数f(x)=2x在任意一点处的导数均为2。

2. 求f(x)=x2+3x的可导性,并说明理由。

对于函数f(x)=x2+3x,在任意一点x处的导数为f’(x)=2x+3。

因此,对于任意值x,均存在导数f’(x)。

因此,函数f(x)在定义域内可导。

2.2 基本导数公式习题2.31. 求函数f(x)=sin(x)在x=π/6处的导数。

根据导数公式,对于正弦函数y=sin(x),其导数为y’=cos(x)。

因此,对于本题中的函数f(x)=sin(x),其导数为f’(x)=cos(x)。

将x=π/6代入,则得到f’(π/6)=cos(π/6)=√3/2。

2. 求函数f(x)=2x在x=0处的导数。

微积分(曹定华)(修订版)课后题答案第二章习题详解

微积分(曹定华)(修订版)课后题答案第二章习题详解

第二章 习题2-11. 试利用本节定义5后面的注(3)证明:若lim n →∞x n =a ,则对任何自然数k ,有lim n →∞x n +k =a .证:由lim nn x a →∞=,知0ε∀>,1N ∃,当1n N >时,有取1N N k =-,有0ε∀>,N ∃,设n N >时(此时1n k N +>)有由数列极限的定义得lim n k x x a +→∞=.2. 试利用不等式A B A B -≤-说明:若lim n →∞x n =a ,则lim n →∞∣x n ∣=|a|.考察数列x n =(-1)n ,说明上述结论反之不成立.证:而 n n x a x a -≤-于是0ε∀>,,使当时,有N n N ∃>n n x a x a ε-≤-< 即 n x a ε-<由数列极限的定义得l i m n n x a →∞=考察数列 (1)nn x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞=,所以前面所证结论反之不成立。

3. 利用夹逼定理证明:(1) lim n →∞222111(1)(2)n n n ⎛⎫+++ ⎪+⎝⎭=0; (2) lim n →∞2!nn =0.证:(1)因为222222111112(1)(2)n n nn n n n n n n++≤+++≤≤=+而且21lim0n n →∞=,2lim 0n n→∞=,所以由夹逼定理,得222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭. (2)因为22222240!1231n n n n n<=<-,而且4lim 0n n →∞=,所以,由夹逼定理得4. 利用单调有界数列收敛准则证明下列数列的极限存在. (1) x n =11ne +,n =1,2,…;(2) x 1,x n +1=,n =1,2,….证:(1)略。

微积分(曹定华)(修订版)课后题答案第四章习题详解

微积分(曹定华)(修订版)课后题答案第四章习题详解

习题 4-11.验证函数f (x )=lnsin x 在[π5π,66]上满足罗尔定理的条件,并求出相应的ξ,使f ′(ξ)=0.解: 显然()ln sin f x x =在5π,66x ⎡⎤⎢⎥⎣⎦上连续,在π5π,66⎛⎫⎪⎝⎭内可导,且π5π()()ln 266f f ==-,满足罗尓定理的条件. 令cos ()cot 0sin xf x x x '===,则π2x =即存在ππ5π(,)66ξα=∈,使()0f ξ'=成立.2. 下列函数在指定区间上是否满足罗尔定理的三个条件?有没有满足定理结论中的ξ ?[][][]2(1)()1,;(2)(),;1,10,21sin ,0π(3)()0,π1,exf x f x x x x f x x =-=--<≤⎧=⎨=⎩解: (1) 2()1e x f x =-在[]1,1-上连续,在()1,1-内可导,且(1)1,(1)1,e e f f -=-=- 即 (1)(1)f f-= () f x ∴在[]1,1-上满足罗尓定理的三个条件. 令 2()20e x f x x '==得 0x =, 即存在0(1,1)ξ=∈-,使()0f ξ'=.(2) 101()1112xx f x x x x -≤<⎧==-⎨-≤≤⎩显然()f x 在(0,1),(1,2)内连续,又1111(10)lim ()lim (1)0,(10)lim ()lim (1)0,(10)(10)(1)0,即x x x x f f x x f f x x f f f --++→→→→-==-=+==-=-=+==所以()f x 在1x =处连续,而且22(00)lim ()lim (1)1(0),(20)lim ()lim (1)1(2),x x x x f f x x f f f x x f ++--→→→→+==-==-==-==即()f x 在0x =处右连续,在2x =处左连续,所以()f x 在[]0,2 上连续.又1111()(1)1(1)lim lim 1,11()(1)1(1)lim lim 111x x x x f x f x f x x f x f x f x x --++-→→+→→--'===-----'===--(1)(1)(f f f x -+''∴≠∴在1x =处不可导,从而()f x 在(0,2)内不可导. 又 (0)(2)1f f ==又由 101()112x f x x -<<⎧'=⎨<<⎩ 知 ()0f x '≠综上所述,函数()f x 满足罗尓定理的条件(1),(3)不满足条件(2),没有满足定理结论的ξ. (3) 由0(00)lim sin 0(0)1x f x f +→+==≠=知()f x 在0x =不右连续,() f x ∴在[]0,π上不连续,显然()f x 在()0,π上可导,又(0)1,(π)0f f ==,即(0)(π)f f ≠,且()cos (0,π) f x x x '=∈,取π(0,π)2ξ=∈,有π()cos cos02f ξξ'===.综上所述,函数()f x 满足罗尓定理的条件(2),不满足条件(1),(3),有满足定理结论的ξ,ξ=π2.3. 不用求出函数()(1)(2)(3)f x x x x =---的导数,说明方程()0f x '=有几个实根,并指出它们所在的区间.解: 显然()f x 在[]1,2上连续,在()1,2内可导,且(1)(2)0f f ==,由罗尓定理知,在()1,2内至少存在一点1ξ,使1()0f ξ'=,即()0f x '=在()1,2内至少有一个实根.同理 ()0f x '=在()2,3内也至少有一个实根2ξ.又()0f x '=是二次方程,最多有两个实根,故()0f x '=有两个实根,分别在区间()1,2和()2,3内.4. 验证拉格朗日中值定理对函数3()2f x x x =+在区间[0,1]上的正确性.解: 显然3()2f x x x =+在[0,1]上连续,在()0,1内可导,满足拉格朗日中值定理的条件.若令2(1)(0)()32310f f f x x-'=+==-则3x =±,取3ξ=,即存在(0,1)3ξ=,使得(1)(0)()10f f f ξ-=-成立.从而拉格朗日中值定理对函数3()2f x x x =+在[0,1]上成立.5※. 设()f x '在[a ,b ]上连续,在[a ,b ]内可导,f ′(a ) = 0,f ′′(x ) > 0,证明:f ′(a )> f (b )。

《微积分》课后答案(复旦大学出版社(曹定华 李建平 毛志强 著))第六章 定积分

《微积分》课后答案(复旦大学出版社(曹定华 李建平 毛志强 著))第六章 定积分
x
x
ar
1
1 (b3 a 3 ) (b a) 3
1+x.所以
4. 估计下列各积分值的范围:
1
天天learn()为您提供大学各个学科的课后答案、视频教程在线浏览及下载。
n.
2 3 1
x
n b 1 S ( x 2 1)dx lim f (i )Δxi (b a)[a 2 (b a) 2 a(b a) 1] a n 3 i 1
t
此文档由天天learn()为您收集整理。
(1)

4
1
( x 2 1)dx ; e x dx (a>0);
2
2
(2)


3 1 3 0
x arctan xdx ;
2
(3) 解
a
a
(4)
2
ex
x
dx .
(1)在区间[1,4]上,函数 f ( x) x 1 是增函数,故在[1,4]上的最大值 M f (4) 17 ,最
2
w.
f (a ) f ( a ) e a ,a>0 时, e a 1 ,故 f ( x) 在[-a,a]上的最大值 M=1,最小值
m e a ,所以
ww
2
tt
2
le
2
2ae a e x dx 2a .
2
ar
a
,令 f ( x) 0 得驻点 x=0,又 f (0) 1 ,
2
0
(1)

4
le
1
所以当 x=0 时,I(x)有极小值,且极小值为 I(0)=0. 5. 计算下列定积分:

