以太网交换机交换方式学习
以太网交换机原理动画演示

以太网交换机原理动画演示以太网交换机是计算机网络中非常重要的设备,它起到了连接各种网络设备的关键作用。
为了更好地理解以太网交换机的工作原理,下面我将通过动画演示的方式来详细介绍。
1. 动画开始进入动画演示,我们首先看到一个以太网交换机的示意图。
交换机由多个端口组成,每个端口都可以连接一个网络设备,如计算机、服务器等。
2. 帧的传输在动画中,我们可以看到有多个设备同时向交换机发送数据帧。
数据帧是网络通信中最基本的单位,它包含了源MAC地址、目的MAC 地址、数据等信息。
3. MAC地址和端口的映射交换机接收到一个数据帧后,会先读取其中的目的MAC地址。
它会查找自己的转发表,判断目的MAC地址所对应的端口。
如果表中有对应的记录,交换机会将数据帧直接转发到目标端口;如果表中没有对应的记录,交换机则会进行广播操作。
4. 广播和学习过程在动画中,当交换机发现没有对应的记录时,它会将数据帧广播到所有的端口上,这样所有连接在交换机上的设备都能收到该数据帧。
同时,交换机还会将源MAC地址和接收到该帧的端口记录在转发表中,这样下次如果有数据要发送给该MAC地址,交换机就能够根据表中的记录直接转发,而无需进行广播操作。
5. 学习和转发表的更新在动画的演示中,我们可以看到转发表会不断地更新。
当交换机接收到一个数据帧时,它会查找源MAC地址在转发表中的记录。
如果有对应的记录,则更新记录中的端口信息;如果没有对应的记录,则添加一条新的记录。
这样,交换机能够根据最新的转发表信息来决定如何转发数据帧。
6. 数据的转发根据转发表的信息,交换机会将数据帧直接转发到目标端口,而无需广播到所有的端口上。
这样,交换机提供了高效的数据转发,避免了数据在网络中的冲突和碰撞。
7. 动画结束通过动画演示,我们对以太网交换机的工作原理有了更深入的了解。
交换机的核心功能是通过学习和转发表的维护,实现了有效的数据转发。
它使得网络通信更加高效可靠,成为了现代计算机网络中不可或缺的设备。
传统以太网和交换以太网

屏蔽双绞线电缆结合了屏蔽、相互抵消和电线扭绞技术。对电磁干扰和射 频干扰具有更好的抵抗能力。
屏蔽双绞线的结构
非屏蔽双绞的结构
2.双绞线的型号 按照型号来分主要有以下几类。 (1) 3类双绞线 、(2) 4类双绞线 、(3) 5类双绞线 、(4) 超5类双绞线 、 (5) 6类双绞线 、(6) 7类双绞线。
1、中继器
中继器又叫转发器,是最简单的网络互联设备,负责在 两个节点的物理层上按位传递信息,完成信号的复制、调整 和放大功能,以此来延长网络的长度。
在以太网中使用中继器要注意5-4—3—2一l原
则,即4个中继器连接5个段,其中只有3个段可以连
接主机,另2个段是连接段,它们共处于1个广播域。
用中继器连接两个网段
•通信卫星
卫星对地面站进行广播,所有地面站都能通过天线收到 卫星发来的报文,可根据阅读报文地址段决定是否需要接收 。
通信卫星在3.3万千米高空,数据单程传输到地面的时 间为0.24 S~0.27 S,它比计算机发送数据的时间长得多, 所以不能用通常计算机网络采用的信道监听办法解决信道争 用问题
通信卫星 联网方式
第1章传统以太网和交换以太网
一、传输介质与连接器 二、网络互联设备
1.1、传输介质与连接器
• 同轴电缆
(一)、同轴电缆的概念,结构。 同轴电缆(Coax)是指有两个同心导体,而导体和屏
蔽层又共用同一轴心的电缆。
同轴电缆的结构
同轴电缆的特点:高带宽、及好的噪声抑制性。同轴电缆的带宽取决 于电缆长度。1km的电缆可以达到1Gb/s~2Gb/s的数据传输速率。
•光纤
(一)、光纤的概念 光纤为光导纤维的简称,由直径大约为0.1mm的细玻璃丝构成。 光纤通信:光纤通信就是因为光纤的这种神奇结构而发展起来
交换式以太网工作原理

