2020年四川省高考数学模拟试卷(理科)含答案解析

合集下载

2020年四川省成都市高考(理科)数学二诊试卷 含解析

2020年四川省成都市高考(理科)数学二诊试卷 含解析

2020年高考(理科)数学二诊试卷一、选择题.1.设复数z满足z(1+i)=2,i为虚数单位,则复数z的虚部是()A.1B.﹣1C.i D.﹣i2.设全集U=R,集合M={x|x<1},N={x|x>2},则(∁U M)∩N=()A.{x|x>2}B.{x|x≥1}C.{x|1<x<2}D.{x|x≥2}3.某中学有高中生1500人,初中生1000人,为了解该校学生自主锻炼的时间,采用分层抽样的方法从高中生和初中生中抽取一个容量为n的样本.若样本中高中生恰有30人,则n的值为()A.20B.50C.40D.604.曲线y=x3﹣x在点(1,0)处的切线方程为()A.2x﹣y=0B.2x+y﹣2=0C.2x+y+2=0D.2x﹣y﹣2=0 5.已知锐角α满足2sin2α=1﹣cos2α,则tanα=()A.B.1C.2D.46.函数在[﹣1,1]的图象大致为()A.B.C.D.7.执行如图所示的程序框图,则输出S的值为()A.16B.48C.96D.1288.已知函数,则函数f(x)的图象的对称轴方程为()A.B.C.D.9.如图,双曲线C:=l(a>0,b>0)的左,右焦点分别是F1(﹣c,0),F2(c,0),直线与双曲线C的两条渐近线分别相交于A,B两点,若,则双曲线C的离心率为()A.2B.C.D.10.在正方体ABCD﹣A1B1C1D1中,点P,Q分别为AB,AD的中点,过点D作平面α使B1P∥平面α,A1Q∥平面α,若直线B1D1∩平面α=M,则的值为()A.B.C.D.11.已知EF为圆(x﹣1)2+(y+1)2=1的一条直径,点M(x,y)的坐标满足不等式组,则的取值范围为()A.[,13]B.[4,13]C.[4,12]D.[,12]12.已知函数,若存在x1∈(0,+∞),x2∈R,使得f(x1)=g (x2)=k(k<0)成立,则的最大值为()A.e2B.e C.D.二、填空题13.(x+1)4的展开式中x2的系数为.14.在△ABC中,内角A,B,C的对边分别为a,b,c,已知,a=2,b=,则△ABC的面积为.15.已知各棱长都相等的直三棱柱(侧棱与底面垂直的棱柱称为直棱柱)所有顶点都在球O 的表面上,若球O的表面积为28π,则该三棱柱的侧面积为.16.经过椭圆中心的直线与椭圆相交于M,N两点(点M在第一象限),过点M作x轴的垂线,垂足为点E,设直线NE与椭圆的另一个交点为P.则cos∠NMP的值是.三、解答题17.已知{a n}是递增的等比数列,a1=l,且2a2,a3,a4成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设,n∈N*,求数列{b n}的前n项和S n.18.如图,在四棱锥P﹣ABCD中,O是边长为4的正方形ABCD的中心,PO⊥平面ABCD,E为BC的中点.(Ⅰ)求证:平面PAC⊥平面PBD;(Ⅱ)若PE=3,求二面角D﹣PE﹣B的余弦值.19.某动漫影视制作公司长期坚持文化自信,不断挖据中华优秀传统文化中的动漫题材,创作出一批又一批的优秀动漫影视作品,获得市场和广大观众的一致好评,同时也为公司赢得丰厚的利润.该公司2013年至2019年的年利润y关于年份代号x的统计数据如表(已知该公司的年利润与年份代号线性相关):年份2013201420152016201720182019年份代号x1234567年利润y(单位:29333644485259亿元)(Ⅰ)求y关于x的线性回归方程,并预测该公司2020年(年份代号记为8)的年利润;(Ⅱ)当统计表中某年年利润的实际值大于由(Ⅰ)中线性回归方程计算出该年利润的估计值时,称该年为A级利润年,否则称为B级利润年,将(Ⅰ)中预测的该公司2020年的年利润视作该年利润的实际值,现从2013年至2020年这8年中随机抽取2年,求恰有1年为A级利润年的概率.参考公式:.20.已知椭圆的左,右焦点分别为F1(﹣1,0),F2(1,0),点P在椭圆E上,PF2⊥F1F2,且|PF1|=3|PF2|.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线l:x=my+1(m∈R)与椭圆E相交于A,B两点,与圆x2+y2=a2相交于C,D两点,求|AB|•|CD|2的取值范围.21.已知函数f(x)=x2+2x﹣mln(x+1),其中m∈R.(Ⅰ)当m>0时,求函数f(x)的单调区间;(Ⅱ)设,若,在(0,+∞)上恒成立,求实数m的最大值.请考生在第22,23题中任选择一题作答,如果多做,则按所做的第一题记分作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C的参数方程为(m为参数).以坐标原点O 为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsinθ﹣ρcosθ+1=0.(Ⅰ)求直线l的直角坐标方程与曲线C的普通方程;(Ⅱ)已知点P(2,1),设直线l与曲线C相交于M,N两点,求的值[选修4-5;不等式选讲]23.已知函数f(x)=|x﹣1|+|x+3|.(Ⅰ)解不等式f(x)≥6;(Ⅱ)设g(x)=﹣x2+2ax,其中a为常数,若方程f(x)=g(x)在(0,+∞)上恰有两个不相等的实数根,求实数a的取值范围,参考答案一、选择题:共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z满足z(1+i)=2,i为虚数单位,则复数z的虚部是()A.1B.﹣1C.i D.﹣i【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简得答案.解:由z(1+i)=2,得,∴复数z的虚部是﹣1.故选:B.2.设全集U=R,集合M={x|x<1},N={x|x>2},则(∁U M)∩N=()A.{x|x>2}B.{x|x≥1}C.{x|1<x<2}D.{x|x≥2}【分析】进行补集和交集的运算即可.解:U=R,M={x|x<1},N={x|x>2},∴∁U M={x|x≥1},∴(∁U M)∩N={x|x>2}.故选:A.3.某中学有高中生1500人,初中生1000人,为了解该校学生自主锻炼的时间,采用分层抽样的方法从高中生和初中生中抽取一个容量为n的样本.若样本中高中生恰有30人,则n的值为()A.20B.50C.40D.60【分析】根据分层抽样的定义建立比例关系即可得到结论.解:由分层抽样的定义得==100,解得n=50,故选:B.4.曲线y=x3﹣x在点(1,0)处的切线方程为()A.2x﹣y=0B.2x+y﹣2=0C.2x+y+2=0D.2x﹣y﹣2=0【分析】先根据题意求出切点处的导数,然后利用点斜式直接写出切线方程即可.解:y=x3﹣x∴y′=3x2﹣1,所以k=3×12﹣1=2,所以切线方程为y=2(x﹣1),即2x﹣y﹣2=0故选:D.5.已知锐角α满足2sin2α=1﹣cos2α,则tanα=()A.B.1C.2D.4【分析】由已知利用二倍角公式可得4sinαcosα=2sin2α,结合sinα>0,利用同角三角函数基本关系式可求tanα的值.解:∵锐角α满足2sin2α=1﹣cos2α,∴4sinαcosα=2sin2α,∵sinα>0,∴2cosα=sinα,可得tanα=2.故选:C.6.函数在[﹣1,1]的图象大致为()A.B.C.D.【分析】利用函数的奇偶性及特殊点的函数值,运用排除法得解.解:,故函数f(x)为奇函数,其图象关于原点对称,故排除CD;又,故排除A.故选:B.7.执行如图所示的程序框图,则输出S的值为()A.16B.48C.96D.128【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.解:模拟程序的运行,可得S=0,i=1执行循环体,S=4,i=2不满足判断框内的条件i>3,执行循环体,S=16,i=3不满足判断框内的条件i>3,执行循环体,S=48,i=4此时,满足判断框内的条件i>3,退出循环,输出S的值为48.故选:B.8.已知函数,则函数f(x)的图象的对称轴方程为()A.B.C.D.【分析】由题意求出φ,再利用诱导公式,求出函数的解析式,再利用余弦函数的图象的对称性求出结果.解:∵函数=sin(+),∴+=π,∴ω=2,f(x)=sin(2x+)=cos2x,令2x=kπ,求得x=,k∈Z,则函数f(x)的图象的对称轴方程为x=,k∈Z,故选:C.9.如图,双曲线C:=l(a>0,b>0)的左,右焦点分别是F1(﹣c,0),F2(c,0),直线与双曲线C的两条渐近线分别相交于A,B两点,若,则双曲线C的离心率为()A.2B.C.D.【分析】联立⇒即B(﹣,),利用直线BF1的斜率=.求得即可.解:联立⇒.即B(﹣,),直线BF1的斜率=.∴.则双曲线C的离心率为e=.故选:A.10.在正方体ABCD﹣A1B1C1D1中,点P,Q分别为AB,AD的中点,过点D作平面α使B1P∥平面α,A1Q∥平面α,若直线B1D1∩平面α=M,则的值为()A.B.C.D.【分析】取BC的中点T,连接PT,B1T,QT,取A1D1的中点N,C1D1的中点K,连接NK,ND,KD,AC,A1C1,QT,由线面平行的判定定理和面面平行的判定定理、性质定理,可得B1P∥平面DNK,A1Q∥平面DNK,结合题意可得平面BNK即为平面α,结合三角形的中位线定理可得所求值.解:取BC的中点T,连接PT,B1T,QT,取A1D1的中点N,C1D1的中点K,连接NK,ND,KD,AC,A1C1,QT,在正方形ABCD中,AC∥PT,在正方形A1B1C1D1中,A1C1∥KN,由截面ACC1A1为矩形,可得AC∥A1C1,可得PT∥NK,又PT⊄平面DNK,NK⊂平面DNK,可得PT∥平面DNK,由QT∥AB,AB∥A1B1,可得QT∥A1B1,且QT=A1B1,可得四边形A1B1TQ为平行四边形,即有B1T∥A1Q,又ND∥A1Q,可得B1T∥ND,B1T⊄平面DNK,ND⊂平面DNK,可得B1T∥平面DNK,且B1T∩PT=T,可得平面B1TP∥平面DNK,由B1P⊂平面B1TP,可得B1P∥平面DNK,由ND∥A1Q,A1Q⊄平面DNK,ND⊂平面DNK,可得A1Q∥平面DNK,结合题意可得平面BNK即为平面α,由NK与B1D1交于M,在正方形A1B1C1D1中,A1C1∥KN,可得=,故选:B.11.已知EF为圆(x﹣1)2+(y+1)2=1的一条直径,点M(x,y)的坐标满足不等式组,则的取值范围为()A.[,13]B.[4,13]C.[4,12]D.[,12]【分析】由约束条件作出可行域,由数量积的坐标运算求得表达式,利用数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.解:不等式组,作出可行域如图,A(﹣2,1),B(0,1),C(﹣,﹣),∵P(1,﹣2),O(0,0),M(x,y),,∴=()•()=+﹣﹣=﹣+2=﹣1=(x﹣1)2+(y+1)2﹣1,所以当x=﹣2,y=1时,的取最大值:12,当x=,y=时,的取最小值为;所以则的取值范围是[,12];故选:D.12.已知函数,若存在x1∈(0,+∞),x2∈R,使得f(x1)=g (x2)=k(k<0)成立,则的最大值为()A.e2B.e C.D.【分析】利用导数研究函数f(x)可得函数f(x)的单调性情况,且x∈(0,1)时,f (x)<0,x∈(1,+∞)时,f(x)>0,同时注意,则,即x2=lnx1,,,进而目标式转化为,构造函数h(k)=k2e k,k<0,利用导数求其最大值即可.解:函数f(x)的定义域为(0,+∞),,∴当x∈(0,e)时,f′(x)>0,f(x)单调递增,当x∈(e,+∞)时,f′(x)<0,f(x)单调递减,注意f(1)=0,所以x∈(0,1)时,f(x)<0;x∈(1,e)时,f(x)>0;x∈(e,+∞)时,f(x)>0,同时注意到,所以若存在x l∈(0,+∞),x2∈R,使得f(x1)=g(x2)=k(k<0)成立,则0<x1<1且,所以,即x2=lnx1,,,故,令h(k)=k2e k,k<0,则h′(k)=2ke k+k2e k=ke k(2+k),令h′(k)<0,解得﹣2<k<0,令h′(k)>0,解得k<﹣2,∴h(k)在(﹣∞,﹣2)单调递增,在(﹣2,0)单调递减,∴.故选:C.二、填空题:共4小题,每小题5分,共20分.把答案填在答题卡上.13.(x+1)4的展开式中x2的系数为6.【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为2得展开式中x2的系数.解:(x+1)4的展开式的通项为T r+1=C4r x r令r=2得T3=C42x2=6x∴展开式中x2的系数为6故答案为:6.14.在△ABC中,内角A,B,C的对边分别为a,b,c,已知,a=2,b=,则△ABC的面积为.【分析】由已知结合余弦定理可求c,然后结合三角形的面积公式即可求解.解:由余弦定理可得,,解可得,c=1,所以△ABC的面积S===.故答案为:15.已知各棱长都相等的直三棱柱(侧棱与底面垂直的棱柱称为直棱柱)所有顶点都在球O 的表面上,若球O的表面积为28π,则该三棱柱的侧面积为36.【分析】通过球的内接体,说明几何体的中心是球的直径,由球的表面积求出球的半径,设出三棱柱的底面边长,通过解直角三角形求得a,即可求解.解:如图,三棱柱ABC﹣A1B1C1的所有棱长都相等,6个顶点都在球O的球面上,∴三棱柱为正三棱柱,且其中心为球的球心,设为O,设球的半径为r,由球O的表面积为28π,得4πr2=28π,∴r=,设三棱柱的底面边长为a,则上底面所在圆的半径为a,且球心O到上底面中心H的距离OH=,∴r2=7=()2+(a)2,∴a=2.则三棱柱的侧面积为S=3a2=36.故答案为:36.16.经过椭圆中心的直线与椭圆相交于M,N两点(点M在第一象限),过点M作x轴的垂线,垂足为点E,设直线NE与椭圆的另一个交点为P.则cos∠NMP的值是0.【分析】由题意的对称性,设M的坐标由题意可得N,E的坐标,进而求出直线MN,NE的斜率,求出直线NE的方程,与椭圆联立求出两根之和,进而求出P的坐标,再求MP的斜率可得与MN的斜率互为负倒数,所以直线MN,MP互相垂直,进而可得cos∠NMP的中为0.解:设M(m,n),由椭圆的对称性可得N(﹣m,﹣n),E(m,0),所以k MN=,k NE=,所以直线NE的方程为:y=(x﹣m),联立直线NE与椭圆的方程:,整理可得:(1+)x2﹣x+﹣2=0,所以﹣m+x P==,所以x P=+m,y P=(x P﹣m)=,所以k MP==﹣,所以k MN•k NP=﹣1,即MP⊥NP,所以cos∠NMP=0,故答案为:0三、解答题:共5小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.已知{a n}是递增的等比数列,a1=l,且2a2,a3,a4成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设,n∈N*,求数列{b n}的前n项和S n.【分析】(Ⅰ){a n}的公比设为q,由a1=l,可得q>1,运用等比数列的通项公式和等差数列的中项性质,解方程可得q,进而得到所求通项公式;(Ⅱ)运用对数的运算性质可得b n==﹣,再由数列的裂项相消求和,化简可得所求和.解:(Ⅰ){a n}是递增的等比数列,设公比为q,a1=l,且q>1,由2a2,a3,a4成等差数列,可得3a3=2a2+a4,即3q2=2q+q3,即q2﹣3q+2=0,解得q=2(1舍去),则a n=a1q n﹣1=2n﹣1;(Ⅱ)===﹣,则前n项和S n=1﹣+﹣+…+﹣=1﹣=.18.如图,在四棱锥P﹣ABCD中,O是边长为4的正方形ABCD的中心,PO⊥平面ABCD,E为BC的中点.(Ⅰ)求证:平面PAC⊥平面PBD;(Ⅱ)若PE=3,求二面角D﹣PE﹣B的余弦值.【分析】(I)由正方形ABCD可得:AC⊥BD.由PO⊥平面ABCD,利用线面垂直的性质定理可得:PO⊥AC.进而判断出线面面面垂直.(Ⅱ)取AB的中点O,连接OM,OE.建立如图所示的空间直角坐标系.OP=,设平面DPE的法向量为=(x,y,z),则•=•=0,可得.同理可得平面PEB的法向量,再利用向量夹角公式即可得出.【解答】(I)证明:由正方形ABCD可得:AC⊥BD.由PO⊥平面ABCD,∴PO⊥AC.又PO∩BD=O,∴AC⊥平面PBD,AC⊂平面PAC,∴平面PAC⊥平面PBD;(Ⅱ)解:取AB的中点O,连接OM,OE.建立如图所示的空间直角坐标系.OP==.O(0,0,0),B(2,2,0),E(0,2,0),D(﹣2,﹣2,0),P(0,0,),=(2,4,0),=(2,2,),设平面DPE 的法向量为=(x,y,z ),则•=•=0,∴2x+4y=0,2x+2y +z=0,取=(﹣2,,2).同理可得平面PEB 的法向量=(0,,2).cos <,>===.由图可知:二面角D﹣PE﹣B的平面角为钝角.∴二面角D﹣PE﹣B 的余弦值为﹣.19.某动漫影视制作公司长期坚持文化自信,不断挖据中华优秀传统文化中的动漫题材,创作出一批又一批的优秀动漫影视作品,获得市场和广大观众的一致好评,同时也为公司赢得丰厚的利润.该公司2013年至2019年的年利润y关于年份代号x的统计数据如表(已知该公司的年利润与年份代号线性相关):年份2013201420152016201720182019年份代号x1234567年利润y(单位:29333644485259亿元)(Ⅰ)求y关于x的线性回归方程,并预测该公司2020年(年份代号记为8)的年利润;(Ⅱ)当统计表中某年年利润的实际值大于由(Ⅰ)中线性回归方程计算出该年利润的估计值时,称该年为A级利润年,否则称为B级利润年,将(Ⅰ)中预测的该公司2020年的年利润视作该年利润的实际值,现从2013年至2020年这8年中随机抽取2年,求恰有1年为A级利润年的概率.参考公式:.【分析】(Ⅰ)结合表中的数据和的公式计算出回归直线方程的系数即可得解;(Ⅱ)比较8年的实际利润与相应估计值的大小,可得出这8年中被评为A级利润年的有3年,评为B级利润年的有5年,然后利用排列组合与古典概型的思想即可算出概率.解:(Ⅰ)根据表中数据,计算可得,,,所以,.所以y关于x的线性回归方程为.当x=8时,(亿元).故预测该公司2020年的年利润为63亿元.(Ⅱ)由(Ⅰ)可知2013年至2020年的年利润的估计值分别为28,33,38,43,48,53,58,63.其中实际利润大于相应估计值的有3年,故这8年中被评为A级利润年的有3年,评为B级利润年的有5年,记“从2013年至2020年这8年的年利润中随机抽取2年,恰有1年为A级利润年”的概率为P,则.20.已知椭圆的左,右焦点分别为F1(﹣1,0),F2(1,0),点P在椭圆E上,PF2⊥F1F2,且|PF1|=3|PF2|.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线l:x=my+1(m∈R)与椭圆E相交于A,B两点,与圆x2+y2=a2相交于C,D两点,求|AB|•|CD|2的取值范围.【分析】(Ⅰ)由焦点的坐标及PF2⊥F1F2,且|PF1|=3|PF2|求出a的值,再有a,b,c 之间关系求出b的值,进而求出椭圆的标准方程;(Ⅱ)直线与椭圆联立求出两根之和及两根之积,进而求出弦长AB,再求圆心O到直线l的距离,由半个弦长,半径和圆心到直线的距离构成直角三角形可得弦长CD,进而求出|AB|•|CD|2的表达式,进而可得取值范围.解:(Ⅰ)因为P在椭圆上,所以|PF1|+|PF2|=2a,又因为|PF1|=3|PF2|,所以|PF2|=,|PF1|=,因为PF2⊥F1F2,所以|PF2|2+|F1F2|2=|PF1|2,又|F1F2|=2,所以a2=2,b2=a2﹣c2=1,所以椭圆的标准方程为:+y2=1;(Ⅱ)设A(x1,y1),B(x2,y2),联立直线与椭圆的方程:,整理可得(2+m2)y2+2my﹣1=0,y1+y2=,y1y2=,所以弦长|AB|=|y1﹣y2|=,设圆x2+y2=2的圆心O到直线l的距离为d=,所以|CD|=2=2,所以|AB|•|CD|2=4==(2﹣),因为0,∴,∴4≤|AB|•|CD|2,所以|AB|•|CD|2的取值范围[4,16).21.已知函数f(x)=x2+2x﹣mln(x+1),其中m∈R.(Ⅰ)当m>0时,求函数f(x)的单调区间;(Ⅱ)设,若,在(0,+∞)上恒成立,求实数m的最大值.【分析】(I)先对函数求导,结合导数与单调性的关系,先确定导数的正负,进而可求函数的单调区间;(II)由已知不等式恒成立,转化为求解函数的范围问题,构造函数,结合导数与函数性质进行求解.解:(I)当m>0时,=,x>﹣1,令f′(x)=0可得x=(舍),或x=﹣1,当x时,f′(x)<0,函数单调递减,当x∈()时,f′(x)>0,函数单调递增,(II)由题意可得,在(0,+∞)上恒成立,(i)若m≤0,因为ln(x+1)>0,则﹣mln(x+1)≥0,所以,令G(x)=,x>0,则G′(x)=,因为x>0,所以,,又因为>2x+2>2,∴G′(x)>0在x>0时恒成立,故G(x)在(0,+∞)上单调递增,所以G(x)>G(0)=0,故当m≤0时,在(0,+∞)上恒成立,(ii)若m>0,令H(x)=e x﹣x﹣1,x>0,则H′(x)=e x﹣1>0,故H(x)(0,+∞)上单调递增,H(x)>H(0)=0,所以e x>x+1>0,所以,由题意知,f(x)(0,+∞)上恒成立,所以f(x)>0(0,+∞)上恒成立,由(I)知f(x)min=f()且f(0)=0,当即m>2时,f(x)在(0,)上单调递减,f()<f(0)=0,不合题意,所以≤0即0<m≤2,此时g(x)﹣=≥,令P(x)=,x>0,则P′(x)=2x+2﹣=>=>0,∴P(x)在(0,+∞)上单调递增,P(x)>P(0)=0恒成立,综上可得,m的最大值为2.请考生在第22,23题中任选择一题作答,如果多做,则按所做的第一题记分作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C的参数方程为(m为参数).以坐标原点O 为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsinθ﹣ρcosθ+1=0.(Ⅰ)求直线l的直角坐标方程与曲线C的普通方程;(Ⅱ)已知点P(2,1),设直线l与曲线C相交于M,N两点,求的值【分析】(Ⅰ)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.(Ⅱ)利用直线和曲线的位置关系的应用和一元二次方程根和系数关系式的应用求出结果.解:(Ⅰ)直线l的极坐标方程为ρsinθ﹣ρcosθ+1=0,转换为直角坐标方程为x﹣y﹣1=0.曲线C的参数方程为(m为参数).转换为直角坐标方程为y2=4x.(Ⅱ)由于点P(2,1)在直线l上,所以直线l的参数方程为(t为参数),将直线的参数方程代入y2=4x的方程,整理得:.所以,t1t2=﹣14,所以==.[选修4-5;不等式选讲]23.已知函数f(x)=|x﹣1|+|x+3|.(Ⅰ)解不等式f(x)≥6;(Ⅱ)设g(x)=﹣x2+2ax,其中a为常数,若方程f(x)=g(x)在(0,+∞)上恰有两个不相等的实数根,求实数a的取值范围,【分析】(Ⅰ)去绝对值,化为分段函数,即可求出不等式的解集,(Ⅱ)由题意f(x)=,设方程f(x)=g(x)的两根为x1,x2,(x1<x2),根据根的情况,分类讨论即可求出a的取值范围.解:(Ⅰ)原不等式即|x﹣1|+|x+3|≥6,当x≥1时,化简得2x+2≥6,解得x≥2,当﹣3<x<1时,化简得4≥6,此时无解,当x≤﹣3时,化简得﹣2x﹣2≥6,解得x≤﹣4,综上所述,原不等式的解集为(﹣∞,﹣4]∪[2,+∞).(Ⅱ)由题意f(x)=,设方程f(x)=g(x)的两根为x1,x2,(x1<x2),①当x2>x1≥1时,方程﹣x2+2ax=2x+2等价于2a=x++2,y=x++2≥2+2=2+1,当且仅当x=时取等号,易知当a∈(+1,]在(1,+∞)上有两个不相等的实数根,此时方程x2+2ax=4,在(0,1)上无解,∴a∈(+1,]满足条件.②当0<x1<x2≤1时,x2+2ax=4等价于2a=x+,此时方程2a=x+在(0,1)上显然没有两个不相等的实数根.③当0<x1<1≤x2,易知当a∈(,+∞),方程2a=x+在(0,1)上有且只有一个实数根,此时方程﹣x2+2ax=2x+2在[1,+∞)上也有一个实数根,∴a∈(,+∞)满足条件,综上所述,实数a的取值范围为(+1,+∞).。