《微积分》课后答案(复旦大学出版社(曹定华 李建平 毛志强 著))第四章

《微积分》课后答案(复旦大学出版社(曹定华 李建平 毛志强 著))第四章

习题 4-11.验证函数f (x )=lnsin x 在[π5π,66]上满足罗尔定理的条件,并求出相应的ξ,使f ′(ξ)=0. 解: 显然()ln sin f x x =在5π,66x ⎡⎤⎢⎥⎣⎦上连续,在π5π,66⎛⎫⎪⎝⎭内可导,且π5π()()ln 266f f ==-,满足罗尓定理的条件. 令cos ()cot 0sin x f x x x '===,则π2x = 即存在ππ5π(,)66ξα=∈,使()0f ξ'=成立.2. 下列函数在指定区间上是否满足罗尔定理的三个条件?有没有满足定理结论中的ξ ? [][][]2(1)()1,;(2)(),;1,10,21sin ,0π(3)()0,π1,0e x f x f x x x x f x x =-=--<≤⎧=⎨=⎩解: (1) 2()1e x f x =-在[]1,1-上连续,在()1,1-内可导,且(1)1,(1)1,e e f f -=-=-即 (1)(1)f f -=() f x ∴在[]1,1-上满足罗尓定理的三个条件. 令 2()20ex f x x '==得 0x =,即存在0(1,1)ξ=∈-,使()0f ξ'=.(2) 101()1112x x f x x x x -≤<⎧==-⎨-≤≤⎩显然()f x 在(0,1),(1,2)内连续,又1111(10)lim ()lim(1)0,(10)lim ()lim(1)0,(10)(10)(1)0,即x x x x f f x x f f x x f f f --++→→→→-==-=+==-=-=+==所以()f x 在1x =处连续,而且22(00)lim ()lim (1)1(0),(20)lim ()lim (1)1(2),x x x x f f x x f f f x x f ++--→→→→+==-==-==-==即()f x 在0x =处右连续,在2x =处左连续,所以()f x 在[]0,2 上连续.又w ww .t tl ea rn .n et1111()(1)1(1)lim lim 1,11()(1)1(1)lim lim 111x x x x f x f xf x x f x f xf x x --++-→→+→→--'===-----'===--(1)(1)() f f f x -+''∴≠∴在1x =处不可导,从而()f x 在(0,2)内不可导. 又 (0)(2)1f f == 又由 101()112x f x x -<<⎧'=⎨<<⎩知 ()0f x '≠ 综上所述,函数()f x 满足罗尓定理的条件(1),(3)不满足条件(2),没有满足定理结论的ξ. (3) 由0(00)lim sin 0(0)1x f x f +→+==≠=知()f x 在0x =不右连续, () f x ∴在[]0,π上不连续, 显然()f x 在()0,π上可导,又(0)1,(π)0f f ==,即(0)(π)f f ≠,且()cos (0,π) f x x x '=∈,取π(0,π)2ξ=∈,有π()cos cos 02f ξξ'===. 综上所述,函数()f x 满足罗尓定理的条件(2),不满足条件(1),(3),有满足定理结论的ξ,ξ=π2.3. 不用求出函数()(1)(2)(3)f x x x x =---的导数,说明方程()0f x '=有几个实根,并指出它们所在的区间.解: 显然()f x 在[]1,2上连续,在()1,2内可导,且(1)(2)0f f ==,由罗尓定理知,在()1,2内至少存在一点1ξ,使1()0f ξ'=,即()0f x '=在()1,2内至少有一个实根.同理 ()0f x '=在()2,3内也至少有一个实根2ξ.又()0f x '=是二次方程,最多有两个实根,故()0f x '=有两个实根,分别在区间()1,2和()2,3内.4. 验证拉格朗日中值定理对函数3()2f x x x =+在区间[0,1]上的正确性.解: 显然3()2f x x x =+在[0,1]上连续,在()0,1内可导,满足拉格朗日中值定理的条件.若令2(1)(0)()32310f f f x x -'=+==- 则3x =±,取3ξ=,即存在w ww .t tl ea rn .n et(0,1)3ξ=∈,使得(1)(0)()10f f f ξ-=-成立. 从而拉格朗日中值定理对函数3()2f x x x =+在[0,1]上成立.5. 已知函数f (x )在[a ,b ]上连续,在(a ,b )内可导,且f (a )=f (b )=0,试证:在(a ,b )内至少存在一点ξ,使得 f (ξ)+f ′(ξ) = 0,ξ(∈a ,b ). 证: 令()()e xF x f x =,则()()()e e xxF x f x f x ''=+由e x在(),-∞+∞上连续,可导,()f x 在[],a b 上连续,在(),a b 内可导,知()F x 在[],a b 上连续,在(),a b 内可导,而且()()0,()()0,()()e e 即abF a f a F b f b F a F b =====,由罗尓定理至少存在一点(,)a b ξ∈使()0F ξ'=.即 ()()0e e f f ξξξξ'+= 而0e ξ≠ 故 ()()0f f ξξ'+=即在(),a b 内至少存在一点ξ,使得()()0f f ξξ'+=.6.若方程10110n n n a x a x a x --+++= 有一个正根x 0,证明方程12011(1)0n n n a nx a n x a ---+-++=必有一个小于0x 的正根.证: 令1011()…nn n f x a x a xa x --=+++,显然()f x 在[]00,x 连续,在()00,x 内可导,且(0)0f =,依题意知0()0f x =.即有0(0)()f f x =.由罗尓定理,至少存在一点0(0,)x ξ∈,使得()0f ξ'=成立,即12011(1)0…n n n a n a n a ξξ---+-++=成立,这就说明ξ是方程12011(1)0n n n a nx a n x a ---+-++= 的一个小于0x 的正根. 7. 设f (a ) = f (c ) = f (b ),且a <c <b , f ″(x )在[a ,b ]上存在,证明在(a ,b )内至少存在一点ξ,使f ″(ξ) = 0.证: 显然()f x 分别在[],a c 和[],c b 上满足罗尓定理的条件,从而至少存在1(,)a c ξ∈,2(,)c b ξ∈,使得12()()0f f ξξ''==.w ww .t tl ea rn .n et又由题意知()f x '在[]12,ξξ上满足罗尓定理的条件,从而至少存在一点12(,)(,)a b ξξξ∈⊂,使得()0f ξ''=.即在(,)a b 内至少存在一点ξ,使()0f ξ''=. 习题4-2 1.利用洛必达法则求下列极限: (1) sin 3limtan 5x x x π→; (2) 0e 1lim (e 1)x x x x x →---; (3)lim m m n n x a x a x a →--; (4) 20()lim x xx a x a x →+-,(a >0); (5) 0ln lim cot x xx +→; (6) 0lim sin ln x x x +→;(7) 1ln(1)lim arccot x x x →+∞+; (8) 0e 1lim(e 1x x x x →--;(9) 10lim(1sin )xx x →+; (10) 2lim (arctan )πx x x →+∞(11) csc 03e lim(2x x x x →-+ ; (12) 2120lim e x x x →;(13) lim )x x →+∞-; (14) 1101lim (1)e xxx x →⎡⎤+⎢⎥⎣⎦.解:222000011sin 33cos33(1)limlim lim cos3cos 5tan 55sec 5533(1)(1)5511(2)limlim lim (1)111lim 22(3)lim lim limπππe e e e e e e e e x x x x x xx x x x x xx x x x m m m n n n x a x a x a x x x x x x x x x x x x a mx x a nx →→→→→→→--→→→==⋅=⋅-⋅-=----==--+++==+-==-.m n m n m m x a n n --= 2002220()ln ln()()(4)lim lim 21()()()ln ln()()lim2x xxxx x x x x x x a x a a a x a x a a x x xa x a x a x a a a x a x a x a x →→→⎡⎤+-++⎢⎥+-+⎣⎦=⎡⎤++++-++⎢⎥+++⎣⎦=w ww .t tl ea rn .n et[]2000221()ln ln 012 aa a a aa a a a ++-⋅+==2200000000001ln sin 2sin cos (5)lim lim lim lim cot csc 12sin 0cos 001ln sin (6)lim sin ln lim lim lim tan csc csc cot sin lim lim tan 100 x x x x x x x x x x x x x x x x x x x x x x x xx x x xxx x ++++++++++→→→→→→→→→→==-=--=-⋅====-⋅-=-⋅=-⨯=222221111ln(1111(7)limlim lim lim 111cot 11arc x x x x xx x x x x x x x x →+∞→+∞→+∞→+∞-++++====+-++ 20002200001(1)(8)lim()lim lim 1(1)21443limlim 12022e e e e e e e e e e e e e e e e e e e x x x x x x x x x x x x xxxx x x x x x x x x x x xx x →→→→→-----==-------====+-++00022cos 11ln(1sin )cos 1sin ln(1sin )lim limlim 11sin 12112ln(arctan )arctan 1limlim 112ln(arctan )(9)lim(1sin )lim 2(10)lim (arctan )lim πππee =eee ee eeπx x x x x xx xx x xxxxx x x x x x x x xxx x x x →→→→+∞→+∞++++→→⋅⋅+-→+∞→+∞+========2221lim12lim(1)arctan (1)arctan πeeex x x x x xx→+∞→+∞--+-+===020033lnln322csc ln lim csc 2sin sin 0002(2)(3)33(2)limlim 1(3)(2)cos cos 3(11)lim()lim lim 21e e e e e e e e eee ee exxxx x x x x x x x x e e ex x x x xxxxx x x x x x x x xxx →→→---+++→→→+-+--⋅----+--+-===+====2222111122000221()(12)lim lim lim lim 11()e e ee x xx x x x x x x x x x→→→→'⋅====∞'w ww .t tl ea rn .n et202211ln(1)1ln(1)1limlim lim 0(13)lim )lim1111lim31(14)lim (1) ee ee x x x x x x x x xx xxx x x x x →→→+∞→+∞+-+-→=++===⎡⎤===+⎢⎥⎣⎦00111211lim2(1)2eex x xx →→-+--+==2.设 21lim 1x x mx nx →++-=5,求常数m ,n 的值.解: 1lim(1)0, x x →-= 而21lim 51x x mx nx →++=-21lim()0 x x mx n →∴++= 且21()lim5(1)x x mx n x →'++='- 即 10m n ++= 且 1lim(2)5x x m →+=即 1m n +=- 且 25m +=于是得 3,4m n ==-. 3.验证极限sin lim x x xx→∞+存在,但不能由洛必达法则得出. 解: sin 1limlim(1sin )1x x x x x x x→∞→∞+=+=,极限存在,但若用洛必达法则,有sin lim lim(1cos )x x x xx x→∞→∞+=+因lim cos x x →∞不存在,所以不能用洛必达法则得出.4.设f (x )二阶可导,求2()2()()limh f x h f x f x h h →+-+-.解: 这是型未定式,利用洛必达法则有 [][]200000()2()()()()limlim2()()()()1lim 21()()1()()11lim lim ()()2222().h h h h h f x h f x f x h f x h f x h h hf x h f x f x h f x hf x h f x f x h f x f x f x h h f x →→→→→''+-+-+--=''''-+---=''''+---''''=+=+-''= w ww .t tl ea rn .n et5.设f (x )具有二阶连续导数,且f (0) = 0,试证g (x ) = (),0'(0),0f x x x f x ⎧≠⎪⎨⎪=⎩可导,且导函数连续. 证: 当0x ≠时,2()()()()()f x xf x f x g x x x '-''==当0x =时,由200000()(0)()(0)()(0)lim lim lim 00()(0)1()(0)1lim lim (0)2202x x x x x f x f g x g f x xf x x x x f x f f x f f x x →→→→→'-'--==--''''--''===- 即 1(0)(0)2g f '''=所以 2()(),0()1(0),02xf x f x x xg x f x '-⎧≠⎪⎪'=⎨⎪''=⎪⎩由(),()f x f x '的连续性知()g x '在0x ≠处连续,又20000()()()()()lim ()limlim 211lim ()(0)(0)22x x x x xf x f x f x xf x f x g x x xf x fg →→→→'''''-+-'=='''''=== 故()g x '在0x =处连续,所以()g x '在(),-∞+∞内处处连续.综上所述,(),0()(0),0f x xg x x f x ⎧≠⎪=⎨⎪'=⎩可导,且导函数连续. 习题4-31.求函数f (x ) =e x x 的n 阶马克劳林公式.解:()()(1),()(1)(2),()()ٛ… x x x x x x k x f x e xe e x f x e x e e x f x e k x '=+=+''=++=+=+w ww .t tl ea rn .n et()()(0)1(0),(1,2,3,)!!(1)!k k f k fk k k k k ∴====- 又 (0)0f =321(1)()(01)2!(1)!(1)!n x n x x e n x f x x x x n n θθθ+++∴=+++++<<-+ 2.当01x =-时,求函数f (x ) = 1x的n 阶泰勒公式. 解:()()[]23()2341()1()112212!3!!()(1),()(1),()(1),,()(1)!(1)(1)!(1)(1)!1,(0,1,2,)!!(1)()(1)1(1)111(1)ٛ … n n n n n n n n n n n n f x f x f x f x x x x x n f n f n n n n x f x x x x x θ-++++''''''=-=-=-=-∴-=-⋅=----==-=+∴=-+-⎡⎤+++++++⎣⎦-++(01)θ<<3.按(4)x -的乘幂展开多项式432()53 4.f x x x x x =-+-+ 解: 函数432()534f x x x x x =-+-+,根据泰勒公式按(4)x -的幂的展开式是2(4)34(4)()(4)(4)(4)(4)2!(4)(4)(4)(4)3!4! f f x f f x x f f x x '''=+-+-'''+-+- 而[][][]432324244(4)(4)454434456,(4)21,41523(4)137,123022!2(4)111,24303!3!(4)12414!4!x x x f f x x x f x x f x f ====-⨯+-⨯+=-'==-+-''==-+'''==-=⨯=所以,234()5621(4)37(4)11((4)(4)f x x x x x =-+-+-+-+-.4.利用泰勒公式求下列极限: w ww .t tl ea rn .n et(1) 30sin limx x x x →-; (2) 21lim ln(1)x x x x →+∞⎡⎤-+⎢⎥⎣⎦. 解: (1) 利用泰勒公式,有34sin ()3!x x x o x =-+所以 343300430()sin 3!lim lim 1()1lim()66x x x x o x x x x x o x x→→→--==-= (2) 利用泰勒公式,有221111ln(1(2o x x x x+=-+,所以222222221111lim lim ln(1(())21()1111lim lim .