交换式以太网工作原理
交换式以太网是一种广泛应用于计算机网络中的局域网技术。
它的工作原理是基于数据包交换和MAC地址的。
下面是交换
式以太网的工作过程:
1. 数据包传输:当一台计算机发送数据时,数据被分成较小的数据包,并添加上目的MAC地址和源MAC地址信息。
2. 交换机的接收:交换机接收到数据包后,会检查数据包的目的MAC地址。
3. 寻址表:交换机维护一个寻址表,记录着网络中各个设备的MAC地址和对应的接口。
4. 学习过程:当交换机接收到一个数据包时,它会查找寻址表,以确定目的MAC地址所对应的接口。
如果目的MAC地址不
在寻址表中,交换机会将数据包发送到所有的接口(广播)。
5. 数据包转发:交换机根据目的MAC地址将数据包转发到正
确的接口上,并学习到数据包的源MAC地址和对应的接口。
6. 冲突域分割:由于交换式以太网采用全双工通信,交换机将每个接口分割成一个独立的冲突域,因此可以同时进行数据的发送和接收,避免了数据冲突。
7. 数据包交换:交换机根据接收到的数据包的目的MAC地址,将数据包转发到目标设备,而不会广播到整个网络。
总的来说,交换式以太网通过学习MAC地址和使用交换机进行数据包转发,实现了高效的数据传输和冲突域分割,提高了网络性能和可靠性。
交换式以太网

目录
ntents
1 交换式以太网简介
2 交换式以太网数据转发方式
3 数据转发方式分类
学习目标
了解交换式以太网组网特点 掌握交换式以太网转发方式
交换式以太网简介
• 用交换机所连接的以太网
PC A
二层交换机
PC B
PC C
PC D
• 特点:
• 终端用户独占端口带宽 • 单播报文采用单播形式发送 • 广播及未知单播报文采用广播形式发送 • 在某一时刻允许多个用户同时传输数据
E1
E3
PC D
• 张三 15189000001 • 端口E0 A31112231423
4
数据转发方式分类
• 存储转发
交换机先将数据整个数据帧收下,检错之后再根据MAC地址转发
交换机之所以同时进行数据转发,其中重要的 一个方面是其具有很宽的总线带宽,如果有N个 端口,每个端口带宽为M,则交换机总线的带宽 为N×M,可以避免冲突的产生。
64字节
数据处理速度比存储转发方式快,但比直通式慢
7
5
缓冲区
交换机
存储转发方式
数据转发方式分类 • 直通式
• 在输入端口检测到一个数据包后,只检查其包头,取出目的地址,通过内部的地址表确定相 应的输出端口,然后把数据包转发到输出端口
• 只检查数据帧的帧头,大大提高了转发速率
6
数据转发方式分类 • 无碎片直通式
• 是介于直通式和存储转发式之间的一种解决方案,它检查数据包的长度是否够64 Bytes(512bit) 如果小于64 Bytes,说明该包是碎片(即在信息发送过程中由于冲突而产生的残缺不全的帧), 则丢弃该包,如果大于64 Bytes,则发送该包。
H3C S2126-EI以太网交换机 操作手册(V1.02

