华师大版八年级数学上册经典PPT课件
2024年华师大版八年级数学上册全套精品课件

2024年华师大版八年级数学上册全套精品课件一、教学内容1. 第一章:实数第一节:无理数的概念与性质第二节:实数的分类与运算第三节:近似数与有效数字2. 第二章:一元二次方程第一节:一元二次方程的概念与解法第二节:一元二次方程的根的判别式第三节:一元二次方程的根与系数的关系3. 第三章:不等式与不等式组第一节:不等式的性质与解法第二节:不等式组的解法与应用第三节:不等式的应用二、教学目标1. 理解实数的概念,掌握实数的分类与运算。
2. 学会解一元二次方程,掌握根的判别式和根与系数的关系。
3. 掌握不等式与不等式组的性质和解法,并能解决实际问题。
三、教学难点与重点1. 教学难点:无理数的概念与运算一元二次方程的根的判别式和根与系数的关系不等式组的解法与应用2. 教学重点:实数的分类与运算一元二次方程的解法不等式与不等式组的性质和解法四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔2. 学具:教材、练习本、文具五、教学过程1. 引入:通过实际问题引入无理数的概念,激发学生学习兴趣。
通过例题讲解,引导学生探索一元二次方程的解法。
以实际情境为例,引入不等式与不等式组的学习。
2. 授课:详细讲解实数的概念、分类与运算。
通过例题讲解,让学生掌握一元二次方程的解法。
结合实际例子,讲解不等式与不等式组的性质和解法。
3. 随堂练习:设计有针对性的练习题,巩固所学知识。
及时解答学生疑问,确保学生掌握重点知识。
强调重点和难点,提高学生解决问题的能力。
六、板书设计1. 实数的分类与运算2. 一元二次方程的解法3. 不等式与不等式组的性质和解法七、作业设计1. 作业题目:课后习题1、2、3题。
拓展题目:设计一道综合性的题目,涵盖本章所学知识。
2. 答案:八、课后反思及拓展延伸1. 反思:针对学生的薄弱环节,调整教学方法,提高教学效果。
2. 拓展延伸:探索实数在生活中的应用。
研究一元二次方程的根与系数的关系在其他领域的应用。
数学华师大版八年级上《幂的运算》课件ppt(共18张PPT)

同底数幂相乘 m n m+n a · a =a
指数相加 底数不变 指数相乘
其中m , n都是 正整数
m n mn (a ) =a
幂的乘方
练习一
2. 计算:
①(10m· 10m-1 ).100= 102m+1 ②3×27×9×3m=
15 (m - n) =
3m+6
③(m-n)4· (m-n) 5· (n-m)6
幂的运算 3 积的乘方
积的乘方
回忆: 同底数幂的乘法法则:
m n m+n a · a =a
其中m , n都是正整数
语言叙述: 同底数幂相乘,底数 不变,指数相加
回忆: 幂的乘方法则:
m n mn (a ) =a
其中m , n都是正整数
语言叙述: 幂的乘方,底数不变, 指数相乘
想一想:同底数 幂的乘法法则与 幂的乘方法则有 什么相同点和不 同点?
(C)(x7)7
(D )x 3x 4x 5x 2
3.计算(-32)5-(-35)2的结果是( B )
(A )0
(C)2×310
(B) -2×310
(D) -2×37
积的乘方
(1)(ab)2 = (ab) • (ab) = (aa) • (bb) = a (2 )b( 2 ) (ab) • (ab) • (ab) (2)(ab)3=__________________________
(aaa) • (bbb) =__________________________
= a ( 3 )b( 3 ) (ab) • (ab) • (ab) • (ab) (3)(ab)4=__________________________ (aaaa) • (bbbb) =__________________________ =a
华师大版八年级数学上册《幂的乘方》优课件