(1222x x x x x x x x o x x x x o x x o x x →+∞→+∞→+∞→+∞⎡⎤⎡⎤=-+--+⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎢⎥⎡⎤==-=-⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦习题4-4 1. 求下面函数的单调区间与极值: (1)32()26187f x x x x =---; (2)()ln f x x x =-; (3)23()1(2)f x x =--; (4)()(4)f x x x =-. 解: (1) 2()612186(1)(3),f x x x x x '=--=+-令()0f x '=得驻点121,3,x x =-=-在()(),,13,-∞-+∞上,()0f x '>,在()1,3-上()0f x '< ∴ ()f x 在(,1],[3,)-∞-+∞上单调增加,在[]1,3-上单调减少.当 1x =-时, ()f x 有极大值,极大值为(1)3f -=, 当 3x =时, ()f x 有极小值,极小值为(3)61f =-.w ww .t tl ea rn .n et(2) 11()1x f x x x-'=-=,令()0f x '=得驻点1x = 在()0,1上,()0f x '<;在()1,+∞上,()0f x '> ∴ ()f x 在(0,1]上单调递减;在[1,)+∞上单调递增. 当1x =时,()f x 有极小值,极小值为(1)1f =.(3) ()()0f x f x ''=≠ 但当2x =时,()f x '不存在, 在(,2)-∞上,()0f x '>;在(2,)+∞上,()0f x '<,∴ ()f x 在(,2]-∞上单调递增;在[2,)+∞上单调递减.当2x =时, ()f x 有极大值,极大值为(2)1f =.(4) 2240()40x xx f x x xx ⎧-≥=⎨-+<⎩ ,则 240()240x x f x x x ->⎧'=⎨-+<⎩且当 0x =时,()f x '不存在,又令()0f x '=得2x =在(,0),(2,)-∞+∞上,()0f x '>,在(0,2)上()0f x '<∴ ()f x 在(,0],[2,)-∞+∞上单调递增;在[0,2]上单调递减;当0x =时,()f x 有极大值,极大值为(0)0f =; 当2x =时, ()f x 有极小值,极小值为(2)4f =-. 2. 试证方程sin x = x 只有一个根.证: 显然0x =是方程sin x x =得一个根(亦可将()sin f x x x =-运用零点定理).令()sin f x x x =-,则()cos 10f x x '=-≤,而()0f x '=的点不是单调区间的分界点,故()f x 在(,)-∞+∞内单调下降,所以()f x 在(,)-∞+∞内只有一个零点,即方程sin x x =只有0x =一个根. 3. 已知()([0,))f x C ∈+∞,若f (0) = 0, f ′(x )在[0,)+∞内存在且单调增加,证明()f x x在[0,+∞)内也单调增加. 解: 0 x ∀>,由题意知()f x 在[]0,x 上满足拉格朗日中值定理的条件,利用拉格朗日中值定理得,(0,) x ξ∃∈,使w ww .t tl ea rn .n et()(0)()f x f xf ξ'-=, 因 ()f x '在[0,)+∞单调增加,且(0)0f =,所以()()()f x xf xf x ξ''=≤ 即 ()()0xf x f x '-≥令 ()()(0) f x F x x x=>,则 2()()()0xf x f x F x x '-'=≥ 所以()F x 单调递增,即 ()f x x在(0,)+∞内单调增加.4. 证明下列不等式: (1) 1+12xx >0; (2)2ln(1)(0)2 x x x x x -<+<>.证: (1) 令1()12f x x =+,则1()(12f x '=, 当 0x >时1,()0f x '<>即()f x 单调递增,从而 ()(0)0f x f >=,故112x +>. (2) 令 2()ln(1)2x f x x x =+-+,则 21()111x f x x x x '=-+=++ 当 0x >时,有()0f x '>,即()f x 单调递增,从而()(0)0f x f >= ,即2ln(1)2x x x +>-又令 ()ln(1)g x x x =-+,则1()111xg x x x'=-=++ 当 0x >时,()0g x '>,即 ()g x 单调递增,从而()(0)0g x g >=,即ln(1)x x >+.综上所述,当0x >时有2ln(1)2x x x x -<+<. 5. 试问a 为何值时,f (x ) = a sin x +13sin 3x 在x =3π处取得极值?是极大值还是极小值?并求出此极值. 解: ()cos cos3f x a x x '=+w ww .t tl rn et若3πx =为极值点,则cos cos 03ππa +=,所以2a =.又()2sin 3sin 3,()03πf x x x f ''''=--=<故函数在3πx =处取得极大值,极大值为(3πf =.习题4 - 51. 某个体户以每条10元的价格购进一批牛仔裤,设此批牛仔裤的需求函数为402Q P =-,问该个体户应将销售价定为多少时,才能获得最大利润? 解: 利润2()10260400L P PQ Q P P =-=-+-,()460L P P '=-+,令 ()0L P '=得 P =15所以应将销售价定为每条15元,才能获得最大利润.2.设 f (x ) = cx α (c >0,0<α<1)为一生产函数,其中c 为效率因子,x 为投入量,产品的价格P 与原料价格Q 均为常量,问:投入量为多少时可使利润最大? 解: 依题意,总利润()()()L x Pf x Q x P cx Qx α=-=⋅-则 1()L x Pc xQ αα-'=-令 ()0L x '=得 11Q x Pc αα-⎛⎫=⎪⎝⎭所以,投入量为11Q Pc αα-⎛⎫⎪⎝⎭时利润最大.3. 某产品的成本函数为23()156C Q Q Q Q =-+,(1) 生产数量为多少时,可使平均成本最小?(2) 求出边际成本,并验证边际成本等于平均成本时平均成本最小. 解: (1) 2()()156C Q C Q Q Q Q==-+ 令 260()Q C Q '=-=⎡⎤⎣⎦得Q =3 故 生产数量3Q =时,可使平均成本最小. (2) 2()15123MC C Q Q Q '==-+当 3Q =时,15123396MC =-⨯+⨯= 2()156336C Q =-⨯+=w ww .t tl ea rn .n et即边际成本等于平均成本时平均成本最小. 4. 已知某厂生产Q 件产品的成本为C =25000+2000Q +1402Q (元). 问:(1) 要使平均成本最小,应生产多少件产品?(2) 若产品以每件5000元售出,要使利润最大,应生产多少件产品? 解: (1) 平均成本 250001()200040C Q Q Q =++ 边际成本1()200020C Q Q '=+. 当()()C Q C Q '=时,平均成本最小,由()()C Q C Q '=即2500011200020004020Q Q Q ++=+ 得1000Q =(负值不合题意已舍去).所以要使平均成本最小,应生产1000件产品. (2)221()5000()500025000200040130002500040L Q Q C Q Q Q Q Q Q =-=---=-+-令 1()3000020L Q Q '=-+=, 得60000Q =(件) 所以应生产60000件产品.5. 某厂全年消耗(需求)某种钢材5170吨,每次订购费用为5700元,每吨钢材单价为2400元,每吨钢材一年的库存维护费用为钢材单价的13.2%,求: (1) 最优订购批量; (2) 最优批次; (3) 最优进货周期; (4) 最小总费用.解: 由题意 215170,5700,1,240013.2%316.8 R C T C ====⨯= 则(1)最优订购批量*431.325q === (2)最优批次 5170*12*431.325R n q ==≈(次) w ww .t tl ea rn .n et(3)最优进货周期 36530.452*12T t n ===(天) (4)最小总费用*136643.9E ==≈(元)6. 用一块半径为R 的圆形铁皮,剪去一圆心角为α的扇形后,做成一个漏斗形容器,问α为何值时,容器的容积最大?解: 设漏斗的底面半径为r ,高为h ,为了计算方便令2ϕπα=-,则2,,2ππR r R r h ϕϕ==== 漏斗的容积2322123(83)πππV hr V ϕϕ==<<'=-令 0V '=得10ϕ=(舍之),2ϕ=,34222237),40,9πππV V ϕϕϕ''=-+-⎫''=-<⎪⎭故当ϕ=时漏斗得容积最大.由2πϕα=-得2π2ππ3α=-=-, 所以,当2ππ3α=-时,容积最大. 7. 工厂生产出的酒可即刻卖出,售价为k ;也可窖藏一个时期后再以较高的价格卖出.设售价V 为时间t 的函数V = k ,(k >0)为常数.若贮存成本为零,年利率为r ,则应何时将酒售出方获得最大利润(按连续复利计算). 解: ()e rtrtA t k k -=⋅=令()0rt r A t k ⎫'-==⎪⎭得214t r = 所以,应窖藏214r 时以后售出可获得最大利润. 8. 若火车每小时所耗燃料费用与火车速度的三次方成正比,已知速度为20km/h ,每小时的w w.t tl ea rn .n et燃料费用40元,其他费用每小时200元,求最经济的行驶速度. 解: 设火车每小时所耗燃料费为Q ,则 3Q kv = (k 为比例常数) 依题意得 34020k =⋅, 解得 1200k =, 又设火车行驶()km s 后,所耗费用为, 32200(200)()s E kv kv s v v=+⋅=+ 令 2200()0100v E s v'=-=, 得27.14v =≈ (km/h), 所以,最经济得行驶速度为27.14 km/h.习题 4-61. 讨论下列函数的凸性,并求曲线的拐点:(1) y =2x -3x ; (2) y = ln(1+2x );(3) y = x e x; (4) y = 4(1)x ++e x;(5) y =2(3)x x +; (6) y=arctan e x. 解: (1)223,126,0.3令 得 y x x y x y x '=-''''=-==当13x <时,0y ''>; 当13x >时,0y ''<,且12()327f = 所以,曲线23y x x =-在1(,3-∞内是下凸的,在1(,)3+∞内是上凸的,点12(,)327是曲线的拐点.(2) 222222222(1)222(1),1(1)(1)x x x x x y y x x x +-⋅--'''===+++, 令0y ''=得,121,1x x =-=,这两点将定义域(,)-∞+∞分成三个部分区间,列表考察各部分区间上二阶导数得符号.x (,1)-∞-1-(1,1)-1(1,)+∞y' -0 + 0 -y上凸ln 2 下凸ln 2上凸所以,曲线2ln(1)y x =+在(,1)-∞-及(1,)+∞内是上凸的,在(1,1)-内是下凸的,点w ww .t tl ea rn .n et(1,ln 2)±是曲线的拐点.(3) 324(1),12(1)0x xy x e y x e '''=++=++> 所以,曲线在定义域(,)-∞+∞内处处下凸,没有拐点.(4) 343212,(3)(3)x x y y x x --'''==++,令 0y ''=得6x = 当 6x <时,0y ''<,当6x >时,0y ''>;又2(6)27f =,函数的定义域为(,3)(3,)-∞--+∞ ;所以曲线在(,3),(3,6)-∞--内上凸,在(6,)+∞内下凸,点2(6,)27是拐点. (6)arctan 2arctan arctan arctan 2222221112(12)(1)(1)(1)x x x x y e x x x e y e e x x x '=⋅+-''=⋅-⋅=+++令 0y ''= 得 12x =当 12x <时,0y ''>,当12x >时,0y ''<,且 1arctan 21(2e f =,所以曲线在1(,)2-∞内向下凸,在1(,)2+∞内向上凸,点1arctan 21(,)2e 是拐点.2. 利用函数的凸性证明下列不等式:(1)e e 2x y+>2e x y+, x ≠y ; (2) x ln x +y ln y >(x +y )ln2x y+,x >0,y >0,x ≠y .证: (1) 令()e x f x =,则()e x f x '=,()0e xf x ''=>,所以函数()f x 的曲线在定义域(,)-∞+∞内是严格下凸的,由曲线下凸的定义有: ()(),()()22x y f x f y x y f x y ++∀≠<≠ 即 22e e ex y x y ++< 即 2()2e e e x yx yx y ++>≠.w ww .t tl ea rn .n et(2) 令()ln f x x x =,则1()1ln ,()f x x f x x'''=+=当 0x >时,恒有()0f x >,所以()f x 的曲线在(0,)+∞内是严格下凸的,由曲线下凸的定义有, 0,0,,x y x y ∀>>≠有()()()22f x f y x y f ++>即ln ln ()ln222x x y x y x y+++> 即 ln ln ()ln 2x yx x y y x y ++>+.3. 当a ,b 为何值时,点(1,3)为曲线y =a 3x +b 2x 的拐点. 解: 因为32y ax bx =+是二阶可导的,所以在拐点处0y ''=,而 232,62y ax bx y ax b '''=+=+ 所以 620a b +=又拐点(1,3)应是曲线上的点,所以3a b +=解方程6203a b a b +=⎧⎨+=⎩ 得 39,22a b =-=所以当39,22a b =-=时,点(1,3)为曲线32y ax bx =+的拐点. 4. 求下列曲线的渐近线:(1) y = ln x ; (2)y =22x -; (3) y = 23x x -; (4) y = 221x x -.解: (1) 0lim lim ln x x y x ++→→==-∞,所以ln y x =有垂直渐近线 0x =. 又 lim x y →+∞=+∞,但1ln lim limlim 01x x x y xx y x x→+∞→+∞→+∞====,lim (0)x y x →+∞-⋅=∞, 所以不存在水平或斜渐近线.(2) 220x x -=,所以有水平渐近线0y =,又22lim 0x x x y x -→∞→∞== ,所以没有斜渐近线,w ww .t tl ea rn .n et又函数22x y -=没有间断点,因而也没有垂直渐近线.(3) 221limlim 0331x x xxx x →∞→∞==--,所以有水平渐近线0y =,又函数23x y x ==-有两个间断点x x ==,且22,,33x x x x x x=∞=∞--所以有两条垂直渐近线x =x =又 21lim lim 3x x y x x →∞→∞==∞-,所以没有斜渐近线.(4) 2lim lim 21x x x y x →∞→∞==∞- ,所以没有水平渐近线,又 函数221x y x =-有间断点12x =,且212lim 21x x x →=∞-,所以有垂直渐近线12x =.又 1limlim 212x x y x x x →∞→∞==- 2111lim()lim()lim 22122(21)4x x x x x y x x x x →∞→∞→∞-=-==--所以有斜渐近线1124y x =+. 5.作出下列函数的图形:(1) f (x ) =21xx+; (2) ()2arctan f x x x =- (3) ()2,(0,)e xf x x x -=∈+∞. 解: (1) (i) 定义域为(,)-∞+∞.()()f x f x -=- ,故曲线关于原点对称.(ii) 21lim limlim012x x x x y x x→∞→∞→∞===+ ,故曲线有渐近线0y =. (iii) 222222121,(1)(1)x x x x y x x +-⋅-'==++22223322423232(1)(1)2(1)222442(3)(1)(1)(1)x x x x x x x x x x x y x x x -+--⋅+⋅---+-''===+++, w ww .t tl ea rn .n et令0y '=即210x -=得驻点1x =±,又使0y ''=的点为0,x =.作图如下:图4-1(2) (i) 定义域为(,)-∞+∞.又 ()arctan y x x x y -=-+=-,故为奇函数.(ii) 2arctan lim ,limlim (1)1,x x x y xy x x→±∞→±∞→±∞=∞=-=πlim ()lim (2arctan )(2)()π2x x y x x →±∞→±∞-=-=-±= 所以有渐近线πy x = .(iii) 222211,11x y x x -'=-=++2222222(1)(1)24,(1)(1)x x x x xy x x +--⋅''==++令 0y '=得驻点1x =±,又使0y ''=的点为0x =. 列表如下:w ww .t tl e a rn .e图4-2(3) (i) 定义域为(,)-∞+∞,且()((,))f x C ∈-∞+∞. (ii) ()2(1),()2(2),e e xxf x x f x x --'''=-=-由()0f x '=得1x =,由()0f x ''=得2x =,把定义域分为三个区间 (,1),(1,2),(2,);-∞+∞(iv) lim ()0x f x →+∞=,故曲线()y f x =有渐近线0y =,lim ()x f x →+∞=-∞.(v) 补充点(0,0)并连点绘图,如图所示:图4-3w wl ea rn .n et。