以太网交换机基础知识PPT学习教案

Back-to-back
Back-to-back用于测试被测设备处理back-to-back帧(指以最小帧间距存在的固定长度的一连串的帧)的能力,可用来衡 量被测设备的缓冲能力。
第29页/共55页
衡量交换性能的指标
Head of line
Head-of-line Blocking是指一个输入接口同时向一个拥塞端口和一个非拥塞 端口转发帧时,在非拥塞端口的帧丢失或延迟的增加(RFC2285),用来决定被 测设备怎么处理拥塞(设备是否执行拥塞控制,在一个端口的拥塞是否影响 非拥塞端口)。
交换机帧处理流程
Egress执行如下步骤: 1、从MMU请求帧传送; 2、若帧输出不需要带Tag则它将VLAN Tag移除; 3、如果端口是uplink端口并且HTLS模式使能,则添加HTLS包头; 4、对L3 IPMC报文进行修正; 5、将IPMC报文复制到VLAN中每个正确的端口; 6、可能的话重新计算CRC(看Tag是否有变化); 7、Egress对包的老化做处理; 8、Egress速率控制; 9、将帧传送给发送MAC;若是往CPU方向传送的帧,则CMIC Egress将把
该项测试的模型(10M)为:
若在非拥塞端口检测到帧丢失,则表示存在”Head-of-line”blocking.
第30页/共55页
衡量交换性能的指标
Address Handling
以太网交换机自学习算法及可视化

设计题目: 以太网交换机自学习算法及可视化学院:专业年级:学号:姓名:指导教师、职称:目录摘要 (I)ABSTRACT (II)1引言 (1)1.1 课题背景 (1)1.2课题研究的目的与意义 (1)1.3程序开发工具简介 (1)1.3.1 C#简介 (1)1.3.2 visual studio简介 (2)1.3.3 程序开发环境 (2)2相关原理简介 (3)2.1工作原理 (3)2.2自学习能力 (3)2.3过滤/转发 (3)2.4单播 (4)2.5广播 (4)2.6交换机的局限性 (4)2.6.1广播风暴 (4)2.6.2广播通信量的增长 (4)2.6.3有毒分组[10] (4)3 总体设计 (5)3.1设计思路 (5)3.2模块设计 (5)3.2.1信息选择模块 (5)3.2.2 转发表(监视)的操作模块 (6)3.2.3发送单播广播的操作模块 (7)3.2.4主机添加模块 (7)4 程序的实现与测试 (9)4.1程序调试/测试 (9)4.1.1程序调试................................................................................................. 错误!未定义书签。
4.1.2软件测试................................................................................................. 错误!未定义书签。
4.2自学习 (9)4.3多播、广播 (13)4.4主机添加 (15)结束语 (18)参考文献 (20)附录: (22)摘要交换机自学习的模拟程序设计,使交换机的工作进程模拟出来,同时让交换机的自学习、过滤、转发的理解更容易,更方便,更直观,同时此程序浏览起来简洁方便,给用户的学习理解带来了便捷。
本系统使用Visual Studio 2008 作为开发软件,使用C#为开发工具,实现了交换机的工作原理模拟,转发表的更新,转发表的查询以及单播、广播的信息发送。
3.9以太网交换机自学习和转发帧的流程