12.1.2 幂的乘方
探究问题二 幂的乘方公式的逆用 例 2 [拓展创新题] 若 2x+5y-3=0,求 4x·32y. [解析] 解决本题,关键是灵活运用同底数幂的乘法和 幂的乘方两个法则的逆向式:am+n=am·an,amn=(am)n(其 中 m,n 均为正整数),有意识地逆向运用有关的公式和法 则常常能开拓新的解题思路,取得化繁为简的效果.
解:4x·32y=(22)x·(25)y=22x·25y=22x+5y. 因为 2x+5y-3=0,所以 2x+5y=3, 所以 4x·32y=22x+5y=23=8.
12.1.2 幂的乘方
[归纳总结] 法则的逆用:即 amn=(am)n(m,n 为正整 数).逆用幂的乘方法则,可以把一个幂改写成幂的乘方 形式,其底数与原来的幂的底数相同,它的指数之积等 于原来的幂的指数.如 a12=(a2)6=(a6)2=(a3)4=(a4)3.
12.1.2 幂的乘方
新知梳理
► 知识点 幂的乘方法则 法则:幂的乘方,_底__数_不变,指数相__乘__. 字母表达式:(am)n=amn(m,n 为正整数). 推广:可推广到三个或三个以上指数的情形,即 [(am)n]p=amnp(m,n,p 为正难互动探究
探究问题一 运用幂的乘方法则进行运算 例 1 [课本例 2 变式题] 计算:(1)(104)3;(2)(xm)2; (3)-(x4)3;(4)(am-2)3;(5)[(a+2b)4]2.
▪不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月4日星期一2022/4/42022/4/42022/4/4 ▪书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/42022/4/42022/4/44/4/2022 ▪正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/42022/4/4April 4, 2022 ▪书籍是屹立在时间的汪洋大海中的灯塔。
八年级数学上册(华师大版)课件:第14章.第1节.第3课时

能力跃升 第三阶
思维拓展
◆要点导航 ◆典例全解 ◆反馈演练 第一阶
基础夯实 第二阶
能力跃升 第三阶
思维拓展
◆要点导航 ◆典例全解 ◆反馈演练 第பைடு நூலகம்阶
基础夯实 第二阶
能力跃升 第三阶
思维拓展
◆要点导航 ◆典例全解 ◆反馈演练 第一阶
基础夯实 第二阶
基础夯实 第二阶
能力跃升 第三阶
思维拓展
能力跃升 第三阶
思维拓展
◆要点导航 ◆典例全解 ◆反馈演练 第一阶
基础夯实 第二阶
能力跃升 第三阶
思维拓展
◆要点导航 ◆典例全解 ◆反馈演练 第一阶
基础夯实 第二阶
能力跃升 第三阶
思维拓展
◆要点导航 ◆典例全解 ◆反馈演练 第一阶
基础夯实 第二阶
能力跃升 第三阶
能力跃升 第三阶
思维拓展
◆要点导航 ◆典例全解 ◆反馈演练 第一阶
基础夯实 第二阶
能力跃升 第三阶
思维拓展
◆要点导航 ◆典例全解 ◆反馈演练 第一阶
基础夯实 第二阶
能力跃升 第三阶
思维拓展
◆要点导航 ◆典例全解 ◆反馈演练 第一阶
基础夯实 第二阶
能力跃升 第三阶
思维拓展
◆要点导航 ◆典例全解 ◆反馈演练 第一阶
基础夯实 第二阶
能力跃升 第三阶
思维拓展
◆要点导航 ◆典例全解 ◆反馈演练 第一阶
基础夯实 第二阶
能力跃升 第三阶
思维拓展
◆要点导航 ◆典例全解 ◆反馈演练 第一阶
基础夯实 第二阶
华师大版八年级数学上册《积的乘方》课件

(A)0
(B) -2×310
(C)2×310
(D) -2×37思考题:Fra bibliotek动脑筋!
1、若 am = 2, 则a3m =__8___. 2、若 mx = 2, my = 3 ,
则 mx+y =__6__, m3x+2y =__7_2___.
积的乘方
(1)(ab)2 = (ab) • (ab) = (aa) • (bb) = a (2 )b(2 ) (2)(ab)3=___(a_b_)_•__(a_b_)_•_(_a_b_)___________
➢ 练习二
1.下列各式中,与x5m+1相等的是( c )
(A)(x5)m+1
(B)(xm+1)5
(C) x(x5)m
(D) xx5xm
2.x14不可以写成( c )
(A)x5(x3)3 (B) (-x)(-x2)(-x3)(-x8)
(C)(x7)7
(D)x3x4x5x2
3.计算(-32)5-(-35)2的结果是( B )
(-4×0.25)2005
用 法 则
= =1 (3)-82000×(-0.125)=2001
-1
进
行 = -82000×(-0.125)2000× (-0.125)
计
算 = -82000×0.1252000× (-0.125)
= -(8×0.125)2000× (-0.125)
= -1× (-0.125) = 0.125
课堂测验
计 ①(5ab)2
算 ②(-xy2)3 ③(-2xy3)4
:
④(-2×10) 3
⑤(-3x3)2-[(2x)2]3
⑥(-3a3b2c)4 ⑦(-anbn+1)3 ⑧0.52005×22005 ⑨ (-0.25)3×26 ⑩ (-0.125) 8×230
数学华东师大版八年级上册PPT课件