2020年四川省成都市高考(理科)数学二诊试卷 含解析

2020年四川省成都市高考(理科)数学二诊试卷 含解析

2020年高考(理科)数学二诊试卷一、选择题.1.设复数z满足z(1+i)=2,i为虚数单位,则复数z的虚部是()A.1B.﹣1C.i D.﹣i2.设全集U=R,集合M={x|x<1},N={x|x>2},则(∁U M)∩N=()A.{x|x>2}B.{x|x≥1}C.{x|1<x<2}D.{x|x≥2}3.某中学有高中生1500人,初中生1000人,为了解该校学生自主锻炼的时间,采用分层抽样的方法从高中生和初中生中抽取一个容量为n的样本.若样本中高中生恰有30人,则n的值为()A.20B.50C.40D.604.曲线y=x3﹣x在点(1,0)处的切线方程为()A.2x﹣y=0B.2x+y﹣2=0C.2x+y+2=0D.2x﹣y﹣2=0 5.已知锐角α满足2sin2α=1﹣cos2α,则tanα=()A.B.1C.2D.46.函数在[﹣1,1]的图象大致为()A.B.C.D.7.执行如图所示的程序框图,则输出S的值为()A.16B.48C.96D.1288.已知函数,则函数f(x)的图象的对称轴方程为()A.B.C.D.9.如图,双曲线C:=l(a>0,b>0)的左,右焦点分别是F1(﹣c,0),F2(c,0),直线与双曲线C的两条渐近线分别相交于A,B两点,若,则双曲线C的离心率为()A.2B.C.D.10.在正方体ABCD﹣A1B1C1D1中,点P,Q分别为AB,AD的中点,过点D作平面α使B1P∥平面α,A1Q∥平面α,若直线B1D1∩平面α=M,则的值为()A.B.C.D.11.已知EF为圆(x﹣1)2+(y+1)2=1的一条直径,点M(x,y)的坐标满足不等式组,则的取值范围为()A.[,13]B.[4,13]C.[4,12]D.[,12]12.已知函数,若存在x1∈(0,+∞),x2∈R,使得f(x1)=g (x2)=k(k<0)成立,则的最大值为()A.e2B.e C.D.二、填空题13.(x+1)4的展开式中x2的系数为.14.在△ABC中,内角A,B,C的对边分别为a,b,c,已知,a=2,b=,则△ABC的面积为.15.已知各棱长都相等的直三棱柱(侧棱与底面垂直的棱柱称为直棱柱)所有顶点都在球O 的表面上,若球O的表面积为28π,则该三棱柱的侧面积为.16.经过椭圆中心的直线与椭圆相交于M,N两点(点M在第一象限),过点M作x轴的垂线,垂足为点E,设直线NE与椭圆的另一个交点为P.则cos∠NMP的值是.三、解答题17.已知{a n}是递增的等比数列,a1=l,且2a2,a3,a4成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设,n∈N*,求数列{b n}的前n项和S n.18.如图,在四棱锥P﹣ABCD中,O是边长为4的正方形ABCD的中心,PO⊥平面ABCD,E为BC的中点.(Ⅰ)求证:平面PAC⊥平面PBD;(Ⅱ)若PE=3,求二面角D﹣PE﹣B的余弦值.19.某动漫影视制作公司长期坚持文化自信,不断挖据中华优秀传统文化中的动漫题材,创作出一批又一批的优秀动漫影视作品,获得市场和广大观众的一致好评,同时也为公司赢得丰厚的利润.该公司2013年至2019年的年利润y关于年份代号x的统计数据如表(已知该公司的年利润与年份代号线性相关):年份2013201420152016201720182019年份代号x1234567年利润y(单位:29333644485259亿元)(Ⅰ)求y关于x的线性回归方程,并预测该公司2020年(年份代号记为8)的年利润;(Ⅱ)当统计表中某年年利润的实际值大于由(Ⅰ)中线性回归方程计算出该年利润的估计值时,称该年为A级利润年,否则称为B级利润年,将(Ⅰ)中预测的该公司2020年的年利润视作该年利润的实际值,现从2013年至2020年这8年中随机抽取2年,求恰有1年为A级利润年的概率.参考公式:.20.已知椭圆的左,右焦点分别为F1(﹣1,0),F2(1,0),点P在椭圆E上,PF2⊥F1F2,且|PF1|=3|PF2|.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线l:x=my+1(m∈R)与椭圆E相交于A,B两点,与圆x2+y2=a2相交于C,D两点,求|AB|•|CD|2的取值范围.21.已知函数f(x)=x2+2x﹣mln(x+1),其中m∈R.(Ⅰ)当m>0时,求函数f(x)的单调区间;(Ⅱ)设,若,在(0,+∞)上恒成立,求实数m的最大值.请考生在第22,23题中任选择一题作答,如果多做,则按所做的第一题记分作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C的参数方程为(m为参数).以坐标原点O 为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsinθ﹣ρcosθ+1=0.(Ⅰ)求直线l的直角坐标方程与曲线C的普通方程;(Ⅱ)已知点P(2,1),设直线l与曲线C相交于M,N两点,求的值[选修4-5;不等式选讲]23.已知函数f(x)=|x﹣1|+|x+3|.(Ⅰ)解不等式f(x)≥6;(Ⅱ)设g(x)=﹣x2+2ax,其中a为常数,若方程f(x)=g(x)在(0,+∞)上恰有两个不相等的实数根,求实数a的取值范围,参考答案一、选择题:共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z满足z(1+i)=2,i为虚数单位,则复数z的虚部是()A.1B.﹣1C.i D.﹣i【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简得答案.解:由z(1+i)=2,得,∴复数z的虚部是﹣1.故选:B.2.设全集U=R,集合M={x|x<1},N={x|x>2},则(∁U M)∩N=()A.{x|x>2}B.{x|x≥1}C.{x|1<x<2}D.{x|x≥2}【分析】进行补集和交集的运算即可.解:U=R,M={x|x<1},N={x|x>2},∴∁U M={x|x≥1},∴(∁U M)∩N={x|x>2}.故选:A.3.某中学有高中生1500人,初中生1000人,为了解该校学生自主锻炼的时间,采用分层抽样的方法从高中生和初中生中抽取一个容量为n的样本.若样本中高中生恰有30人,则n的值为()A.20B.50C.40D.60【分析】根据分层抽样的定义建立比例关系即可得到结论.解:由分层抽样的定义得==100,解得n=50,故选:B.4.曲线y=x3﹣x在点(1,0)处的切线方程为()A.2x﹣y=0B.2x+y﹣2=0C.2x+y+2=0D.2x﹣y﹣2=0【分析】先根据题意求出切点处的导数,然后利用点斜式直接写出切线方程即可.解:y=x3﹣x∴y′=3x2﹣1,所以k=3×12﹣1=2,所以切线方程为y=2(x﹣1),即2x﹣y﹣2=0故选:D.5.已知锐角α满足2sin2α=1﹣cos2α,则tanα=()A.B.1C.2D.4【分析】由已知利用二倍角公式可得4sinαcosα=2sin2α,结合sinα>0,利用同角三角函数基本关系式可求tanα的值.解:∵锐角α满足2sin2α=1﹣cos2α,∴4sinαcosα=2sin2α,∵sinα>0,∴2cosα=sinα,可得tanα=2.故选:C.6.函数在[﹣1,1]的图象大致为()A.B.C.D.【分析】利用函数的奇偶性及特殊点的函数值,运用排除法得解.解:,故函数f(x)为奇函数,其图象关于原点对称,故排除CD;又,故排除A.故选:B.7.执行如图所示的程序框图,则输出S的值为()A.16B.48C.96D.128【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.解:模拟程序的运行,可得S=0,i=1执行循环体,S=4,i=2不满足判断框内的条件i>3,执行循环体,S=16,i=3不满足判断框内的条件i>3,执行循环体,S=48,i=4此时,满足判断框内的条件i>3,退出循环,输出S的值为48.故选:B.8.已知函数,则函数f(x)的图象的对称轴方程为()A.B.C.D.【分析】由题意求出φ,再利用诱导公式,求出函数的解析式,再利用余弦函数的图象的对称性求出结果.解:∵函数=sin(+),∴+=π,∴ω=2,f(x)=sin(2x+)=cos2x,令2x=kπ,求得x=,k∈Z,则函数f(x)的图象的对称轴方程为x=,k∈Z,故选:C.9.如图,双曲线C:=l(a>0,b>0)的左,右焦点分别是F1(﹣c,0),F2(c,0),直线与双曲线C的两条渐近线分别相交于A,B两点,若,则双曲线C的离心率为()A.2B.C.D.【分析】联立⇒即B(﹣,),利用直线BF1的斜率=.求得即可.解:联立⇒.即B(﹣,),直线BF1的斜率=.∴.则双曲线C的离心率为e=.故选:A.10.在正方体ABCD﹣A1B1C1D1中,点P,Q分别为AB,AD的中点,过点D作平面α使B1P∥平面α,A1Q∥平面α,若直线B1D1∩平面α=M,则的值为()A.B.C.D.【分析】取BC的中点T,连接PT,B1T,QT,取A1D1的中点N,C1D1的中点K,连接NK,ND,KD,AC,A1C1,QT,由线面平行的判定定理和面面平行的判定定理、性质定理,可得B1P∥平面DNK,A1Q∥平面DNK,结合题意可得平面BNK即为平面α,结合三角形的中位线定理可得所求值.解:取BC的中点T,连接PT,B1T,QT,取A1D1的中点N,C1D1的中点K,连接NK,ND,KD,AC,A1C1,QT,在正方形ABCD中,AC∥PT,在正方形A1B1C1D1中,A1C1∥KN,由截面ACC1A1为矩形,可得AC∥A1C1,可得PT∥NK,又PT⊄平面DNK,NK⊂平面DNK,可得PT∥平面DNK,由QT∥AB,AB∥A1B1,可得QT∥A1B1,且QT=A1B1,可得四边形A1B1TQ为平行四边形,即有B1T∥A1Q,又ND∥A1Q,可得B1T∥ND,B1T⊄平面DNK,ND⊂平面DNK,可得B1T∥平面DNK,且B1T∩PT=T,可得平面B1TP∥平面DNK,由B1P⊂平面B1TP,可得B1P∥平面DNK,由ND∥A1Q,A1Q⊄平面DNK,ND⊂平面DNK,可得A1Q∥平面DNK,结合题意可得平面BNK即为平面α,由NK与B1D1交于M,在正方形A1B1C1D1中,A1C1∥KN,可得=,故选:B.11.已知EF为圆(x﹣1)2+(y+1)2=1的一条直径,点M(x,y)的坐标满足不等式组,则的取值范围为()A.[,13]B.[4,13]C.[4,12]D.[,12]【分析】由约束条件作出可行域,由数量积的坐标运算求得表达式,利用数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.解:不等式组,作出可行域如图,A(﹣2,1),B(0,1),C(﹣,﹣),∵P(1,﹣2),O(0,0),M(x,y),,∴=()•()=+﹣﹣=﹣+2=﹣1=(x﹣1)2+(y+1)2﹣1,所以当x=﹣2,y=1时,的取最大值:12,当x=,y=时,的取最小值为;所以则的取值范围是[,12];故选:D.12.已知函数,若存在x1∈(0,+∞),x2∈R,使得f(x1)=g (x2)=k(k<0)成立,则的最大值为()A.e2B.e C.D.【分析】利用导数研究函数f(x)可得函数f(x)的单调性情况,且x∈(0,1)时,f (x)<0,x∈(1,+∞)时,f(x)>0,同时注意,则,即x2=lnx1,,,进而目标式转化为,构造函数h(k)=k2e k,k<0,利用导数求其最大值即可.解:函数f(x)的定义域为(0,+∞),,∴当x∈(0,e)时,f′(x)>0,f(x)单调递增,当x∈(e,+∞)时,f′(x)<0,f(x)单调递减,注意f(1)=0,所以x∈(0,1)时,f(x)<0;x∈(1,e)时,f(x)>0;x∈(e,+∞)时,f(x)>0,同时注意到,所以若存在x l∈(0,+∞),x2∈R,使得f(x1)=g(x2)=k(k<0)成立,则0<x1<1且,所以,即x2=lnx1,,,故,令h(k)=k2e k,k<0,则h′(k)=2ke k+k2e k=ke k(2+k),令h′(k)<0,解得﹣2<k<0,令h′(k)>0,解得k<﹣2,∴h(k)在(﹣∞,﹣2)单调递增,在(﹣2,0)单调递减,∴.故选:C.二、填空题:共4小题,每小题5分,共20分.把答案填在答题卡上.13.(x+1)4的展开式中x2的系数为6.【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为2得展开式中x2的系数.解:(x+1)4的展开式的通项为T r+1=C4r x r令r=2得T3=C42x2=6x∴展开式中x2的系数为6故答案为:6.14.在△ABC中,内角A,B,C的对边分别为a,b,c,已知,a=2,b=,则△ABC的面积为.【分析】由已知结合余弦定理可求c,然后结合三角形的面积公式即可求解.解:由余弦定理可得,,解可得,c=1,所以△ABC的面积S===.故答案为:15.已知各棱长都相等的直三棱柱(侧棱与底面垂直的棱柱称为直棱柱)所有顶点都在球O 的表面上,若球O的表面积为28π,则该三棱柱的侧面积为36.【分析】通过球的内接体,说明几何体的中心是球的直径,由球的表面积求出球的半径,设出三棱柱的底面边长,通过解直角三角形求得a,即可求解.解:如图,三棱柱ABC﹣A1B1C1的所有棱长都相等,6个顶点都在球O的球面上,∴三棱柱为正三棱柱,且其中心为球的球心,设为O,设球的半径为r,由球O的表面积为28π,得4πr2=28π,∴r=,设三棱柱的底面边长为a,则上底面所在圆的半径为a,且球心O到上底面中心H的距离OH=,∴r2=7=()2+(a)2,∴a=2.则三棱柱的侧面积为S=3a2=36.故答案为:36.16.经过椭圆中心的直线与椭圆相交于M,N两点(点M在第一象限),过点M作x轴的垂线,垂足为点E,设直线NE与椭圆的另一个交点为P.则cos∠NMP的值是0.【分析】由题意的对称性,设M的坐标由题意可得N,E的坐标,进而求出直线MN,NE的斜率,求出直线NE的方程,与椭圆联立求出两根之和,进而求出P的坐标,再求MP的斜率可得与MN的斜率互为负倒数,所以直线MN,MP互相垂直,进而可得cos∠NMP的中为0.解:设M(m,n),由椭圆的对称性可得N(﹣m,﹣n),E(m,0),所以k MN=,k NE=,所以直线NE的方程为:y=(x﹣m),联立直线NE与椭圆的方程:,整理可得:(1+)x2﹣x+﹣2=0,所以﹣m+x P==,所以x P=+m,y P=(x P﹣m)=,所以k MP==﹣,所以k MN•k NP=﹣1,即MP⊥NP,所以cos∠NMP=0,故答案为:0三、解答题:共5小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.已知{a n}是递增的等比数列,a1=l,且2a2,a3,a4成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设,n∈N*,求数列{b n}的前n项和S n.【分析】(Ⅰ){a n}的公比设为q,由a1=l,可得q>1,运用等比数列的通项公式和等差数列的中项性质,解方程可得q,进而得到所求通项公式;(Ⅱ)运用对数的运算性质可得b n==﹣,再由数列的裂项相消求和,化简可得所求和.解:(Ⅰ){a n}是递增的等比数列,设公比为q,a1=l,且q>1,由2a2,a3,a4成等差数列,可得3a3=2a2+a4,即3q2=2q+q3,即q2﹣3q+2=0,解得q=2(1舍去),则a n=a1q n﹣1=2n﹣1;(Ⅱ)===﹣,则前n项和S n=1﹣+﹣+…+﹣=1﹣=.18.如图,在四棱锥P﹣ABCD中,O是边长为4的正方形ABCD的中心,PO⊥平面ABCD,E为BC的中点.(Ⅰ)求证:平面PAC⊥平面PBD;(Ⅱ)若PE=3,求二面角D﹣PE﹣B的余弦值.【分析】(I)由正方形ABCD可得:AC⊥BD.由PO⊥平面ABCD,利用线面垂直的性质定理可得:PO⊥AC.进而判断出线面面面垂直.(Ⅱ)取AB的中点O,连接OM,OE.建立如图所示的空间直角坐标系.OP=,设平面DPE的法向量为=(x,y,z),则•=•=0,可得.同理可得平面PEB的法向量,再利用向量夹角公式即可得出.【解答】(I)证明:由正方形ABCD可得:AC⊥BD.由PO⊥平面ABCD,∴PO⊥AC.又PO∩BD=O,∴AC⊥平面PBD,AC⊂平面PAC,∴平面PAC⊥平面PBD;(Ⅱ)解:取AB的中点O,连接OM,OE.建立如图所示的空间直角坐标系.OP==.O(0,0,0),B(2,2,0),E(0,2,0),D(﹣2,﹣2,0),P(0,0,),=(2,4,0),=(2,2,),设平面DPE 的法向量为=(x,y,z ),则•=•=0,∴2x+4y=0,2x+2y +z=0,取=(﹣2,,2).同理可得平面PEB 的法向量=(0,,2).cos <,>===.由图可知:二面角D﹣PE﹣B的平面角为钝角.∴二面角D﹣PE﹣B 的余弦值为﹣.19.某动漫影视制作公司长期坚持文化自信,不断挖据中华优秀传统文化中的动漫题材,创作出一批又一批的优秀动漫影视作品,获得市场和广大观众的一致好评,同时也为公司赢得丰厚的利润.该公司2013年至2019年的年利润y关于年份代号x的统计数据如表(已知该公司的年利润与年份代号线性相关):年份2013201420152016201720182019年份代号x1234567年利润y(单位:29333644485259亿元)(Ⅰ)求y关于x的线性回归方程,并预测该公司2020年(年份代号记为8)的年利润;(Ⅱ)当统计表中某年年利润的实际值大于由(Ⅰ)中线性回归方程计算出该年利润的估计值时,称该年为A级利润年,否则称为B级利润年,将(Ⅰ)中预测的该公司2020年的年利润视作该年利润的实际值,现从2013年至2020年这8年中随机抽取2年,求恰有1年为A级利润年的概率.参考公式:.【分析】(Ⅰ)结合表中的数据和的公式计算出回归直线方程的系数即可得解;(Ⅱ)比较8年的实际利润与相应估计值的大小,可得出这8年中被评为A级利润年的有3年,评为B级利润年的有5年,然后利用排列组合与古典概型的思想即可算出概率.解:(Ⅰ)根据表中数据,计算可得,,,所以,.所以y关于x的线性回归方程为.当x=8时,(亿元).故预测该公司2020年的年利润为63亿元.(Ⅱ)由(Ⅰ)可知2013年至2020年的年利润的估计值分别为28,33,38,43,48,53,58,63.其中实际利润大于相应估计值的有3年,故这8年中被评为A级利润年的有3年,评为B级利润年的有5年,记“从2013年至2020年这8年的年利润中随机抽取2年,恰有1年为A级利润年”的概率为P,则.20.已知椭圆的左,右焦点分别为F1(﹣1,0),F2(1,0),点P在椭圆E上,PF2⊥F1F2,且|PF1|=3|PF2|.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线l:x=my+1(m∈R)与椭圆E相交于A,B两点,与圆x2+y2=a2相交于C,D两点,求|AB|•|CD|2的取值范围.【分析】(Ⅰ)由焦点的坐标及PF2⊥F1F2,且|PF1|=3|PF2|求出a的值,再有a,b,c 之间关系求出b的值,进而求出椭圆的标准方程;(Ⅱ)直线与椭圆联立求出两根之和及两根之积,进而求出弦长AB,再求圆心O到直线l的距离,由半个弦长,半径和圆心到直线的距离构成直角三角形可得弦长CD,进而求出|AB|•|CD|2的表达式,进而可得取值范围.解:(Ⅰ)因为P在椭圆上,所以|PF1|+|PF2|=2a,又因为|PF1|=3|PF2|,所以|PF2|=,|PF1|=,因为PF2⊥F1F2,所以|PF2|2+|F1F2|2=|PF1|2,又|F1F2|=2,所以a2=2,b2=a2﹣c2=1,所以椭圆的标准方程为:+y2=1;(Ⅱ)设A(x1,y1),B(x2,y2),联立直线与椭圆的方程:,整理可得(2+m2)y2+2my﹣1=0,y1+y2=,y1y2=,所以弦长|AB|=|y1﹣y2|=,设圆x2+y2=2的圆心O到直线l的距离为d=,所以|CD|=2=2,所以|AB|•|CD|2=4==(2﹣),因为0,∴,∴4≤|AB|•|CD|2,所以|AB|•|CD|2的取值范围[4,16).21.已知函数f(x)=x2+2x﹣mln(x+1),其中m∈R.(Ⅰ)当m>0时,求函数f(x)的单调区间;(Ⅱ)设,若,在(0,+∞)上恒成立,求实数m的最大值.【分析】(I)先对函数求导,结合导数与单调性的关系,先确定导数的正负,进而可求函数的单调区间;(II)由已知不等式恒成立,转化为求解函数的范围问题,构造函数,结合导数与函数性质进行求解.解:(I)当m>0时,=,x>﹣1,令f′(x)=0可得x=(舍),或x=﹣1,当x时,f′(x)<0,函数单调递减,当x∈()时,f′(x)>0,函数单调递增,(II)由题意可得,在(0,+∞)上恒成立,(i)若m≤0,因为ln(x+1)>0,则﹣mln(x+1)≥0,所以,令G(x)=,x>0,则G′(x)=,因为x>0,所以,,又因为>2x+2>2,∴G′(x)>0在x>0时恒成立,故G(x)在(0,+∞)上单调递增,所以G(x)>G(0)=0,故当m≤0时,在(0,+∞)上恒成立,(ii)若m>0,令H(x)=e x﹣x﹣1,x>0,则H′(x)=e x﹣1>0,故H(x)(0,+∞)上单调递增,H(x)>H(0)=0,所以e x>x+1>0,所以,由题意知,f(x)(0,+∞)上恒成立,所以f(x)>0(0,+∞)上恒成立,由(I)知f(x)min=f()且f(0)=0,当即m>2时,f(x)在(0,)上单调递减,f()<f(0)=0,不合题意,所以≤0即0<m≤2,此时g(x)﹣=≥,令P(x)=,x>0,则P′(x)=2x+2﹣=>=>0,∴P(x)在(0,+∞)上单调递增,P(x)>P(0)=0恒成立,综上可得,m的最大值为2.请考生在第22,23题中任选择一题作答,如果多做,则按所做的第一题记分作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C的参数方程为(m为参数).以坐标原点O 为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsinθ﹣ρcosθ+1=0.(Ⅰ)求直线l的直角坐标方程与曲线C的普通方程;(Ⅱ)已知点P(2,1),设直线l与曲线C相交于M,N两点,求的值【分析】(Ⅰ)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.(Ⅱ)利用直线和曲线的位置关系的应用和一元二次方程根和系数关系式的应用求出结果.解:(Ⅰ)直线l的极坐标方程为ρsinθ﹣ρcosθ+1=0,转换为直角坐标方程为x﹣y﹣1=0.曲线C的参数方程为(m为参数).转换为直角坐标方程为y2=4x.(Ⅱ)由于点P(2,1)在直线l上,所以直线l的参数方程为(t为参数),将直线的参数方程代入y2=4x的方程,整理得:.所以,t1t2=﹣14,所以==.[选修4-5;不等式选讲]23.已知函数f(x)=|x﹣1|+|x+3|.(Ⅰ)解不等式f(x)≥6;(Ⅱ)设g(x)=﹣x2+2ax,其中a为常数,若方程f(x)=g(x)在(0,+∞)上恰有两个不相等的实数根,求实数a的取值范围,【分析】(Ⅰ)去绝对值,化为分段函数,即可求出不等式的解集,(Ⅱ)由题意f(x)=,设方程f(x)=g(x)的两根为x1,x2,(x1<x2),根据根的情况,分类讨论即可求出a的取值范围.解:(Ⅰ)原不等式即|x﹣1|+|x+3|≥6,当x≥1时,化简得2x+2≥6,解得x≥2,当﹣3<x<1时,化简得4≥6,此时无解,当x≤﹣3时,化简得﹣2x﹣2≥6,解得x≤﹣4,综上所述,原不等式的解集为(﹣∞,﹣4]∪[2,+∞).(Ⅱ)由题意f(x)=,设方程f(x)=g(x)的两根为x1,x2,(x1<x2),①当x2>x1≥1时,方程﹣x2+2ax=2x+2等价于2a=x++2,y=x++2≥2+2=2+1,当且仅当x=时取等号,易知当a∈(+1,]在(1,+∞)上有两个不相等的实数根,此时方程x2+2ax=4,在(0,1)上无解,∴a∈(+1,]满足条件.②当0<x1<x2≤1时,x2+2ax=4等价于2a=x+,此时方程2a=x+在(0,1)上显然没有两个不相等的实数根.③当0<x1<1≤x2,易知当a∈(,+∞),方程2a=x+在(0,1)上有且只有一个实数根,此时方程﹣x2+2ax=2x+2在[1,+∞)上也有一个实数根,∴a∈(,+∞)满足条件,综上所述,实数a的取值范围为(+1,+∞).。

2020年四川省高考数学(理科)模拟试卷(5)

2020年四川省高考数学(理科)模拟试卷(5)

优秀
非优秀
合计
男生
40
女生
50
合计
100
参考公式及数据:
??2 =
??(????-??2??)
,??=
(??+??)(??+??)(??+??)(??+??)
??+
??+
??+
??.
P( K2≥ k0) 0.05
0.01 0.005 0.001
k0
3.841 6.635 7.879 10.828
18.( 12 分)如图,已知四棱锥 P﹣ABCD 的底面 ABCD 是菱形,∠ ABC= 60°, PA⊥平面 ABCD , AB= 2, PD 与平面 ABCD 所成的角为 45°,点 M 为 PC 的中点.
第 1页(共 19页)
A .2
B.3
C. 4
D.5
??2 ??2
6.(5 分)已知点 ( 1,2)在双曲线 ??2 - ??2 = 1 的渐近线上, 则该双曲线的离心率为 (

3 A.
2
B .√5
√5 C.
2
√6 D.
2
7.( 5 分)设 x∈R,则“ x> 12”是“(1﹣ 2x)( x+1)< 0”的(
应赔偿多少粟?在这个问题中,牛主人比羊主人多赔偿(

50 A . 斗粟
7
10 B . 斗粟
7
20 C. 斗粟
7
1 【解答】 解:由题意可知 x, y, z 依次成公比为 的等比数列,
2
则 x+y+z=4z+2z+z= 5,
15 D. 斗粟
7

2020年四川省宜宾市高考数学一诊试卷(理科)试题及答案(解析版)

2020年四川省宜宾市高考数学一诊试卷(理科)试题及答案(解析版)
③a>0时, 在(0, )上是减函数,在( ,+∞)上是增函数,
∴ 时,g(x)取得最小值 ,
解 得,a≥4,显然a<4和a>4时,都不满足f(x)在(0,2)上是减函数,只有a=4时满足f(x)在(0,2)上是减函数,
∴满足条件的a的集合是{4}.
故答案为:{4}.
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.
2020年四川省宜宾市高考数学一诊试卷(理科)
参考答案与试题解析
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的.
1.已知集合U={1,2,3,4,5,6},A={1,3,4},则∁UA=( )
A.{5,6}B.{1,2,3,4}C.{2,5,6}D.{2,3,4,5,6}
(1)讨论f(x)在其定义域内的单调性;
(2)若a=1,且f(x1)=f(x2),其中0<x1<x2,求证:x1+x2+x1x2>3.
(二)选考题:共10分.请考生在第22、23题中选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]
22.如图所示,“8”是在极坐标系Ox中分别以 和 为圆心,外切于点O的两个圆.过O作两条夹角为 的射线分别交⊙C1于O、A两点,交⊙C2于O、B两点.
∴cos∠AOB= ,即∠AOB=60°.
(1)若λ>0,μ>0,
设 =2 , =2 ,则 = + ,
∵|λ|+|μ|=λ+μ≤2,故当λ+μ=2时,E,F,P三点共线,
故点P表示的区域为△OEF,

2020届四川省高考数学(理)模拟试题(word版,有答案)

2020届四川省高考数学(理)模拟试题(word版,有答案)

普通高等学校招生全国统一考试(四川卷)数学(理工类)本试卷分第I 卷(选择题)和第II 卷(非选择题),第I 卷1至2页,第II 卷3至4页,共4页,满分150分,考试时间120分钟,考生作答时,须将答案答在答题卡上,在本试题卷、草稿上答题无效,考试结束 后,将本试题卷和答题卡一并交回。

第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一个是符合题目要求的。

1.设集合{|22}A x x =-≤≤,Z 为整数集,则A I Z 中元素的个数是( )(A )3(B )4(C )5(D )62.设i 为虚数单位,则6(i)x +的展开式中含x 4的项为( )(A )-15x 4(B )15x 4(C )-20i x 4(D )20i x 43.为了得到函数πsin(2)3y x =-的图象,只需把函数sin 2y x =的图象上所有的点( ) (A )向左平行移动π3个单位长度(B )向右平行移动π3个单位长度 (C )向左平行移动π6个单位长度(D )向右平行移动π6个单位长度 4.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( ) (A )24(B )48(C )60(D )725.某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( ) (参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg2≈0.30) ( A )2018年(B )2019年(C )2020年(D )2021年6.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n ,x 的值分别为3,2,则输出v 的值为( )(A )9 (B )18 (C )20 (D )357.设p :实数x ,y 满足(x –1)2+(y –1)2≤2,q :实数x ,y 满足1,1,1,y x y x y ≥-⎧⎪≥-⎨⎪≤⎩则p 是q 的( )(A )必要不充分条件(B )充分不必要条件(C )充要条件(D )既不充分也不必要条件8.设O 为坐标原点,P 是以F 为焦点的抛物线22(p 0)y px =>上任意一点,M 是线段PF 上的点,且PM =2MF ,则直线OM 的斜率的最大值为( )(A 3(B )23(C 2(D )1 9.设直线l 1,l 2分别是函数f (x )=ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△P AB 的面积的取值范围是( ) (A )(0,1) (B )(0,2) (C )(0,+∞) (D )(1,+∞)10.在平面内,定点A ,B ,C ,D 满足DA u u u r =DB u u u r =DC u u u r ,DA u u u r g DB u u u r =DB u u u r g DC u u u r =DC u u u r g DA u u u r=-2,动点P ,M满足AP u u u r =1,PM u u u u r =MC u u uu r ,则2BM u u u u u r 的最大值是( )(A )434(B )494(C 3763+D 37233+第II 卷(非选择题 100分)二、填空题:本大题共5小题,每小题5分,共25分。

2020年四川高三二模数学试卷(理科)

2020年四川高三二模数学试卷(理科)

C. 充要条件
的图象关于直线
对称”的( ).
B. 必要不充分条件
D. 既不充分也不必要条件
4. 幻方最早起源于我国,由正整数 , , ,
, 这 个数填入
方格中,使得每行、每
列、每条对角线上的数的和相等,这个正方形数阵就叫 阶幻方.定义 为 阶幻方对角线上所有数
的和,如
,则
( ).
A. B. C. D.
10
14.
解析:
根据直方图知第二组的频率是
,则样本容量是
,则成绩在区间
的学生人数是
15.
解析:
方法一:
由题意,直线 的方程为
,与




得,

从而



从而离心率

方法二:
过点 作
,交 轴于点 ,
联立,
,又成绩在 .
分的频率是


11

为等腰三角形,
取 的中点 ,



从而

离心率

16.
解析:
其中 的顾客按 折支付, 的顾客按 折支付, 的顾客按 折支付
将上述频率作为相应事件发生的概率,记某顾客购买一件该促销商品所支付的金额为 ,求 的分布列
和数学期望.
附表及公式:

18. 已知 , , 分别是
三个内角 , , 的对边,
+
(1) 求 ;
(2) 若

,求 , .
19. 如图,在四棱锥
中,底面
D. ①②③
3
二、填空题(本大题共4小题,每小题5分,共20分)

2020年高考理科数学模拟试题含答案及解析5套)

2020年高考理科数学模拟试题含答案及解析5套)

绝密★启用前2020年高考模拟试题(一)理科数学时间:120分钟分值:150分注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答题前,考生务必将自己的姓名、考生号填写在答题卡上。

2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在试卷上无效。

3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。

4、考试结束,将本试卷和答题卡一并交回。

第Ⅰ卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知a ,b 都是实数,那么“22a b >”是“22a b >”的() A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件2.抛物线22(0)x py p =>的焦点坐标为()A .,02p ⎛⎫⎪⎝⎭B .1,08p ⎛⎫⎪⎝⎭C .0,2p ⎛⎫ ⎪⎝⎭D .10,8p ⎛⎫ ⎪⎝⎭3.十字路口来往的车辆,如果不允许掉头,则行车路线共有()A .24种B .16种C .12种D .10种4.设x ,y 满足约束条件36020 0,0x y x y x y ⎧⎪⎨⎪+⎩---≤≥≥≥,则目标函数2z x y =-+的最小值为()A .4-B .2-C .0D .2 5.《九章算术》是我国古代内容极为丰富的数学名著,系统地总结了战国、秦、汉时期的数学成就.书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为“阳马”,若某“阳马”的三视图如图所示(网格纸上小正方形的边长为1),则该“阳马”最长的棱长为() A .5 B .34C .41D .526.()()()()sin ,00,xf x x x=∈-ππ大致的图象是()A .B .C .D .此卷只装订不密封级 姓名 准考证号 考场号 座位号7.函数()sin cos (0)f x x x ωωω=->ω的取值不可能为() A .14B .15 C .12D .348.运行如图所示的程序框图,设输出数据构成的集合为A ,从集合A 中任取一个元素a ,则函数ay x =,()0,x ∈+∞是增函数的概率为() A .35B .45C .34D .37开始输出y结束是否3x =-3x ≤22y x x=+1x x =+9.已知A ,B 是函数2xy =的图象上的相异两点,若点A ,B 到直线12y =的距离相等,则点A ,B 的横坐标之和的取值范围是() A .(),1-∞-B .(),2-∞-C .(),3-∞-D .(),4-∞-10.在四面体ABCD 中,若AB CD ==,2AC BD ==,AD BC ==,则四面体ABCD 的外接球的表面积为() A .2π B .4πC .6πD .8π11.设1x =是函数()()32121n n n f x a x a x a x n +++=--+∈N 的极值点,数列{}n a 满足11a =,22a =,21log n n b a +=,若[]x 表示不超过x 的最大整数,则122320182019201820182018b b b bb b ⎡⎤+++⎢⎥⎣⎦=()A .2017B .2018C .2019D .202012[]0,1上单调递增,则实数a 的取值范围() A .()1,1- B .()1,-+∞C .[]1,1-D .(]0,+∞第Ⅱ卷(非选择题共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.命题“00x ∃>,20020x mx +->”的否定是__________.14.在ABC △中,角B2π3C =,BC =,则AB =__________.15.抛物线24y x =的焦点为F ,过F 的直线与抛物线交于A ,B 两点,且满足4AFBF =,点O 为原点,则AOF △的面积为__________.16.已知函数()()2cos2cos0222xxxf x ωωωω=+>的周期为2π3,当π03x ⎡⎤∈⎢⎥⎣⎦,时,函数()()g x f x m=+恰有两个不同的零点,则实数m 的取值范围是__________.三、解答题:共70分。

2020年四川省高考数学(理科)模拟试卷(6)

2020年四川省高考数学(理科)模拟试卷(6)
2
4.( 5 分)设曲线 ??= ????+-21在点 (1,﹣ 2)处的切线与直线
?? ax+by+c= 0 垂直, 则 =(
??