3.9以太⽹交换机⾃学习和转发帧的流程以太⽹交换机⼯作在数据链路层(也包括物理层)以太⽹交换机收到帧后,在帧交换表中查找帧的⽬的MAC地址所对应的接⼝号,然后通过该接⼝转发帧以太⽹交换机是⼀种即插即⽤设备,刚上电启动时其内部的帧交换表是空的,随着⽹络中各主机之间的通信,以太⽹交换机通过⾃学习算法⾃动逐渐建⽴起帧交换表下⾯我们来举例说明以太⽹交换机⾃学习和转发帧的过程。
假设A给B发送帧,该帧从交换机1的接⼝1进⼊交换机1,交换机1⾸先进⾏登记的⼯作,将该帧的源MAC地址A记录到⾃⼰的帧交换表中。
将该帧进⼊到⾃⼰的接⼝号1,相应的也记录到交换表中,上述登记⼯作就称为交换机的⾃学习。
之后交换机1对该帧进⾏转发,该帧的⽬的MAC地址是B。
在帧交换表中查找该帧的⽬的交换地址B,找不到,于是对该帧进⾏盲⽬的转发,发到除进⼊接⼝的其它接⼝。
可以看出交换机⼀开始还是⽐较笨的,他还没有⾜够的知识去明确转发帧。
主机B的⽹卡收到该帧后,根据该帧的⽬的MAC地址知道是发送给⾃⼰的,于是接收。
主机C发现不是⾃⼰的,⽆情丢弃。
之后交换机1通过接⼝4把帧发送到交换机2中,交换机2重复上⾯的流程。
我们现在来看看B给A传帧的情况,现在交换机1的帧交换表中已经有A的MAC地址和接⼝了,所以这次发送是明确的发送,不涉及其它主机。
接下来我们看看丢弃的情况:G给A发的帧到达A和交换机1,交换机1查表发现是A1,但是该帧就是从1来的,不会再转发回去。
于是丢弃。
需要注意的是:帧交换表中的每条记录都有⾃⼰的存活时间,到期⾃动删除。
为什么呢?MAC地址和接⼝对应关系会改变练习题:帧交换表只会登记进来的。
交换式以太网组网技术

存储转发
交换机首先存储整个数据帧,然 后根据MAC地址表进行转发。这 种方式可以避免风暴,但交换速 度较慢。
碎片丢弃
交换机在接收到小于一定长度 (如64字节)的数据帧时,直接 丢弃该帧。这种方式可以有效减 少网络中的小包流量,提高网络 性能。
03 交换式以太网的组网技术
CHAPTER
星型拓扑结构
交换式以太网组网技术
目录
CONTENTS
• 引言 • 交换式以太网的基本原理 • 交换式以太网的组网技术 • 交换式以太网的性能优化 • 交换式以太网的应用场景 • 总结与展望
01 引言
CHAPTER
交换式以太网的发展历程
01
02
03
起源
以太网技术起源于20世纪 70年代,最初是为了实现 简单、经济的局域网连接。
网状拓扑结构
总结词
网状拓扑结构是一种复杂的以太网组网 方式,其中节点之间有多条通信路径。
VS
详细描述
在网状拓扑结构中,节点之间有多条通信 路径,每个节点都可以直接或间接地与其 他节点通信。这种结构提供了高可用性和 灵活性,但需要复杂的配置和管理,同时 成本也较高。
04 交换式以太网的性能优化
CHAPTER
交换机通过学习源MAC地址,自动建立和维护MAC地址表。当 MAC地址发生变化时,地址表会自动更新。
去抖动处理
对于网络中的重复帧,交换机进行去抖动处理,确保只转发一次有 效帧。
交换式以太网的交换方式
直通交换
交换机在接收到数据帧时,立即 从相应的端口转发出去,不需要 存储整个数据帧。这种方式交换 速度快,但无法处理风暴。
前导码
用于同步,由7个字节的10101010和1个 字节的101010101组成。
《数据通信:路由交换技术》课件:交换技术与应用

转发。
PC B回应一个帧给PC D 交换机从端口 E1 学习到
PC B的 MAC 地址
端口号 E0 E2 E3 E1
MAC地址 00d0-d001-1111 00d0-d001-2222 00d0-d001-4444 00d0-d001-3333
1
3
2
MAC1 MAC2
MAC3 MAC4
端口号
1 2 3 3
MAC地址
MAC1 MAC2 MAC3 MAC4
交换机工作原理
(1)地址学习 初始MAC地址表是空表
端ห้องสมุดไป่ตู้号
MAC地址
交换机工作原理
(1)地址学习 PC A 发送一个帧给 PC C 交换机从端口 E0 学习到
PC A 的 MAC 地址 交换机查找MAC地址表 交换机将该帧做 “洪泛”
一个特例,它标识了所有的网卡。
MAC地址用来识别一个以太网上的某个单独的设备或一组设备
以太网MAC地址
3.MAC地址的表示方法
单播MAC地址
组播MAC地址
广播MAC地址
第一种:每两位十六进制数1组(即1个字节),一共6组,中间使用中划线连接。 第二种:每四位十六进制数1组(即2个字节),一共3组,中间使用中划线连接。
70年代
80年代
90年代
92年
96年
2002年
共享式以太网工作原理
A
B
C
D
E
①如果中间的线路是共享的, 这条链路在同一时间由谁来 使用呢?如何来保证这些主 机能有序的使用共享线路, 不发生数据的冲突?
CSMA/CD机制
以太网交换机工作原理