16
思维训练
• 16.若a为整数, 则a3-a能被6整除吗? 为什么? • 解: 能.∵a3-a=a(a2-1)=a(a-1)(a+1), a为整数, ∴a-1, a, a+1是三个连续的整数.∵任意三个连续的整数是6的倍数, ∴a3-a能被6整除.
17
• 17.已知a、b、c是△ABC的三边长, 试判断代数式(a2+b2- c2)2与4a2b2的大小. • 解: (a2+b2-c2)2-4a2b2=(a2+b2-c2+2ab)·(a2+b2-c2- 2ab)=[(a+b)2-c2][(a-b)2-c2]=(a+b+c)(a+b-c)(a-b- c)(a-b+c).∵a、b、c是△ABC的三边长, ∴a+b+c>0, a+b-c >0, a-b-c<0, a-b+c>0, ∴(a+b+c)(a+b-c)(a-b-c)(a -b+c)<0, ∴(a2+b2-c2)2<4a2b2.
4
• 【典例】把下列各式分解因式: • (1)18x2y-50y3; • (2)ax3y+axy3-2ax2y2. • 分析: 先提取公因式, 然后考虑用平方差公式或完全平方公 式进行因式分解. • 解答: (1)18x2y-50y3=2y(9x2-25y2)=2y(3x+5y)(3x-5y). • (2)ax3y+axy3-2ax2y2=axy(x2+y2-2xy)=axy(x-y)2.
()
• A.x(1-2x)2
B.x(2x-1)(2x+1)
6
• 3.把多项式x2-6x+9分解因式, 结果正确的是
A
()
• A.(x-3)2
B.(x-9)2
• C.(x+3)(x-3)
D.(x+9)(x-9)
A
• 4.多项式mx2-m与多项式x2-2x+1的公因式是
最新华师版八上数学 13.4 尺规作图 上课课件(共44张PPT)

1
2
1
2
课堂小结
工具→没有刻度的直尺、圆规
尺
规 作
图 作图
1.作一条线段等于已知线段→作线段的和与差 2.作一个角等于已知角→作角的和与差
3.作三角形
华东师大版·八年级数学上册
2.尺规作图(2)
新课导入
用圆规和直尺能不能作 出正七边形、正九边形、正 十一边形、正十三边形、正 十七边形呢?
两千年来,这一直是个未解之谜.
练习
1.
如图,已知∠A,试作∠B=
1 2
∠A(不写作
法,保留作图痕迹)
A
B
2. 做出图中三角形的三个角的平分线。
内心
如何过一点 C 作已知直线 AB 的垂线呢?
C
点C与已知直线 AB 的位置关系有两种: 点C在直线 AB 上或点C在直线 AB 外.
(1)当点 C 在直线 AB 上
① 做平角ACB的平分线CD;
华东师大版·八年级数学上册
1.尺规作图(1)
新课导入
三角尺 量角器
刻度尺
圆规
探究新知
没有刻度的直尺
只能使用圆规和 没有刻度的直尺这两 种工具作几何图形的 方法叫做尺规作图.
圆规
基本的尺规作图:
作一条线段等于已知线段
作一个角等于已知角 作已知角的平分线
尺规作图时通常 保留作图痕迹.
经过一已知点作已知直线的垂线
D
B
C
思考 如图,已知直线l是线段AB的垂 直平分线,则直线l是线段AB的对称轴, 对l上的任意两点C、D,总有:
A
CA=CB,DA=DB
由此,你能发现作垂直平分线的方法吗?
l C
B D
【华师大版】八年级数学上册(全书)课件省优PPT(共589张)