微积分(曹定华)(修订版)课后题答案第九章习题详解

微积分(曹定华)(修订版)课后题答案第九章习题详解

AHA12GAGGAGAGGAFFFFAFAF第9章习题9-11. 判定下列级数的收敛性: (1) 115nn a ∞=⋅∑(a >0); (2) ∑∞=-+1)1(n n n ;(3) ∑∞=+131n n ; (4) ∑∞=-+12)1(2n n n ;(5) ∑∞=+11ln n n n; (6) ∑∞=-12)1(n n ;(7) ∑∞=+11n nn ; (8) 0(1)21n n n n ∞=-⋅+∑.解:(1)该级数为等比级数,公比为1a,且0a >,故当1||1a<,即1a >时,级数收敛,当1||1a≥即01a <≤时,级数发散. (2)(1n S n =++++1=lim n n S →∞=∞∴ 1n ∞=∑发散.(3)113n n ∞=+∑是调和级数11n n∞=∑去掉前3项得到的级数,而调和级数11n n ∞=∑发散,故原级数113n n ∞=+∑发散.AHA12GAGGAGAGGAFFFFAFAF(4)1112(1)1(1)222n n nn n n n ∞∞-==⎛⎫+--=+ ⎪⎝⎭∑∑ 而1112n n ∞-=∑,1(1)2mnn ∞=-∑是公比分别为12的收敛的等比级数,所以由数项级数的基本性质知AHA12GAGGAGAGGAFFFFAFAF111(1)22n n n n ∞-=⎛⎫-+ ⎪⎝⎭∑收敛,即原级数收敛.(5)lnln ln(1)1nn n n =-++ 于是(ln1ln 2)(ln 2ln 3)[ln ln(1)]n S n n =-+-+-+ln1ln(1)ln(1)n n =-+=-+故lim n n S →∞=-∞,所以级数1ln1n nn ∞=+∑发散. (6)2210,2n n S S +==-∴ lim n n S →∞不存在,从而级数1(1)2n n ∞=-∑发散.(7)1lim lim10n n n n U n→∞→∞+==≠∴ 级数11n n n∞=+∑发散.(8)(1)(1)1, lim 21212n n n n n n U n n →∞--==++ ∴ lim 0n x U →∞≠,故级数1(1)21n n nn ∞=-+∑发散. 2. 判别下列级数的收敛性,若收敛则求其和:(1) ∑∞=⎪⎭⎫ ⎝⎛+13121n n n ; (2) ※ ∑∞=++1)2)(1(1n n n n ;(3) ∑∞=⋅12sin n n n π; (4) 0πcos 2n n ∞=∑.解:(1)1111, 23n nn n ∞∞==∑∑都收敛,且其和分别为1和12,则AHA12GAGGAGAGGAFFFFAFAF11123n n n ∞=⎛⎫+ ⎪⎝⎭∑收敛,且其和为1+12=32.(2)11121(1)(2)212n n n n n n ⎛⎫=-+ ⎪++++⎝⎭AHA12GAGGAGAGGAFFFFAFAF∴121112111211121122322342345212n S n n n ⎛⎫⎛⎫⎛⎫⎛⎫=-++-++-+++-+ ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭11112212n n ⎛⎫=-+ ⎪++⎝⎭1lim 4n n S →∞=故级数收敛,且其和为14. (3)πsin 2n U n n =,而πsinππ2lim lim 0π222n n n U n→∞→∞=⋅=≠,故级数1πsin2n n n ∞=⋅∑发散.(4)πcos2n n U =,而4lim limcos2π1k k k U k →∞→∞==,42lim limcos(21)π1k k k U k +→∞→∞=+=-故lim n n U →∞不存在,所以级数0πcos2n n ∞=∑发散. 3※. 设1n n U ∞=∑ (U n >0)加括号后收敛,证明1n n U ∞=∑亦收敛.证:设1(0)n n n U U ∞=>∑加括号后级数1n n A ∞=∑收敛,其和为S .考虑原级数1n n U ∞=∑的部分和1n k k S U ∞==∑,并注意到0(1,2,)k U k >=,故存在0n ,使11n n k t k t S U A s ∞===<<∑∑又显然1n n S S +<对一切n 成立,于是,{}n S 是单调递增且有上界的数列,因此,极限lim n n S →∞存在,即原级数1n n U ∞=∑亦收敛.习题9-2 1.判定下列正项级数的收敛性:(1) ∑∞=++1nnn)2)(1(1; (2) ∑∞=+1nnn1;(3) ∑∞=++ 1nnnn)2(2; (4) ∑∞=+1n nn)5(12;AHA12GAGGAGAGGAFFFFAFAFAHA12GAGGAGAGGAFFFFAFAF(5) 111nn a ∞=+∑ (a >0); (6) ∑∞=+1n nba 1 (a ,b >0); (7) ()∑∞=--+1n an a n 22 (a >0); (8) ∑∞=-+1n n n 1214;(9) ∑∞=⋅1n nnn 23; (10)※∑∞=1n nn n !; (11) ∑∞=+⋅⋅⋅⋅+⋅⋅⋅⋅1n n n )13(1074)12(753 ; (12) ∑∞=1n nn 3;(13)※∑∞=1n n n 22)!(2; (14) ∑∞=⎪⎭⎫⎝⎛+1n nn n 12;(15) ∑∞=1πn nn3sin2; (16) ∑∞=1πn nn n 2cos 32.解:(1)因为211(1)(2)n n n<++而211n n∞=∑收敛,由比较判别法知级数11(1)(2)n n n ∞=++∑收敛.(2)因为lim 10n n n U →∞==≠,故原级数发散. (3)因为21(1)(1)1n n n n n n n +>=+++,而111n n ∞=+∑发散,由比较判别法知,级数12(1)n n n n ∞=++∑发散.(4321n<=,而1n ∞=是收敛的p -级数3(1)2p =>,由比较判别法知,级数1n ∞=收敛.(5)因为111lim lim lim(1) 111nnn nn n nnaaa aa→∞→∞→∞+==-++AHA12GAGGAGAGGAFFFFAFAFAHA12GAGGAGAGGAFFFFAFAF11112001a a a >⎧⎪⎪==⎨⎪<<⎪⎩而当1a >时,11nn a ∞=∑收敛,故111nn a∞=+∑收敛;当1a =时,11nn a ∞=∑= 11n ∞=∑发散,故111nn a∞=+∑发散;当01a <<时1lim101nn a →∞=≠+,故1lim1n n a →∞+发散;综上所述,当01a <≤时,级数1lim1nn a →∞+发散,当1a >时,1lim1nn a →∞+收敛.(6)因为1lim lim lim(1)1n n n nn n n nb a a b a b a b b →∞→∞→∞+==-++1111101b b a b >⎧⎪⎪==⎨+⎪<<⎪⎩ 而当1b >时, 11nn b ∞=∑收敛,故11nn a b∞=+∑收敛;当1b =时,1111nn n b ∞∞===∑∑发散,故而由0a >, 101a <<+∞+,故11n n a b∞=+∑也发散;当01b <<时,11lim 0n n a b a →∞=≠+故11n n a b∞=+∑发散;综上所述知,当01b <≤时,级数11nn a b∞=+∑发散;当b >1时,级数11nn a b∞=+∑收敛.(7)因为lim1n nn→∞=na==>AHA12GAGGAGAGGAFFFFAFAFAHA12GAGGAGAGGAFFFFAFAF而11n n ∞=∑发散,故级数10)n a ∞=>∑发散.(8)因为434431121lim lim 1212n n n n n n n n→∞→∞++-==-而311n n∞=∑收敛,故级数21121n n n ∞=+-∑收敛. (9)因为1113233lim lim lim 1(1)232(1)2n n n n n n n n nU n n U n n +++→∞→∞→∞⋅⋅==>+⋅+由达朗贝尔比值判别法知,级数132nnn n ∞=⋅∑发散.(10)因为11(1)!1lim lim lim(1)1(1)!n n n n n n n nU n n e U n n n ++→∞→∞→∞+=⋅=+=>+,由达朗贝尔比值判别法知,级数1!nn n n ∞=∑发散.(11)因为1357(21)(23)4710(31)limlim 4710(31)(34)357(21)n n n nU n n n U n n n +→∞→∞⋅⋅⋅⋅+⋅+⋅⋅⋅⋅+=⋅⋅⋅⋅⋅+⋅+⋅⋅⋅⋅+232lim 1343n n n →∞+==<+,由达朗贝尔比值判别法知原级数收敛.(12)因为111311lim lim lim 1333n n n n n n nU n n U n n ++→∞→∞→∞++=⋅==<,由达朗贝尔比值判别法知,级数13n n n ∞=∑收敛.(13)因为22221221(1)[(1)!]2(1)lim lim lim (!)22n n n n n n n nU n n U n +++→∞→∞→∞++=⋅= 由2212121(1)2(1)1lim lim lim 222ln 22ln 2x x x x x x x x x +++→∞→+∞→+∞+++==⋅⋅AHA12GAGGAGAGGAFFFFAFAF2121lim 022(ln 2)x x +→+∞==⋅知2121(1)lim lim 012n n n n nU n U ++→∞→∞+==<AHA12GAGGAGAGGAFFFFAFAF由达朗贝尔比值判别法知,级数221(!)2n n n ∞=∑收敛.(14)因为1lim1212n n n n →∞==<+,由柯西根值判别法知级数121nn n n ∞=⎛⎫⎪+⎝⎭∑收敛.(15)因为ππ2sinsin 33lim lim 1π2π33n n nn n n n n→∞→∞==⋅ 而112233nn n n n ∞∞==⎛⎫= ⎪⎝⎭∑∑是收敛的等比级数,它的每项乘以常数π后新得级数12π3n nn ∞=⋅∑仍收敛,由比较判别法的极限形式知,级数1π2sin3n nn ∞=∑收敛.(16)因为2πcos 322n nn n n ≤而与(12)题类似地可证级数12n n n∞=∑收敛,由比较判别法知级数1πcos 32nn n n ∞=∑收敛.2. 试在(0,+∞)内讨论x 在什么区间取值时,下列级数收敛:(1) ∑∞=1n nnx ; (2) nn x n ∑∞=⎪⎭⎫⎝⎛123.解:(1)因为11lim lim lim 11n n n n n n nU x n nxx U n x n ++→∞→∞→∞=⋅==++由达朗贝尔比值判别法知,当1x >时,原级数发散;AHA12GAGGAGAGGAFFFFAFAF当01x <<时,原级数收敛;而当1x =时,原级数变为调11n n∞=∑,它是发散的.综上所述,当01x <<时,级数1nn x n∞=∑收敛.(2)因为1313(1)2limlim 22n n n n n nx n U xU x n ++→∞→∞⎛⎫+⋅ ⎪⎝⎭==⎛⎫⋅ ⎪⎝⎭,由达朗贝尔比值判别法知,当12x >即AHA12GAGGAGAGGAFFFFAFAF2x >时,原级数发散;当012x <<即02x <<时,原级收敛.而当12x =即 2x =时,原级数变为31n n ∞=∑,而由3lim n n →∞=+∞知31n n ∞=∑发散,综上所述,当02x <<时,级数31()2n n x n ∞=∑收敛.习题9-31. 判定下列级数是否收敛,如果是收敛级数,指出其是绝对收敛还是条件收敛:(1) ∑∞=--1121)1(n nn ; (2) 11(1)2(1)2n n nn ∞-=-+-⋅∑;(3) ∑∞=12sin n n nx; (4) 111π(1)sin πn n n n ∞+=-∑;(5) ∑∞=-⎪⎭⎫ ⎝⎛-11210121n n n ; (6) ∑∞=+-1)1(n n x n ;(7) ∑∞=⋅1!)2sin(n n n x .解:(1)这是一个交错级数121n U n =-, 1lim lim 021n n n U n →∞→∞==-,1112121n n U U n n +=>=-+ 由莱布尼茨判别法知11(1)21n n n ∞=--∑.又1111(1)2121n n n n n ∞∞==-=--∑∑,由1121lim12n n n→∞-=,及11n n∞=∑发散,知级数AHA12GAGGAGAGGAFFFFAFAF1121n n ∞=-∑发散,所以级数11(1)21nn n ∞=--∑条件收敛. (2)因为2111(1)211(1)22(1)2n n n n n ----+-=+-⋅-⋅,故11111(1)21111(1)22(1)22(1)2n n n n n n n n n ------+--=+≤+-⋅-⋅-⋅AHA12GAGGAGAGGAFFFFAFAF1113222n n n-=+=而112nn ∞=∑收敛,故132nn ∞=∑亦收敛,由比较判别法知11(1)2(1)2n n nn ∞-=-+-⋅∑收敛,所以级数11(1)2(1)2n n nn ∞-=-+-⋅∑绝对收敛.(3)因为22sin 1,nx n n ≤而级数211n n∞=∑收敛,由比较判别法知21sin n nxn ∞=∑收敛,因此,级数21sin n nx n∞=∑绝对收敛.(4)因为121ππ|(1)sin |sin πlimlim 11πn n n n n n n n+→∞→∞-==而211n n∞=∑收敛,由比较判别法的极限形式知,级数111π|(1)sin |πn n n n ∞+=-∑收敛,从而级数11π(1)sin πn n n+-绝对收敛. (5)因为212121111111210210210n n n n n n ----≤+=+,而级数112n n ∞=∑收敛的等比级数1()2q =;由比值判别法,易知级数211110n n ∞-=∑收敛,因而21111210n n n ∞-=⎛⎫+ ⎪⎝⎭∑收敛,由比较判别法知级数21111210n n n ∞-=-∑收敛,所以原级数21111210n n n ∞-=-∑绝对收敛.(6)当x 为负整数时,级数显然无意义;当x 不为负整数时,此交错级数满足莱布尼茨判别法的条件,故它是收AHA12GAGGAGAGGAFFFFAFAF敛的,但因11n x n∞=+∑发散,故原级数当x 不为负整数时仅为条件收敛.(7)因为sin(2)1!!n x n n ⋅≤由比值判别法知11!n n ∞=∑收敛(1(1)!lim 01!n n n →∞+=),从而由比较判别法知1sin(2)!n n x n ∞=⋅∑收敛,所以级数AHA12GAGGAGAGGAFFFFAFAF1sin(2)!n n x n ∞=⋅∑,绝对收敛. 2. 讨论级数∑∞=--111)1(n pn n 的收敛性(p >0).解:当1p >时,由于11111(1)n p pn n n n ∞∞-==-=∑∑收敛,故级数111(1)n pn n ∞-=-∑绝对收敛.当01p <≤时,由于111,(1)n n p pu u n n +=>=+ lim 0n n u →∞=,由莱布尼茨判别法知交错级数111(1)n pn n ∞-=-∑收敛,然而,当01p <≤时,11111(1)n p pn n n n ∞∞-==-=∑∑发散,故此时,级数111(1)n pn n ∞-=-∑条件收敛.综上所述,当01p <≤时,原级数条件收敛;当p >1时,原级数绝对收敛.3※. 设级数∑∞=12n n a 及∑∞=12n n b 都收敛,证明级数∑∞=1n n n b a 及()∑∞=+12n n n b a 也都收敛.