1 A.
3
1 B.- 3
C. 3
D.﹣ 3
5.( 5 分)执行如图所示的程序框图, 若输出 k 的值为 8,则判断框内可填入的条件是 ( )
A
.S≤
3 4

B .S≤ 11 ? 12
∴ A∩ B= {2 , 8} .
故选: D .
??+??
2.( 5 分)设 x, y∈R,若复数 是纯虚数,则点 P( x, y)一定满足(

??-??
A .y= x
1 B .??= ??
C. y=﹣ x
??+?? (??+??)(??+??) ????-1 ??+??
【解答】 解:由
=
??-??
的概率为

3
14.( 5 分)设函数 f( x)= atanx+x +1 ( a∈R ).若 f( 2)= 5,则 f(﹣ 2)=


→→

15.( 5 分)已知 ??=( 1,2),??=(x,1),且 ??⊥ ??,则与 ??方向相同的单位向量的坐标为
16.( 5 分)数学家狄里克雷对数论,数学分析和数学物理有突出贡献,是解析数论的创始
解:由 ??=
????+-21,得 ??′ =
(??-2)-(??+1) (??-2) 2
=
-3 (??-2)
2,
D.﹣ 3
∴ y′ |x=1=﹣ 3,

2020年四川省高考数学诊断试卷(理科)(5月份) (解析版)

2020年四川省高考数学诊断试卷(理科)(5月份) (解析版)

2020年高考数学诊断试卷(理科)(5月份)一、选择题(共12小题)1.设i是虚数单位,若2−ia+i为纯虚数,则实数a()A.﹣2B.−12C.12D.22.设全集U=R,集合A={x|log2x<1},B={x|x2≥1},则将韦恩图(Venn)图中的阴影部分表示成区间是()A..(0,1)B.(﹣1,1)C..(﹣1,2)D..(1,2)3.在(x−1√x3)6的展开式中,x2项的系数为()A.20B.15C.﹣15D.﹣204.某几何体的三视图如图所示,则该几何体的体积为()A.21πB.24πC.27πD.30π5.设a=sin24°,b=tan38°,c=cos52°,则()A.a<b<c B.b<a<c C.c<a<b D.a<c<b6.已知f(x)是奇函数,且当x>0时,f(x)=e x﹣1,则曲线y=f(x)在x=﹣1处的切线方程为()A.ex﹣y+1=0B.ex+y﹣1=0C.ex﹣y﹣1=0D.ex+y+1=0 7.设O、F分别是抛物线y2=4x的顶点和焦点,点P在抛物线上,若OP→⋅FP→=10,则|FP→|=()A.2B.3C.4D.58.已知a >b >0,则c >0是a b>a+c b+c的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.北魏大数学家张邱建对等差数列问题的研究精深,在其著述《算经》中有如下问题:“今有十等人,每等一人,宫赐金以等次差降之,上三人先入得金四斤,持出:下四人后入得三斤,持出:中间三人未到者,亦依等次更给,问未到三人复应得金几何?”则该问题的答案约为(结果精确到0.1斤)( ) A .3.0B .3.2C .3.4D .3.610.设向量a →,b →满足|a →−b →|=2,且(3a →−b →)⊥(a →+b →),则(2a →−b →)⋅b →=( )A .﹣1B .1C .3D .﹣311.已知函数f (x )=cos (2x +φ)(0<x <π)关于直线x =π6对称,函数g (x )=sin (2x ﹣φ),则下列四个命题中,真命题有( )①y =g (x )的图象关于点(π3,0)成中心对称;②若对∀x ∈R ,都有g (x 1)≤g (x )≤g (x 2),则|x 1﹣x 2|的最小值为π; ③将y =g (x )的图象向左平移π12个单位,可以得到y =f (x )的图象;④∃x 0∈R .使|f(x 0)−g(x 0)|=12. A .①③B .②③C .①④D .②④12.已知三条射线OA 、OB 、OC 两两所成的角都是60°,点M 在OA 上,点N 在∠BOC 内运动,且MN =OM =6√3,则点N 的轨迹长度为( ) A .2πB .3πC .4πD .5π二、填空题:本题共4小题,每小题5分,共20分. 13.双曲线x 24−y 212=1的焦点到渐近线的距离为 .14.已知数列{a n }的前n 项和S n =3a n ﹣2n (n ∈N *),若{a n +λ}成等比数列,则实数λ= . 15.已知函數f(x)={2−ax ,x ≤02x 3−ax 2+1,x >0,若f (x )>0恒成立,则实数a 的取值范围是 .16.为弘扬新时代的中国女排精神.甲、乙两个女排校队举行一场友谊比赛,采用五局三胜制(即某队先赢三局即获胜,比賽随即结束).若两队的竞技水平和比赛状态相当.且每局比赛相互独立,则比赛结束时已经进行的比赛局数的数学期望是.三、解答题:共70分.解答应写文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须们答.第22~23题为选考题,考生根据要求作答.17.在△ABC中,内角A、B、C的对边分别是a、b、c.已知b tan A、c tan B.、b tan B成等差数列.(1)求A的大小;(2)设a=2,求△ABC面积的最大值.18.如图所示,菱形ABCD与正方形CDEF所在平面相交于CD.(1)求作平面ACE与平面BCF的交线l.并说明理由;(2)若BD与CF垂直且相等,求二面角D﹣AE﹣C的余弦值.19.已知椭圆E:x2a+y2b=1(a>b>0)经过点A(0,﹣1),且离心率为√32.(1)求椭圆E的方程;(2)过点P(2,1)的直线与椭圆E交于不同两点B、C求证:直线AB和AC的斜率之和为定值.20.随着经济的快速增长、规模的迅速扩张以及人民生活水平的逐渐提高,日益剧增的垃圾给城市的绿色发展带来了巨大的压力,相关部门在有5万居民的光明社区采用分层抽样方法得到年内家庭人均GDP与人均垃圾清运量的统计数据如表:人均GDPx(万元/人)3691215人均垃圾清运量y(吨/人)0.130.230.310.410.52(1)已知变量y与x之间存在线性相关关系,求出其回归直线方程;(2)随着垃圾分类的推进,燃烧垃圾发电的热值大幅上升,平均每吨垃圾可折算成上网电量200干瓦时,右图是光明社区年内家庭人均GDP 的频率分布直方图,请补全[15,18]的缺失部分,并利用(1)的结果,估计整个光明社区年内垃圾可折算成的总上网量.[参考公式]回归方程y =b x +a 中,b =∑ n i=1(x i −x)(y i −y)∑ n i=1(x i −x)2=∑ n i=1x i y i −nxy ∑ ni=1x i 2−nx2.21.已知函数f(x)=2(x−1)x+a−lnx ,其中a >0. (1)求f (x )的单调区间;(2)设x 1,x 2是f (x )的两个极值点,求证:f(x 1)−f(x 2)x 1−x 2<1−aa(1+a).(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy 中,已知C 1:{x =6−t y =√3t (其中t 为参数),C 2:{x =2cosθy =2+2sinθ(其中θ为为参数).以O 为极点、x 轴的非负半轴为极轴建立极坐标系(两种坐标系的单位长度相同).(1)求C 1和C 2的极坐标方程;(2)设以O 为端点,倾斜角为α的射线l 与C 1和C 2分别交于A 、B 两点,求|OA||OB|的最小值.[选修4-5:不等式选讲]23.设函数f (x )=|x ﹣2|﹣2|x +1|的最大值为m .(1)求m的值;(2)若a+b=m,求√a+1+√2b+4的最大值.参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设i 是虚数单位,若2−i a+i为纯虚数,则实数a ( )A .﹣2B .−12C .12D .2【分析】利用复数的运算法则、纯虚数的定义即可得出. 解:2−i a+i=(2−i)(a−i)(a+i)(a−i)=2a−1a 2+1−a+2a 2+1i 为纯虚数,∴2a−1a 2+1=0,−a+2a 2+1≠0, 解得a =12. 故选:C .【点评】本题考查了复数的运算法则、纯虚数的定义,考查了推理能力与计算能力,属于基础题.2.设全集U =R ,集合A ={x |log 2x <1},B ={x |x 2≥1},则将韦恩图(Venn )图中的阴影部分表示成区间是( )A ..(0,1)B .(﹣1,1)C ..(﹣1,2)D ..(1,2)【分析】根据所给的韦恩图,看出阴影部分所表达的是要求B 集合的补集与A 集合的交集,整理两个集合,求出B 的补集,再求出交集. 解:由题意可知集合A 中x 必须满足log 2x <1=log 22; 即0<x <2,集合B 中x 2≥1⇒x ≥1或x ≤﹣1; 所以集合B 的补集(﹣1,1),图中阴影部分表示A ∩(∁U B )=(0,1), 故选:A .【点评】本题考查韦恩图表达集合的关系及运算,本题解题的关键是正确读出韦恩图,在计算出两个集合之间的交集.3.在(x−1√x3)6的展开式中,x2项的系数为()A.20B.15C.﹣15D.﹣20【分析】在二项展开式的通项公式中,令x的幂指数等于2,求得r的值,可得展开式中x2项的系数.解:在(x−1√x3)6的展开式中,通项公式为T r+1=C6r•(﹣1)r•x6−4r3,令6−4r3=2,求得r=3,可得含x2项的系数为−C63=−20,故选:D.【点评】本题主要考查二项式定理,二项展开式的通项公式,属于基础题.4.某几何体的三视图如图所示,则该几何体的体积为()A.21πB.24πC.27πD.30π【分析】首先把三视图转换为几何体的直观图,进一步求出几何体的体积.解:根据几何体的三视图可得直观图为:下面为半径为3半球体和底面半径为3,高为2的圆锥组成.如图所示:故:V=23×π×33+13×π×32×2=24π,故选:B.【点评】本题考查的知识要点:三视图和直观图的转换,几何体的体积和表面积公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.5.设a=sin24°,b=tan38°,c=cos52°,则()A.a<b<c B.b<a<c C.c<a<b D.a<c<b【分析】直接利用单位元的三角函数线和诱导公式的应用求出结果.解:a=sin24°,b=tan38°,c=cos52°=sin28°,根据单位圆的三角函数线:AB=b,EF=c,CD=a,即:tan38°>sin28°>sin24°,即a<c<b,故选:D.【点评】本题考查的知识要点:三角函数线的应用,三角函数诱导公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.6.已知f(x)是奇函数,且当x>0时,f(x)=e x﹣1,则曲线y=f(x)在x=﹣1处的切线方程为()A.ex﹣y+1=0B.ex+y﹣1=0C.ex﹣y﹣1=0D.ex+y+1=0【分析】根据奇函数的性质可知,f(﹣1)=﹣f(1),求出切点坐标,再根据f′(﹣1)=f(1)求出切线斜率,则切线可求.解:∵f(x)是奇函数,且当x>0时,f(x)=e x﹣1,∴f(﹣1)=﹣f(1)=1﹣e;又x>0时,f′(x)=e x,∴f′(﹣1)=f′(1)=e.故切线为:y﹣(1﹣e)=e(x+1),即ex﹣y+1=0.故选:A.【点评】本题考查利用导数求切线的基本思路,奇函数的性质,以及学生利用转化思想解决问题的能力及运算能力.属于中档题.7.设O 、F 分别是抛物线y 2=4x 的顶点和焦点,点P 在抛物线上,若OP →⋅FP →=10,则|FP →|=( ) A .2B .3C .4D .5【分析】设出p 的坐标,根据数量积求出点p 的横坐标,即可求解出结论. 解:∵O 、F 分别是抛物线y 2=4x 的顶点和焦点, ∴O (0,0),F (1,0); 设P (x ,y );则OP →⋅FP →=10=(x ,y )•(x ﹣1,y )=x (x ﹣1)+y 2; 又因为y 2=4x ;∴x (x ﹣1)+4x =10⇒x =2 (﹣5舍); 故|FP →|=x +p2=2+1=3; 故选:B .【点评】本题主要考查向量的数量积以及抛物线的定义,考查计算能力,属于基础题目. 8.已知a >b >0,则c >0是ab >a+c b+c的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【分析】ab >a+c b+c化为:c(a−b)b(b+c)>0,根据a >b >0,不等式化为:(b +c )c >0,进而判断出结论. 解:ab >a+c b+c化为:c(a−b)b(b+c)>0,∵a >b >0,∴不等式化为:(b +c )c >0, 则c >0⇒ba >a+c b−c,反之不成立,例如b =1,c =﹣2.∴a >b >0,则c >0是a b>a+c b+c的充分不必要条件.故选:A .【点评】本题考查了不等式的基本性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.9.北魏大数学家张邱建对等差数列问题的研究精深,在其著述《算经》中有如下问题:“今有十等人,每等一人,宫赐金以等次差降之,上三人先入得金四斤,持出:下四人后入得三斤,持出:中间三人未到者,亦依等次更给,问未到三人复应得金几何?”则该问题的答案约为(结果精确到0.1斤)( ) A .3.0B .3.2C .3.4D .3.6【分析】根据题意,设题目中十等人得金依次为a 1、a 2、……,a 10,由等差数列的通项公式可得{a 1+a 2+a 3+a 4=3a 8+a 9+a 10=4,解可得a 1、d ,即可得等差数列{a n }的通项公式,又由中间三人共得金S =a 5+a 6+a 7=3a 6,计算可得答案.解:根据题意,设第十等人得金a 1斤,第九等人得金a 2斤,以此类推,第一等人得金a 10斤,则数列{a n }构成等差数列, 设数列{a n }的公差为d ,{a 1+a 2+a 3+a 4=3a 8+a 9+a 10=4,即有{4a 1+6d =33a 1+24d =4,解可得a 1=813,d =778, 则中间三人共得金S =a 5+a 6+a 7=3a 6=3(a 1+5d )=8326≈3.2(斤); 故选:B .【点评】本题考查等差数列的通项公式以及前n 项和公式的应用,关键求出等差数列的首项与公差,属于基础题.10.设向量a →,b →满足|a →−b →|=2,且(3a →−b →)⊥(a →+b →),则(2a →−b →)⋅b →=( )A .﹣1B .1C .3D .﹣3【分析】先根据已知条件得到a →2−2a →⋅b →+b →2=4 与3a →2+2a →⋅b →−b →2=0;二者联立即可求解结论.解:因为向量a →,b →满足|a →−b →|=2,且(3a →−b →)⊥(a →+b →), ∴a →2−2a →⋅b →+b →2=4 ①;(3a →−b →)•(a →+b →)=0⇒3a →2+2a →⋅b →−b →2=0 ②;由①+②可得:a →2=1;∴2a →⋅b →−b →2=−3a →2=−3;即(2a →−b →)⋅b →=2a →⋅b →−b →2=−3a →2=−3;故选:D .【点评】本题主要考查数量积的应用以及整体代入的数学思想,属于基础题目.11.已知函数f (x )=cos (2x +φ)(0<x <π)关于直线x =π6对称,函数g (x )=sin (2x ﹣φ),则下列四个命题中,真命题有( )①y =g (x )的图象关于点(π3,0)成中心对称;②若对∀x ∈R ,都有g (x 1)≤g (x )≤g (x 2),则|x 1﹣x 2|的最小值为π; ③将y =g (x )的图象向左平移π12个单位,可以得到y =f (x )的图象;④∃x 0∈R .使|f(x 0)−g(x 0)|=12. A .①③B .②③C .①④D .②④【分析】首先利用函数的对称性的应用求出φ的值,进一步求出函数gf (x )和函数g (x )的解析式,再利用函数的性质的应用求出函数的对称性和函数周期及最值及利用和角公式的运用和差角公式的应用求出存在具体的角,最后求出结果.解:函数f (x )=cos (2x +φ)(0<x <π)关于直线x =π6对称,所以2×π6+φ=k π(k ∈Z ),解得φ=k π−π3,当k =1时φ=2π3. 所以f (x )=cos (2x +2π3). 所以函数g (x )=sin (2x ﹣φ)=sin (2x −2π3),令2x −2π3=kπ,解得x =kπ2+π3(k ∈Z ),当k =0时,x =π3,所以:y =g (x )的图象关于点(π3,0)成中心对称;故①正确.②若对∀x ∈R ,都有g (x 1)≤g (x )≤g (x 2),即g (x )min ≤g (x )≤g (x )max ,即|x 1﹣x 2|的最小值为T2=π2,故②错误.③将y =g (x )的图象向左平移π12个单位,得到k (x )=sin (2x +π6−2π3)=﹣cos2x ,故错误.④由于f (x )﹣g (x )=cos (2x +2π3)﹣sin (2x −2π3)=(√32−12)×√2sin(2x −π4),当sin (2x −π4)=√6−√24时,|f(x 0)−g(x 0)|=12,故正确.故选:C .【点评】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,函数的图象的平移变换的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题型.12.已知三条射线OA 、OB 、OC 两两所成的角都是60°,点M 在OA 上,点N 在∠BOC 内运动,且MN =OM =6√3,则点N 的轨迹长度为( ) A .2πB .3πC .4πD .5π【分析】先作MO 1⊥平面AOB 于点O 1,作MK ⊥OB 于点K ,连OO 1,KO 1,利用直角三角形知识依次求出MK ,OK ,KO 1,MO 1长度,再由题设条件得出点N 的轨迹是一段圆弧,求出其长度即可.解:如图所示:作MO 1⊥平面AOB 于点O 1,作MK ⊥OB 于点K ,连OO 1,KO 1, ∵射线OA 、OB 、OC 两两所成的角都是60°,点M 在OA 上,MO =6√3, ∴在直角三角形MKO 中,MK =OM •sin60°=9,OK =OM •cos60°=3√3; 在直角三角形O 1KO 中,KO 1=OK •tan30°=3; 在直角三角形MO 1K 中,MO 1=2−32=6√2.∵点N 在∠BOC 内运动,且MN =6√3,∴点N 的轨迹是以点M 为球心,以6√3为半径的球被平面BOC 截得的一段圆弧EF . 其圆心为点O 1,半径r =√MN 2−MO 12=6,圆心角为∠EO 1F =2∠BOC =120°,圆弧长为13×2πr =4π.故选:C .【点评】本题主要考查动点的轨迹是球被平面截得的一段圆弧的弧长的计算,属于中档题.二、填空题:本题共4小题,每小题5分,共20分. 13.双曲线x 24−y 212=1的焦点到渐近线的距离为 2√3 .【分析】由双曲线方程求得焦点坐标与渐近线方程,再由点到直线的距离公式求解. 解:由双曲线x 24−y 212=1,得焦点坐标为F (±4,0),渐近线方程为y =±√3x ,不妨取焦点坐标为(4,0),一条渐近线方程为√3x −y =0. 则焦点到渐近线的距离为d =√3|3+1=2√3. 故答案为:2√3.【点评】本题考查双曲线的简单性质,考查点到直线距离公式的应用,是基础题. 14.已知数列{a n }的前n 项和S n =3a n ﹣2n (n ∈N *),若{a n +λ}成等比数列,则实数λ= 2 . 【分析】利用a n 与S n 的关系转化成a n 与a n ﹣1的关系,因为{a n +λ}成等比数列,构造a n +λ,求解λ即可.解:数列{a n }的前n 项和S n =3a n ﹣2n (n ∈N *),①, 则n ≥2时,S n ﹣1=3a n ﹣1﹣2(n ﹣1),②, ①﹣②,得a n =3a n ﹣3a n ﹣1﹣2, ∴2a n =3a n ﹣1+2, ∴a n =32a n−1+1, 若{a n +λ}成等比数列, ∴a n +λ=32(a n−1+λ), 解得λ=2. 故答案为:2.【点评】本题主要考查a n 与S n 的关系,以及构造新数列,考查了等比数列的概念,属于基础题. 15.已知函數f(x)={2−ax ,x ≤02x 3−ax 2+1,x >0,若f (x )>0恒成立,则实数a 的取值范围是 [0,3) .【分析】讨论a =0,a <0,a >0,结合函数的单调性和运用导数判断单调性、求最值,由题意可得f (x )的最小值大于0,解不等式可得所求范围. 解:当a =0时,f (x )={2,x ≤02x 3+1,x >0,显然f (x )>0恒成立;当a <0时,x ≤0时,f (x )递增,可得f (x )≤2,显然f (x )>0不恒成立; 当a >0时,x ≤0时,f (x )递减,可得f (x )≥2;x >0时,f (x )=2x 3﹣ax 2+1的导数为f ′(x )=6x 2﹣2ax =2x (3x ﹣a ),当0<x <13a 时,f ′(x )<0,f (x )递减;当x >13a 时,f ′(x )>0,f (x )递增, 可得f (x )在x =13a 处取得极小值,且为最小值−a 327+1,由题意可得−a 327+1>0,解得0<a <3,综上可得a 的取值范围是[0,3). 故答案为:[0,3).【点评】本题考查分段函数的性质,考查不等式恒成立问题解法,注意运用分类讨论思想和导数的运用:求单调性、极值和最值,考查运算能力和推理能力,属于中档题. 16.为弘扬新时代的中国女排精神.甲、乙两个女排校队举行一场友谊比赛,采用五局三胜制(即某队先赢三局即获胜,比賽随即结束).若两队的竞技水平和比赛状态相当.且每局比赛相互独立,则比赛结束时已经进行的比赛局数的数学期望是 4.125 . 【分析】设比赛结束时已经进行的比赛局数为X ,则X 的可能取值为3,4,5,然后结合独立重复事件的概率逐一求出每个X 的取值所对应的概率,再利用数学期望的公式求解即可.解:设比赛结束时已经进行的比赛局数为X ,则X 的可能取值为3,4,5, 甲队或乙队连胜三局:P (X =3)=C 33⋅(12)3⋅(12)3+C 30⋅(12)0⋅(12)3=14,甲队或乙队在前3局胜2局,第4局获胜:P (X =4)=C 32⋅(12)2⋅12⋅12+C 32⋅(12)2⋅12⋅12=38, 甲队或乙队在前4局胜2局,第5局获胜:P (X =5)=C 42⋅(12)2⋅(12)2⋅12+C 42⋅(12)2⋅(12)2⋅12=38.∴数学期望E (X )=3×14+4×38+5×38=338=4.125.故答案为:4.125.【点评】本题考查独立重复事件的概率、离散型随机变量的数学期望,考查学生对数据的分析能力和运算能力,属于基础题.三、解答题:共70分.解答应写文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须们答.第22~23题为选考题,考生根据要求作答.17.在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c .已知b tan A 、c tan B .、b tan B 成等差数列. (1)求A 的大小;(2)设a =2,求△ABC 面积的最大值.【分析】(1)由题意利用等差数列的定义,同角三角函数的基本关系、两角和差的三角公式,正弦定理,求得cos A 的值,可得A 的值.(2)由题意利用余弦定理、基本不等式,求得,△ABC 面积为S 的最大值.解:(1)△ABC 中,∵b tan A 、c tan B 、b tan B 成等差数列,∴b tan A +b tan B =2c tan B , 即b (sinA cosA+sinB cosB)=2c •sinB cosB,即 b •sinAcosB+cosAsinBcosAcosB=2c •sinB cosB,即 b •sin(A+B)cosAcosB=2c •sinB cosB,即 bsinCcosAcosB =2c •sinB cosB.再利用正弦定理可得sinB⋅sinC cosAcosB=2sinC⋅sinBcosB,故cos A =12,∴A =π3.(2)设a =2,△ABC 面积为S ,则S =12•bc •sin A =√34bc .由余弦定理可得a 2=4=b 2+c 2﹣2bc •cos A ≥2bc ﹣bc =bc ,即 bc ≤4,当且仅当b =c 时,等号成立.故,△ABC 面积为S 的最大值为√34•4=√3. 【点评】本题主要考查等差数列的定义应用,同角三角函数的基本关系、两角和差的三角公式,正弦定理、余弦定理、基本不等式的应用,属于中档题. 18.如图所示,菱形ABCD 与正方形CDEF 所在平面相交于CD . (1)求作平面ACE 与平面BCF 的交线l .并说明理由; (2)若BD 与CF 垂直且相等,求二面角D ﹣AE ﹣C 的余弦值.【分析】(1)过点C 作BF 的平行线l ,推导出AB 与EF 平行且相等,从而四边形ABEF 是平行四边形,AE ∥BF ,进而BF ∥平面ACE ,由此推导出BF ∥l .(2)由CF ⊥BD ,CF ⊥CD ,且BD ∩CD =D ,得CF ⊥平面ABCD ,由BD =CF ,得△BCD 是正三角形,取BC 中点O ,则BO ⊥CD ,以O 为原点,OB 为x 轴,OC 为y 轴,过O 作平面ABCD 的垂线为z 轴,建立空间直角坐标系,利用向量法能求出二面角D ﹣AE ﹣C 的余弦值.解:(1)过点C 作BF 的平行线l 即可,下面给予证明: 由已知得AB 和EF 都与CD 平行且相等, 即AB 与EF 平行且相等,∴四边形ABEF 是平行四边形,∴AE ∥BF ,∵BF ⊄平面ACE ,且AE ⊂平面ACE ,∴BF ∥平面ACE , ∵BF ⊂平面BCF ,且平面ACE ∩平面BCF , ∴BF ∥l .(2)由CF ⊥BD ,CF ⊥CD ,且BD ∩CD =D ,得CF ⊥平面ABCD , 由BD =CF ,得△BCD 是正三角形,取BC 中点O ,则BO ⊥CD ,以O 为原点,OB 为x 轴,OC 为y 轴,过O 作平面ABCD 的垂线为z 轴,建立空间直角坐标系,设AB =2,则D (0,﹣1,0),A (√3,﹣2,0),E (0,﹣1,2),C (0,1,0), ∴AD →=(−√3,1,0),AE →=(−√3,1,2),EC →=(0,2,﹣2), 设平面ADE 的法向量m →=(x ,y ,z ),则{m →⋅AD →=−√3x +y =0m →⋅AE →=−√3x +y +2z =0,取x =1,得m →=(1,√3,0), 设平面ACE 的一个法向量n →=(a ,b ,c ),则{n →⋅EC →=2b −2c =0n →⋅AE →=−√3a +b +2c =0,取c =1,得n →=(√3,1,1),设二面角D ﹣AE ﹣C 的平面角为θ, 则二面角D ﹣AE ﹣C 的余弦值为:cos θ=|m →⋅n →||m →|⋅|n →|=√325=√155.【点评】本题考查两平面的交线、二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题. 19.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点A (0,﹣1),且离心率为√32. (1)求椭圆E 的方程;(2)过点P (2,1)的直线与椭圆E 交于不同两点B 、C 求证:直线AB 和AC 的斜率之和为定值.【分析】(1)由已知列关于a ,b ,c 的方程组,求解可得a ,b 的值,则椭圆方程可求; (2)直线BC 过P (2,1)且与椭圆有两个不同交点,可得直线BC 的斜率一定存在且对于0,于是设直线方程为y ﹣1=k (x ﹣2),即y =kx ﹣2k +1,联立直线方程与椭圆方程,化为关于x 的一元二次方程,由斜率公式及根与系数的关系化简可得直线AB 和AC 的斜率之和为定值.【解答】(1)解:由题意,{b =1c a =√32a 2=b 2+c 2,解得{a =2b =1c =√3,则椭圆E 的方程为x 24+y 2=1;(2)证明:∵直线BC 过P (2,1)且与椭圆有两个不同交点,∴直线BC 的斜率一定存在且对于0,于是设直线方程为y ﹣1=k (x ﹣2),即y =kx ﹣2k +1.联立{y =kx −2k +1x 2+4y 2=4,得(4k 2+1)x 2﹣(16k 2﹣8k )x +16k (k ﹣1)=0. △=(16k 2﹣8k )2﹣4(4k 2+1)(16k 2﹣16k )>0. 设B (x 1,y 1),C (x 2,y 2), 则x 1+x 2=16k 2−8k 4k 2+1,x 1x 2=16k(k−1)4k 2+1.设直线AB和AC的斜率分别为k1,k2,则k1+k2=y1+1x1+y2+1x2=k(x1−2)+2x1+k(x2−2)+2x2=2k−2(k−1)(x1+x2)x1x2=2k−16k(k−1)(2k−1)16k(k−1)=2k−(2k−1)=1.∴直线AB和AC的斜率之和为定值1.【点评】本题考查椭圆标准方程的求法,考查直线与椭圆位置关系的应用,考查计算能力,是中档题.20.随着经济的快速增长、规模的迅速扩张以及人民生活水平的逐渐提高,日益剧增的垃圾给城市的绿色发展带来了巨大的压力,相关部门在有5万居民的光明社区采用分层抽样方法得到年内家庭人均GDP与人均垃圾清运量的统计数据如表:人均GDPx(万元/人)3691215人均垃圾清运量y(吨/人)0.130.230.310.410.52(1)已知变量y与x之间存在线性相关关系,求出其回归直线方程;(2)随着垃圾分类的推进,燃烧垃圾发电的热值大幅上升,平均每吨垃圾可折算成上网电量200干瓦时,右图是光明社区年内家庭人均GDP的频率分布直方图,请补全[15,18]的缺失部分,并利用(1)的结果,估计整个光明社区年内垃圾可折算成的总上网量.[参考公式]回归方程y=b x+a中,b=∑n i=1(x i−x)(y i−y)∑n i=1(x i−x)2=∑ni=1x i y i−nxy∑n i=1x i2−nx2.【分析】(1)由最小二乘法,算出b,a,进而可得回归直线方程.(2)由频率分布直方图各小矩形的面积之和为1,得a=2,最右边小矩形的高度,人均GDP,进而得光明社区的人均垃圾清运量约为0.032×(10.2+1)(吨/人).于是光明社区年内垃圾清运总量,进而得出答案.解:(1)由表格可得,x=5×(3+15)2×5=9,y=0.13+0.23+0.31+0.41+0.525=0.32,∑5i=1(x i−x)2=36+9+0+9+36=90,∑5i=1(x i−x)(y i−y)=(﹣6)×(﹣0.19)+(﹣3)×(﹣0.09)+0×(﹣0.01)+3×0.09+6×0.2=6×(0.19+0.09+0.20)=6×0.48=2.88,所以b=∑5i=1(x i−x)(y i−y)∑5i=1(x i−x)2=2.8890=0.032,于是a=y−b x=0.32﹣0.032×9=0.032,故变量y与x之间的回归直线方程为y=0.032(x+1).(2)由频率分布直方图各小矩形的面积之和为1,得160×(1+2+4+6+5+a)×3=1,解得a=2,故最右边小矩形的高度为260=1 30,由频率分布直方图可知,光明社区的人均GDP为x =360(1×1.5+2×4.5+4×7.5+6×10.5+5×13.5+2×16.5)=10.2(万元/人), 由(1)可知,光明社区的人均垃圾清运量约为0.032×(10.2+1)(吨/人). 于是光明社区年内垃圾清运总量为5×0.032×(10.2+1)=1.792(万吨). 由题意,整个光明社区年内垃圾可折算成的总上网量估计为: 17920×200=3.584×106(千瓦时)即为所求.【点评】本题考查统计,及回归直线方程,属于中档题. 21.已知函数f(x)=2(x−1)x+a −lnx ,其中a >0. (1)求f (x )的单调区间;(2)设x 1,x 2是f (x )的两个极值点,求证:f(x 1)−f(x 2)x 1−x 2<1−aa(1+a).【分析】(1)求出原函数的导函数f ′(x )=2(a+1)(x+a)2−1x =−x 2+2x−a 2x(x+a)2(x >0),当a≥1时,f ′(x )≤0恒成立,可得f (x )在(0,+∞)上的单调性;当0<a <1时,由导函数的符号确定原函数的单调区间;(2)由x 1,x 2是f (x )的两个极值点,结合(1)知,0<a <1,且x 1+x 2=2,x 1x 2=a 2,化简可得f(x 1)−f(x 2)x 1−x 2=1a−lnx 1−lnx 2x 1−x 2,令g (t )=lnt −2(t−1)t+1(0<t <1),利用导数证明g (t )在(0,1)内单调递增,于是g (t )<g (1)=0,即lnt <2(t−1)t+1(0<t<1).不妨令x 1<x 2,令t =√x 1x 2∈(0,1),则12lnx 1x 2<2(√x1x −1)√x 1x 2+1,即lnx 1﹣lnx 2<√x 1−√x 2)√x +√x ,可得lnx 1−lnx 2x 1−x 2>21+a ,从而f(x 1)−f(x 2)x 1−x 2<1a −21+a =1−a a(1+a). 【解答】(1)解:由f(x)=2(x−1)x+a −lnx ,得f ′(x )=2(a+1)(x+a)2−1x =−x 2+2x−a 2x(x+a)2(x >0).①当a ≥1时,f ′(x )≤−x 2+2x−1x(x+a)2=−(x−1)2x(x+a)≤0恒成立,∴f (x )在(0,+∞)上单调递增,无单调减区间;②当0<a <1时,由﹣x 2+2x ﹣a 2>0,解得1−√1−a 2<x <1+√1+a 2. 由﹣x 2+2x ﹣a 2<0,解得0<x <1−√1−a 2或x >1+√1+a 2.∴f (x )在(0,1−√1−a 2),(1+√1+a 2,+∞)上单调递减,在(1−√1−a 2,1+√1+a 2)上单调递增;(2)证明:∵x 1,x 2是f (x )的两个极值点, 由(1)知,0<a <1,且x 1+x 2=2,x 1x 2=a 2. f (x 1)﹣f (x 2)=[2(x 1−1)x 1+a−2(x 2−1)x 2+a]﹣(lnx 1﹣lnx 2)=2[(x 1−1)(x 2+a)−(x 2−1)(x 1+a)](x 1+a)(x 2+a)−(lnx 1﹣lnx 2)=2(a+1)(x 1−x 2)x 1x 2+a(x 1+x 2)+a 2−(lnx 1﹣lnx 2).∴f(x 1)−f(x 2)x 1−x 2=2(a+1)2a +2a−lnx 1−lnx 2x 1−x 2=1a−lnx 1−lnx 2x 1−x 2.令g (t )=lnt −2(t−1)t+1(0<t <1),则g ′(t )=1t −4(t+1)2=(t−1)2t(t+1)2>0. 故g (t )在(0,1)内单调递增,于是g (t )<g (1)=0,即lnt <2(t−1)t+1(0<t <1). 不妨令x 1<x 2,令t =√x 1x 2∈(0,1),则12lnx 1x 22(√x1x−1)√x 1x 2+1即lnx 1﹣lnx 2√x 1−√x 2)x +x .于是,lnx 1−lnx 2x 1−x 2(√x +√x )2=x +x +2√x x =42+2a=21+a.从而f(x 1)−f(x 2)x 1−x 2<1a−21+a=1−aa(1+a).【点评】本题考查利用导数研究函数的单调性,考查利用导数求函数的极值,考查化归与转化思想方法,换元与构造函数是解答该题的关键,属难题. 一、选择题22.在平面直角坐标系xOy 中,已知C 1:{x =6−t y =√3t (其中t 为参数),C 2:{x =2cosθy =2+2sinθ(其中θ为为参数).以O 为极点、x 轴的非负半轴为极轴建立极坐标系(两种坐标系的单位长度相同).(1)求C 1和C 2的极坐标方程;(2)设以O 为端点,倾斜角为α的射线l 与C 1和C 2分别交于A 、B 两点,求|OA||OB|的最小值.【分析】(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换. (2)利用极径的应用和三角函数关系式的恒等变换和正弦型函数的性质的应用求出结果. 解:(1)已知曲线C 1:{x =6−ty =√3t(其中t 为参数),转换为直角坐标方程为√3x +y =6√3,转换为极坐标方程为ρsin(θ+π3)=3√3,曲线C 2:{x =2cosθy =2+2sinθ(其中θ为为参数).转换为直角坐标方程为x 2+(y ﹣2)2=4,转换为极坐标方程为ρ=4sin θ. (2)射线l 的极坐标方程为θ=α, 所以|OA|=6√3sinα+√3cosα,|OB |=4sin α,则:|OA||OB|=√34(sin 2α+√3sinαcosα)=3√31+2sin(2α−π6),故当sin(2α−π6)=1时,|OA||OB|的最小值√3.【点评】本题考查的知识要点:参数方程、极坐标方程和直角坐标方程之间的转换,三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型. [选修4-5:不等式选讲]23.设函数f (x )=|x ﹣2|﹣2|x +1|的最大值为m . (1)求m 的值;(2)若a +b =m ,求√a +1+√2b +4的最大值.【分析】(1)讨论x 的范围:x ≤﹣1,﹣1<x ≤2,x >2,去掉绝对值,写出分段函数的形式,画出图象即可求得m 值;(2)利用柯西不等式,转化区间函数的最值即可.解:(1)f (x )=|x ﹣2|﹣2|x +1|={x +4,x ≤−1−3x ,−1<x <2−x −4,x ≥2,所以函数f (x )在区间(﹣∞,﹣1]内是增函数,在[﹣1,+∞)s 是减函数.所以函数的最大值为:m =f (﹣1)=3.(2)由柯西不等式可得:√a +1+√2b +4=1⋅√a +1+√2⋅√2b +4≤√(1+2)(a +1+b +2),由题意a +b =3,所以√a +1+√2b +4≤3√2.当且仅当a =1,b =2时取等号. 所以√a +1+√2b +4的最大值为:3√2.【点评】本题考查最值的求法,注意柯西不等式的应用,考查变形和化简整理的运算能力,属于中档题.。