a3 27 0 b 1 0
解得:
a 3 b 1
所以:3 a 5b 3 3 5 3 2
练 习 1. 求下列各数的立方根
(1)216;6 6(4 3) -4/5
125
(2) -0.027-;0.3
1 3(47)
64
3/4
2. 用计算器计算.
(1)3 6859
19(2)3 17.576
2.6
3.求x的值
(1)x3=-512
(2)27x3-125=0
(3)(x-2)3=-0.125 (4)(2x-1)3=2
(1)x3=-512
X=-8
(2)27x3-125=0
X=5/3
(3)(x-2)3=-0.125 X=1.5
4.填一填
(1)27的立方根与-27的立方根有什么关系?
______________________________
_
,
所以 0.008 0.2 3
_______________________________பைடு நூலகம்___
_
_.
例2 用计算器求下列各数的立方根:
(1) 1 331;(2) -343;(3) 9.263. 分析:用计算器求一个有理数的立方根,只 需要直接按书写顺序按键.
2)正数a的算术平方根是: a
3) 0的平方根是:
0
0的算术平方根是: 0
回顾与思考
1.请说一说,下列式子表示的含义
(1) 256
(2) 1.44
(3) 16 25
(4) 0.01
(5)
2
2
3
2.论述正数的算术平方根与平方根的关系
华师大版八年级数学上册《积的乘方》课件

积的乘方
(1)(ab)2 = (ab) • (ab) = (aa) • (bb) = a (2 )b(2 ) (2)(ab)3=___(a_b_)_•__(a_b_)_•_(_a_b_)___________
=__(_a_a_a_)_•_(_b_b_b_)______________ = a ( 3 )b( 3 ) (3)(ab)4=___(a_b_)_•__(a_b_)_•_(_a_b_)_•_(_a_b_)______ =__(_a_a_a_a_)_•_(_b_b_b_b_)____________ = a ( 4)b(4)
6、“教学的艺术不在于传授本领,而在于激励、唤醒、鼓舞”。2021年11月上午8时52分21.11.808:52November 8, 2021
• 7、“教师必须懂得什么该讲,什么该留着不讲,不该讲的东西就好比是学生思维的器,马上使学生在思维中出现问题。”“观 察是思考和识记之母。”2021年11月8日星期一8时52分5秒08:52:058 November 2021
试一试 ( 1)4 210 4
解:原式 [( 1 )2 ]4 210 2
( 1 )8 210 ( 12)8 28 22
2 ( 1 2)8 22
24逆用幂的乘方 的源自算性质幂的乘方的运 算性质
逆用同底数幂的 乘法运算性质
逆用积的乘方 的运算性质
一起探讨:(0.04)2004×[(-5)2004]2=? 解法一: (0.04)2004×[(-5)2004]2
(abc)n =[(ab)c]n =(ab)ncn =anbncn
例1 计算:
解(1)(2b)3
=23b3 =8b3
(2)(2×a3)2 =22×(a3)2
华师版八上数学1逆命题与逆定理课件

A
C
B
N
如何证明“三角形三条边的垂 直平分线交于一点”?
只需证明其中两条边的垂 直平分线的交点一定在第三条 边的垂直平分线上就可以了. B
A
l
n
O
m
C
点O在AC的垂
l是AB的垂直平分线
直平分线n上
A
OA=OB OB=OC
OA=OC
l
n
O
m是BC的垂直平分线
B
m
C
试试看,现在你会证明了吗?
随堂练习
B
N
∴ △PCA ≌ △PCB(S.A.S.) ∴PA=PB
探索
这一定理描述了线段垂直平分线的性质,那 么反过来会有什么结果呢?
条件
逆命题是否是 一直线是一线段
性质定理
一个真命题? 的垂直平分线
结论
该直线上的点到线 段两端的距离相等
逆命题
点到线段两端 的距离相等
该点在线段的 垂直平分线上
已知:如图,QA=QB.
证明:过点O、Q作射线OQ. ∵OQ⊥OA,QE⊥OB,
O
∴∠QDO=∠QEO=90° 在Rt△QDO和Rt△QEO中,
B
E Q
DA
已知:如图,QD⊥OA,QE⊥OB,点 D、E为垂足,QD=QE. 求证:点Q在∠AOB的平分线上.
∵OQ=OQ,QD=QE, ∴Rt△QDO≌Rt△QEO(H.L.) O ∴∠DOQ=∠EOQ ∴点Q在∠AOB的平分线上.
1. 如图,已知点A、B和直线l,在直线l上求作一点P,
使PA = PB. A
提示:作AB的垂直平 分线AC,垂足为点E,AE = CE.
求证:AB+CD=AD +BC.
华师大版八年级上册数学全册课件