证:因为2222||||110||222n n n n n n a b a b a b +≤≤=+ 而由已知1nn a ∞=∑及21n n b ∞=∑都收敛,故221111,22n nn n a b ∞∞==∑∑收敛,从而2211122n n n a b ∞=⎛⎫+ ⎪⎝⎭∑收敛,由正项级数的比较判别法知1n nn a b ∞=∑也收AHA12GAGGAGAGGAFFFFAFAF敛,从而级数1n n n a b ∞=∑绝对收敛.又由222()2,n n n n n n a b a a b b +=++及2211,n nn n a b ∞∞==∑∑,以及1n n n a b ∞=∑收敛,利用数项级数的基本性质知,221(2)nn n n n a a b b ∞=++∑收剑,亦即21()n n n a b ∞=+∑收敛.习题9-41. 指出下列幂级数的收敛区间:(1) ∑∞=0!n nn x (0!=1); (2) ∑∞=0!n n n x nn ;AHA12GAGGAGAGGAFFFFAFAF(3) ∑∞=⋅022n n nnx ; (4) ∑∞=++-01212)1(n n nn x .(5) ∑∞=⋅+02)2(n nnn x ; (6) ∑∞=-0)1(2n n nx n.解:(1)因为111(1)!limlim lim 011!n n n n na n p a n n +→∞→∞→∞+====+,所以收敛半径r =+∞,幂级数1!nn x n ∞=∑的收敛区间为(,)-∞+∞.(2)因为-111lim lim lim 1e 11n nn n n n na n p a n n +→∞→∞→∞⎛⎫===-= ⎪++⎝⎭,所以收敛半径1e r p==.当x =e时,级数01!!en nn n n n n n x n n∞∞===∑∑,此时11(1)n nnu eu n+=+,因为1(1)nn+是单调递增数列,且1(1)n n+<e 所以1n nu u +>1,从而lim 0n n u →∞≠,于是级数当x =e 时,原级数发散.类似地,可证当x =-e 时,原级数也发散(可证lim ||0n n u →∞≠),综上所述,级数0!n n n n x n∞=∑的收敛区间为(-e,e).(3)因为2111limlim ()212n n n na n p a n +→∞→∞===+,所以收敛半径为r =2.当2x =时,级数221012nn n n x n n∞∞===⋅∑∑是收敛的p 一级数(p =2>1);AHA12GAGGAGAGGAFFFFAFAF当x =-2时,级数22011(1)2nn n n n x n n ∞∞===-⋅⋅∑∑是交错级数,它满足莱布尼茨判别法的条件,故它收敛.综上所述,级数202nn n x n∞=⋅∑的收敛区间为[-2,2].AHA12GAGGAGAGGAFFFFAFAF(4)此级数缺少偶次幂的项,不能直接运用定理2求收敛半径,改用达朗贝尔比值判别法求收敛区间.令21(1)21n nn x u n +=-+,则22121lim lim 23n n n nu n x x u n +→∞→∞+=⋅=+.当21x <时,即||1x <时,原级数绝对收敛.当21x >时,即||1x >时,级数0||n n u ∞=∑发散,从而210(1)21n nn x n +∞=-+∑发散,当1x =时,级数变为01(1)21nn n ∞=-+∑;当1x =-时,级数变为11(1)21n n n ∞+=-+∑;它们都是交错级数,且满足莱布尼茨判别法的条件,故它们都收敛.综上所述,级数21(1)21n nn x n +∞=-+∑的收敛区间为[-1,1].(5)此级数为(x +2)的幂级数.因为11limlim2(1)2n n n na n p a n +→∞→∞===+.所以收敛半径12r p==,即|2|2x +<时,也即40x -<<时级数绝对收敛.当|2|2x +>即4x <-或0x >时,原级数发散.当4x =-时,级数变为01(1)n n n∞=-∑是收敛的交错级数,当x =0时,级数变为调和级数11n n∞=∑,它是发散的.AHA12GAGGAGAGGAFFFFAFAF综上所述,原级数的收敛区间为[-4,0). (6)此级数(x -1)的幂级数12limlim 21n n n na np a n +→∞→∞===+ 故收敛半径12r =.于是当1|1|2x -<即1322x <<时,原级数绝对收敛.当1|1|2x ->即12x <或32x >时,原级数发散.AHA12GAGGAGAGGAFFFFAFAF当32x =时,原级数变为01n n ∞=∑是调和级数,发散.当12x =时,原级数变为11(1)n n n ∞=-∑,是收敛的交错级数.综上所述,原级数的收敛区间为13,22⎡⎫⎪⎢⎣⎭.2. 求下列幂级数的和函数:(1) ∑∞=-1)1(n n nn x ; (2) ∑∞=-1122n n nx ;(3) nn x n n ∑∞=+1)1(1; (4) ∑∞=+0)12(n n x n . 解:(1)可求得所给幂级数的收敛半径r =1.设1()(1)n nn x S x n ∞==-∑,则1111()(1)(1)1n n n n n n x S x x n x ∞∞-=='⎡⎤'=-=-=-⎢⎥+⎣⎦∑∑∴001()()d d ln(1) (||1)1x x S x S x x x x x x-'===-+<+⎰⎰又当x =1时,原级数收敛,且()S x 在x =1处连续.∴1(1)ln(1) (11)nnn x x x n ∞=-=-+-<≤∑ (2)所给级数的收敛半经r =1,设211()2n n S x nx ∞-==∑,当||1x <时,有2121011()d 2d 2d xx xn n n n S x x nxx nx x ∞∞--====∑∑⎰⎰⎰AHA12GAGGAGAGGAFFFFAFAF22211nn x xx ∞===-∑ 于是22222()1(1)x x s x x x '⎛⎫== ⎪--⎝⎭又当1x =±时,原级数发散.AHA12GAGGAGAGGAFFFFAFAF故 2122122 (||1)(1)n n xnx x x ∞-==<-∑(3)可求所给级数的收敛半径为1.令1111()(0)(1)(1)n n n n x x s x x n n x n n +∞∞====≠++∑∑ 令11()(1)n n x g x n n +∞==+∑,则111()1n n g x x x ∞-=''==-∑01()d ()(0)d 1xxg x x g x g x x''''=-=-⎰⎰(0)0,()ln(1)g g x x ''==--()d ()(0)ln(1)d ,(0)0xxg x x g x g x x g '=-=--=⎰⎰所以0()ln(1)d ln(1)ln(1)xg x x x x x x x =--=+---⎰;所以1()11ln(1),||1,S x x x x⎛⎫=+--< ⎪⎝⎭且0x ≠.当1x ±时,级数为11(1)n n n ∞=+∑和11(1)(1)n n n n ∞=-+∑,它们都收敛.且显然有(0)0S =.故111ln(1)(1,0)(0,1)()00,1x x S x x x x ⎧⎛⎫+--∈-⋃⎪ ⎪=⎝⎭⎨⎪=±⎩. (4)可求得所给级数的收敛半径为r =1且1x ±时,级数发散,设1()n n S x nx ∞-==∑,则001()d .1xn n s x x x x∞===-∑⎰ 于是211()()1(1)S x x x '==--,即1211(1)n n nx x ∞-==-∑.AHA12GAGGAGAGGAFFFFAFAF所以111(21)2nn n n n n n xx nxx ∞∞∞-===+=+∑∑∑221112(1)1(1)xx x x x +=⋅+=--- (||1)x <3. 求下列级数的和:AHA12GAGGAGAGGAFFFFAFAF(1) ∑∞=125n nn ; (2) ∑∞=-12)12(1n nn ;(3) ∑∞=--112212n n n ; (4) 1(1)2n n n n ∞=+∑.解:(1)考察幂级数21n n n x ∞=∑,可求得其收敛半径1r = ,且当1x ±时,级数的通项2n n u n x =,2lim||lim n n n u n →∞→∞==+∞,因而lim 0n n u →∞≠,故当1x ±时,级数21nn nx∞=∑发散,故幂级数21n n n x ∞=∑的收敛区间为(-1,1). 设21() (||1)nn S x nx x ∞==<∑,则211()n n S x x n x ∞-==∑令2111()n n S x nx∞-==∑,则11011()d xnn n n S x x nxx nx ∞∞-====∑∑⎰.再令121()n n S x nx ∞-==∑,则201()d 1xn n xS x x x x∞===-∑⎰. 故221()(||1)1(1)x S x x x x '⎛⎫==< ⎪--⎝⎭,从而有120()d (1)x x S x x x =-⎰. 1231() (||1)(1)(1)x xS x x x x '⎛⎫+==< ⎪--⎝⎭ 于是 213()() (||1)(1)x x S x xS x x x +==<- 取15x =,则223111()11555()5532115n n n S ∞=+===⎛⎫- ⎪⎝⎭∑.AHA12GAGGAGAGGAFFFFAFAF(2)考察幂级数21121n n x n ∞=-∑,可求得收敛半径r =1,设2211111() (||1)2121nn n n S x x x x x n n ∞∞-====<--∑∑AHA12GAGGAGAGGAFFFFAFAF令21111()21n n S x x n ∞-==-∑,则221211()1n n S x x x ∞-='==-∑.1200d 11()d ln1-21xxx xS x x x x+'==-⎰⎰即 1111()(0)ln (,(0)0)21x S x S s x+-==-.于是 111()ln ,(||<1)21x S x x x+=-,从而11()()ln (||1)21x xS x xS x x x+==<-取x =则11(21)21n n S n ∞===--∑=(3)考察幂级数211(21)n n n x ∞-=-∑,可求得其级数半经为r =1,因为212121111(21)2n n n n n n n xnxx ∞∞∞---===-=-∑∑∑令2111()2n n S x nx∞-==∑,则221201()d 1xnn x S x x xx ∞===-∑⎰.所以212222() (||1)1(1)x x S x x x x '⎛⎫==< ⎪--⎝⎭,于是212121111(21)2n n n n n n n xnxx ∞∞∞---===-=-∑∑∑3222222 (||1)(1)1(1)x x x x x x x x +=-=<---AHA12GAGGAGAGGAFFFFAFAF取12x =,得3212111()121102212291()2n n n S ∞-=+-⎛⎫=== ⎪⎛⎫⎝⎭-⎪⎝⎭∑.AHA12GAGGAGAGGAFFFFAFAF(4)考察幂级数1(1)n n n n x ∞=+∑,可求得其收敛半径r =1.设1()(1) (||1)n n S x n n x x ∞==+<∑则121011()d xn n n n S x x nxxnx ∞∞+-====∑∑⎰.又设111()n n S x nx ∞-==∑则101()d 1xn n x S x x x x ∞===-∑⎰.从而121()1(1)x S x x x '⎛⎫== ⎪--⎝⎭,2212()d ()(1)xx S x x x S x x ==-⎰2232() ||1(1)(1)x x S x x x x '⎛⎫==< ⎪--⎝⎭ 取12x =,则31121(1)2822112nn n n S ∞=⨯+⎛⎫=== ⎪⎝⎭⎛⎫- ⎪⎝⎭∑ 习题9-51. 将下列函数展开成x 的幂级数:(1) 2cos 2x ; (2) 2sin x ; (3) 2x x -e ; (4)211x -;(5)πcos()4x -.解:(1)2201cos 11cos (1)2222(2)!nn n x x x n ∞=+==+-∑AHA12GAGGAGAGGAFFFFAFAF211(1)(-)2(2)!nnn x x n ∞==+-∞<<+∞∑ (2)2101sin (1) ()2(21)!2n n n x x x n +∞=⎛⎫=--∞<<+∞ ⎪+⎝⎭∑(3)22210011e()(1) ()!!x nn n n n x x x x x n n ∞∞-+===-=--∞<+∞∑∑AHA12GAGGAGAGGAFFFFAFAF(4)211111211x x x ⎡⎤=+⎢⎥--+⎣⎦0002011(1)221[(1)]2 ||1n n nn n n n nn n n x x x x x x ∞∞==∞=∞==+-=+-=<∑∑∑∑(5)πππcos cos cos sin sin 444x x x ⎛⎫-=+ ⎪⎝⎭2210(cos sin )2(1) ()2(2)!(21)!n n n n x x x xx n n +∞==+⎡⎤=-+-∞<<+∞⎢⎥+⎣⎦∑ 2. 将下列函数在指定点处展开成幂级数,并求其收敛区间: (1) x-31,在x 0=1; (2) cos x,在x 0=3π;(3)3412++x x ,在x 0=1; (4) 21x , 在x 0=3.解:(1)因为11113212x x =⋅---,而0111 (||112212nn x x x ∞=--⎛⎫=< ⎪-⎝⎭-∑即13x -<<). 所以100111(1) (13)3222nnn n n x x x x ∞∞+==--⎛⎫=⋅=-<< ⎪-⎝⎭∑∑.收敛区间为:(-1,3).(2)πππ2π2cos cos ()cos cos()sin sin()333333x x x x ⎡⎤=+-=---⎢⎥⎣⎦AHA12GAGGAGAGGAFFFFAFAF22100()()133(1)(1)2(2)!2(21)!n n n n n n x x n n ππ+∞∞==--=-+-+∑∑221011(1)())2(2)!33nn n n x x n ππ∞+=⎡⎤=--+-⎢⎥⎣⎦∑ ()x -∞<<+∞AHA12GAGGAGAGGAFFFFAFAF收敛区间为(,)-∞+∞. (3)211111111()1143213481124x x x x x x =-=⋅-⋅--++++++ 001111(1)(1)4284n nn n n n x x ∞∞==--⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭∑∑223011(1)(1)22n n n n n x ∞++=⎛⎫=--- ⎪⎝⎭∑由112x -<且114x -<得13x -<<,故收敛区间为(-1,3) (4)因为011113(1)()333313n n n x x x ∞=-=⋅=-⋅-+∑1(3)(1)3nnn n x ∞+=-=-∑ 而21011(3)(1)3n n n n x x x ∞+=''⎡⎤-⎛⎫=-=-- ⎪⎢⎥⎝⎭⎣⎦∑111(1)(3)3n n n n n x ∞-+=-=-⋅-∑1111(1)(3)3n n n n n x +∞-+=-=-∑ 2(1)(1)(3)3n n n n n x ∞+=-+=-∑ 由313x -<得06x <<. 故收敛区间为(0,6).如有侵权请联系告知删除,感谢你们的配合!33387 826B 艫Hn32578 7F42 罂 y#• 33471 82BF 芿24819 60F3 想27944 6D28 洨。