2020届四川省高考数学理科模拟试题有答案(Word版)(已审阅)

2020届四川省高考数学理科模拟试题有答案(Word版)(已审阅)

普通高等学校招生全国统一考试(四川卷)数学(理工类)本试卷分第I 卷(选择题)和第II 卷(非选择题),第I 卷1至2页,第II 卷3至4页,共4页,满分150分,考试时间120分钟,考生作答时,须将答案答在答题卡上,在本试题卷、草稿上答题无效,考试结束 后,将本试题卷和答题卡一并交回。

第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一个是符合题目要求的。

1.设集合{|22}A x x =-≤≤,Z 为整数集,则A I Z 中元素的个数是( )(A )3(B )4(C )5(D )62.设i 为虚数单位,则6(i)x +的展开式中含x 4的项为( )(A )-15x 4(B )15x 4(C )-20i x 4(D )20i x 43.为了得到函数πsin(2)3y x =-的图象,只需把函数sin 2y x =的图象上所有的点( ) (A )向左平行移动π3个单位长度(B )向右平行移动π3个单位长度 (C )向左平行移动π6个单位长度(D )向右平行移动π6个单位长度 4.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( ) (A )24(B )48(C )60(D )725.某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( ) (参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg2≈0.30) ( A )2018年(B )2019年(C )2020年(D )2021年6.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n ,x 的值分别为3,2,则输出v 的值为( )(A )9 (B )18 (C )20 (D )357.设p :实数x ,y 满足(x –1)2+(y –1)2≤2,q :实数x ,y 满足1,1,1,y x y x y ≥-⎧⎪≥-⎨⎪≤⎩则p 是q 的( )(A )必要不充分条件(B )充分不必要条件(C )充要条件(D )既不充分也不必要条件8.设O 为坐标原点,P 是以F 为焦点的抛物线22(p 0)y px =>上任意一点,M 是线段PF 上的点,且PM =2MF ,则直线OM 的斜率的最大值为( )(A 3(B )23(C 2(D )1 9.设直线l 1,l 2分别是函数f (x )=ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△P AB 的面积的取值范围是( ) (A )(0,1) (B )(0,2) (C )(0,+∞) (D )(1,+∞)10.在平面内,定点A ,B ,C ,D 满足DA u u u r =DB u u u r =DC u u u r ,DA u u u r g DB u u u r =DB u u u r g DC u u u r =DC u u u r g DA u u u r=-2,动点P ,M满足AP u u u r =1,PM u u u u r =MC u u uu r ,则2BM u u u u u r 的最大值是( )(A )434(B )494(C 3763+D 37233+第II 卷(非选择题 100分)二、填空题:本大题共5小题,每小题5分,共25分。

2020年四川省高考数学模拟试卷17套(附答案解析)

2020年四川省高考数学模拟试卷17套(附答案解析)

75
25
100
(1)现已按是否能做到光盘分层从 45 份女生问卷中抽取了 9 份问卷,若从这 9 份
问卷中随机抽取 4 份,并记其中能做到光盘的问卷的份数为 ξ,试求随机变量 ξ 的
分布列和数学期望
(2)如果认为良好“光盘习惯”与性别有关犯错误的概率不超过 P,那么根据临
界值表最精确的 P 的值应为多少?请说明理由.
8. 将函数 y=2sin2x 的图象向左平移 个单位长度后所得图象的一个对称中心为(

A. (- ,0)
B. ( ,0)
C. (- ,0)
D. ( ,0)
9. 在△ABC 中,“ • = • ”是“| |=| |”( )
A. 充分而不必要条件 C. 充分必要条件
B. 必要而不充分条件 D. 既不充分也不必要条件
AB 与 AB 边上的中线相互垂直,故
,所以是充分条件,又
,得三角形为等腰三角形,则可推出
也成立.所以是充分必要条件.
此题主要考查必要条件、充分条件与充要条件的判断,其中涉及到向量的模和数量积的 运算问题,计算量小,属于基础性试题.
10.【答案】D
【解析】解:双曲线 - =1(a>0,b>0)的两条渐近线方程为 y=± x, 抛物线 y2=4x 的准线为 x=-1, 可得渐近线与准线的交点为(-1, ),(-1,- ),
23. 已知函数 f(x)=|x-a|+|x|.
(1)当 a=2 时,解不等式 f(x)≥3 的解集;
(2)若存在 x∈R,使得 f(x)<3 成立,求实数 a 的取值范围.
第 4 页,共 14 页
1.【答案】C
答案和解析
【解析】解:B={x|x2≤4}={x|-2≤x≤2}, 则∁RB={x|x>2 或 x<-2}, 故选:C. 根据集合的基本运算即可得到结论. 本题主要考查集合的基本运算的基本运算,根据不等式的性质求解集合 B 的运算是解决 本题的关键.