以太网交换机工作原理
以太网交换机是一种网络设备,用于在局域网(LAN)中转
发以太网帧。
它的工作原理如下:
1. MAC地址学习:当交换机收到一个以太网帧时,它会提取
帧中的目标MAC地址,并将该地址与输入端口关联起来,以
此学习哪个MAC地址位于哪个端口。
交换机将这些信息记录
在一个地址表中。
2. MAC地址转发:一旦交换机学习到某个MAC地址位于特
定的端口上,它将只向该端口转发帧,而不是向所有端口广播。
这种方式可以提高网络的效率和安全性。
3. 广播和未知目标处理:当交换机收到一个广播帧时,它会将该帧发送到所有的端口上,以便其他设备能够接收到。
对于目标MAC地址未知的帧,交换机将其发送到除接收端口外的所
有端口上。
4. 数据转发速度:以太网交换机通常具有高速转发能力。
它能够以硬件方式进行帧的交换和转发,这使得数据能够以线速进行传输,减少了网络延迟。
5. VLAN支持:一些以太网交换机支持虚拟局域网(VLAN)
功能。
VLAN可以将一个物理局域网划分为多个逻辑上的局域网,实现隔离和安全性。
总的来说,以太网交换机通过学习和转发MAC地址来提高网
络效率和安全性。
它有效地减少了网络拥塞和冲突,提供了快速而可靠的数据传输。
神州数码 以太网交换机基础教程(一)PPT课件

进行通信,不允许部门间通信?
4
以太网发展史(二)
ARPANET
Xerox ALTO Xerox ALTO
ALTO ALOHA Xerox ALTO
EARS激光打印机 Bob Metcalfe博士(鲍勃•迈特卡尔斐) :以太网创始人 1973年5月22日:世界上第一个个人计算机局域网络开始运转 Ethernet——“电磁辐射是可以通过发光的以太来传播的”
23
可选技术: 高性能以太网
共享的以太网 10
100 共享的快速以太网
或100或1000
交换机的以太网 10
100
24
交换机层 2
介质访问和逻辑拓扑
应用层 表示层 会话层 传输层 网络层 链路层 物理层
7
6
5
基于物理地址
4
3 交换机Switches 2
1
25
交换式局域网
• 共享媒体的局域网问题
• 10Base5:使用粗同轴电缆,采用总线型拓扑结 构。每个网段最大的传输距离为500米,使用10M 传输速率。
• 10Base2:使用细同轴电缆,每个网段的最大传 输距离是185米,使用10M传输速率。
• 10Base-T:使用两对非屏蔽双绞线,网段最大传 输距离为100米。
• 10Base-F:是使用光纤传输数据的以太网,使用 一对光纤,采用星型的拓扑结构。
– 碰撞降低了信道的传输效率 – 媒体共享其实就是带宽共享,每个主机的带
宽不能保证
• 交换式局域网
– 采用星型拓扑结构,用交换机连接主机 – 交换机工作在数据链路层,能隔离碰撞域
26
以太网的交换技术
以太网交换技术