微积分II课后答案详解

微积分II课后答案详解
x
2 4 4 4 = + + = )1,1,1( | z u + y u + x u ∴ 3 3 2 1
3
z + y + x +1 = zu z3
2 2
3
z + y + x +1 = yu y2
2
3
z + y + x +1 = x u �解 1
2
z
u + y u + x u求处� � 1 � 11 �点在 ,) 3 z + 2 y + x + 1(nl = u 设�3
z2
) yx (nl y 2 yx 2 y∂ = x. . 2 ]) yx (nl[ = 1 1 1− 1 z∂ ) yx (nl x 2 yx 2 x∂ = y . . 2 ]) yx (nl[ = �解 1 1 1− 1 z∂ y∂ x∂ , 求 , ) yx (nl = z ② z∂ z∂
2
yx 3 − 3 x =
�y + x � )y + x ( 2 )y + x ( y + x � x∂ y∂ y∂x∂ 2 � y∂ + + = = + = y x = ) ( n l ) ( y x−0 z∂ ∂ z2 ∂ 1 � x � ∂
)y + x ( 2 )y + x ( y + x x∂ y +x x∂ x∂ x∂ 2 = + =) + ) y + x (nl( = ) ( = 2 y2 + x x−y +x x ∂ z∂ ∂ z2 ∂ 1 y +x x∂ .x + ) y + x (nl = �解 z∂ 1 y∂x∂ 2 x∂ 求 ,) y + x (nl x = z ③ , ∂ z2 ∂