2020年四川省绵阳市高考(理科)数学(4月份)模拟测试试卷 解析版

2020年四川省绵阳市高考(理科)数学(4月份)模拟测试试卷 解析版

2020年高考数学(4月份)模拟试卷(理科)一、选择题1.已知集合A={﹣1,0,1,2},B={x|x2≥1},则A∩B=()A.{1,2}B.{﹣1,0,1}C.{﹣1,1,2}D.{0}2.若a∈R,则“a>2”是“|a|>2”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件3.已知复数z满足z•(1﹣2i)=i(i是虚数),则复数z在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限4.从编号0,1,2,…,79的80件产品中,采用系统抽样的方法抽取容量是10的样本,若编号为58的产品在样本中,则该样本中产品的最大编号为()A.72B.74C.76D.785.已知双曲线C的离心率为2,则双曲线C的渐近线方程为()A.y=±2x B.C.D.6.在(2x+a)5(其中a≠0)的展开式中,x2的系数与x3的系数相同,则a的值为()A.B.C.﹣2D.27.已知,则sin2α=()A.B.C.D.8.圆x2+y2=4被直线截得的劣弧所对的圆心角的大小为()A.30°B.60°C.90°D.120°9.某木材加工厂需要加工一批球形滚珠.已知一块硬质木料的三视图如图所示,正视图和俯视图都是边长为10cm的正方形,现将该木料进行切削、打磨,加工成球形滚珠,则能得到的最大滚珠的半径最接近()A.3cm B.2.5cm C.5cm D.4.5cm 10.2020年3月,国内新冠肺炎疫情得到有效控制,人们开始走出家门享受春光.某旅游景点为吸引游客,推出团体购票优惠方案如表:购票人数1~5051~100100以上门票叫个13元/人11元/人9元/人两个旅游团队计划游览该景点,若分别购票,则共需支付门票费1290元;若合并成一个团队购票,则需支付门票费990元,那么这两个旅游团队的人数之差为()A.20B.30C.35D.4011.如图,△ABC中,BC=2,且,AD是△ABC的外接圆直径,则=()A.1B.2C.D.12.已知集合M={(x,y)|y=f(x)},若对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,则称集合M是“Ω集合”,给出下列5个集合;①M=②M=③M=④M={(x,y)|y=x2﹣2x+2}⑤M={(x,y)|y=cos x+sin x}.其中是“Ω集合”的所有序号是()A.②③B.①④⑤C.②③⑤D.①②④二、填空题13.已知函数则f(﹣2)=.14.已知a>0,b>0,且2a+b=ab,则当且仅当a=时,ab取得最小值15.为准确把握市场规律,某公司对其所属商品售价进行市场调查和模型分析,发现该商品一年内每件的售价按月近似呈f(x)=A sin(ωx+φ)+B的模型波动(x为月份),已知3月份每件售价达到最高90元,直到7月份每件售价变为最低50元.则根据模型可知在10月份每件售价约为.(结果保留整数)16.在棱长为1的正方体ABCD﹣A1B1C1D1中,点E、F分别为线段AB、BD1的中点,则点A到平面EFC的距离为三、解答题17.已知数列{a n}满足a1=2,a3=24,且是等差数列.(1)求a n;(2)设{a n}的前n项和为S n,求S n.18.3月底,我国新冠肺炎疫情得到有效防控,但海外确诊病例却持续暴增,防疫物资供不应求,某医疗器械厂开足马力,日夜生产防疫所需物品.已知该厂有两条不同生产线A 和B生产同一种产品各10万件,为保证质量,现从各自生产的产品中分别随机抽取20件,进行品质鉴定,鉴定成绩的茎叶图如图所示:该产品的质量评价标准规定:鉴定成绩达到[90,100)的产品,质量等级为优秀;鉴定成绩达到[80,90)的产品,质量等级为良好;鉴定成绩达到[60,80)的产品,质量等级为合格.将这组数据的频率视为整批产品的概率.(1)从等级为优秀的样本中随机抽取两件,记X为来自B机器生产的产品数量,写出X的分布列,并求X的数学期望;(2)请完成下面质量等级与生产线产品列联表,并判断能不能在误差不超过0.05的情况下,认为产品等级是否达到良好以上与生产产品的生产线有关.A生产线的产品B生产线的产品合计良好以上合格合计附:K2=P(K2)≥k0)0.100.050.010.005 k0 2.706 3.841 6.6357.879 19.如图,在四棱锥E﹣ABCD中,底面ABCD是菱形,∠ABC=60°,G是边AD的中点.平面ADE⊥平面ABCD,AB=2DE,∠ADE=90°.线段BE上的点M满足BM=2ME.(1)证明:DE∥平面GMC;(2)求直线BG与平面GMC所成角的正弦值.20.已知椭圆E:=1(0<b<2)的离心率为,动直线l:y=kx+1与椭圆E交于点A,B,与y轴交于点P.O为坐标原点,D是AB中点.(1)若k=,求△AOB的面积;(2)若试探究是否存在常数λ,使得(1+λ)﹣2是定值?若存在,求λ的值;若不存在,请说明理由.21.已知函数.(1)试讨论f(x)的单调性;(2)若函数在定义域上有两个极值点x1,x2,试问:是否存在实数a,使得f(x1)+f (x2)=5?(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题记分.[选修4_4:坐标系与参数方程]22.在以直角坐标原点0为极点,x轴正半轴为极轴的极坐标系中,过点的直线l的极坐标方程为,曲线C的方程为2a sinθ﹣ρcos2θ=0(a>0).(1)求直线l的参数方程和曲线C的直角坐标方程;(2)若直线l与曲线C分别交于点M,N,且|PM|,|MN|,|PN|成等比数列,求a的值.[选修4-5:不等式选讲]23.已知函数f(x)=|3x+2|.(1)解不等式f(x)<4﹣|x﹣1|(2)若a>0且|x﹣a|﹣f(x)≤4恒成立,求实数a的取值范围.参考答案一、选择题:共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={﹣1,0,1,2},B={x|x2≥1},则A∩B=()A.{1,2}B.{﹣1,0,1}C.{﹣1,1,2}D.{0}【分析】先求出集合A,B,由此能求出A∩B.解:∵集合A={﹣1,0,1,2},B={x|x2≥1}={x|x≥1或x≤﹣1},∴A∩B={﹣1,1,2}.故选:C.2.若a∈R,则“a>2”是“|a|>2”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件【分析】“|a|>2”⇔a>2,或a<﹣2.即可判断出关系.解:“|a|>2”⇔a>2,或a<﹣2.∴“a>2”是“|a|>2”的充分不必要条件,故选:A.3.已知复数z满足z•(1﹣2i)=i(i是虚数),则复数z在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】把已知等式变形,利用复数代数形式的乘除运算化简,求出z的坐标得答案.解:由z•(1﹣2i)=i,得z=,∴复数z在复平面内对应的点的坐标为(),在第二象限.故选:B.4.从编号0,1,2,…,79的80件产品中,采用系统抽样的方法抽取容量是10的样本,若编号为58的产品在样本中,则该样本中产品的最大编号为()A.72B.74C.76D.78【分析】求出抽样间隔f==8,由编号为58的产品在样本中,58是第8组第二个样本,由此能求出该样本中产品的最大编号.解:从编号0,1,2,…,79的80件产品中,采用系统抽样的方法抽取容量是10的样本,抽样间隔f==8,∵编号为58的产品在样本中,∴该样本中产品的最大编号为8×9+2=74.故选:B.5.已知双曲线C的离心率为2,则双曲线C的渐近线方程为()A.y=±2x B.C.D.【分析】根据题意,由双曲线的离心率e=2可得c=2a,由双曲线的几何性质可得b=a,由此求解双曲线的渐近线方程.解:根据题意,双曲线C的离心率为2,其焦点在y轴上,其渐近线方程为y=±x,又由其离心率e==2,则c=2a,则b==a,即=,则其渐近线方程y=±x;故选:D.6.在(2x+a)5(其中a≠0)的展开式中,x2的系数与x3的系数相同,则a的值为()A.B.C.﹣2D.2【分析】写出(2x+a)5(其中a≠0)的展开式中通项T k+1=(2x)5﹣k a k,利用x2的系数与x3的系数相同可得到关于a的方程,进而计算可得结论.解:在(2x+a)5(其中a≠0)的展开式中,通项T k+1=(2x)5﹣k a k,∵x2的系数与x3的系数相同,∴•22•a3=•23a2,又∵a≠0,∴a=2,故选:D.7.已知,则sin2α=()A.B.C.D.【分析】由已知利用两角和的正切函数公式可求tanα的值,进而利用二倍角的正弦函数公式,同角三角函数基本关系式即可计算求解.解:∵,∴=﹣3,解得tanα=2,∴sin2α====.故选:A.8.圆x2+y2=4被直线截得的劣弧所对的圆心角的大小为()A.30°B.60°C.90°D.120°【分析】根据题意,设直线与圆x2+y2=4的的交点为A、B,AB的中点为点M,分析圆的圆心与半径,求出圆心到直线的距离,即可得∠AOM的大小,进而分析可得答案.解:根据题意,设直线与圆x2+y2=4的的交点为A、B,AB的中点为点M,圆x2+y2=4的圆心为(0,0),半径r=2,圆心到直线y=x+2的距离d==1,又由∠AOM=60°,则∠AOB=120°;故圆x2+y2=4被直线截得的劣弧所对的圆心角的大小为120°;故选:D.9.某木材加工厂需要加工一批球形滚珠.已知一块硬质木料的三视图如图所示,正视图和俯视图都是边长为10cm的正方形,现将该木料进行切削、打磨,加工成球形滚珠,则能得到的最大滚珠的半径最接近()A.3cm B.2.5cm C.5cm D.4.5cm【分析】首先把三视图转换为几何体,进一步求出球的最大半径.解:根据几何体的三视图转换为几何体为:该几何体为三棱柱体.如图所示:所以该几何体打磨成的最大球的半径为:r=≈3cm.故选:A.10.2020年3月,国内新冠肺炎疫情得到有效控制,人们开始走出家门享受春光.某旅游景点为吸引游客,推出团体购票优惠方案如表:购票人数1~5051~100100以上门票叫个13元/人11元/人9元/人两个旅游团队计划游览该景点,若分别购票,则共需支付门票费1290元;若合并成一个团队购票,则需支付门票费990元,那么这两个旅游团队的人数之差为()A.20B.30C.35D.40【分析】设两个旅游团队的人数分部为a,b,由990不能被13整除,得两个旅游团队人数之和a+b≥51,然后结合门票价格和人数之间的关系,分类建立方程组进行求解即可.解:设两个旅游团队的人数分部为a,b,∵990不能被13整除,∴两个旅游人数之和:a+b≥51,若51≤a+b≤100,则11 (a+b)=990得:a+b=90,①由共需支付门票费为1290元可知,11a+13b=1290,②联立①②解得:b=150,a=﹣60,不符合题意;若a+b>100,则9 (a+b)=990,得a+b=110,③由共需支付门票费为1290元可知,1≤a≤50,51≤b≤100,得11a+13b=1290,④联立③④解得:a=70人,b=40人.∴这两个旅游团队的人数之差为70﹣40=30人.故选:B.11.如图,△ABC中,BC=2,且,AD是△ABC的外接圆直径,则=()A.1B.2C.D.【分析】根据题意可以将转化为2与的数量积,而O是三角形的外接圆圆心,根据外接圆的性质,建立坐标系,将O的坐标求出来,利用整体代换即可求值.解:设三角形ABC三边为a,b,c,三内角为A,B,C.因为,且a=2所以ac cos B=,所以c cos B=.建立坐标系如右图:设C(2cos B,2sin B),BC的中点(cos B,sin B),A(c,0).外接圆圆心为O.所以BC的中垂线方程为:①②联立①②解得O(),所以,.∴=2[﹣c cos B﹣c cos B+2]=.故选:A.12.已知集合M={(x,y)|y=f(x)},若对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,则称集合M是“Ω集合”,给出下列5个集合;①M=②M=③M=④M={(x,y)|y=x2﹣2x+2}⑤M={(x,y)|y=cos x+sin x}.其中是“Ω集合”的所有序号是()A.②③B.①④⑤C.②③⑤D.①②④【分析】根据条件只需要判断满足x1x2+y1y2=0是否恒成立即可.解:对于①,y=,∴x1•x2+y1y2=x1x2+∈(﹣∞,﹣2]∪[2,+∞),故x1•x2+=0,即x1x2+y1y2=0无实数解,因此①不是“Ω集合”;对于④,y=x2﹣2x+2=(x﹣1)2+1.当点(x1,y1)为(0,2)时,若x1x2+y1y2=0,则y2=0,不成立,∴故④不是“Ω集合”.由此能排除选项B,D;由“Ω集合”的定义及选项A,C中必须一个正确选项,得到②M=③M=都是“Ω集合”,对于⑤,y=cos x+sin x=sin(x+),根据正弦函数的图象,对于图上任一点P,在曲线上存在点与原点的连线与OP垂直,故⑤是“Ω集合”.故选:C.二、填空题:共4小题每小题5分,共20分.13.已知函数则f(﹣2)=2.【分析】根据已知函数解析式,直接代入即可求解.解:由题意可得,f(﹣2)=f(1)=f(4)=log24=2.故答案为:2.14.已知a>0,b>0,且2a+b=ab,则当且仅当a=2时,ab取得最小值8【分析】利用基本不等式将左边缩小成,就得到了关于ab的不等式,解出来即可.解:因为a>0,b>0∴(当且仅当2a=b时取等号)所以,所以.由得a=2.故a=2时,ab取得最小值8.故答案为:2,815.为准确把握市场规律,某公司对其所属商品售价进行市场调查和模型分析,发现该商品一年内每件的售价按月近似呈f(x)=A sin(ωx+φ)+B的模型波动(x为月份),已知3月份每件售价达到最高90元,直到7月份每件售价变为最低50元.则根据模型可知在10月份每件售价约为84.(结果保留整数)【分析】由题意列式求得A与B的值,再由周期求得ω,结合最大值求得φ,则函数解析式可求,取x=10求得y值即可.解:由题意可得,,解得A=20,B=70.T=2(7﹣3)=8,∴ω=,故f(x)=20sin(+φ)+70.又x=3时,f(x)=90,∴20sin(φ)+70=90,解得φ=﹣.∴f(x)=20sin(﹣)+70.取x=10,可得f(10)=20sin()+70=≈84.故答案为:84.16.在棱长为1的正方体ABCD﹣A1B1C1D1中,点E、F分别为线段AB、BD1的中点,则点A到平面EFC的距离为【分析】把点A到平面EFC的距离转化为求点B到平面EFC的距离,然后利用等体积法求解.解:如图,∵E是AB的中点,∴A到平面EFC的距离等于B到平面EFC的距离,设AC交BD于O,连接FO,则FO⊥底面ABCD,且FO=,求解三角形可得EF=,CE=,CF=,∴CF2+EF2=CE2,即EF⊥CF,设B到平面CEF的距离为h,由V F﹣BCE=V B﹣CEF,得,解得h=.即点A到平面EFC的距离为.故答案为:.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.已知数列{a n}满足a1=2,a3=24,且是等差数列.(1)求a n;(2)设{a n}的前n项和为S n,求S n.【分析】(1)根据已知条件求出等差数列{}的首项和第三项,再利用等差数列的通项公式求出,从而求出a n;(2)由于a n是等差数列×等比数列的形式,所以利用错位相减法即可求出S n.解:(1)∵a1=2,a3=24,∴,,∴等差数列{}的首项为1,公差为=1,∴,∴;(2)∵,∴S n=1×21+2×22+3×23+……+n•2n①,2S n=1×22+2×23+3×34+……+n•2n+1②,∴①﹣②得:﹣S n=2+22+23+……+2n﹣n•2n+1=(1﹣n)×2n+1﹣2,∴S n=(n﹣1)×2n+1+2.18.3月底,我国新冠肺炎疫情得到有效防控,但海外确诊病例却持续暴增,防疫物资供不应求,某医疗器械厂开足马力,日夜生产防疫所需物品.已知该厂有两条不同生产线A 和B生产同一种产品各10万件,为保证质量,现从各自生产的产品中分别随机抽取20件,进行品质鉴定,鉴定成绩的茎叶图如图所示:该产品的质量评价标准规定:鉴定成绩达到[90,100)的产品,质量等级为优秀;鉴定成绩达到[80,90)的产品,质量等级为良好;鉴定成绩达到[60,80)的产品,质量等级为合格.将这组数据的频率视为整批产品的概率.(1)从等级为优秀的样本中随机抽取两件,记X为来自B机器生产的产品数量,写出X的分布列,并求X的数学期望;(2)请完成下面质量等级与生产线产品列联表,并判断能不能在误差不超过0.05的情况下,认为产品等级是否达到良好以上与生产产品的生产线有关.A生产线的产品B生产线的产品合计良好以上合格合计附:K2=P(K2)≥k0)0.100.050.010.005 k0 2.706 3.841 6.6357.879【分析】(1)从图中可知样本中优秀的产品有2件来自A生产线,3件来自B生产线,X的可能取值为0,1,2,分别求出相应的概率,由此能求出X的分布列和E(X).(2)完成2×2列联表,求出K2=≈3.636<3.841,从而不能在误差不超过0.05的情况下,认为产品等级是否达到良好以上与生产产品的生产线有关.解:(1)从图中可知样本中优秀的产品有2件来自A生产线,3件来自B生产线,∴X的可能取值为0,1,2,P(X=0)==0.1,P(X=1)==0.6,P(X=2)==0.3,∴X的分布列为:X012P0.10.60.3∴E(X)=0×0.1+1×0.6+2×0.3=1.2.(2)由已知得2×2列联表为:A生产线的产品B生产线的产品合计良好以上61218合格14822合计202040∴K2===≈3.636<3.841,∴不能在误差不超过0.05的情况下,认为产品等级是否达到良好以上与生产产品的生产线有关.19.如图,在四棱锥E﹣ABCD中,底面ABCD是菱形,∠ABC=60°,G是边AD的中点.平面ADE⊥平面ABCD,AB=2DE,∠ADE=90°.线段BE上的点M满足BM=2ME.(1)证明:DE∥平面GMC;(2)求直线BG与平面GMC所成角的正弦值.【分析】(1)由已知结合线面垂直的性质可得DE⊥平面ABCD,以D为坐标原点,以AD所在直线为y轴,DE所在直线为z轴建立空间直角坐标系,求出平面GMC的一个法向量,由,且DE⊄平面GMC,可得DE∥平面GMC;(2)求得,由(1)得平面GMC的一个法向量为,再由与所成角的余弦值可得直线BG与平面GMC所成角的正弦值.【解答】(1)证明:∵平面ADE⊥平面ABCD,且平面ADE∩平面ABCD=AD,∠ADE =90°,∴DE⊥平面ABCD,以D为坐标原点,以AD所在直线为y轴,DE所在直线为z轴建立空间直角坐标系,∵底面ABCD是菱形,∠ABC=60°,G是边AD的中点,AB=2DE,BM=2ME.设菱形的边长为2,∴D(0,0,0),E(0,0,1),G(0,﹣1,0),C(,﹣1,0),B(,﹣3,0),M(,﹣1,),,,.设平面GMC的一个法向量为,由,得.∵,且DE⊄平面GMC,∴DE∥平面GMC;(2)解:,由(1)得平面GMC的一个法向量为,∴直线BG与平面GMC所成角的正弦值为|cos<>|==.20.已知椭圆E:=1(0<b<2)的离心率为,动直线l:y=kx+1与椭圆E交于点A,B,与y轴交于点P.O为坐标原点,D是AB中点.(1)若k=,求△AOB的面积;(2)若试探究是否存在常数λ,使得(1+λ)﹣2是定值?若存在,求λ的值;若不存在,请说明理由.【分析】(1)由条件得到a=2,则可求出c,得到E方程,联立,求出A,B坐标即可;(2)分别讨论直线斜率存在与不存在两种情况下,利用根于系数关系表示出x1+x2=﹣,x1x2=﹣,进而表示出D坐标以及(1+λ)﹣2,分离系数可求.解:(1)根据条件可得a=2,e=,则c=1,b==,则椭圆E的标准方程为,当k=时,直线l:y=x+1,联立,解得,,则△AOB面积==;(2)由条件P(0,1),当直线AB的斜率存在时,联立,整理得(4k2+3)x2+8kx﹣8=0,设A(x1,y1),B(x2,y2),则x1+x2=﹣,x1x2=﹣,所以y1+y2=k(x1+x2)+2=,y1y2=k2x1x2+k(x1+x2)+1=,则D(﹣,),(1+λ)﹣2=(1+λ)(x1x2+y1y2)﹣2λ•=(1+λ)﹣2λ•=,当,即λ=2时,(1+λ)﹣2=﹣9为定值;当直线AB的斜率不存在时,直线l为y轴,A(0,),B(0,﹣),D(0,0)此时(1+λ)﹣2=﹣3(1+λ)=﹣3×(1+2)=﹣9,故存在λ=2使得式子是定值,定值为﹣9.21.已知函数.(1)试讨论f(x)的单调性;(2)若函数在定义域上有两个极值点x1,x2,试问:是否存在实数a,使得f(x1)+f (x2)=5?【分析】(1)依题意,f′(x)=﹣=,令x2+(2﹣a)x+1+a=0,通过对△=a2﹣8a≤0与,△=a2﹣8a>0的讨论,即可求得f(x)的单调区间;(2)由题意可知:函数在定义域上有两个极值点x1,x2,即方程f′(x)=0在(1,+∞)上由两个不同的实根,根据二次函数性质求得a的取值范围,利用韦达定理,求得x1+x2和x1•x2表达式,写出f(x1)+f(x2),根据对数的运算性质求得a的值,判断是否满足a的取值范围即可.解:(1)由函数f(x)的定义域为(1,+∞),f′(x)=﹣=,令h(x)=x2+(2﹣a)x+1+a,由于△=(2﹣a)2﹣4(1+a)=a2﹣8a,①当△=a2﹣8a≤0,即0≤a≤8时,h(x)≥0恒成立,即f′(x)≥0恒成立,f(x)在(1,+∞)单调递增;②当△=a2﹣8a>0,即a<0或a>8时,x2+(2﹣a)x+1+a=0有两个根,设其二根为x1<x2,先分析a>8时,x1﹣1=﹣1==>0,∴x1>1,∴f(x)在(1,),(,+∞)单调递增,在(,)单调递减;再分析a<0时,由于h(x)=x2+(2﹣a)x+1+a的开口向上,对称轴方程为x=<0,且h(1)=4>0,∴x1<x2<0,∴当x>1时,h(x)>0恒成立,即f′(x)>0恒成立,f(x)在(1,+∞)单调递增;综上所述,a≤8时,f(x)在(1,+∞)单调递增;a>8时,f(x)在(1,),(,+∞)单调递增,在(,)单调递减;(2)f′(x)=﹣=,函数在定义域上有两个极值点x1,x2,即方程f′(x)=0在(1,+∞)上由两个不同的实根,即方程x2+(2﹣a)x+(1+a)=0,在(1,+∞)上由两个不同的实根,∴,解得:a>8,由韦达定理:x1+x2=a﹣2,x1•x2=1+a,于是,f(x1)+f(x2)=+=ln(•)+a (+)=ln[]+a[]=ln()+a()=ln1+=5,解得a=10,满足a>8,所以存在实数a=10,使得f(x1)+f(x2)=5.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题记分.[选修4_4:坐标系与参数方程]22.在以直角坐标原点0为极点,x轴正半轴为极轴的极坐标系中,过点的直线l的极坐标方程为,曲线C的方程为2a sinθ﹣ρcos2θ=0(a>0).(1)求直线l的参数方程和曲线C的直角坐标方程;(2)若直线l与曲线C分别交于点M,N,且|PM|,|MN|,|PN|成等比数列,求a的值.【分析】(1)直接利用转换关系的应用,把参数方程极坐标方程和直角坐标方程之间进行转换.(2)利用直线和曲线的位置关系式的应用,利用一元二次方程根和系数关系式的应用求出结果.解:(1)过点,即过点P(0,﹣1)的直线l的极坐标方程为,转换为,转换为直角坐标方程为,转换为参数方程为:(t为参数).曲线C的方程为2a sinθ﹣ρcos2θ=0(a>0).转换为直角坐标方程为x2=2ay.(2)把直线的参数方程代入x2=2ay,得到,整理得,所以,t1t2=8a,由于|PM|,|MN|,|PN|成等比数列,所以|MN|2=|PM||PN|,即,整理得:,即:,解得a=,由于a>0,所以a=.[选修4-5:不等式选讲]23.已知函数f(x)=|3x+2|.(1)解不等式f(x)<4﹣|x﹣1|(2)若a>0且|x﹣a|﹣f(x)≤4恒成立,求实数a的取值范围.【分析】(1)利用分类讨论法去掉绝对值,求出对应不等式的解集;(2)构造函数g(x)=|x﹣a|﹣f(a),求得g(x)的最大值,把不等式恒成立转化,从而求出a的取值范围.解:(1)函数f(x)=|3x+2|,∴不等式f(x)<4﹣|x﹣1|化为|3x+2|+|x﹣1|<4,当x<﹣时,不等式化为﹣3x﹣2﹣x+1<4,解得﹣<x<﹣;当﹣≤x≤1时,3x+2﹣x+1<4,解得﹣≤x<;当x>1时,3x+2+x﹣1<4,无解;综上,不等式的解集为(﹣,);…………………(2)令g(x)=|x﹣a|﹣f(a),则g(x)=|x﹣a|﹣|3x+2|=;当x=﹣时,g(x)取得最大值为g(x)max=+a;欲使不等式g(x)≤4恒成立,只需+a≤4,解得a≤;又因为a>0,所以0<a≤,即a的取值范围是(0,].。

2020年四川省高考数学模拟试卷(理科)含答案解析

2020年四川省高考数学模拟试卷(理科)含答案解析

2020年四川省高考数学模拟试卷(理科)一.选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i为虚数单位,a∈R,若(a2+2a﹣3)+(a+3)i为纯虚数,则a的值为()A.1 B.﹣3 C.﹣3或1 D.3或12.已知集合M={x||x|≤2,x∈R},N={x||x﹣1|≤a,a∈R},若N⊆M,则a的取值范围为()A.0≤a≤1 B.a≤1 C.a<1 D.0<a<13.设命题p:存在四边相等的四边形不是正方形;命题q:若cosx=cosy,则x=y,则下列判断正确的是()A.p∧q为真B.p∨q为假C.¬p为真D.¬q为真4.已知抛物线x2=﹣2py(p>0)经过点(2,﹣2),则抛物线的焦点坐标为()A.B.C.D.5.小明、小王、小张、小李4名同学排成一纵队表演节目,其中小明不站排头,小张不站排尾,则不同的排法共有()种.A.14 B.18 C.12 D.166.执行如图所示的程序框图,输出P的值为()A.﹣1 B.1 C.0 D.20207.设x,y满足约束条件,则的最大值为()A.1024 B.256 C.8 D.48.已知O为△ABC内一点,且有,记△ABC,△BCO,△ACO的面积分别为S1,S2,S3,则S1:S2:S3等于()A.3:2:1 B.3:1:2 C.6:1:2 D.6:2:19.若椭圆和圆为椭圆的半焦距),有四个不同的交点,则椭圆的离心率e的取值范围是()A.B. C.D.10.已知函数,若存在x1,x2,当0≤x1<x2<2时,f(x1)=f(x2),则x1f(x2)﹣f(x2)的取值范围为()A.B.C.D.二、填空题(每题5分,满分25分,将答案填在答题纸上)11.若样本数据x1,x2,…,x10的平均数为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的平均数为_______.12.在二项式的展开式中,所有二项式系数之和为128,则展开式中x5的系数为_______.13.已知正方体ABCD﹣A1B1C1D1的棱长为a,P为棱AA1的中点,在面BB1D1D上任取一点E,使得EP+EA最小,则最小值为_______.14.在平面直角坐标系中,以(0,﹣1)为圆心且与直线ax+y++1=0(a∈R)相切的所有圆中,最大圆面积与最小圆面积的差为_______.15.已知a>0,f(x)=a2lnx﹣x2+ax,若不等式e≤f(x)≤3e+2对任意x∈[1,e]恒成立,则实数a的取值范围为_______.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.在△ABC中,角A,B,C所对的边分别为a,b,c,且=(I)求角A;(Ⅱ)若=(0,﹣1),=(cosB,2cos2),求|+|的取值范围.17.为了解班级学生对任课教师课堂教学的满意程度情况.现从某班全体学生中,随机抽取12名,测试的满意度分数(百分制)如下:65,52,78,90,86,86,87,88,98,72,86,87根据学校体制标准,成绩不低于76的为优良.(Ⅰ)从这12名学生中任选3人进行测试,求至少有1人成绩是“优良”的概率;(Ⅱ)从抽取的12人中随机选取3人,记ξ表示测试成绩“优良”的学生人数,求ξ的分布列及期望.18.如图所示,在三棱锥P﹣ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ交于点H,连接GH.(Ⅰ)求证:AB∥GH;(Ⅱ)求异面直线DP与BQ所成的角;(Ⅲ)求直线AQ与平面PDC所成角的正弦值.19.已知数列{a n}的前n项和为S n,S n=2a n﹣4,数列{b n}满足b n+1﹣b n=1,其n项和为T n,且T2+T6=32.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)若不等式nlog2(S n+4)≥λb n+3n﹣7对任意的n∈N*恒成立,求实数λ的取值范围.20.已知椭圆C: +=1(a>b>0)的左、右顶点分别为A1,A2,且|A1A2|=4,上顶点为B,若直线BA1与圆M:(x+1)2+y2=相切.(Ⅰ)求椭圆C的标准方程;(Ⅱ)直线l:x=2与x轴交于D,P是椭圆C上异于A1、A2的动点,直线A1P、A2P分别交直线l于E、F两点,求证:|DE|•|DF|为定值.21.设函数f(x)=x2﹣x+t,t≥0,g(x)=lnx.(Ⅰ)若对任意的正实数x,恒有g(x)≤x2α成立,求实数α的取值范围;(Ⅱ)对于确定的t,是否存在直线l与函数f(x),g(x)的图象都相切?若存在,讨论直线l的条数,若不存在,请说明理由.2020年四川省高考数学模拟试卷(理科)参考答案与试题解析一.选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i为虚数单位,a∈R,若(a2+2a﹣3)+(a+3)i为纯虚数,则a的值为()A.1 B.﹣3 C.﹣3或1 D.3或1【考点】复数的基本概念.【分析】直接由实部等于0且虚部不为0列式求得a值.【解答】解:∵(a2+2a﹣3)+(a+3)i为纯虚数,∴,解得:a=1.故选:A.2.已知集合M={x||x|≤2,x∈R},N={x||x﹣1|≤a,a∈R},若N⊆M,则a的取值范围为()A.0≤a≤1 B.a≤1 C.a<1 D.0<a<1【考点】集合的包含关系判断及应用.【分析】分别化简集合M,N,对a分类讨论,利用集合之间的关系即可得出.【解答】解:集合M={x||x|≤2,x∈R}=[﹣2,2],N={x||x﹣1|≤a,a∈R},∴当a<0时,N=∅,满足N⊆M.当a≥0时,集合N=[1﹣a,1+a].∵N⊆M,∴,解得0≤a≤1.综上可得:a的取值范围为a≤1.故选:B.3.设命题p:存在四边相等的四边形不是正方形;命题q:若cosx=cosy,则x=y,则下列判断正确的是()A.p∧q为真B.p∨q为假C.¬p为真D.¬q为真【考点】命题的否定.【分析】根据复合命题的真假关系进行判断即可.【解答】解:菱形的四边形的边长相等,但不一定是正方形,故命题p是真命题,当x=﹣y时,满足cosx=cosy,但x=y不成立,即命题q是假命题,故¬q为真,其余都为假命题,故选:D4.已知抛物线x2=﹣2py(p>0)经过点(2,﹣2),则抛物线的焦点坐标为()A.B.C.D.【考点】抛物线的简单性质.【分析】抛物线x2=﹣2py(p>0)经过点(2,﹣2),代值计算即可求出p,能求出焦点坐标.【解答】解:抛物线x2=﹣2py(p>0)经过点(2,﹣2),∴4=4p,∴p=1,∴抛物线的焦点坐标为(0,﹣),故选:C.5.小明、小王、小张、小李4名同学排成一纵队表演节目,其中小明不站排头,小张不站排尾,则不同的排法共有()种.A.14 B.18 C.12 D.16【考点】计数原理的应用.【分析】小明不站排头,小张不站排尾,可按小明在排尾与不在排尾分为两类,根据分类计数原理可得.【解答】解:小明不站排头,小张不站排尾排法计数可分为两类,第一类小明在排尾,其余3人全排,故有A33=6种,第二类小明不在排尾,先排小明,有A21种方法,再排小张有A21种方法,剩下的2人有A22种排法,故有2×2×2=8种根据分类计数原理可得,共有6+8=14种,故选:A.6.执行如图所示的程序框图,输出P的值为()A.﹣1 B.1 C.0 D.2020【考点】程序框图.【分析】模拟执行程序框图的运行过程,写出每次循环得到的P,i的值,当i=2020>2020时,满足条件,终止循环,输出P的值.【解答】解:执行程序框图,有p=0,i=1,P=0+cosπ=﹣1,i=2,不满足条件i>2020?,有P=﹣1+cos2π=0,i=3,不满足条件i>2020,有P=0+cos3π=﹣1,,…,i=2020,不满足条件i>2020,有P=﹣1+cos2020π=0,i=2020,满足条件i>2020,输出P的值为0.故选:C.7.设x,y满足约束条件,则的最大值为()A.1024 B.256 C.8 D.4【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.【解答】解:由z==22x﹣y,令u=2x﹣y,作出约束条件,对应的平面区域如图(阴影部分):平移直线y=2x﹣u由图象可知当直线y=2x﹣u过点A时,直线y=2x﹣u的截距最小,此时u最大,由,解得,即A(5,2).代入目标函数u=2x﹣y,得u=2×5﹣2=8,∴目标函数z==22x﹣y,的最大值是28=256.故选:B.8.已知O为△ABC内一点,且有,记△ABC,△BCO,△ACO的面积分别为S1,S2,S3,则S1:S2:S3等于()A.3:2:1 B.3:1:2 C.6:1:2 D.6:2:1【考点】平面向量的基本定理及其意义.【分析】如图所示,延长OB到点E,使得=2,分别以,为邻边作平行四边形OAFE.则+2=+=,由于+2+3=,可得﹣=3.又=2,可得=2.于是=,得到S△ABC=2S△AOB.同理可得:S△ABC=3S△AOC,S△ABC=6S△BOC.即可得出.【解答】解:如图所示,延长OB到点E,使得=2,分别以,为邻边作平行四边形OAFE.则+2=+=,∵+2+3=,∴﹣=3.又=2,可得=2.于是=,∴S△ABC=2S△AOB.同理可得:S△ABC=3S△AOC,S△ABC=6S△BOC.∴ABC,△BOC,△ACO的面积比=6:1:2.故选:C.9.若椭圆和圆为椭圆的半焦距),有四个不同的交点,则椭圆的离心率e的取值范围是()A.B. C.D.【考点】圆与圆锥曲线的综合.【分析】由题设知,由,得2c>b,再平方,4c2>b2,;由,得b+2c<2a,.综上所述,.【解答】解:∵椭圆和圆为椭圆的半焦距)的中心都在原点,且它们有四个交点,∴圆的半径,由,得2c>b,再平方,4c2>b2,在椭圆中,a2=b2+c2<5c2,∴;由,得b+2c<2a,再平方,b2+4c2+4bc<4a2,∴3c2+4bc<3a2,∴4bc<3b2,∴4c<3b,∴16c2<9b2,∴16c2<9a2﹣9c2,∴9a2>25c2,∴,∴.综上所述,.故选A.10.已知函数,若存在x1,x2,当0≤x1<x2<2时,f(x1)=f(x2),则x1f(x2)﹣f(x2)的取值范围为()A.B.C.D.【考点】分段函数的应用.【分析】先作出函数图象然后根据图象,根据f(x1)=f(x2),确定x1的取值范围然后再根据x1f(x2)﹣f(x2),转化为求在x1的取值范围即可.【解答】解:作出函数的图象:∵存在x1,x2,当0≤x1<x2<2时,f(x1)=f(x2)∴0≤x1<,∵x+在[0,)上的最小值为;2x﹣1在[,2)的最小值为,∴x1+≥,x1≥,∴≤x1<.∵f(x1)=x1+,f(x1)=f(x2)∴x1f(x2)﹣f(x2)=x1f(x1)﹣f(x1)2=﹣(x1+)=x12﹣x1﹣,设y=x12﹣x1﹣=(x1﹣)2﹣,(≤x1<),则对应抛物线的对称轴为x=,∴当x=时,y=﹣,当x=时,y=,即x1f(x2)﹣f(x2)的取值范围为[﹣,).故选:B.二、填空题(每题5分,满分25分,将答案填在答题纸上)11.若样本数据x1,x2,…,x10的平均数为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的平均数为15.【考点】众数、中位数、平均数.【分析】根据平均数与方差的公式即可求出数据2x1﹣1,2x2﹣1,…,2x10﹣1的平均数.【解答】解:∵样本数据x1,x2,…,x10的平均数是10,∴=(x1+x2+…+x10)=8;∴数据2x1﹣1,2x2﹣1,…,2x10﹣1的平均数是:= [(2x1﹣1)+(2x2﹣1)+…+(2x10﹣1)]=2×(x1+x2+…+x10)﹣1=2×8﹣1=15.故答案为:15.12.在二项式的展开式中,所有二项式系数之和为128,则展开式中x5的系数为35.【考点】二项式定理的应用.【分析】由条件利用二项式系数的性质求得n=7,再利用二项展开式的通项公式求得x5的系数.【解答】解:由题意可得2n=128,n=7,∴=,它的通项公式为T r+1=•x21﹣4r,令21﹣4r=5,求得r=4,故展开式中x5的系数为=35,故答案为:35.13.已知正方体ABCD﹣A1B1C1D1的棱长为a,P为棱AA1的中点,在面BB1D1D上任取一点E,使得EP+EA最小,则最小值为a.【考点】棱柱的结构特征.【分析】由图形可知AC⊥平面BB1D1D,且A到平面BB1D1D的距离与C到平面BB1D1D 的距离相等,故EA=EC,所以EC就是EP+EP的最小值;【解答】解:连接AC交BD于N,连接EN,EC,则AC⊥BD,∵BB1⊥平面ABCD,∴BB1⊥AC,∴AC⊥平面BB1D1D,∴AC⊥EN,∴△AEN≌△CEN,∴EA=EC,连接EC,∴线段EC的长就是EP+EA的最小值.在Rt△EAC中,AC=a,EA=a,∴EC==a.故答案为:a.14.在平面直角坐标系中,以(0,﹣1)为圆心且与直线ax+y++1=0(a∈R)相切的所有圆中,最大圆面积与最小圆面积的差为2π.【考点】直线与圆的位置关系.【分析】圆半径r=,a=﹣1时,r min==1,a=1时,r max==,由此能求出最大圆面积与最小圆面积的差.【解答】解:∵圆以(0,﹣1)为圆心且与直线ax+y++1=0(a∈R)相切,∴圆半径r===,∴a=﹣1时,r min==1,最小圆面积S min=π×12=π,a=1时,r max==,最大圆面积S max==3π,∴最大圆面积与最小圆面积的差为:3π﹣π=2π.故答案为:2π.15.已知a>0,f(x)=a2lnx﹣x2+ax,若不等式e≤f(x)≤3e+2对任意x∈[1,e]恒成立,则实数a的取值范围为[e+1,].【考点】利用导数求闭区间上函数的最值.【分析】利用导数可求得f(x)的单调区间,由f(1)=﹣1+a≥e可得a≥e+1,从而可判断f(x)在[1,e]上的单调性,得到f(x)的最大值,令其小于等于3e+2可得答案.【解答】解:f′(x)=﹣2x+a=,∵x>0,又a>0,∴x∈(0,a)时f′(x)>0,f(x)递增;x∈(a,+∞)时,f′(x)<0,f(x)递减.又f(1)=﹣1+a≥e,∴a≥e+1,∴f(x)在[1,e]上是增函数,∴最大值为f(e)=a2﹣e2+ae≤3e+2,解得:a≤,又a≥e+1,而e+1<,∴a的取值集合是[e+1,],故答案为:[e+1,].三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.在△ABC中,角A,B,C所对的边分别为a,b,c,且=(I)求角A;(Ⅱ)若=(0,﹣1),=(cosB,2cos2),求|+|的取值范围.【考点】平面向量数量积的运算.【分析】(I)将切化弦,利于和角公式和正弦定理化简得出cosA;(II)求出+的坐标,计算|+|2,根据B的范围解出|+|的范围.【解答】解:(I)∵=,∴,整理得cosA=.∴A=.(II)∵2cos2=1+cosC=1﹣cos(B+)=1﹣cosB+sinB,∴=(cosB,1﹣cosB+ sinB).∴=(cosB,﹣cosB+sinB),∴()2=cos2B+(﹣cosB+sinB)2=+﹣sin2B=1+cos(2B+).∵0<B<,∴<2B+<.∴﹣1≤cos(2B+)<,∴≤()2<.∴≤|+|<.17.为了解班级学生对任课教师课堂教学的满意程度情况.现从某班全体学生中,随机抽取12名,测试的满意度分数(百分制)如下:65,52,78,90,86,86,87,88,98,72,86,87根据学校体制标准,成绩不低于76的为优良.(Ⅰ)从这12名学生中任选3人进行测试,求至少有1人成绩是“优良”的概率;(Ⅱ)从抽取的12人中随机选取3人,记ξ表示测试成绩“优良”的学生人数,求ξ的分布列及期望.【考点】离散型随机变量的期望与方差;列举法计算基本事件数及事件发生的概率;离散型随机变量及其分布列.【分析】(Ⅰ)12名学生中成绩是“优良”的学生人数为9人,至少有1人成绩是“优良”的对立事件是抽到的两人的成绩都不是“优良”,由此能求出至少有1人成绩是“优良”的概率.(Ⅱ)由已知得ξ的可能取值为0,1,2,3,分别求出相应的概率,由此能求出ξ的分布列和Eξ.【解答】解:(Ⅰ)∵随机抽取12名,测试的满意度分数(百分制)如下:65,52,78,90,86,86,87,88,98,72,86,87,根据学校体制标准,成绩不低于76的为优良,∴12名学生中成绩是“优良”的学生人数为9人,从这12名学生中任选3人进行测试,基本事件总数n==220,至少有1人成绩是“优良”的对立事件是抽到的两人的成绩都不是“优良”,∴至少有1人成绩是“优良”的概率:p=1﹣=.(Ⅱ)由已知得ξ的可能取值为0,1,2,3,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,∴ξ有的分布列为:ξ0 1 2 3PEξ==.18.如图所示,在三棱锥P﹣ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ交于点H,连接GH.(Ⅰ)求证:AB∥GH;(Ⅱ)求异面直线DP与BQ所成的角;(Ⅲ)求直线AQ与平面PDC所成角的正弦值.【考点】直线与平面所成的角;异面直线及其所成的角.【分析】(I)根据中位线及平行公理可得CD∥EF,于是CD∥平面EFQ,利用线面平行的性质得出CD∥GH,从而GH∥AB;(II)由AQ=2BD可得AB⊥BQ,以B为原点建立空间直角坐标系,求出,的坐标,计算,的夹角得出异面直线DP与BQ所成的角;(III)求出和平面PDC的法向量,则直线AQ与平面PDC所成角的正弦值为|cos<>|.【解答】证明:(I)∵CD是△ABQ的中位线,EF是△PAB的中位线,∴CD∥AB,EF∥AB,∴CD∥EF,又EF⊂平面EFQ,CD⊄平面EFQ,∴CD∥平面EFQ,又CD⊂平面PCD,平面PCD∩平面EFQ=GH,∴GH∥CD,又CD∥AB,∴GH∥AB.(II)∵D是AQ的中点,AQ=2BD,∴AB⊥BQ.∵PB⊥平面ABQ,∴BA,BP,BQ两两垂直.以B为原点以BA,BQ,BP为坐标轴建立空间直角坐标系如图:设BA=BP=BQ=1,则B(0,0,0),P(0,0,1),D(,,0),Q(0,1,0).∴=(﹣,﹣,1),=(0,1,0).∴=﹣,||=,||=1,∴cos<>=﹣.∴异面直线DP与BQ所成的角为arccos.(III)设BA=BP=BQ=1,则A(1,0,0),Q(0,1,0),P(0,0,1),D(,,0),C(0,,0).=(﹣1,1,0),=(,0,0),=(0,﹣,1).设平面CDP的一个法向量为=(x,y,z),则,=0,∴,令z=1,得=(0,2,1).∴=2,||=,||=,∴cos<>==,∴直线AQ与平面PDC所成角的正弦值为.19.已知数列{a n}的前n项和为S n,S n=2a n﹣4,数列{b n}满足b n+1﹣b n=1,其n项和为T n,且T2+T6=32.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)若不等式nlog2(S n+4)≥λb n+3n﹣7对任意的n∈N*恒成立,求实数λ的取值范围.【考点】数列的求和;数列递推式.【分析】(I)利用等差数列与等比数列的通项公式及其前n项和公式、递推关系即可得出.(Ⅱ)S n=2×4n﹣4.不等式nlog2(S n+4)≥λb n+3n﹣7,化为:λ≤,利用单调性求出的最小值即可得出.【解答】解:(I)∵S n=2a n﹣4,∴n=1时,a1=2a1﹣4,解得a1=4;当n≥2时,a n=S n﹣S n﹣1=2a n﹣4﹣(2a n﹣1﹣4),化为:a n=2a n﹣1.∴数列{a n}是等比数列,首项为4,公比为2,∴a n=4×2n﹣1=2n+1.∵数列{b n}满足b n+1﹣b n=1,∴数列{b n}是等差数列,公差为1.∵T2+T6=32,∴2b1+1+6b1+×1=32,解得b1=2.∴b n=2+(n﹣1)=n+1.(Ⅱ)S n=2×2n+1﹣4.∴不等式nlog2(S n+4)≥λb n+3n﹣7,化为:λ≤,∵=(n+1)+﹣3≥2﹣3=3,当n=2时,取得最小值3,∴实数λ的取值范围是λ≤3.20.已知椭圆C: +=1(a>b>0)的左、右顶点分别为A1,A2,且|A1A2|=4,上顶点为B,若直线BA1与圆M:(x+1)2+y2=相切.(Ⅰ)求椭圆C的标准方程;(Ⅱ)直线l:x=2与x轴交于D,P是椭圆C上异于A1、A2的动点,直线A1P、A2P分别交直线l于E、F两点,求证:|DE|•|DF|为定值.【考点】椭圆的简单性质.【分析】(Ⅰ)由条件可得到A1(﹣2,0),B(0,b),从而可以写出直线BA1的方程,这样即可得出圆心(﹣1,0)到该直线的距离为,从而可以求出b,这便可得出椭圆C的标准方程为;(Ⅱ)可设P(x1,y1),从而有,可写出直线A1P的方程为,从而可以求出该直线和直线x=的交点E的坐标,同理可得到点F的坐标,这样即可得出|DE|,|DF|,然后可求得|DE|•|DF|=3,即得出|DE|•|DF|为定值.【解答】解:(Ⅰ)由题意得A1(﹣2,0),B(0,b);∴直线BA1的方程为;∴圆心(﹣1,0)到直线BA1的距离为;解得b2=3;∴椭圆C的标准方程为;(Ⅱ)证明:设P(x1,y1),则,;∴直线A1P的方程为;∴;同理得,;∴;∴|DE|•|DF|为定值.21.设函数f(x)=x2﹣x+t,t≥0,g(x)=lnx.(Ⅰ)若对任意的正实数x,恒有g(x)≤x2α成立,求实数α的取值范围;(Ⅱ)对于确定的t,是否存在直线l与函数f(x),g(x)的图象都相切?若存在,讨论直线l的条数,若不存在,请说明理由.【考点】利用导数研究曲线上某点切线方程.【分析】(1)由题意可得lnx﹣x2α≤0恒成立,讨论当α≤0时,h(x)=lnx﹣x2α递增,无最大值;当α>0时,求出导数,求得单调区间,可得极大值,也为最大值,由恒成立思想解不等式即可得到所求范围;(2)分别设出切点,再根导数的几何意义求出切线方程,构造方程组,消元,再构造函数F(x)=ln x+﹣(t+1),利用导数求出函数F(x)的最小值,再分类讨论,得到方程组的解得个数,继而得到切线的条数.【解答】解:(1)对任意的正实数x,恒有g(x)≤x2α成立,即为lnx﹣x2α≤0恒成立,当α≤0时,h(x)=lnx﹣x2α递增,无最大值;当α>0时,h′(x)=﹣2α•x2α﹣1,当x>时,h′(x)<0,h(x)递减;当0<x<时,h′(x)>0,h(x)递增.即有x=时,h(x)取得最大值,且为ln﹣,由ln﹣≤0,可得α≥,综上可得,实数α的取值范围是[,+∞);(2)记直线l分别切f(x),g(x)的图象于点(x1,x12﹣x1+t),(x2,ln x2),由f′(x)=2x﹣1,得l的方程为y﹣(x12﹣x1+t)=(2x1﹣1)(x﹣x1),即y=(2x1﹣1)x﹣x12+t.由g′(x)=,得l的方程为y﹣ln x2=(x﹣x2),即y=•x+ln x2﹣1.所以(*)消去x1得ln x2+﹣(t+1)=0 (**).令F(x)=ln x+﹣(t+1),则F′(x)=﹣==,x>0.由F'(x)=0,解得x=1.当0<x<1时,F'(x)<0,当x>1时,F'(x)>0,所以F(x)在(0,1)上单调递减,在(1,+∞)上单调递增,从而F(x)min=F(1)=﹣t.当t=0时,方程(**)只有唯一正数解,从而方程组(*)有唯一一组解,即存在唯一一条满足题意的直线;当t>0时,F(1)<0,由于F(e t+1)>ln(e t+1)﹣(t+1)=0,故方程(**)在(1,+∞)上存在唯一解;令k(x)=ln x+﹣1(x≤1),由于k'(x)=﹣=≤0,故k(x)在(0,1]上单调递减,故当0<x<1时,k(x)>k(1)=0,即ln x>1﹣,从而ln x+﹣(t+1)>(﹣)2﹣t.所以F()>(+)2﹣t=+>0,又0<<1,故方程(**)在(0,1)上存在唯一解.所以当t>0时,方程(**)有两个不同的正数解,方程组(*)有两组解.即存在两条满足题意的直线.综上,当t=0时,与两个函数图象同时相切的直线的条数为1;当t>0时,与两个函数图象同时相切的直线的条数为2.2020年9月9日。