主要内容:
●
●
● ●
以太网基础知识 以太网端口极其配置 二层转发原理 VLAN技术原理
以太网工作机制
CSMA/CD:载波侦听与冲突检测-carrier sense multiple access/collision detection
CS:载波侦听-发送之前的侦听,确保线路空闲,减少冲突机会。 MA:多址访问-每个站点发送的数据,可以被多个站点接收。 CD:冲突检测-边发送边检测,发现冲突后进行回退(引入冲突 域)。 回退:检测到冲突后的处理:发现冲突就停止发送,然后延迟一 个随机时间之后继续发送。
端口的链路类型(续)
Hybrid链路
与Trunk链路基本相同 主要区别在于,Trunk链路对于VLAN等于 PVID的报文,送出时将去掉tag,而Hybrid 可灵活配置去掉或者保留。
支持VLAN的交换机MAC学习方式
IVL流程 根据帧的VLAN ID查找MAC地址表,确定查找范围 根据目的MAC查找出端口 如果在MAC地址表中查找不到该目的MAC,则该报 文将通过广播的方式在该VLAN内所有端口转发 同时该以太网的源MAC将被学习到接收到报文的端 口上 MAC地址表通过老化机制更新 在转发的过程中不会对帧的内容进行修改
二层交换机的局限性
二层交换机将网段上的冲突域限制到了 端口级、但是无法限制广播域的大小。 端口间已经不存在冲突。但是广播域仍 然为整个LAN。 解决办法:
引入VLAN。
VALN的基本作用
相同VLAN内主机可以任意通信
二层交换 阻断广播包,减小广播域 提供了网络安全性 实现虚拟工作组 减少用户移动带来的管理工作量
交换机的功能、工作方式及其应用范围

交换机的功能、工作方式及其应用范围交换机功能学习:以太网交换机了解每一端口相连设备的MAC地址,并将地址同相应的端口映射起来存放在交换机缓存中的MAC地址表中。
转发/过滤:当一个数据帧的目的地址在MAC地址表中有映射时,它被转发到连接目的节点的端口而不是所有端口(如该数据帧为广播/组播帧则转发至所有端口)。
消除回路:当交换机包括一个冗余回路时,以太网交换机通过生成树协议避免回路的产生,同时允许存在后备路径。
交换机除了能够连接同种类型的网络之外,还可以在不同类型的网络(如以太网和快速以太网)之间起到互连作用。
如今许多交换机都能够提供支持快速以太网或FDDI等的高速连接端口,用于连接网络中的其它交换机或者为带宽占用量大的关键服务器提供附加带宽。
一般来说,交换机的每个端口都用来连接一个独立的网段,但是有时为了提供更快的接入速度,我们可以把一些重要的网络计算机直接连接到交换机的端口上。
这样,网络的关键服务器和重要用户就拥有更快的接入速度,支持更大的信息流量。
交换机方式交换机通过以下三种方式进行交换:1) 直通式:直通方式的以太网交换机可以理解为在各端口间是纵横交叉的线路矩阵电话交换机。
它在输入端口检测到一个数据包时,检查该包的包头,获取包的目的地址,启动内部的动态查找表转换成相应的输出端口,在输入与输出交叉处接通,把数据包直通到相应的端口,实现交换功能。
由于不需要存储,延迟非常小、交换非常快,这是它的优点。
它的缺点是,因为数据包内容并没有被以太网交换机保存下来,所以无法检查所传送的数据包是否有误,不能提供错误检测能力。
由于没有缓存,不能将具有不同速率的输入/输出端口直接接通,而且容易丢包。
2) 存储转发:存储转发方式是计算机网络领域应用最为广泛的方式。
它把输入端口的数据包先存储起来,然后进行CRC(循环冗余码校验)检查,在对错误包处理后才取出数据包的目的地址,通过查找表转换成输出端口送出包。
正因如此,存储转发方式在数据处理时延时大,这是它的不足,但是它可以对进入交换机的数据包进行错误检测,有效地改善网络性能。
以太网交换机