微积分第二章习题参考答案

微积分第二章习题参考答案

,
y
3 2(1)3 (t 2)4
3 2(1)3 (t 1)4
,
y(n)
n!(1)n (t 2)n1
n!(1)n (t 1)n1
n!(1)n ( (t
1 2)n1
(t
1 1)n1
).
四.求下列函数所指定阶的导娄数.
1. y sh , y(100) . y sh ch , y 2ch sh , y 3sh ch , y(4) 4ch sh,
五.(1)
1 dy dx d arctan y dx 1 y2 dy,
x0
x0
x
x
2时,f ( x)在x 0处连续.
六.
设f
(
x
)存在,
求下列函数y的二阶时数
d2y dx 2
.
(1) y f (e x ).
y e x f (e x ),
y e x f (e x ) e2x f (e x ),
(2) f ( x) 0, y ln f ( x).
y f ( x) . f (x)
2.当 1时,函数在x 0处可导,
当 1时,函数在x 0处不可导.
三.解. f (1) f (1 0) 1, f (1 0) a b,
b 1 a;

f(1)
lim
x10
x2 1 x1
2,
f
(1)
lim
x 1 0
(ax b) x1
1
(ax 1 a) 1
lim
a,
2. tan t ;
3. 2 ln(1 x) dx; 1 x
4. 8tan(1 2 x2 )sec2(1 2 x2 ) xdx;
(t )(1 t ) (t )

微积分2习题答案

微积分2习题答案

微积分2习题答案⼀、填空题 1.2. 设P(x)是x 的多项式,且lim 凡门⼆6 '—= 2, lim — = 3 ,则P(x) = 0 X7Tlim (arcsin(vx 2+x ⼀ x))= .YT4-X 6A 3 + 2x 2 + 3x t3. lim 1 ⼀ — .V —4. x )设lim ⼀ "" ⼀ * + 4= A ,则有"=5. 6. 7. 8. 9. j X — 1 .? “ \ ? 2 sinx 设 / (A ) = xsm — d -----X X ? 3.1L +sin x-sin — lim ------------ ------ - = t 3*函数v = ⼀上]⼀的间断点是(x-l)(x + 2)为使函数/(x) = - ? tanx 在点x = 0处连续,应补充左义/(0)= x 3设函数y = ^-x )xK则 lim f (x)=X->X%⼯°在兀=0处连续,则参数K =x = 0 x + ae x +\⼆、单项选择题 1 ?设x n >Q,且lim x 存在,则 lim x HTX n->x @>0 ② no ③=0 2?极限 lim e 7^ = XT I ①8 ②1 10.函数f(x)= < x < 0 在点x = 0处连续,则“=x>0④<03. 4. ③不存在 lim(1 + x) x + lim xsiii —= -V — ②": Jx 3 4, -2③ €+1: ④』+ly =-——-——-的连续区间是_ (x + lXx + 2)①(-s,-2)u (- 2,-l)U (- 1,T ③(-oo,-2)U (-2,400) ②[3,T④ co ⼚i)u(_l,+oo)函数『⼆⼆2X-l .Y+1 ①2个②3个 6.下列函数中,?当XT0时,与⽆穷⼩量x 相⽐是髙阶⽆穷⼩咼的是. 价⽆穷⼩量的是 ______________ ① l-cosxx + X 25. ④4个以上④ sin 2x__ ■⽦有①,②=24.7. 8. 9. 当x->0-时,sin 仮与Ixl 相⽐是_ ①髙阶⽆穷⼩咼③同阶但不等价的⽆穷⼩量当XT O 时,l —cos2x 与/相⽐是①髙阶⽆穷⼩量③低阶⽆穷⼩量(sin 3x 设 f(x) = ] x x = 0 ②⼀3 ②低阶⽆穷⼩量④等价⽆穷⼩量②同阶但不等价的⽆穷⼩量④等价⽆穷⼩量为连续函数,则k = ①1 10?函数/(x)在点勺处有⽴义是f(x)当x ->⼼时极限存在的. ①充分但⾮必要条件③充分必要条件 11?当JVT 0时,① x + sinx12.当XT0时, ?x + sin — x 13?当XT 8时,①x + sin 丄 x ②必要但⾮充分条件④既⾮充分⼜⾮必要条件下列函数中⽐x 髙阶的⽆穷⼩量是 ________ ② x-siiix ③ ln(l + x)下列函数中为⽆穷⼩量的是 ________②x ?sin 丄③丄+ sinx X X 下列函数中为⽆穷⼩量的是 _____ _ ② x-sin — ③—+ sinxX X14. 15. 16. ②④ hi(l-x)②④—?sin x x ③④—-siiix x 设在某个极限过程中函数/(X )与g(x)均是⽆穷⼤量,则下列函数中哪⼀个也必是⽆穷⼤量___________ ③④爲设/(x (J = c lim f(x) = b t lim f(x) = c ,则函数/(x)在点⼈)处连续的充分必要 .v —>.rj XfY :① /(Q+g(x) ② /(x)-g(x) ③/(Q ?g ⑴②a = c v 2 -1 4------ C E X-l 0 ④a=b=c②跳跃间断点①连续点三、求下列极限 lim (Jx 2 +1 - x) = lim ________ ⼀⼀⼛? + 1lim (Jx 2 +1 - x) = +xlini (J+ 2x + 2 - J③可去间断点④⽆穷间断点1.2. 3. =lim ,( ?— = = lim ⼀ y/x 2+2x + 2 + J ,—2x + 2 —1 lim arctanx-arcsin — =0 x)L r (x + l)2 +(2x + l)2 +(3x + l)2 + …+ (10x + l)2 z 7、 5. lim -- ----------- ------------- ---------------------------- -- (=—) — (10x-l)(lLv-l) 2 n n 、tr +n [解]记⽿=G+t+…+⽃ ir +1 ir +2 n +ne .. n n n n n n 因为——+ —— + …+ —n +n ir +n n +n n ir即—< x /2 < 1,由于lim — = 1,所以由夹逼定理,得lim 兀=1 n +1〃―30n +1“a7?设辄⼚2叽求〃由于极限存在,故a = {3 — \°—=2006p = —, a : P 2006四、分析题1 .讨论极限lim " "[解]因为lim 1!巴丄1 = 1, Um ⼔巴⼝ = ⼀1,故原极限不存在。

微积分课后习题答案

微积分课后习题答案

微积分课后习题答案微积分课后习题答案微积分是数学中的一门重要学科,它研究的是函数的变化和极限。

在学习微积分的过程中,课后习题是非常重要的一环。

通过做习题,我们可以巩固课堂上所学的知识,提高自己的解题能力。

然而,有时候我们可能会遇到一些难题,无法找到正确的解答。

因此,本文将为大家提供一些微积分课后习题的答案,希望能够帮助大家更好地理解微积分的知识。

一、函数的极限1. 求函数f(x) = (3x^2 + 2x + 1)/(2x^2 + x - 3)当x趋近于2时的极限。

解答:将x代入函数f(x)的表达式中,得到f(2) = (3(2)^2 + 2(2) + 1)/(2(2)^2 +2 - 3) = 13/9。

因此,当x趋近于2时,函数f(x)的极限为13/9。

2. 求函数f(x) = (x^2 - 4)/(x - 2)当x趋近于2时的极限。

解答:将x代入函数f(x)的表达式中,得到f(2) = (2^2 - 4)/(2 - 2) = 0/0。

此时,函数f(x)的极限不存在。

二、导数与微分1. 求函数f(x) = 3x^2 - 4x的导数。

解答:根据导数的定义,导数f'(x) = lim(h→0) [(f(x + h) - f(x))/h]。

将函数f(x)代入该定义中,得到f'(x) = lim(h→0) [(3(x + h)^2 - 4(x + h) - (3x^2 - 4x))/h]。

化简后可得f'(x) = 6x - 4。

2. 求函数f(x) = x^3 - 2x^2 + 3x - 4的微分。

解答:微分df(x) = f'(x)dx。

将函数f(x)的导数f'(x)代入该定义中,得到df(x) =(3x^2 - 4x)dx。

三、定积分1. 求函数f(x) = 2x在区间[1, 3]上的定积分。

解答:根据定积分的定义,定积分∫[1, 3] f(x)dx = lim(n→∞) Σ[i=1到n] f(xi)Δx,其中Δx = (b - a)/n,xi为区间[a, b]上的任意一点。