2020年四川省高考模拟试卷数学理科答案(1)

2020年四川省高考模拟试卷数学理科答案(1)

2020年四川省高考模拟试卷(一)数学(理科)答案一、选择题(本大题共12小题,每小题5分,共60分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CDCBBCBDCDCB1.2019年国庆黄金周影市火爆依旧,《我和我的祖国》、《中国机长》、《攀登者》票房不断刷新,为了解我校高三2300名学生的观影情况,随机调查了100名在校学生,其中看过《我和我的祖国》或《中国机长》的学生共有80位,看过《中国机长》的学生共有60位,看过《中国机长》且看过《我和我的祖国》的学生共有50位,则该校高三年级看过《我和我的祖国》的学生人数的估计值为( ) A.1150 B.1380 C.1610 D.1860依题有接受调查的100名学生中有70位看过《我和我的祖国》,故全校学生中约有2300*0.71610=人看过《我和我的祖国》这部影片,故选C. 2若复数z 满足2+=ii z,则||=z ( ) A.55- B.55C.5-D.5 由2+=ii z,得|2|||||+=i i z ,||5=z ,故选D. 3.某单位共有老年人120人,中年人360人,青年人n 人,为调查身体健康状况,需要从中抽取一个容量为m 的样本,用分层抽样的方法进行抽样调查,样中的中年人为6人,则n 和m 的值不可以是下列四个选项中的哪组( )A.360=n ,14=mB.420=n ,15=mC.540=n ,18=mD.660=n ,19=m 某单位共有老年人120人,中年人360人,青年人n 人,样本中的中年人为6人,则老年人为61202360⨯=,青年人为636060=n n ,2686060++=⇒+=n nm m ,代入选项计算,C 不符合,故选C.4.()221(1)+-axax 的展开式中4x 项的系数为-8,则a 的值为( )A.2B.-2C.22D.22-22(1)(1)ax ax +-的展开式中,4x 项为34a x ,382a a =-=-∴,,故选B.5.已知n S 是等差数列{}n a 的前n 项和,若24836149++=+a a a a a ,则149=SS ( )A.14 9B.73C.32D.2设{}na的公差为d,由24836149++=+a a aa a,1=≠a d,1141419914()1415729()91032+⨯===+⨯a aS da aS d,故选B.6.已知函数sin=a xyx在点(,0)Mπ处的切线方程为1-+=x b yπ,则()A.1=-a,1=b B.1=-a,1=-b C.1=a,1=b D.1=a,1=-b由题意可知2cos sin-'=ax x a xyx,故在点(,0)Mπ处的切线方程为1()-=-=-+ay x x bπππ,则11=⎧⎨=⎩ab,故选C.7.函数2cos2()1=+x xf xx的图象大致为()A. B. C. D.由()f x为奇函数,得()f x的图象关于原点对称,排除C,D;又当04<<xπ时,()0>f x,故选B.8.如图,在四棱锥-P ABCD中,底面ABCD是平行四边形,且1=AB,2=BC,60︒∠=ABC,⊥PA平面ABCD,⊥AE PC于E.下列四个结论:①⊥AB AC;②⊥AB平面P AC;③⊥PC平面ABE;④⊥BE PC.正确的个数是()A.1B.2C.3D.4已知1=AB,2=BC,60︒∠=ABC,由余弦定理可得2222cos603︒=+-⋅=AC AB BC AB BC,所以222+=AC AB BC,即⊥AB AC,①正确;由⊥PA平面ABCD,得⊥AB PA,所以⊥AB平面P AC,②正确;⊥AB平面P AC,得⊥AB PC,又⊥AE PC,所以⊥PC平面ABE,③正确;由⊥PC平面ABE,得⊥PC BE,④正确,故选D.9.已知i为虚数单位,执行如图所示的程序框图,则输出的z为()A.-iB.iC.0D.1+i由程序框图得0=z ,第一次运行011=+=a ,101=+=z ,011=+=n ;第二次运行0=+=b i i ,1=+z i ,112=+=n ;第三次运行, ,故(1111)()0=-++-+-+-=L L z i i i ,故选C.10.双曲线2222:1(0,0)-=>>x y E a b a b的一条渐近线方程为2=y x ,过右焦点F 作x 轴的垂线,与双曲线在第一象限的交点为A ,若V OAF 的面积是25(O 为原点),则双曲线E 的实轴长是( ) A.4 B.22 C.1 D.2因为双曲线E 的一条渐近线方程为2=y x ,所以2=b a ,2215==+=c b e a a,由V OAF 的面积是25,得21252⋅=b a,所以24=b ,2=b ,所以1=a ,双曲线的实轴长为2,故选D. 11. 已知函数()-=-xxg x e e ,()()=f x xg x ,若53,,(3)22⎛⎫⎛⎫=-== ⎪ ⎪⎝⎭⎝⎭a fb fc f ,则a,b,c 的大小关系为 A.a<b<c B.c<b<a C.b<a<c D.b<c<a依题意,有()()g x g x -=-,则()e e x x g x -=-为奇函数,且在R 上单调递增,所以()f x 为偶函数.当0x >时,有()(0)g x g >且()0g x '>,所以()()()f x g x xg x ''=+(0)0g >=,即()f x 在(0)+∞,上递增,所以355(3)222f f f f ⎛⎫⎛⎫⎛⎫<-=< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选C . 12.已知圆221:4+=O x y ,直线:(0)=+≠l y kx b k ,l 和圆O 交于E ,F 两点,以Ox 为始边,逆时针旋转到OE ,OF 为终边的最小正角分别为α和β,给出如下3个命题:①当k 为常数,b 为变数时,sin()+αβ是定值;②当k 为变数,b 为变数时,sin()+αβ是定值; ③当k 和b 都是变数时,sin()+αβ是定值. 其中正确命题的个数是( )A.0B.1C.2D.3设点11(),E x y ,22(),F x y ,由三角函数的定义得111cos 21sin 2⎧=⎪⎪⎨⎪=⎪⎩x y αα,221cos 21sin 2⎧=⎪⎪⎨⎪=⎪⎩x y ββ,将直线EF 的方程与圆的方程联立2214=+⎧⎪⎨+=⎪⎩y kx b x y ,得2221(1)204+++-=k x kbx b ,由韦达定理得122212221141⎧+=-⎪+⎪⎨-⎪=⎪+⎩kb x x k b x x k ,所以211221121212sin()sin cos cos sin 444()4()84()+=+=+=+++=++x y x y x kx b x kx b kx x b x x αβαβαβ22221882411⎛⎫-- ⎪⎝⎭==-++k b kb k k k ,因此,当k 是常数时,sin()+αβ是常数,故选B. 二、填空题(本大题共4小题,每小题5分,共20分)题号 1314 1516答案8π582322195+=x y 13.已知||1=r a ,||8=r b ,()3⋅-=r r r a b a ,则向量ra 与向量rb 的夹角是____.由()3-=r r r a b a ,得3⋅-⋅=r r r r a b a a ,即4⋅=r r a b ,故1cos ,2||||⋅〈〉==⋅r r r r r ra b a b a b ,则向量r a 与rb 的夹角为3π. 14.数列{}n a 的前n 项和2(0)=+≠n S An Bn A ,若11=a ,1a ,2a ,5a 成等比数列,则3=a ________.由n S 的表达式知,{}n a 为等差数列,设公差为d ,则1,1+d ,14+d 成等比数列,故2(1)14+=+d d ,即220-=d d ,解得0=d 或2=d ,若0=d ,1=n a ,=n S n ,与0≠A 矛盾,故2=d ,3125=+=a d .15.如图,正八面体的棱长为2,则此正八面体的体积为________. 正八面体上半部分的斜高为3,高为2,则其体积为22282233⨯⨯⨯=. 16已知点1F ,2F 是椭圆2222:1(0)+=>>x y C a b a b 的左、右焦点,以1F 为圆心,1F ,2F 为半径的圆与椭圆在第一象限的交点为P .若椭圆C 的离心率为23,且1215=V PF F S ,则椭圆C 的方程为________.依题意,112||||2==PF F F c,由椭圆的定义可得2||22=-PF a c,所以22112||1112cos 1||224-⎛⎫∠===-= ⎪⎝⎭PF a c PF F F F c e ,从而2115sin 4∠=PF F ,因为离心率23=c a ,所以1222122111515sin ()224=⋅⋅∠=-=V PF F S PF F F PF F c a c c ,又1215=V PF F S ,解得24=c ,所以29=a ,25=b ,故椭圆C 的方程为22195+=x y . 三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17.根据阅兵领导小组办公室介绍,2019年国庆70周年阅兵有59个方(梯)队和联合军乐团,总规模约1.5万人,是近几次阅兵中规模最大的一次、其中,徒步方队15个为了保证阅兵式时队列保持整齐,各个方队对受阅队员的身高也有着非常严格的限制,太高或太矮都不行徒步方队队员,男性身高普遍在175 cm 至185 cm 之间:女性身高普遍在163 cm 至175 cm 之间,这是常规标准.要求最为严格的三军仪仗队,其队员的身高一般都在184 cm 至190 cm 之间.经过随机调查某个阅兵阵营中女子100人,得到她们身高的直方图,如图,记C 为事件:“某一阅兵女子身高不低于169 cm ”,根据直方图得到P (C )的估计值为0.5.女子身高直方图 注:身高代码1~13分别对应身高163~175(单位:cm ) (1)求直方图中a ,b 的值;(2)估计这个阵营女子身高的平均值.(同一组中的数据用该组区间的中点值为代表) 解:(1)由已知得(0.110.065)20.5++⨯=b ,故0.075=b . (3分) 法一:212(0.110.0750.0750.0650.05)=-⨯++++a ,∴0.125=a . (6分) 法二:1()10.50.5-=-=P C ,∴2(0.050.075)0.5⨯++=a ,∴0.125=a . (6分) (2)2(0.0520.07540.12560.1180.075100.06512)⨯⨯+⨯+⨯+⨯+⨯+⨯2(0.10.30.750.880.750.78)=⨯+++++2 3.567.12=⨯=, (10分)估计女子的平均身高为163(7.121)169.12+-=(cm ). (12分) 18.在锐角V ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,cos (2)cos 0+-=b C c a B . (1)求角B ;(2)若1=a ,求+b c 的取值范围. 解:(1)∵cos (2)cos 0+-=b C c a B ,∴cos cos 2cos +=b C c B a B , (1分) 由正弦定理得sin cos cos sin 2sin cos +=B C B C A B , (2分)sin()sin()sin 0+=-=≠B C πA A , (3分)∴2cos 1=B ,1cos 2=B , (5分) 又B 是V ABC 的内角,∴3=πB . (6分) (2)∵V ABC 为锐角三角形,3=πB ,1=a ,∴23+=A C π,62<<ππA , (7分)由正弦定理得1sin sin sin ==b cA B C, ∴2sin sinsin sin 33sin sin sin sin ⎛⎫- ⎪⎝⎭+=+=+ππA B C b c A A A A(8分) 31cos sin 333cos 13(1cos )1222sin sin 2sin 2sin 22sin 2++=+=+⋅+=+A AA A A A A A A , (9分) ∵62<<ππA ,∴+b c 关于A 为减函数, (10分) ∴31cos 31cos 112622sin 2sin 26⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭+<+<+ππb c ππ2, (11分) ∴31322+<+<+b c ,即+b c 的取值范围是31,322⎛⎫++ ⎪ ⎪⎝⎭. (12分) 19.如图,在三棱锥P-ABC 中,已知22====,AC AB BC PA ,顶点P 在平面ABC 上的射影为V ABC的外接圆圆心.(1)证明:平面⊥PAC 平面ABC ; (2)若点M 在棱PA 上,||||=λAM AP ,且二面角P-BC-M 的余弦值为53333,试求λ的值.(1)证明:如图,设AC 的中点为O ,连接PO , (1分) 由题意,得222BC AB AC +=,则ABC △为直角三角形, 点O 为ABC △的外接圆圆心. (2分) 又点P 在平面ABC 上的射影为ABC △的外接圆圆心, 所以PO ⊥平面ABC , (3分)又PO ⊂平面PAC ,所以平面PAC ⊥平面ABC . (4分) (2)解:由(1)可知PO ⊥平面ABC , 所以PO OB ⊥,PO OC ⊥,OB AC ⊥,于是以OC ,OB ,OP 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系, (5分) 则(000)O ,,,(100)C ,,,(010)B ,,,0()10A -,,,(001)P ,,, 设[01](101)(10)AP A AM P M λλλλ=∈=-u u u u u u u r r u u u r,,,,,,,,,(110)BC =-u u u r ,,,(101)PC =-u u u r ,,,(20)MC λλ=--u u u u r,,. (6分) 设平面MBC 的法向量为111()m x y z =u r,,,则00m BC m MC ⎧=⎪⎨=⎪⎩u r g u r g u u u r u u u u r ,,得11110(2)0x y x z λλ-=⎧⎨--=⎩,, 令11x =,得11y =,12z λλ-=,即211m λλ-⎛⎫= ⎪⎝⎭u r ,,. (8分)设平面PBC 的法向量为222()n x y z =r,,,由00n BC n PC ⎧=⎪⎨=⎪⎩g g u u u r r u u u r r ,,得222200x y x z -=⎧⎨-=⎩,, 令1x =,得1y =,1z =,即(111)n =r,,, (9分) 22533cos 33||||22(2)23n m n m n m λλλλ-+-+〈〉===u r u r u r r r g g g r,, (10分) 解得1110222⎛⎫=- ⎪⎝⎭,,,,λM 即M 为PA 的中点. (12分) 20.已知函数2()(1)=--x f x k x e x ,其中∈R k .(1)当1=-k 时,求函数()f x 的单调区间;(2)当[1,2]∈k 时,求函数()f x 在[0,]k 上的最大值. 解:(1)1=-k ,2()(1)=---xf x x e x ,令()2(2)00'=--=-+=⇒=xxf x xe x x e x , (2分) 故(,0)∈-∞x ,()0'>f x ;(0,)∈+∞x ,()0'<f x (3分)()f x 的单调递增区间为(,0)-∞,()f x 的单调递减区间为(0,)+∞. (4分)(2)()2(2)'=-=-xxf x kxe x x ke , 令2()0ln [0,ln 2]'=⇒=∈f x x k,其中[1,2]∈k . (5分) 令2()ln=-g x x x,[1,2]∈x , 211()21102⎛⎫'=⋅--=--< ⎪⎝⎭x g x x x, (6分) 故()g x 在[1,2]上单调递减, 故2()(1)ln 210ln ≤=-<⇒<g x g k k, (7分) 故20,ln⎛⎫∈ ⎪⎝⎭x k ,()0'<f x ;2ln ,⎛⎫∈ ⎪⎝⎭x k k ,()0'>f x ,从而()f x 在20,ln⎛⎫ ⎪⎝⎭k 上单调递减;在2ln ,⎛⎫ ⎪⎝⎭k k 上单调递增, (8分) 故在[0,]k 上,函数max ()max{(0)=f x f ,()}max{=-f k k ,2(1)}--k k k e k ,[1,2]∈k . (9分)由于2()(0)(1)[(1)1]-=--+=--+k kf k f k k e k k k k e k ,令()(1)1=--+xh x x e x ,[1,2]∈x , (10分)()10'=->x h x xe ,对于[1,2]∀∈x 恒成立,从而()(1)0≥=h x h ,即()(0)≥f k f ,当1=k 时等号成立, (11分)故2max ()()(1)==--k f x f k k k e k . (12分)21.已知抛物线2:=E y x 的焦点为F ,过点F 的直线l 的斜率为k ,与抛物线E 交于A ,B 两点,抛物线在点A ,B 处的切线分别为1l ,2l ,两条切线的交点为D .(1)证明:90︒∠=ADB ;(2)若V ABD 的外接圆Γ与抛物线E 有四个不同的交点,求直线l 的斜率的取值范围. (1)证明:依题意有10,4⎛⎫ ⎪⎝⎭F ,直线1:4=+l y kx , (1分) 设11(,)A x y ,22(,)B x y ,直线l 与抛物线E 相交,联立方程214⎧=⎪⎨=+⎪⎩y x y kx 消去y ,化简得2104--=x kx , (2分) 所以,12+=x x k ,1214=-x x . (3分) 又因为2'=y x ,所以直线1l 的斜率112=k x .同理,直线2l 的斜率222=k x , (4分) 所以,121241==-k k x x , (5分)所以,直线12⊥l l ,即90︒∠=ADB . (6分)(2)解:由(1)可知,圆Γ是以AB 为直径的圆,设(,)P x y 是圆上的一点,则0⋅=u u u r u u u rPA PB ,所以,圆Γ的方程为1212()()()()0--+--=x x x x y y y y , (7分) 又因为12+=x x k ,1214=-x x ,21212111442+=+++=+y y kx kx k ,221212116==y y x x , 所以,圆Γ的方程可化简为222130216⎛⎫+--+-= ⎪⎝⎭x y kx k y , (8分) 联立圆Γ与抛物线E 得2222130216⎧⎛⎫+--+-=⎪ ⎪⎝⎭⎨⎪=⎩x y kx k y y x , 消去y ,得422130216⎛⎫----= ⎪⎝⎭x k x kx , 即22211042⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭x kx ,即2213044⎛⎫⎛⎫--++= ⎪⎪⎝⎭⎝⎭x kx x kx , (9分)若方程2104--=x kx 与2304++=x kx 方程有相同的实数根0x ,则20020020010114032404⎧--=⎪⎪⇒=-⇒+=⎨⎪++=⎪⎩x kx kx x x kx ,矛盾, (10分) 所以,方程2104--=x kx 与方程2304++=x kx 没有相同的实数根, 所以,圆Γ与抛物线E 有四个不同的交点等价于221030⎧+>⎪⎨->⎪⎩k k ,3⇔>k 或3<-k , (11分)综上所述,3>k 或3<-k . (12分)22.(本小题满分10分)【选修4-4:坐标系与参数方程】已知曲线C 的极坐标方程是6sin =ρθ,建立以极点为坐标原点,极轴为x 轴正半轴的平面直角坐标系.直线l 的参数方程是cos 2sin =⎧⎨=+⎩x t y t θθ(t 为参数).(1)求曲线C 的直角坐标方程;(2)若直线t 与线相交于A ,B 两点,且||34=AB ,求直线的斜率k . 解:(1)由曲线C 的极坐标方程是6sin =ρθ,得直角坐标方程为226+=x y y , 即22(3)9+-=x y . (3分)(2)把直线l 的参数方程cos 2sin =⎧⎨=+⎩x t y t θθ(t 为参数),代入圆C 的方程得22(cos )(sin 1)9+-=t t θθ,化简得22sin 80--=t t θ. (5分)设A ,B 两点对应的参数分别是1t ,2t ,则122sin +=t t θ,128=-t t , (6分) 故22121212()44sin 3234=-=+-=+=|AB||t t |t t t t θ, (8分)得2sin 2=±θ, (9分) 得1=±k . (10分) 23.(本小题满分10分)【选修4-5:不等式选讲】 已知,,+∈R a b c ,且2++=a b c .求证:(1)134633++≥+a b c;(2)2222++≥c a b a b c . 证明:(1)由柯西不等式,得2 134********()633 22⎛⎫⎛⎫++=++++≥++=+⎪⎪ ⎪⎝⎭⎝⎭a b c a b ca b c a b c a b c,所以134633++≥+a b c. (5分)(2)由柯西不等式,得222222211()()222⎛⎫⎛⎫++=++++≥++=⎪ ⎪⎝⎭⎝⎭c a b c a ba b c c a ba b c a b c,所以2222++≥c a ba b c. (10分)11。