面临问题
面临问题
以太网交换机作为一种数据传输设备,是局域网中重要的设备之一,内部结构端口均为同主机连接,可以在 连接多个端口的同时,实现数据传输,也不会产生冲突。除此之外,以太网交换机成本较低,可以满足不同层次 的实际需求,在大数据时代背景下,以太网交换机技术不断发展,扩展形成了很多复杂的业务。在这个过程中, 以太网交换机也面临着较为严重的安全问题,主要包括以下几个方面:第一,广播恶意攻击;第二,网络攻击; 第三,MAC地址攻击;第四,MAC恶意欺骗;第五,环路攻击。以广播恶意攻击为例,网络是一个开放的平台,交 换机在接受大流量广播数据时,就会通过广播的形式转发这些数据,如果数据的传输控制功能不够完善,那么网 络宽带就会被这些垃圾数据充满,交换机需要具备面对众多数据的传输控制功能。
应用
应用
以太网交换机应用最为普遍,价格也较便宜,档次齐全。因此,应用领域非常广泛,在大大小小的局域网都 可以见到它们的踪影。以太网交换机通常都有几个到几十个端口,实质上就是一个多端口的网桥。另外,它的端 口速率可以不同,工作方式也可以不同,如可以提供10M、100M的带宽、提供半双工、全双工、自适应的工作方 式等。
以太网交换机
交换机
01 概念
03 应用
目录
02 关键技术 04 特点
05 工作原理
07 转发方式
目录
06 面临问题
基本信息
以太网交换机是基于以太网传输数据的交换机,以太网采用共享总线型传输媒体方式的局域网。以太网交换 机的结构是每个端口都直接与主机相连,并且一般都工作在全双工方式。交换机能同时连通许多对端口,使每一 对相互通信的主机都能像独占通信媒体那样,进行无冲突地传输数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
以太网交换机交换方式学习
在实际使用时,以太网交换机一般并不需要通信双方同时既发送又接收,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向。
AD:
在实际使用时,以太网交换机一般并不需要通信双方同时既发送又接收,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向。
在实际使用时,一般并不需要通信双方同时既发送又接收,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向。
交换机可以“学习”MAC地址,并把其存放在内部地址表中,通过在数据帧的始发者和目标接收者之间建立临时的交换路径,使数据帧直接由源地址到达目的地址。
交换机拥有一条很高带宽的背部总线和内部交换矩阵。
交换机的所有的端口都挂接在这条背部总线上,控制电路收到数据包以后,处理端口会查找内存中的地址对照表以确定目的MAC(网卡的硬件地址)的NIC(网卡)挂接在哪个端口上,通过内部交换矩阵迅速将数据包传送到目的端口,目的MAC若不存在才广播到所有的端口,接收端口回应后交换机会“学习”新的地址,并把它添加入内部地址表中。
交换机在同一时刻可进行多个端口对之间的数据传输。
每一端口都可视为独立的网段,连接在其上的网络设备独自享有全部的带宽,无须同其他设备竞争使用。
当节点A向节点D发送数据时。
节点B可同时向节点C发送数据,而且这两个传输都享有网络的全部带宽,都有着自己的虚拟连接。
和HUB 的一点小区别假使这里使用的是10Mbps的以太网交换机,那么该交换机这时的总流通量就等于2×
10Mbps=20Mbps,而使用10Mbps的共享式HUB时,一个HUB的总流通量也不会超出 10Mbps。
HUB集线器就是一种共享设备,HUB本身不能识别目的地址,当同一局域网内的A主机给B主机传输数据时,数据包在以HUB为架构的网络上是以广播方式传输的,由每一台终端通过验证数据包头的地址信息来确定是否接收。
也就是说,在这种工作方式下,同一时刻网络上只能传输一组数据帧的通讯,如果发生碰撞还得重试。
这种方式就是共享网络带宽