微积分II课程微积分2答案

微积分II课程微积分2答案

I 10.令 x = asect第四章 不定积分答案2 24. I = sin x sinxdx = - 1-cosxdcosx 、填空题 2.F x |亠 C 3.1 二-cosx — \ 3 1 31 3 cos x J ■ C cos x-cosx C3 3x C 5.4. -C In 2 」x 335.一丄Cxxe (e x ) +1dx 二一de _2 二 arctang XC ’1+(e x ) 6. 6e x C 7.-3sin x C I 二 t 2—1 t 2tdt =2 t 4 -t 2 dt8. 3x x arcta n x C 39.x r 2 C1-In 3x + 2x +C 2 1 2 10. In 2x C 2 -cos2x C 12. le 7x C7114. 丄 In 1+2x+C 2 13. 7. 令 t = 6x11.15.1—2x C 1 316. 「cosx cos x C 3 8. 17. e" 1 x C 18. 6"dt t 123t 2—6t +6ln t +1 +C1 13x^ -6x® +6 In x令 x= si nt3I =1 - sin 2t 2costdt - I i cost dt二、 单项选择题 1 . C 2 . A 3 . D 4 7 . D 8 . D 9 . 12.B 三、 计算题 1 .A10.A.B11.Bx二 sec 2 tdt 二 tant CCTT79 .令 x =ta ntseC tdt (1+tan 2t j2 .■sec 4-dt二 costdt sec t2 -.2 -x 2d 2 -x2 -x 2 C2. 1 x 2 = l n 1 x 2 C-exd ;1 111 cos2t dt t —sin2t C2 2 4 11 1x t sintcost C arctanx 2 C 2 2 21 x 23.1-e" C.a2 sect -1 asectantdt =a tarn tdtasec=a lise^t -1 dt =a tant -t Cf'-2—2 、x -a aarccos a x4C=Jx2 217. a-a -aarccos Cx2x 2 _xI = - x de = x e_ 2xe*dx-x2e» -2 xde^-x2e» -2xe" 2 e^dx_x2 _2x_2 e」C11. I =dx2、厂1_ 1 sect tant3 ta nt22令x^sect secttantdt 18.=1J322Jsec t -1dt^1sectdt31=Tn sect +tant 3 C = 】ln33x站4219.12.1 d 3x-1 _J(3X-12+6 3=]| n j9x2-6x+7+3x-1+C13. 2 2I =xln 1 X - xdln 1 x2 =xln 1 x2 =xln 1 x -x^dx;_2x 2arctanx C20.14.xde x = xe x - e x dx =xe x-e x C15.I = x arccosx - xd arccosxx arccosx dx1-x21「1 ,2 .= xarccosx-—J ;2d(1-x )21.16.x arccosx - 1 - x2 CI = lnxdl 」一hx ^dx — Sx」C x x x x x4 4二(ln x)2d£4(ln x)2-4 41 3x ln xdx = — (ln x)21 4| 1x ln x8 81 4 1 4--x ln x x C8 324x 2(ln x)44=—(ln x)24x4 (ln x)4=sin xde xx41(2ln x)—dx44 x4、4 1 .x dxx=e x sin x - e x cosxdx=e x sin x - cosxde xX ・x x .=e sin x -e cosx e dcosx= e x(sin x-cosx) - ' e x sin xdxe x sin xdx = - e x(sin x -cosx) C2I = sec x secxdx = secxd tan x=secxtanx- 'tanx tanx secxdx=secxtanx- '(sec x-1)secxdx=secxtan x- sef xdx亠i secxdx3=secxtanx- Jsec xdx + In secx +31[sec xdx = —(secxtanx + ln secx +2x-8 ln xdx4tanxtanx C令t=, xI二.eStdt = 2 tdd =2td -2 ddt= 2td -2& C =2 =e x-2e x C22. l=Jlnlnxdlnx =(lnlnx)nx —J Inxd(lnlnx) 21.=lnlnx lnx- lnx —-dxlnx x =lnlnx lnx-lnx C 23.24.F b —F a1e --e22.5ln623.d cos2x = 4 xcos2x sin2xC4 825.1 26. JI227. e-2 28.4 29. 2,3-2arctan f 3 - arctan f 124. l = ln xd3 1 3x lnx x ——■C3 9第五章定积分及其应用答案32.5633.e 34. _135.<36. 1 37. 38. 12 2 3兀 139. 一2 _2二单项选择题30.0 31.0、填空题[f (x pxb a4.2.03.5.负6.正7. l1>l28. 1. A 2 . D 3 . B 4 . C 5 . A 6 . C7. C 8 . B9 . A 10.C 11.C 12.D 13.C 14.C 15.B 16.C17.A 18.B 19.B 20.A 21.B22.C 23.B 24.A 25.C 26.A三、证明题1冃2 9. l1>l2 证:令u=a, b-a,则10.- 11. 12. baf x dx du 二b-a dx,所以13. 2xe x14. sin xb - a ] I f || a b - a x dx =1 1f u du = 0 f x dx-x sin3fi x 16.10,1 2x1 cos2 x215.2.证:令u)]17.1 18.fx3f (x2=x2,则du = 2xdx ,所以1 a2.d^=- 0 uf udu=? 0 1 a220xf x dx19. f 12f0=03 20. 3.证:令u -二-x,则du - -dx,则IT- -2:xf sinxdx 二:】灵-u f sin u du 二負「x f sinx dx 23x2sin 1 x3 31 u 2所以 o xf sinx dx 二 o 2xf sinx dx - xf sin0 0 5fnxdx 飞2x -3-2x x-1x-2 e , x 二 = 二 02xf sinx ck 02 二-x f sinxck v 02得fin^dx 一1:: 0, f 2 二 e* 0, e JI 4.证:x 4令,有。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

于是 0, 0 ,当 0 x x0 时,有 f (x) a ,
所以
lim f (x) a .
x x0
再证必要性:即若 lim f (x) a ,则 lim f (x) lim f (x) a ,
x x0
x x0
x x0
由 lim x x0
f (x) a 知,
5
g(x),与题设矛盾。
(2) lim [f(x)·g(x)]可能存在,也可能不存在,如: f (x) sin x , g(x) 1 ,则
x x0
x
lim sin x 0 , lim 1 不存在,但 lim [f(x)·g(x)]= lim 1 sin x 0 存在。
x0
x0 x
x x0
xk1 2xk 22 2
故有对于任意正整数 n,有 xn 2 ,即数列xn 有上界,

xn1 xn xn ( 2 xn ) ,而 xn 0 , xn 2 ,
所以
xn1 xn 0 即
xn1 xn ,
即数列是单调递增数列。
综上所述,数列xn 是单调递增有上界的数列,故其极限存在。
x0
x0
x0
由(1)知
lim f (x) lim (x2 a) lim (x2 a) a ,
x0
x0
x0
1
lim f (x) lim e x 0
x0
x0
所以,当 a 0 时, lim f (x) 存在。 x0
3. 利用极限的几何意义说明 lim sinx 不存在. x
解:因为当 x 时, sin x 的值在-1 与 1 之间来回振摆动,即 sin x 不无限接近某一 定直线 y A ,亦即 y f (x) 不以直线 y A 为渐近线,所以 lim sin x 不存在。
x x0
x x0
x x0
x x0
证:设
lim
x x0
f(x)=A ,
lim
x x0
g(x)=B , 则
0
,分别存在
1
0,
2Leabharlann 0,使得当0 x x0 1 时,有 A f (x) ,当 0 x x0 2 时,有 g(x) B
令 min1,2 ,则当 0 x x0 时,有
x
时,
1 x2
是无穷小量,
1
1 x2
是有界变量,
1 x2
1
1 x2
是无穷小量。
习题 2-4
1.若 lim f(x)存在, lim g(x)不存在,问 lim [f(x)±g(x)], lim [f(x)·g(x)]是否存在,
x x0
x x0
x x0
x x0
为什么?
解:若 lim f(x)存在, lim g(x)不存在,则
第二章
习题 2-1
1. 试利用本节定义 5 后面的注(3)证明:若 lim xn=a,则对任何自然数 k,有 lim
n
n
xn+k=a.
证:由
lim
n
xn
a
,知
0
, N1 ,当 n
N1
时,有
xn a
取 N N1 k ,有 0 , N ,设 n N 时(此时 n k N1 )有
xnk a
(7)正确,见教材§2.3 定理 5;
(8)错误,只有非零的无穷小量的倒数才是无穷大量。零是无穷小量,但其倒数无意
义。
3. 指出下列函数哪些是该极限过程中的无穷小量,哪些是该极限过程中的无穷大量.
3 (1) f(x)= x2 4 ,x→2;
(2) f(x)=lnx,x→0+,x→1,x→+∞;
1
(3) f(x)= e x ,x→0+,x→0-;
x x0
x x0
0, 1 0 ,当 0 x0 x 1 时,有 f (x) a ,
2 0 当 0 x x0 2 时,有 f (x) a 。
取 min1,2 ,则当 0 x0 x 或 0 x x0 时,有 f (x) a ,
2
而 0 x0 x 或 0 x x0 就是 0 x x0 ,
x0
x1
x
所以,当 x 0 时, x 时, f (x) ln x 是无穷大量;
当 x 1 时, f (x) ln x 是无穷小量。
1
1
1
(3)从 f (x) e x 的图可以看出, lim e x , lim e x 0 ,
x0
x0
1
所以,当 x 0 时, f (x) e x 是无穷大量;
0,
0 ,当 0
x x0
时,有
f (x) a

由 0 x x0 就 是 0 x0 x 或 0 x x0 , 于 是 0, 0 , 当
0 x0 x 或 0 x x0 时,有 f (x) a .
所以
lim f (x) lim f (x) a
xn+1=
2
xn
(n=1,2,…),则 lim n
xn 存在,并求该极限.
证:因为 x1 2, x2 2 2 , 有 x2 x1 今设 xk xk1 ,则 xk1 2 xk 2 xk1 xk ,由数学归纳法知,对于任意
cot xsin x cos x 不是无穷大量;
(4)正确,见教材§2.3 定理 2;
(5)错误,例如当 x 0 时, 1 与 1 都是无穷大量,但它们之和 1 ( 1 ) 0
xx
xx
不是无穷大量;
( 6 ) 正 确 , 因 为 M 0 , 正 整 数 k , 使 2kπ + π M , 从 而 2
于是 0 , N ,使当n N时,有
xn a xn a 即 xn a
由数列极限的定义得
lim
n
xn
a
考察数列
xn
(1)n
,知
lim
n
xn
不存在,而
xn
1, lim n
xn
1,
所以前面所证结论反之不成立。 3. 利用夹逼定理证明:
(1)
lim
n
1 n2
(n
1 1)2
1 (2n)2
1
当 x 0 时, f (x) e x 是无穷小量。
(4) lim ( π arctan x) 0 , 2 x
当 x 时, f (x) π arctan x 是无穷小量。 2
(5)当 x 时, 1 是无穷小量, sin x 是有界函数, x
1 sin x 是无穷小量。
x
(6) 当
小量。
例 3:当 x 0 时, tan x 是无穷小量,而 cot x 是无穷大量,但 tan xcot x 1不
是无穷大量,也不是无穷小量。 2. 判断下列命题是否正确: (1) 无穷小量与无穷小量的商一定是无穷小量; (2) 有界函数与无穷小量之积为无穷小量; (3) 有界函数与无穷大量之积为无穷大量; (4) 有限个无穷小量之和为无穷小量; (5) 有限个无穷大量之和为无穷大量;
x x0
x x0
综上所述, lim f(x)=a 的充要条件是 f(x)在 x0 处的左、右极限均存在且都等于 a. x x0
1
2. (1) 利用极限的几何意义确定 lim (x2+a),和 lim e x ;
x0
x0
(2)
设 f(x)=
e
1 x
,
x 0, ,问常数 a 为何值时, lim f(x)存在.
=0;
2n (2) lim =0.
n n!
证:(1)因为
1 1 1 1 n1 n n 2
n2 n2 (n 1)2
(2n)2 n2 n2 n
而且
1
lim
n
n2
0 , lim 2 n n
0,
1
所以由夹逼定理,得
lim
n
1 n2
(n
1 1)2
1 (2n)2
0
.
(2)因为 0 2n 2 2 2 2 2 4 ,而且 lim 4 0 ,
习题 2-2
1※. 证明: lim f(x)=a 的充要条件是 f(x)在 x0 处的左、右极限均存在且都等于 a. x x0
证:先证充分性:即证若 lim f (x) lim f (x) a ,则 lim f (x) a .
x x0
x x0
x x0
由 lim f (x) a 及 lim f (x) a 知:
x x0
x x0
( 1 ) lim [ f(x)±g(x) ] 不 存 在 。 因 为 若 lim [ f(x)±g(x) ] 存 在 , 则 由
x x0
x x0
g(x) f (x) [ f (x) g(x)] 或 g(x) [ f (x) g(x)] f (x) 以及极限的运算法则可得 lim x x0
由数列极限的定义得
lim
x
xn
k
a.
2. 试 利 用 不 等 式 A B A B 说 明 : 若 lim xn=a, 则 lim ∣xn∣=|a|. 考 察 数 列
n
n
xn=(-1)n,说明上述结论反之不成立. 证:
lim x
xn
a
0, N,使当n N时,有 xn a .

xn a xn a
(4) f(x)= -arctanx,x→+∞;
2
4
1
(5) f(x)= sinx,x→∞;
x
1 (6) f(x)= x2
1
1 x2
,x→∞.
解:(1) 因为 lim( x 2 x2
4)
0
相关文档
最新文档