例3 将下列各数开平方.
(1) 49;
(2) 4 .
25
解:(1)因为7²=49,所以 49 =7,
所以49的平方根为± 49 =±7.Fra bibliotek(2)
.
知3-讲
总结
知3-讲
我们是通过观察,利用开平方与平方的关系来 求平方根的. 通常可用计算器直接求出一个正数的 算术平方根(有时得到的是近似值).
(此讲解来源于《教材》)
5 ②a2的平方根是a;
6 ③2是4的平方根;
7 ④4的平方根是2.
8 A.1个 B.2个 C.3个 D.4个
知1-练
知识点 2 平方根的性质
知2-导
试一试
1. 144的平方根是什么? 2. 0的平方根是什么? 3. -4有没有平方根?为什么?
请你自己也编三道求平方根的题目,并给出解答.
知2-讲
知2-讲
解:(1)由平方根的定义得3+a=52.所以a=22. (2)因为正数x有两个平方根,分别是-a+2与2a-1,
所以(-a+2)+(2a-1)=0,解得a=-1. 所以x=(-a+2)2=(1+2)2=9.
总结
知2-讲
本题 (1)运用平方根的定义列方程; (2)运用平方根性质中两个平方根的关系列方程;通
华师大版八年级上册数学 全册课件
2021/9/24
第十一章 数的开方
11.1 平方根与立方根
第1课时 平方根
要剪出一张面积为25cm²的正方形纸片,正方形的 边长是多少?
知识点 1 平方根的定义
知1-导
本章导图中提出的问题,就是已知正方形的面 积为 25 cm²,求这个正方形的边长.
容易知道,这个正方形的边长是5 cm. 上述问题实质上就是要求一个数,这个数的平方 等于25.
华东师大版八年级数学上册第13章《全等三角形》全章课件(共285张PPT)

练习:将下列命题改写成“如果…那么…”
的形式,然后指出这个命题的题设和结论。
(1)同角的补角相等。 (2)两直线平行,同位角相等。 (3)在同一平面内,同垂直于第三条
直线的两直线平行。
分析命题“不相等的两个角不可能是对顶角” 条件: 两个角不相等
结论: 这两个角不可能是对顶角
改写成“如果……,那么……”的形式: 如果两个角不相等, 那么这两个角不可能是对顶角。
观察 2、下列各图中的两个三角形是全等形吗? 思考
A
D
B A
C
E
M C
F S
O
O
B
D
N
T
经过平移、旋转、翻折等位移变换
得到的三角形与原三角形全等。
1、能够完全重合的两个三角形,叫做
全等三角形。
A
D
B
CE
F
2、把两个全等的三角形重叠到一起时, 重合的顶点叫做对应顶点,重合的边叫做 对应边,重合的角叫做对应角。
强调:
观察、猜想、度量、实验得 出的结论未必都正确;
一个命题的真假,常常需要 进行有理有据的推理才能作出正 确的判断,这个推理过程叫做命 题的证明.把经过证明的真命题 叫做定理.
巩固:
下列语句中哪些是命题?请判断其中命题 的真假,并说明理由。
(1)每单位面积所受到的压力叫做压强. (2)两个奇数的和是偶数. (3)两个无理数的乘积一定是无理数. (4)偶数一定是合数吗? (5)连结AB. (6)不相等的两个角不可能是对顶角.
3、全等三角形的表示法:
A
D
B
CE
F
表示图中的△ABC和△DEF全等:
记作△ABC≌△DEF, 读作△ABC全等于△DEF.
最新华师版八上数学 13.1 命题、定理与证明 上课课件(共43张PPT)