从广义上来看,交换机分为两种:广域网交换机和局域网交换机。
广域网交换机主要应用于电信领域,提供通信用的基础平台。
局域网交换机则应用于局域网络,用于连接终端设备,如PC机及网络打印机等。
从传输介质和传输速度上可分为以太网交换机、快速以太网交换机、千兆以太网交换机、FDDI交换机、ATM 交换机和令牌环交换机等。
从规模应用上又可分为企业级交换机、部门级交换机和工作组交换机等。
各厂商划分的尺度并不是完全一致的,一般来讲,企业级交换机都是机架式,部门级交换机可以是机架式(插槽数较少),也可以是固定配置式,而工作组级交换机为固定配置式(功能较为简单)。
另一方面,从应用的规模来看,作为骨干交换机时,支持500个信息点以上大型企业应用的交换机为企业级交换机,支持300个信息点以下中型企业的交换机为部门级交换机,而支持100个信息点以内的交换机为工作组级交换机。
交换机的主要功能包括物理编址、网络拓扑结构、错误校验、帧序列以及流控。
目前交换机还具备了一些新的功能,如对VLAN(虚拟局域网)的支持、对链路汇聚的支持,甚至有的还具有防火墙的功能。
交换机除了能够连接同种类型的网络之外,还可以在不同类型的网络(如以太网和快速以太网)之间起到互连作用。
如今许多交换机都能够提供支持快速以太网或FDDI等的高速连接端口,用于连接网络中的其它交换机或者为带宽占用量大的关键服务器提供附加带宽。
FDDI(Fiber Distributed Data Interface,光纤分布式数据接口)指由ANSI 定义的局域网标准,规定了使用光纤电缆100-Mbps的令牌传递网络,其最大传输距离可达到2公里。
FDD I使用双环结构来提供冗余。
与CDDI和FDD I II相对一般来说,交换机的每个端口都用来连接一个独立的网段,但是有时为了提供更快的接入速度,我们可以把一些重要的网络计算机直接连接到交换机的端口上。
这样,网络的关键服务器和重要用户就拥有更快的接入速度,支持更大的信息流量。
交换机的交换方式:
交换机通过以下三种方式进行交换
1.直通式:
直通方式的以太网交换机可以理解为在各端口间是纵横交叉的线路矩阵电话交换机。
它在输入端口检测到一个数据包时,检查该包的包头,获取包的目的地址,启动内部的动态查找表转换成相应的输出端口,在输入与输出交叉处接通,把数据包直通到相应的端口,实现交换功能。
由于不需要存储,延迟非常小、交换非常快,这是它的优点。
它的缺点是,因为数据包内容并没有被以太网交换机保存下来,所以无法检查所传送的数据包是否有误,不能提供错误检测能力。
由于没有缓存,不能将具有不同速率的输入/输出端口直接接通,而且容易丢包。
2.存储转发:
存储转发方式是计算机网络领域应用最为广泛的方式。
它把输入端口的数据包先存储起来,然后进行CRC(循环冗余码校验)检查,在对错误包处理后才取出数据包的目的地址,通过查找表转换成输出端口送出包。
正因如此,存储转发方式在数据处理时延时大,这是它的不足,但是它可以对进入交换机的数据包进行错误检测,有效地改善网络性能。
尤其重要的是它可以支持不同速度的端口间的转换,保持高速端口与低速端口间的协同工作。
3.碎片隔离:
这是介于前两者之间的一种解决方案。
它检查数据包的长度是否够64个字节,如果小于64字节,说明是假包,则丢弃该包;如果大于64字节,则发送该包。
这种方式也不提供数据校验。
它的数据处理速度比存储转发方式快,但比直通式慢。
以太网交换机的应用如果你的以太网络上拥有大量的用户、繁忙的应用程序和各式各样的服务器,而且你还未对网络结构做出任何调整,那么整个网络的性能可能会非常低。
解决方法之一是在以太网上添加一个10/100Mbps的交换机。
它不仅可以处理10Mbps的常规以太网数据流,而且还可以支持100Mbps的快速以太网连接。
如果网络的利用率超过了40%,并且碰撞率大于10%,交换机可以帮你解决一点问题。
带有100Mbps快速以太网和10Mbps以太网端口的交换机可以全双工方式运行,可以建立起专用的20Mbps 到200Mbps连接。