2020-2021学年四川省高考数学三模试卷(理科)及答案解析

2020-2021学年四川省高考数学三模试卷(理科)及答案解析

四川省高考数学三模试卷(理科)一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合A={x|2x≥4},集合B={x|y=lg(x﹣1)},则A∩B=()A.[1,2) B.(1,2] C.[2,+∞)D.[1,+∞)2.复数的共轭复数=()A.1+i B.﹣1﹣i C.﹣1+i D.1﹣i3.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为()A.(¬p)∨(¬q)B.p∨(¬q)C.(¬p)∧(¬q)D.p∨q4.已知三个正态分布密度函数(x∈R,i=1,2,3)的图象如图所示,则()A.μ1<μ2=μ3,σ1=σ2>σ3 B.μ1>μ2=μ3,σ1=σ2<σ3C.μ1=μ2<μ3,σ1<σ2=σ3 D.μ1<μ2=μ3,σ1=σ2<σ35.如图,已知AB是圆O的直径,点C、D是半圆弧的两个三等分点,=,=,则=()A.﹣B.﹣ C.+D.+6.经统计,用于数学学习的时间(单位:小时)与成绩(单位:分)近似于线性相关关系.对某小组学生每周用于数学的学习时间x与数学成绩y进行数据收集如下:x1516181922y10298115115120由表中样本数据求得回归方程为y=bx+a,则点(a,b)与直线x+18y=100的位置关系是()A.a+18b<100 B.a+18b>100C.a+18b=100 D.a+18b与100的大小无法确定7.如图是秦九韶算法的一个程序框图,则输出的S为()A.a1+x0(a3+x0(a0+a2x0))的值B.a3+x0(a2+x0(a1+a0x0))的值C.a0+x0(a1+x0(a2+a3x0))的值D.a2+x0(a0+x0(a3+a1x0))的值8.已知数列{a n}的前n项和为S n=2a n﹣1,则满足的最大正整数n的值为()A.2 B.3 C.4 D.59.在平面直角坐标系xOy中,抛物线C:y2=2px(p>0)的焦点为F,M是抛物线C 上的点,若△OFM的外接圆与抛物线C的准线相切,且该圆面积9π,则p=()A.2 B.4 C.3 D.10.多面体MN﹣ABCD的底面ABCD矩形,其正(主)视图和侧(左)视图如图,其中正(主)视图为等腰梯形,侧(左)视图为等腰三角形,则该多面体的体积为()A.B.C.D.611.函数f(x)=(ω>0),|φ|<)的部分图象如图所示,则f(π)=()A.4 B.2 C.2 D.12.已知曲线f(x)=e2x﹣2e x+ax﹣1存在两条斜率为3的切线,则实数a的取值范围为()A.(3,+∞)B.(3,)C.(﹣∞,)D.(0,3)二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知等差数列{a n}的前n项和为S n,若a3=9﹣a6,则S8= .14.若直线ax+y﹣3=0与2x﹣y+2=0垂直,则二项式展开式中x3的系数为.15.定义在R上的函数f(x)满足f(x)=则f()的值为.16.若函数y=f(x)在实数集R上的图象是连续不断的,且对任意实数x存在常数t使得f(x+t)=tf(x)恒成立,则称y=f(x)是一个“关于t的函数”,现有下列“关于t函数”的结论:①常数函数是“关于t函数”;②正比例函数必是一个“关于t函数”;③“关于2函数”至少有一个零点;④f(x)=是一个“关于t函数”.其中正确结论的序号是.三、解答题:本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤17.(12分)如图,在直角坐标系xOy中,点P是单位圆上的动点,过点P作x轴的垂线与射线y=x(x≥0)交于点Q,与x轴交于点M.记∠MOP=α,且α∈(﹣,).(Ⅰ)若sinα=,求cos∠POQ;(Ⅱ)求△OPQ面积的最大值.18.(12分)某商场举行购物抽奖活动,抽奖箱中放有除编号不同外,其余均相同的20个小球,这20个小球编号的茎叶图如图所示,活动规则如下:从抽奖箱中随机抽取一球,若抽取的小球编号是十位数字为l的奇数,则为一等奖,奖金100元;若抽取的小球编号是十位数字为2的奇数,则为二等奖,奖金50元;若抽取的小球是其余编号则不中奖.现某顾客有放回的抽奖两次,两次抽奖相互独立.(I)求该顾客在两次抽奖中恰有一次中奖的概率;(Ⅱ)记该顾客两次抽奖后的奖金之和为随机变量X,求X的分布列和数学期望.19.(12分)如图,在三棱锥P﹣ABC中,F、G、H分别是PC、AB、BC的中点,PA ⊥平面ABC,PA=AB=AC=2,二面角B﹣PA﹣C为120°.(I)证明:FG⊥AH;(Ⅱ)求二面角A﹣CP﹣B的余弦值.20.(12分)设椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交z轴负半轴于点Q,且+=,过A,Q,F2三点的圆的半径为2.过定点M(0,2)的直线l与椭圆C交于G,H两点(点G 在点M,H之间).(I)求椭圆C的方程;(Ⅱ)设直线l的斜率k>0,在x轴上是否存在点P(m,0),使得以PG,PH为邻边的平行四边形是菱形.如果存在,求出m的取值范围,如果不存在,请说明理由.21.(12分)已知函数f(x)=ax2﹣2lnx,a∈R.(1)求函数f(x)的单调区间;(2)已知点P(0,1)和函数f(x)图象上动点M(m,f(m)),对任意m∈[1,e],直线PM倾斜角都是钝角,求a的取值范围.四、请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B铅笔在答题卡上把所选题目题号涂黑.22.(10分)已知曲线C1的参数方程是(θ为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程是ρ=4sinθ.(Ⅰ)求曲线C1与C2交点的平面直角坐标;(Ⅱ)A,B两点分别在曲线C1与C2上,当|AB|最大时,求△OAB的面积(O为坐标原点).23.设函数f(x)=|2x﹣1|﹣|x+2|.(1)求不等式f(x)≥3的解集;(2)若关于x的不等式f(x)≥t2﹣3t在[0,1]上无解,求实数t的取值范围.参考答案与试题解析一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合A={x|2x≥4},集合B={x|y=lg(x﹣1)},则A∩B=()A.[1,2) B.(1,2] C.[2,+∞)D.[1,+∞)【考点】1E:交集及其运算.【分析】先分别求出集合A和集合B,由此利用交集定义能求出A∩B.【解答】解:∵集合A={x|2x≥4}={x|x≥2},集合B={x|y=lg(x﹣1)}={x>1},∴A∩B={x|x≥2}=[2,+∞).故选:C.【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.2.复数的共轭复数=()A.1+i B.﹣1﹣i C.﹣1+i D.1﹣i【考点】A5:复数代数形式的乘除运算;A2:复数的基本概念.【分析】根据所给的复数的表示形式,进行复数的除法运算,分子和分母同乘以分母的共轭复数,整理出最简形式,把虚部的符号变成相反的符号得到结果.【解答】解:∵==1+i∴=1﹣i故选D.【点评】本题考查复数的代数形式的运算和复数的基本概念,本题解题的关键是整理出复数的代数形式的最简形式,本题是一个基础题.3.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为()A.(¬p)∨(¬q)B.p∨(¬q)C.(¬p)∧(¬q)D.p∨q【考点】25:四种命题间的逆否关系.【分析】由命题P和命题q写出对应的¬p和¬q,则命题“至少有一位学员没有降落在指定范围”即可得到表示.【解答】解:命题p是“甲降落在指定范围”,则¬p是“甲没降落在指定范围”,q是“乙降落在指定范围”,则¬q是“乙没降落在指定范围”,命题“至少有一位学员没有降落在指定范围”包括“甲降落在指定范围,乙没降落在指定范围”或“甲没降落在指定范围,乙降落在指定范围”或“甲没降落在指定范围,乙没降落在指定范围”三种情况.所以命题“至少有一位学员没有降落在指定范围”可表示为(¬p)V(¬q).故选A.【点评】本题考查了复合命题的真假,解答的关键是熟记复合命题的真值表,是基础题.4.已知三个正态分布密度函数(x∈R,i=1,2,3)的图象如图所示,则()A.μ1<μ2=μ3,σ1=σ2>σ3 B.μ1>μ2=μ3,σ1=σ2<σ3C.μ1=μ2<μ3,σ1<σ2=σ3 D.μ1<μ2=μ3,σ1=σ2<σ3【考点】CP:正态分布曲线的特点及曲线所表示的意义.【分析】正态曲线关于x=μ对称,且μ越大图象越靠近右边,第一个曲线的均值比第二和第三和图象的均值小,且二,三两个的均值相等,又有σ越小图象越瘦长,得到正确的结果.【解答】解:∵正态曲线关于x=μ对称,且μ越大图象越靠近右边,∴第一个曲线的均值比第二和第三和图象的均值小,且二,三两个的均值相等,只能从A,D两个答案中选一个,∵σ越小图象越瘦长,得到第二个图象的σ比第三个的σ要小,故选D.【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查密度函数中两个特征数均值和标准差对曲线的位置和形状的影响,是一个基础题.5.如图,已知AB是圆O的直径,点C、D是半圆弧的两个三等分点,=,=,则=()A.﹣B.﹣ C.+D.+【考点】9H:平面向量的基本定理及其意义.【分析】直接利用向量的基本定理判断选项即可.【解答】解:如图:连结CD,OD,∵已知AB是圆O的直径,点C、D是半圆弧的两个三等分点,∴AODC是平行四边形,∴=.故选:D.【点评】本题考查平面向量基本定理的应用,是基础题.6.经统计,用于数学学习的时间(单位:小时)与成绩(单位:分)近似于线性相关关系.对某小组学生每周用于数学的学习时间x与数学成绩y进行数据收集如下:x1516181922y10298115115120由表中样本数据求得回归方程为y=bx+a,则点(a,b)与直线x+18y=100的位置关系是()A.a+18b<100 B.a+18b>100C.a+18b=100 D.a+18b与100的大小无法确定【考点】BK:线性回归方程.【分析】由样本数据可得,,,利用公式,求出b,a,点(a,b)代入x+18y,求出值与100比较即可得到选项.【解答】解:由题意,=(15+16+18+19+22)=18,=(102+98+115+115+120)=110,xiyi=9993,5=9900,xi2=1650,n()2=5•324=1620,∴b==3.1,∴a=110﹣3.1×18=54.2,∵点(a,b)代入x+18y,∴54.2+18×3.1=110>100.即a+18b>100故选:B.【点评】本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键.7.如图是秦九韶算法的一个程序框图,则输出的S为()A.a1+x0(a3+x0(a0+a2x0))的值B.a3+x0(a2+x0(a1+a0x0))的值C.a0+x0(a1+x0(a2+a3x0))的值D.a2+x0(a0+x0(a3+a1x0))的值【考点】EF:程序框图.【分析】模拟执行程序框图,根据秦九韶算法即可得解.【解答】解:由秦九韶算法,S=a0+x0(a1+x0(a2+a3x0)),故选:C.【点评】本小题主要通过程序框图的理解考查学生的逻辑推理能力,同时考查学生对算法思想的理解与剖析,本题特殊利用秦九韶算法,使学生更加深刻地认识中国优秀的传统文化,属于基础题.8.已知数列{a n}的前n项和为S n=2a n﹣1,则满足的最大正整数n的值为()A.2 B.3 C.4 D.5【考点】8H:数列递推式.【分析】S n=2a n﹣1,n=1时,a1=2a1﹣1,解得a1.n≥2时,a n=S n﹣S n﹣1,化为:a n=2a nn﹣1.化为:2n﹣1≤2n,即2n≤4n.验证﹣1,利用等比数列的通项公式可得:a n=2n=1,2,3,4时都成立.n≥5时,2n=(1+1)n,利用二项式定理展开即可得出.2n >4n.【解答】解:S n=2a n﹣1,n=1时,a1=2a1﹣1,解得a1=1.n≥2时,a n=S n﹣S n﹣1=2a n﹣1﹣(2a n﹣1﹣1),化为:a n=2a n﹣1,∴数列{a n}是等比数列,公比为2.a n=2n﹣1.化为:2n﹣1≤2n,即2n≤4n.n=1,2,3,4时都成立.n≥5时,2n=(1+1)n=++…+++≥2(+)=n2+n+2,下面证明:n2+n+2>4n,作差:n2+n+2﹣4n=n2﹣3n+2=(n﹣1)(n﹣2)>0,∴n2+n+2>4n,则满足的最大正整数n的值为4.故答案为:C.【点评】本题考查了数列递推关系、等比数列的通项公式、二项式定理的应用,考查了推理能力与计算能力,属于中档题.9.在平面直角坐标系xOy中,抛物线C:y2=2px(p>0)的焦点为F,M是抛物线C 上的点,若△OFM的外接圆与抛物线C的准线相切,且该圆面积9π,则p=()A.2 B.4 C.3 D.【考点】K8:抛物线的简单性质.【分析】根据△OFM的外接圆与抛物线C的准线相切,可得△OFM的外接圆的圆心到准线的距离等于圆的半径,由此可求p的值.【解答】解:∵△OFM的外接圆与抛物线C的准线相切,∴△OFM的外接圆的圆心到准线的距离等于圆的半径∵圆面积为9π,∴圆的半径为3又∵圆心在OF的垂直平分线上,|OF|=,∴+=3∴p=4故选:B.【点评】本题考查圆与圆锥曲线的综合,考查学生的计算能力,属于基础题.10.多面体MN﹣ABCD的底面ABCD矩形,其正(主)视图和侧(左)视图如图,其中正(主)视图为等腰梯形,侧(左)视图为等腰三角形,则该多面体的体积为()A.B.C.D.6【考点】L!:由三视图求面积、体积.【分析】利用三视图的数据,把几何体分割为2个三棱锥1个三棱柱,求解体积即可.【解答】解:用割补法可把几何体分割成三部分,如图:棱锥的高为2,底面边长为4,2的矩形,棱柱的高为2.可得,故选:C.【点评】本题考查三视图复原几何体的体积的求法,考查计算能力.11.函数f(x)=(ω>0),|φ|<)的部分图象如图所示,则f(π)=()A.4 B.2 C.2 D.【考点】35:函数的图象与图象变化;3T:函数的值.【分析】由图象的顶点坐标求出A,根据周期求得ω,再由sin[2(﹣)+φ]=0以及φ的范围求出φ的值,从而得到函数的解析式,进而求得f(π)的值.【解答】解:由函数的图象可得A=2,根据半个周期=•=,解得ω=2.由图象可得当x=﹣时,函数无意义,即函数的分母等于零,即sin[2(﹣)+φ]=0.再由|φ|<,可得φ=,故函数f(x)=,∴f(π)=4,故选A.【点评】本小题主要考查函数与函数的图象,求函数的值,属于基础题.12.已知曲线f(x)=e2x﹣2e x+ax﹣1存在两条斜率为3的切线,则实数a的取值范围为()A.(3,+∞)B.(3,)C.(﹣∞,)D.(0,3)【考点】6H:利用导数研究曲线上某点切线方程.【分析】求得f(x)的导数,由题意可得2e2x﹣2e x+a=3的解有两个,运用求根公式和指数函数的值域,解不等式可得a的范围.【解答】解:f(x)=e2x﹣2e x+ax﹣1的导数为f′(x)=2e2x﹣2e x+a,由题意可得2e2x﹣2e x+a=3的解有两个,即有(e x﹣)2=,即为e x=+或e x=﹣,即有7﹣2a>0且7﹣2a<1,解得3<a<.故选B.【点评】本题考查导数的运用:求切线的斜率,考查方程的解的个数问题的解法,注意运用配方和二次方程求根公式,以及指数函数的值域,属于中档题.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知等差数列{a n}的前n项和为S n,若a3=9﹣a6,则S8= 72 .【考点】85:等差数列的前n项和.【分析】可得a1+a8=18,代入求和公式计算可得.【解答】解:由题意可得a3+a6=18,由等差数列的性质可得a1+a8=18故S8=(a1+a8)=4×18=72故答案为:72【点评】本题考查等差数列的求和公式和性质,属基础题.14.若直线ax+y﹣3=0与2x﹣y+2=0垂直,则二项式展开式中x3的系数为﹣80 .【考点】DB:二项式系数的性质;IJ:直线的一般式方程与直线的垂直关系.【分析】根据两直线垂直求出a的值,再利用二项式展开式的通项公式求出展开式中x3的系数.【解答】解:直线ax+y﹣3=0与2x﹣y+2=0垂直,∴2a+1×(﹣1)=0,解得a=;∴二项式(﹣)5 =(2x﹣)5展开式的通项公式为T r+1=•(2x)5﹣r•=(﹣1)r•25﹣r••x5﹣2r,令5﹣2r=3,求得r=1,∴展开式中x3的系数为﹣1•24•=﹣80.故答案为:﹣80.【点评】本题主要考查了两条直线垂直以及二项式定理的应用问题,是基础题.15.定义在R上的函数f(x)满足f(x)=则f()的值为﹣1 .【考点】3T:函数的值.【分析】根据已知分析出当x∈N时,函数值以6为周期,呈现周期性变化,可得答案.【解答】解:∵定义在R上的函数f(x)满足f(x)=,∴f(﹣1)=1,f(0)=0,f(1)=f(0)﹣f(﹣1)=﹣1,f(2)=f(1)﹣f(0)=﹣1,f(3)=f(2)﹣f(1)=0,f(4)=f(3)﹣f(2)=1,f(5)=f(4)﹣f(3)=1,f(6)=f(5)﹣f(4)=0,f(7)=f(6)﹣f(5)=﹣1,故当x∈N时,函数值以6为周期,呈现周期性变化,故f()=f(1)=﹣1,故答案为:﹣1.【点评】本题考查的知识点是分段函数的应用,函数求值,根据已知分析出当x∈N 时,函数值以6为周期,呈现周期性变化,是解答的关键.16.若函数y=f(x)在实数集R上的图象是连续不断的,且对任意实数x存在常数t 使得f(x+t)=tf(x)恒成立,则称y=f(x)是一个“关于t的函数”,现有下列“关于t函数”的结论:①常数函数是“关于t函数”;②正比例函数必是一个“关于t函数”;③“关于2函数”至少有一个零点;④f(x)=是一个“关于t函数”.其中正确结论的序号是①④.【考点】3S:函数的连续性.【分析】根据抽象函数的定义结合“关于t函数”的定义和性质分别进行判断即可.【解答】解:①对任一常数函数f(x)=a,存在t=1,有f(1+x)=f(x)=a,即1•f(x)=a,所以有f(1+x)=1•f(x),∴常数函数是“关于t函数”,故①正确,②正比例函数必是一个“关于t函数”,设f(x)=kx(k≠0),存在t使得f(t+x)=tf (x),即存在t使得k(x+t)=tkx,也就是t=1且kt=0,此方程无解,故②不正确;③“关于2函数”为f(2+x)=2•f(x),当函数f(x)不恒为0时,有=2>0,故f(x+2)与f(x)同号.∴y=f(x)图象与x轴无交点,即无零点.故③错误,④对于f(x)=()x设存在t使得f(t+x)=tf(x),即存在t使得()t+x=t()x,也就是存在t使得()t()x=t()x,也就是存在t使得()t=t,此方程有解,故④正确.故正确是①④,故答案为①④.【点评】本题主要考查抽象函数的应用,利用函数的定义和性质是解决本题的关键.三、解答题:本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤17.(12分)(•乐山三模)如图,在直角坐标系xOy中,点P是单位圆上的动点,过点P作x轴的垂线与射线y=x(x≥0)交于点Q,与x轴交于点M.记∠MOP=α,且α∈(﹣,).(Ⅰ)若sinα=,求cos∠POQ;(Ⅱ)求△OPQ面积的最大值.【考点】GI:三角函数的化简求值;G9:任意角的三角函数的定义.【分析】﹙Ⅰ﹚同角三角的基本关系求得cosα的值,再利用两角差的余弦公式求得cos∠POQ的值.(Ⅱ)利用用割补法求三角形POQ的面积,再利用正弦函数的值域,求得它的最值.【解答】解:﹙Ⅰ﹚因为,且,所以.所以.(Ⅱ)由三角函数定义,得P(cosα,sinα),从而,所以==.因为,所以当时,等号成立,所以△OPQ面积的最大值为.【点评】本题主要考查任意角三角函数的定义,正弦函数的值域,用割补法求三角形的面积,属于中档题.18.(12分)(•乐山三模)某商场举行购物抽奖活动,抽奖箱中放有除编号不同外,其余均相同的20个小球,这20个小球编号的茎叶图如图所示,活动规则如下:从抽奖箱中随机抽取一球,若抽取的小球编号是十位数字为l的奇数,则为一等奖,奖金100元;若抽取的小球编号是十位数字为2的奇数,则为二等奖,奖金50元;若抽取的小球是其余编号则不中奖.现某顾客有放回的抽奖两次,两次抽奖相互独立.(I)求该顾客在两次抽奖中恰有一次中奖的概率;(Ⅱ)记该顾客两次抽奖后的奖金之和为随机变量X,求X的分布列和数学期望.【考点】CH:离散型随机变量的期望与方差;BA:茎叶图;CC:列举法计算基本事件数及事件发生的概率;CG:离散型随机变量及其分布列.【分析】(Ⅰ)设一次抽奖抽中i等奖的概率为P i(i=1,2),没有中奖的概率为P0,由此能求出该顾客两次抽奖中恰有一次中奖的概率.(Ⅱ)X的可能取值为0,50,100,150,200,分别求出相应的概率,由此能求出X 的分布列和EX.【解答】解:(Ⅰ)设一次抽奖抽中i等奖的概率为P i(i=1,2),没有中奖的概率为P0,则P1+P2==,即中奖的概率为,∴该顾客两次抽奖中恰有一次中奖的概率为:P==.(Ⅱ)X的可能取值为0,50,100,150,200,P(X=0)=,P(X=50)==,P(X=100)==,P(X=150)==,P(X=200)==,∴X的分布列为:X050100 150200P∴EX==55(元).【点评】本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.19.(12分)(•乐山三模)如图,在三棱锥P﹣ABC中,F、G、H分别是PC、AB、BC的中点,PA⊥平面ABC,PA=AB=AC=2,二面角B﹣PA﹣C为120°.(I)证明:FG⊥AH;(Ⅱ)求二面角A﹣CP﹣B的余弦值.【考点】MT:二面角的平面角及求法;LO:空间中直线与直线之间的位置关系.【分析】(I)根据线面垂直的性质定理即可证明FG⊥AH;(Ⅱ)建立坐标系求出平面的法向量,利用向量法进行求解即可求二面角A﹣CP﹣B 的余弦值.【解答】解:(I)设AC的中点是M,连接FM,GM,∵PF=FC,∴FM∥PA,∵PA⊥平面ABC,∴FM⊥平面ABC,∵AB=AC,H是BC的中点,∴AH⊥BC,∵GM∥BC,∴AH⊥GM,∴GF⊥AH(Ⅱ)建立以A为坐标原点的空间直角坐标系如图:则P(0,0,2),H(,,0),C(0,2,0),B(,﹣1,0),F(0,1,1),则平面PAC的法向量为=(1,0,0),设平面PBC的法向量为=(x,y,z),则,令z=1,则y=1,x=,即=(,1,1),cos<,>==,即二面角A﹣CP﹣B的余弦值是.【点评】本小题主要考查直线垂直的证明和二面角的求解,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力,综合性较强,运算量较大.20.(12分)(•乐山三模)设椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交z轴负半轴于点Q,且+=,过A,Q,F2三点的圆的半径为2.过定点M(0,2)的直线l与椭圆C交于G,H两点(点G在点M,H之间).(I)求椭圆C的方程;(Ⅱ)设直线l的斜率k>0,在x轴上是否存在点P(m,0),使得以PG,PH为邻边的平行四边形是菱形.如果存在,求出m的取值范围,如果不存在,请说明理由.【考点】KH:直线与圆锥曲线的综合问题;K3:椭圆的标准方程.【分析】(I)因为,知a,c的一个方程,再利用△AQF的外接圆与直线l相切得出另一个方程,解这两个方程组成的方程组即可求得所求椭圆方程;(II)设l的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根与系数的关系利用向量的坐标表示,利用基本不等式,即可求得m的取值范围.【解答】解:(I)因为,所以F1为F2Q中点.设Q的坐标为(﹣3c,0),因为AQ⊥AF2,所以b2=3c×c=3c2,a2=4c×c=4c2,且过A,Q,F2三点的圆的圆心为F1(﹣c,0),半径为2c因为该圆与直线l相切,所以,解得c=1,所以a=2,b=,所以所求椭圆方程为;(Ⅱ)设l的方程为y=kx+2(k>0),与椭圆方程联立,消去y可得(3+4k2)x2+16kx+4=0.设G(x1,y1),H(x2,y2),则x1+x2=﹣∴=(x1﹣m,y1)+(x2﹣m,y2)=(x1+x2﹣2m,y1+y2).=(x1+x2﹣2m,k(x1+x2)+4)又=(x2﹣x1,y2﹣y1)=(x2﹣x1,k(x2﹣x1)).由于菱形对角线互相垂直,则()•=0,所以(x2﹣x1)[(x1+x2)﹣2m]+k(x2﹣x1)[k(x1+x2)+4]=0.故(x2﹣x1)[(x1+x2)﹣2m+k2(x1+x2)+4k]=0.因为k>0,所以x2﹣x1≠0.所以(x1+x2)﹣2m+k2(x1+x2)+4k=0,即(1+k2)(x1+x2)+4k﹣2m=0.所以(1+k2)(﹣)+4k﹣2m=0.解得m=﹣,即因为k>,可以使,所以故存在满足题意的点P且m的取值范围是[).【点评】本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查韦达定理的运用,考查基本不等式的运用,解题时应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,属于中档题.21.(12分)(•乐山三模)已知函数f(x)=ax2﹣2lnx,a∈R.(1)求函数f(x)的单调区间;(2)已知点P(0,1)和函数f(x)图象上动点M(m,f(m)),对任意m∈[1,e],直线PM倾斜角都是钝角,求a的取值范围.【考点】6B:利用导数研究函数的单调性;6H:利用导数研究曲线上某点切线方程.【分析】(1)先求函数的定义域,然后求导,利用导数大于0或导数小于0,得到关于x的不等式,解之即可;注意解不等式时要结合对应的函数图象来解;(2)因为对任意m∈[1,e],直线PM倾斜角都是钝角,所以问题转化为导数值小于0恒成立的问题,对于导函数小于0在区间[1,e]上恒成立,则问题转化为函数的最值问题,即函数f′(x)<0恒成立,通过化简最终转化为f(m)<1在区间[1,e]上恒成立,再通过研究f(x)在[1,e]上的单调性求最值,结合(Ⅰ)的结果即可解决问题.注意分类讨论的标准的确定.【解答】解:函数f(x)的定义域为(0,+∞),f′(x)=ax﹣=,(Ⅰ)当a<0时,f′(x)<0,故函数f(x)在(0,+∞)上单调递减;当a=0时,f′(x)=<0,故函数f(x)在(0,+∞)上单调递减;当a>0时,令f′(x)=0,结合x>0,解得,当x∈(0,)时,f′(x)<0,所以函数f(x)在(0,)上单调递减;当x∈(,+∞)时,f′(x)>0,所以函数f(x)在(,+∞)上单调递增;综上所述:当a≤0时,f′(x)<0,故函数f(x)在(0,+∞)上单调递减;当a>0时,函数f(x)在(0,)上单调递减,在(,+∞)上单调递增.(Ⅱ)因为对任意m∈[1,e],直线PM的倾斜角都是钝角,所以对任意m∈[1,e],直线PM的斜率小于0,即,所以f(m)<1,即f(x)在区间[1,e]上的最大值小于1.又因为f′(x)=ax﹣=,令g(x)=ax2﹣2,x∈[1,e](1)当a≤0时,由(Ⅰ)知f(x)在区间[1,e]上单调递减,所以f(x)的最大值为f(1)=<1,所以a<2,故a≤0符和题意;(2)当a>0时,令f′(x)=0,得,①当≤1,即a≥2时,f(x)在区间[1,e]上单调递增,所以函数f(x)的最大值f(e)=,解得a<,故无解;②当≥e,即时,f(x)在区间[1,e]上单调递减,函数f(x)的最大值为f(1)=<1,解得a<2,故0;③当,即时,函数f(x)在(1,)上单调递减;当x∈(,e)上单调递增,故f(x)在区间x∈[1,e]上的最大值只能是f(1)或f(e),所以,即,故.综上所述a的取值范围.【点评】本题重点考查不等式恒成立问题的基本思路,一般是转化为函数的最值问题,然后从函数的单调性入手分析,注意本题第二问讨论时的标准,一般要借助于函数图象辅助来解决问题.一方面利用了数学结合思想,同时重点考查了分类讨论思想的应用,有一定难度.四、请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B铅笔在答题卡上把所选题目题号涂黑.22.(10分)(•乐山三模)已知曲线C1的参数方程是(θ为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程是ρ=4sinθ.(Ⅰ)求曲线C1与C2交点的平面直角坐标;(Ⅱ)A,B两点分别在曲线C1与C2上,当|AB|最大时,求△OAB的面积(O为坐标原点).【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【分析】(Ⅰ)求出曲线C1,C1的平面直角坐标方程,把两式作差,得y=﹣x,代入x2+y2=4y,能求出曲线C1与C2交点的平面直角坐标.(Ⅱ)作出图形,由平面几何知识求出当|AB|最大时|AB|=2,O到AB的距离为,由此能求出△OAB的面积.【解答】解:(Ⅰ)∵曲线C1的参数方程是(θ为参数),∴曲线C1的平面直角坐标方程为(x+2)2+y2=4.又由曲线C2的极坐标方程是ρ=4sinθ,得ρ2=4ρsinθ,∴x2+y2=4y,把两式作差,得y=﹣x,代入x2+y2=4y,得2x2+4x=0,解得或,∴曲线C1与C2交点的平面直角坐标为(0,0),(﹣2,2).(Ⅱ)如图,由平面几何知识可知:当A,C1,C2,B依次排列且共线时,|AB|最大,此时|AB|=2,O到AB的距离为,∴△OAB的面积为S=.【点评】本题考查两曲线交点的平面直角坐标的求法,考查三角形面积的求法,是中档题,解题时要认真审题,注意参数方程、直角坐标方程、极坐标方程间的相互转化及应用.23.(•乐山三模)设函数f(x)=|2x﹣1|﹣|x+2|.(1)求不等式f(x)≥3的解集;(2)若关于x的不等式f(x)≥t2﹣3t在[0,1]上无解,求实数t的取值范围.【考点】R5:绝对值不等式的解法.【分析】(1)通过对x范围的分类讨论,去掉绝对值符号,可得f(x)=,再解不等式f(x)≥3即可求得其解集;(2)当x∈[0,1]时,易求f(x)max=﹣1,从而解不等式t2﹣3t>﹣1即可求得实数t 的取值范围.【解答】解:(1)∵f(x)=,∴原不等式转化为或或,解得:x≥6或﹣2≤x≤﹣或x<﹣2,∴原不等式的解集为:(﹣∞,﹣]∪[6,+∞);(2)只要f(x)max<t2﹣3t,由(1)知,当x∈[0,1]时,f(x)max=﹣1,∴t2﹣3t>﹣1,解得:t>或t<.∴实数t的取值范围为(﹣∞,)∪(,+∞).【点评】本题考查绝对值不等式的解法,通过对x范围的分类讨论,去掉绝对值符号是关键,考查转化思想与运算求解能力,属于中档题.。