(4)平行于同一条直线的两条直线互相平行.
真命题
3. 如图,从① ∠1= ∠2;②∠C=∠D ;③∠A =∠F 三个条件
中选出两个作为已知条件,另一个作为结论所组成的命题中,
这些都是公认的真命题,我们把它视为基本事实.
基本事实:
公认的真命题视为基本事实. 它们是用来判断其他命题真假的原始依据,即出发点.
定理:
数学中,有些命题可以从基本事实或其他真命题出发, 用逻辑推理的方法判断它们是正确的,并且可以作为进一步 判断其他命题真假的依据,这样的真命题叫做定理.
试一试
1. 下列命题中属于基本事实的是( C ) A. 内错角相等,两直线平行 B. 三角形的外角和等于 360° C. 两点确定一条直线 D. 直角三角形两锐角互余
改写:直角都相等. 如果两个角都是直角,那么这两个角相等.
例1 把命题“三个角都相等的三角形是等边三角形” 改写成“如果……,那么……”的形式,并分别指出 该命题的条件与结论.
解:这个命题可以写成“如果一个三角形的三个角 都相等,那么这个三角形是等边三角形”.该命题的条件 是“一个三角形的三个角都相等”,结论是“这个三角 形是等边三角形”.
命题的分类 命题分为真命题和假命题. 有些命题,如果条件成立,那么结论一定成立, 像这样的命题称为真命题; 而有些命题,条件成立时,不能保证结论总是正确, 也就是说结论不成立,像这样的命题,称为假命题.
两直线平行,内错角相等. 真命题 同位角相等. 假命题
真假命题的判断:
(1)要判断一个命题是真命题,可以用演绎推理加以论证. (2)要判断一个命题是假命题,只要举出一个例子,说明 该命题不成立,即只要举出一个符合该命题条件而不符合 该命题结论的例子就可以了.
华师大版八年级数学上册课件:1三角形全等的判定(SAS)

用符号语言表达为: 在△ABC与△DEF中
A
D
AC=DF ∠C=∠F BC=EF
CF
B
E
∴△ABC≌△DEF(SAS)
探索边边角
两边及其中一边的对角对应相等的两个三角形全等吗?
已知:AC=10cm,BC=8cm, ∠A=45 °.
C
△ABC的形状与大小是唯 一确定的吗?
10cm 8cm
8cm
45°
AE=AD,AC=AB,请说明△AEC ≌ △ADB
的理由。
解:在△AEC和△ADB中
C
_A_E__=__A_D_(已知)
D
∠A= ∠A( 公共角)
A
E
B
_A_C___=_A__B_(已知)
∴ △AEC≌△ADB( SAS )
巩固训练
3.已知AB∥DC, AD=BC , ∠A= ∠ B , 点 M 是 AB 的 中 点 , 求 证 : △AMD≌△BMC .
∴ ∠ADB= ∠ADC (全等三角形的对应角相等) 又∵ ∠ADB+ ∠ADC=180° ∴ ∠ADB= ∠ADC= 90°∴ AD⊥BC
A
这说明了什么?
等腰三角形顶角的平分线, B D C 就是底边上的中线,也是 底边上的高。
“三线合一”
巩固训练
1、根据题目条件,判断下面的三角形是否全等. (1) AC=DF,∠C=∠F,BC=EF; (2) BC=BD,∠ABC=∠ABD.
2、 “边边角”能不能判定两个三角形全等?
答:不能
∵ AB=AC
∠BAD=∠CAD
B
D
C
AD=AD ∴△ABD≌△Fra bibliotekCD(S.A.S.)
华师大版八年级数学上册《尺规作图5.作已知线段的垂直平分线》课件

华东师大版 §13.4
想一想
A
B
C
一、基本尺规作图
作一条线段等于已知线段; 作一个角等于已知角; 作已知线段的垂直平分线; 作已知角的平分线.
一、基本尺规作图
1.作一条线段等于已知线段.
a
一、基本尺规作图
2.作一个角等于已知角.
α
一、基本尺规作图
3.作已知线段的垂直平分线.
4.作已知角的平分线.
1.作线段PQ=BC;
2.作∠EDF=∠ABC ;
A
3.作射线AG平分∠ABC;
4.作线段AB的垂直平分线CD.
B
C
二、利用基本作图作出其他图形
例1 已知两边及其夹角,求作三角形.
α a
b
想一想
三、反思与提高
对尺规作图再认识的过程中,你有何 新的收获?想一想
体会.分享
说能出你这节课的心得和体会 让大家与你分享吗?
这一 样个 的人 人所 才受 有的 学教 问育 。超
过 了 自 己 的 智 力 ,
You made my day!
我们,还在路上……
华师大版-数学-八年级上册-《反证法》PPT课件

三、应用新知
例5 求证:两条直线相交只有一个交点。
已知:如图两条相交直线a、b。
求证:a与b只有一个交点。
证明:假设a与b不止一个交点, 不妨假设有两个交点A和A’。
a
●
● A,
因为两点确定一条直线,即经过
A
点A和A’的直线有且只有一条,这与 与已知两条直线矛盾,假设不成立。
b
所以两条直线相交只有一个交点。
A
b
c
Ca
C
二、探究
问题: 若将上面的条件改为“在
A
△ABC中,AB=c,BC=a,
AC=b,∠C≠90°”,请问结论a2 +b2 ≠ c2
成立吗?请说明理由。
b
c
探究:假设a2 +b2 =c2,由勾股定理
可知三角形ABC是直角三角形,且 ∠C=90°,这与已知条件∠C≠90°矛 盾。假设不成立,从而说明原结论a2 +b2 ≠ c2 成立。
3、用反证法证明“如果一个三角形没有两个相等的角,那么
这个三角形不是等腰三角形”的第一步
假设这个三角形是等腰三角形
。
五、拓展应用
1、已知:如图,在△ABC中,AB=AC,∠APB≠∠APC。 求证:PB≠PC
证明:假设PB=PC。 在△ABP与△ACP中 AB=AC(已知) AP=AP(公共边) PB=PC(已知)
注意:用反证法证题时,应注意的事项 :
(1)周密考察原命题结论的否定事项,防止 否定不当或有所遗漏;
(2)推理过程必须完整,否则不能说明命题 的真伪性;
(3)在推理过程中,要充分使用已知条件, 否则推不出矛盾,或者不能断定推出的结果是 错误的。
独立
作业
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 同底数幂的乘法
华师大版八年级数学上册经典PPT 课件
2 幂的乘方
华师大版八年级数学上册经典PPT 课件
3 积的乘方
华师大版八年级数学上册经典PPT 课件
2 单项式与多项式相乘
华师大版八年级数学上册经典PPT 课件
3 多项式与多项式相乘
华师大版八年级数学上册经典PPT 课件
12.3 乘法公式
华师大版八年级数学上册经典PPT 课件
11.2 实数
华师大版八年级数学上册经典PPT 课件
阅读材料 为什么√2不是有理数
华师大版八年级数学上册经典PPT 课件
第12章 整式的乘除
华师大版八年级数学上册经典PPT 课件
12.1 幂的运算
1 两数和乘以这两数的差
华师大版八年级数学上册经典PPT 课件
2 两数和(差)的平方
华师大版八数的开方
华师大版八年级数学上册经典PPT 课件
11.1 平方根与立方根
华师大版八年级数学上册经典PPT 课件
1 平方根/算术平方根
华师大版八年级数学上册经典PPT 课件
2 立方根
华师大版八年级数学上册经典PPT 课件
华师大版八年级数学上册经典PPT 课件
4 同底数幂的除法
华师大版八年级数学上册经典PPT 课件
12.2 整式的乘法
华师大版八年级数学上册经典PPT 课件
1 单项式与单项式相乘
华师大版八年级数学上册经典PPT 课件
华师大版八年级数学上册经典 PPT课件目录
0002页 0025页 0057页 0104页 0140页 0215页 0276页 0314页 0345页 0374页 0448页 0497页 0571页 0590页 0648页 0670页 0688页
第11章 数的开方 1 平方根/算术平方根 11.2 实数 第12章 整式的乘除 1 同底数幂的乘法 3 积的乘方 12.2 整式的乘法 2 单项式与多项式相乘 12.3 乘法公式 2 两数和(差)的平方 12.4 整式的除法 2 多项式除以单项式 综合与实践 面积与代数恒等式 13.1 命题、定理与证明 2 定理与证明 1 全等三角形 3 边角边