2020年四川省高考模拟试卷数学理科(1)

2020年四川省高考模拟试卷数学理科(1)

2020年四川省高考模拟试卷(一)数学(理科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.2019年国庆黄金周影市火爆依旧,《我和我的祖国》、《中国机长》、《攀登者》票房不断刷新,为了解我校高三2300名学生的观影情况,随机调查了100名在校学生,其中看过《我和我的祖国》或《中国机长》的学生共有80位,看过《中国机长》的学生共有60位,看过《中国机长》且看过《我和我的祖国》的学生共有50位,则该校高三年级看过《我和我的祖国》的学生人数的估计值为( )A.1150B.1380C.1610D.18602若复数z 满足2+=i i z ,则||=z ( ) A.55- B.55C.5-D.5 3.某单位共有老年人120人,中年人360人,青年人n 人,为调查身体健康状况,需要从中抽取一个容量为m 的样本,用分层抽样的方法进行抽样调查,样中的中年人为6人,则n 和m 的值不可以是下列四个选项中的哪组( )A.360=n ,14=mB.420=n ,15=mC.540=n ,18=mD.660=n ,19=m4.()221(1)+-ax ax 的展开式中4x 项的系数为-8,则a 的值为( )A.2B.-2C.22D.22-5.已知n S 是等差数列{}n a 的前n 项和,若24836149++=+a a a a a ,则149=S S ( ) A.149 B.73 C.32D.2 6.已知函数sin =a x y x 在点(,0)M π处的切线方程为1-+=x b y π,则( ) A.1=-a ,1=b B.1=-a ,1=-b C.1=a ,1=b D.1=a ,1=-b7.函数2cos2()1=+x x f x x 的图象大致为( ) A. B. C. D.8.如图,在四棱锥-P ABCD 中,底面ABCD 是平行四边形,且1=AB ,2=BC ,60︒∠=ABC ,⊥PA平面ABCD ,⊥AE PC 于E .下列四个结论:①⊥AB AC ;②⊥AB 平面P AC ;③⊥PC 平面ABE ;④⊥BE PC .正确的个数是( )A.1B.2C.3D.49.已知i 为虚数单位,执行如图所示的程序框图,则输出的z 为( )(8题图) (9题图)A.-iB.iC.0D.1+i 10.双曲线2222:1(0,0)-=>>x y E a b a b的一条渐近线方程为2=y x ,过右焦点F 作x 轴的垂线,与双曲线在第一象限的交点为A ,若V OAF 的面积是25(O 为原点),则双曲线E 的实轴长是( ) A.4 B.22 C.1 D.211. 已知函数()-=-x x g x e e ,()()=f x xg x ,若53,,(3)22⎛⎫⎛⎫=-== ⎪ ⎪⎝⎭⎝⎭a f b f c f ,则a,b,c 的大小关系为( )A.a<b<cB.c<b<aC.b<a<cD.b<c<a12.已知圆221:4+=O x y ,直线:(0)=+≠l y kx b k ,l 和圆O 交于E ,F 两点,以Ox 为始边,逆时针旋转到OE ,OF 为终边的最小正角分别为α和β,给出如下3个命题:①当k 为常数,b 为变数时,sin()+αβ是定值;②当k 为变数,b 为变数时,sin()+αβ是定值;③当k 和b 都是变数时,sin()+αβ是定值.其中正确命题的个数是( )A.0B.1C.2D.3二、填空题(本大题共4小题,每小题5分,共20分)13.已知||1=r a ,||8=r b ,()3⋅-=r r r a b a ,则向量r a 与向量r b 的夹角是____.14.数列{}n a 的前n 项和2(0)=+≠n S An Bn A ,若11=a ,1a ,2a ,5a 成等比数列,则3=a ________.15.如图,正八面体的棱长为2,则此正八面体的体积为________.16已知点1F ,2F 是椭圆2222:1(0)+=>>x y C a b a b的左、右焦点,以1F 为圆心,1F ,2F 为半径的圆与椭圆在第一象限的交点为P .若椭圆C 的离心率为23,且1215=V PF F S ,则椭圆C 的方程为________. 三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17.根据阅兵领导小组办公室介绍,2019年国庆70周年阅兵有59个方(梯)队和联合军乐团,总规模约1.5万人,是近几次阅兵中规模最大的一次、其中,徒步方队15个为了保证阅兵式时队列保持整齐,各个方队对受阅队员的身高也有着非常严格的限制,太高或太矮都不行徒步方队队员,男性身高普遍在175 cm 至185 cm 之间:女性身高普遍在163 cm 至175 cm 之间,这是常规标准.要求最为严格的三军仪仗队,其队员的身高一般都在184 cm 至190 cm 之间.经过随机调查某个阅兵阵营中女子100人,得到她们身高的直方图,如图,记C 为事件:“某一阅兵女子身高不低于169 cm ”,根据直方图得到P (C )的估计值为0.5.女子身高直方图注:身高代码1~13分别对应身高163~175(单位:cm )(1)求直方图中a ,b 的值;(2)估计这个阵营女子身高的平均值.(同一组中的数据用该组区间的中点值为代表)18.在锐角V ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,cos (2)cos 0+-=b C c a B .(1)求角B ;(2)若1=a ,求+b c 的取值范围.19.如图,在三棱锥P-ABC 中,已知22====,AC AB BC PA ,顶点P 在平面ABC 上的射影为V ABC 的外接圆圆心.(1)证明:平面⊥PAC 平面ABC ;(2)若点M 在棱PA 上,||||=λAM AP ,且二面角P-BC-M 的余弦值为53333,试求λ的值.20.已知函数2()(1)=--x f x k x e x ,其中∈R k .(1)当1=-k 时,求函数()f x 的单调区间;(2)当[1,2]∈k 时,求函数()f x 在[0,]k 上的最大值.21.已知抛物线2:=E y x 的焦点为F ,过点F 的直线l 的斜率为k ,与抛物线E 交于A ,B 两点,抛物线在点A ,B 处的切线分别为1l ,2l ,两条切线的交点为D .(1)证明:90︒∠=ADB ;(2)若V ABD 的外接圆Γ与抛物线E 有四个不同的交点,求直线l 的斜率的取值范围.四、选做题 22.(本小题满分10分)【选修4-4:坐标系与参数方程】已知曲线C 的极坐标方程是6sin =ρθ,建立以极点为坐标原点,极轴为x 轴正半轴的平面直角坐标系.直线l 的参数方程是cos 2sin =⎧⎨=+⎩x t y t θθ(t 为参数). (1)求曲线C 的直角坐标方程;(2)若直线t 与线相交于A ,B 两点,且||34=AB ,求直线的斜率k .23.(本小题满分10分)【选修4-5:不等式选讲】已知,,+∈R a b c ,且2++=a b c .求证:(1)134633++≥+a b c;(2)2222++≥c a b a b c .。

2020年四川省成都市高考数学一诊考试(理科)试题Word版含解析

2020年四川省成都市高考数学一诊考试(理科)试题Word版含解析

2020年四川省成都市高考数学一诊考试(理科)试题一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若全集U=R,集合A={x|x2﹣x﹣2>0},则∁UA=()A.(﹣1,2)B.(﹣2,1)C.[﹣1,2] D.[﹣2,1]2.命题“若a>b,则a+c>b+c”的否命题是()A.若a≤b,则a+c≤b+c B.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>b D.若a>b,则a+c≤b+c3.执行如图所示的程序框图,如果输出的结果为0,那么输入的x为()A.B.﹣1或1 C.﹣l D.l4.已知双曲线的左,右焦点分别为F1,F2,双曲线上一点P满足PF2⊥x轴,若|F1F2|=12,|PF2|=5,则该双曲线的离心率为()A.B.C.D.35.已知α为第二象限角.且sin2α=﹣,则cosα﹣sinα的值为()A.B.﹣C.D.﹣6.(x+1)5(x﹣2)的展开式中x2的系数为()A.25 B.5 C.﹣15 D.﹣207.如图,网格纸上小正方形的边长为1,粗实线画出的是某四棱锥的三视图,则该四棱锥的外接球的表面积为()A.136πB.34πC.25πD.18π8.将函数f(x)=sin2x+cos2x图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将图象上所有点向右平移个单位长度,得到函数g (x)的图象,则g(x)图象的一条对称轴方程是()A.x=一 B.x=C.x= D.x=9.在直三棱柱ABC﹣A1BlC1中,平面α与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1∥平面α.有下列三个命题:①四边形EFGH是平行四边形;②平面α∥平面BCC1B1;③平面α⊥平面BCFE.其中正确的命题有()A.①②B.②③C.①③D.①②③10.已知A,B是圆O:x2+y2=4上的两个动点,||=2,=﹣,若M是线段AB的中点,则•的值为()A.3 B.2C.2 D.﹣311.已知函数f(x)是定义在R上的偶函数,且f(﹣x﹣1)=f(x﹣1),当x∈[﹣1,0]时,f(x)=﹣x3,则关于x的方程f(x)=|cosπx|在[﹣,]上的所有实数解之和为()A.﹣7 B.﹣6 C.﹣3 D.﹣112.已知曲线C1:y2=tx(y>0,t>0)在点M(,2)处的切线与曲线C2:y=e x+1﹣1也相切,则tln的值为()A.4e2B.8e C.2 D.8二、填空题:本大题共4小题,每小题5分,共20分.13.若复数z=(其中a∈R,i为虚数单位)的虚部为﹣1,则a= .14.我国南北朝时代的数学家祖暅提出体积的计算原理(祖暅原理):“幂势既同,则积不容异”.“势’’即是高,“幂”是面积.意思是:如果两等高的几何体在同高处截得两几何体的截面积恒等,那么这两个几何体的体积相等,类比祖暅原理,如图所示,在平面直角坐标系中,图1是一个形状不规则的封闭图形,图2是一个上底为l的梯形,且当实数t取[0,3]上的任意值时,直线y=t被图l和图2所截得的两线段长始终相等,则图l的面积为.15.若实数x,y满足约束条件,则的最小值为.16.已知△ABC中,AC=,BC=,△ABC的面积为,若线段BA的延长线上存在点D,使∠BDC=,则CD= .三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(12分)已知数列{an }满足al=﹣2,an+1=2an+4.(I)证明数列{an+4}是等比数列;(Ⅱ)求数列{|an |}的前n项和Sn.18.(12分)云南省2016年高中数学学业水平考试的原始成绩采用百分制,发布成绩使用等级制,各登记划分标准为:85分及以上,记为A等,分数在[70,85)内,记为B等,分数在[60,70)内,记为C等,60分以下,记为D等,同时认定等级分别为A,B,C都为合格,等级为D为不合格.已知甲、乙两所学校学生的原始成绩均分布在[50,100]内,为了比较两校学生的成绩,分别抽取50名学生的原始成绩作为样本进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]分别作出甲校如图1所示样本频率分布直方图,乙校如图2所示样本中等级为C、D 的所有数据茎叶图.(1)求图中x的值,并根据样本数据比较甲乙两校的合格率;(2)在选取的样本中,从甲、乙两校C等级的学生中随机抽取3名学生进行调研,用X表示所抽取的3名学生中甲校的学生人数,求随机变量X的分布列和数学期望.19.(12分)如图1,在正方形ABCD中,点E,F分别是AB,BC的中点,BD与EF交于点H,G 为BD中点,点R在线段BH上,且=λ(λ>0).现将△AED,△CFD,△DEF分别沿DE,DF,EF折起,使点A,C重合于点B(该点记为P),如图2所示.(I)若λ=2,求证:GR⊥平面PEF;(Ⅱ)是否存在正实数λ,使得直线FR与平面DEF所成角的正弦值为?若存在,求出λ的值;若不存在,请说明理由.20.(12分)已知椭圆的右焦点为F,设直线l:x=5与x轴的交点为E,过点F 且斜率为k的直线l与椭圆交于A,B两点,M为线段EF的中点.1的倾斜角为,求△ABM的面积S的值;(I)若直线l1(Ⅱ)过点B作直线BN⊥l于点N,证明:A,M,N三点共线.21.(12分)已知函数f(x)=xln(x+1)+(﹣a)x+2﹣a,a∈R.(I)当x>0时,求函数g(x)=f(x)+ln(x+1)+x的单调区间;(Ⅱ)当a∈Z时,若存在x≥0,使不等式f(x)<0成立,求a的最小值.请考生在第(22)、(23)题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,倾斜角为α(α≠)的直线l的参数方程为(t为参数).以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρcos2θ﹣4sinθ=0.(I)写出直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)已知点P(1,0).若点M的极坐标为(1,),直线l经过点M且与曲线C相交于A,B两点,设线段AB的中点为Q,求|PQ|的值.[选修4-5:不等式选讲]23.已知函数f(x)=x+1+|3﹣x|,x≥﹣1.(I)求不等式f(x)≤6的解集;(Ⅱ)若f(x)的最小值为n,正数a,b满足2nab=a+2b,求2a+b的最小值.2020年四川省成都市高考数学一诊考试(理科)试题参考答案一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.A=()1.若全集U=R,集合A={x|x2﹣x﹣2>0},则∁UA.(﹣1,2)B.(﹣2,1)C.[﹣1,2] D.[﹣2,1]【分析】求出集合A,利用补集的定义进行求解即可.【解答】解:A={x|x2﹣x﹣2>0}={x|x>2或x<﹣1},A={x|﹣1≤x≤2},则∁U故选:C【点评】本题主要考查集合的基本运算,比较基础.2.命题“若a>b,则a+c>b+c”的否命题是()A.若a≤b,则a+c≤b+c B.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>b D.若a>b,则a+c≤b+c【分析】根据命题“若p,则q”的否命题是“若¬p,则¬q”.【解答】解:命题“若a>b,则a+c>b+c”的否命题是“若a≤b,则a+c≤b+c”.故选:A.【点评】本题考查了命题与它的否命题的应用问题,是基础题.3.执行如图所示的程序框图,如果输出的结果为0,那么输入的x为()A.B.﹣1或1 C.﹣l D.l【分析】根据题意,模拟程序框图的运行过程,根据输出的结果为0,得出输入的x.【解答】解:根据题意,模拟程序框图的运行过程,x≤0,y=﹣x2+1=0,∴x=﹣1,x>0,y=3x+2=0,无解,故选:C.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,即可得出正确的答案,属于基础题.4.已知双曲线的左,右焦点分别为F1,F2,双曲线上一点P满足PF2⊥x轴,若|F1F2|=12,|PF2|=5,则该双曲线的离心率为()A.B.C.D.3【分析】双曲线上一点P满足PF2⊥x轴,若|F1F2|=12,|PF2|=5,可得|PF1|=13,利用双曲线的定义求出a,即可求出双曲线的离心率.【解答】解:∵双曲线上一点P满足PF2⊥x轴,若|F1F2|=12,|PF2|=5,∴|PF1|=13,∴2a=|PF1|﹣|PF2|=8,∴a=4,∵c=6,∴e==,故选C.【点评】本题考查双曲线的定义与性质,考查学生的计算能力,比较基础.5.已知α为第二象限角.且sin2α=﹣,则cosα﹣sinα的值为()A.B.﹣C.D.﹣【分析】由α的范围和三角函数值的符号判断出cosα﹣sinα的符号,由条件、平方关系、二倍角的正弦函数求出cosα﹣sinα的值.【解答】解:∵α为第二象限角,∴cosα﹣sinα<0,∵sin2α=﹣,∴cosα﹣sinα=﹣===,故选B.【点评】本题考查二倍角的正弦函数,平方关系,以及三角函数值的符号,属于基础题.6.(x+1)5(x﹣2)的展开式中x2的系数为()A.25 B.5 C.﹣15 D.﹣20【分析】利用二项式定理的展开式即可得出.【解答】解:(x+1)5(x﹣2)=(x﹣2)的展开式中x2的系数=﹣2=﹣15.故选:C.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.7.如图,网格纸上小正方形的边长为1,粗实线画出的是某四棱锥的三视图,则该四棱锥的外接球的表面积为()A.136πB.34πC.25πD.18π【分析】由四棱锥的三视图知该四棱锥是四棱锥P﹣ABCD,其中ABCD是边长为3的正方形,PA⊥面ABCD,且PA=4,从而该四棱锥的外接球就是以AB,AC,AP为棱的长方体的外接球,由此能求出该四棱锥的外接球的表面积.【解答】解:由四棱锥的三视图知该四棱锥是如图所示的四棱锥P﹣ABCD,其中ABCD是边长为3的正方形,PA⊥面ABCD,且PA=4,∴该四棱锥的外接球就是以AB,AD,AP为棱的长方体的外接球,∴该四棱锥的外接球的半径R==,∴该四棱锥的外接球的表面积S=4πR2=4π×=34π.故选:B.【点评】本题考查球的表面积的求法,是中档题,解题时要认真审题,注意球、四棱锥、几何体的三视图的性质及构造法的合理应用.8.将函数f(x)=sin2x+cos2x图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将图象上所有点向右平移个单位长度,得到函数g (x)的图象,则g(x)图象的一条对称轴方程是()A.x=一 B.x=C.x= D.x=【分析】利用函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,求得g(x)图象的一条对称轴方程.【解答】解:将函数f(x)=sin2x+cos2x=2(sin2x+cos2x)=2sin(2x+)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y=2sin(x+)的图象;再将图象上所有点向右平移个单位长度,得到函数g (x)=2sin(x﹣+)=2sin(x+)的图象的图象的图象,令x+=kπ+,求得x=kπ+,k∈Z.令k=0,可得g(x)图象的一条对称轴方程是x=,故选:D.【点评】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.9.在直三棱柱ABC﹣A1BlC1中,平面α与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1∥平面α.有下列三个命题:①四边形EFGH是平行四边形;②平面α∥平面BCC1B1;③平面α⊥平面BCFE.其中正确的命题有()A.①②B.②③C.①③D.①②③【分析】在①中,由AA1EH GF,知四边形EFGH是平行四边形;在②中,平面α与平面BCC1B1平行或相交;在③中,EH⊥平面BCEF,从而平面α⊥平面BCFE.【解答】解:如图,∵在直三棱柱ABC﹣A1BlC1中,平面α与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1∥平面α.∴AA1EH GF,∴四边形EFGH是平行四边形,故①正确;∵EF与BC不一定平行,∴平面α与平面BCC1B1平行或相交,故②错误;∵AA1EH GF,且AA1⊥平面BCEF,∴EH⊥平面BCEF,∵EH⊂平面α,∴平面α⊥平面BCFE,故③正确.故选:C.【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.10.已知A,B是圆O:x2+y2=4上的两个动点,||=2,=﹣,若M是线段AB的中点,则•的值为()A.3 B.2C.2 D.﹣3【分析】由A,B是圆O:x2+y2=4上的两个动点,||=2,得到与的夹角为,再根据向量的几何意义和向量的数量积公式计算即可.【解答】解:A,B是圆O:x2+y2=4上的两个动点,||=2,∴与的夹角为,∴•=||•||•cos=2×2×=2,∵M是线段AB的中点,∴=(+),∵=﹣,∴•=(+)•(﹣)=(5||2+3••﹣2||2)=(20+6﹣8)=3,故选:A【点评】本题考查了圆的有关性质以及向量的几何意义和向量的数量积公式,属于中档题.11.已知函数f(x)是定义在R上的偶函数,且f(﹣x﹣1)=f(x﹣1),当x∈[﹣1,0]时,f(x)=﹣x3,则关于x的方程f(x)=|cosπx|在[﹣,]上的所有实数解之和为()A.﹣7 B.﹣6 C.﹣3 D.﹣1【分析】由f(x)是偶函数说明函数图象关于y轴对称,由f(﹣x﹣1)=f(x﹣1),得到x=﹣1是函数的对称轴,画出函数f(x)的图象,只要找出函数f(x)的图象与y=|cosπx|在[﹣,]上内交点的情况,根据对称性即可求出答案.【解答】解:∵函数f(x)是定义在R上的偶函数,f(﹣x﹣1)=f(x﹣1),∴x=﹣1是函数的对称轴,分别画出y=f(x)与y=|cosπx|在[﹣,]上图象,交点依次为x1,x2,x3,x4,x5,x6,x7,∴x1+x7=﹣2,x2+x6=﹣2,x3+x5=﹣2,x4=﹣1,∴x1+x2+x3+x4+x5+x6+x7=﹣2×3﹣1=﹣7,故选:A【点评】本题考查了函数与方程的综合应用以及函数图象的对称性与奇偶性等知识点,数形结合是解决本题的关键,属中档题12.已知曲线C1:y2=tx(y>0,t>0)在点M(,2)处的切线与曲线C2:y=e x+1﹣1也相切,则tln的值为()A.4e2B.8e C.2 D.8【分析】利用曲线C1:y2=tx(y>0,t>0)在点M(,2)处的切线与曲线C2:y=e x+1﹣1也相切,求出t的值,则tln的值可求.【解答】解:曲线C1:y2=tx(y>0,t>0),y′=•t,x=,y′=,∴切线方程为y﹣2=(x﹣)设切点为(m,n),则曲线C2:y=e x+1﹣1,y′=e x+1,e m+1=,∴m=ln﹣1,n=﹣1,代入﹣1﹣2=(ln﹣1﹣),解得t=4,∴tln=4lne2=8.故选D.【点评】本题考查导数的几何意义的应用,解题时要认真审题,仔细解答,注意等价转化思想的合理运用.二、填空题:本大题共4小题,每小题5分,共20分.13.若复数z=(其中a∈R,i为虚数单位)的虚部为﹣1,则a= ﹣2 .【分析】利用复数的运算法则、虚部的定义即可得出.【解答】解:复数z===+i的虚部为﹣1,则=﹣1,解得a=﹣2.故答案为:﹣2.【点评】本题考查了复数的运算法则、虚部的定义,考查了推理能力与计算能力,属于基础题.14.我国南北朝时代的数学家祖暅提出体积的计算原理(祖暅原理):“幂势既同,则积不容异”.“势’’即是高,“幂”是面积.意思是:如果两等高的几何体在同高处截得两几何体的截面积恒等,那么这两个几何体的体积相等,类比祖暅原理,如图所示,在平面直角坐标系中,图1是一个形状不规则的封闭图形,图2是一个上底为l的梯形,且当实数t取[0,3]上的任意值时,直线y=t被图l和图2所截得的两线段长始终相等,则图l的面积为.【分析】根据祖暅原理,可得图1的面积=梯形的面积,即可得出结论.【解答】解:根据祖暅原理,可得图1的面积=梯形的面积==.故答案为.【点评】此题考查了梯形的面积公式,还考查了学生空间的想象能力及计算技能.15.若实数x,y满足约束条件,则的最小值为.【分析】由约束条件作出可行域,的几何意义是(x,y)与(0,1)连线的斜率,数形结合得到的最小值.【解答】解:由约束条件,作出可行域如图,的几何意义是(x,y)与(0,1)连线的斜率联立,解得A(1,),∴的最小值为=﹣.故答案为:﹣.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.16.已知△ABC中,AC=,BC=,△ABC的面积为,若线段BA的延长线上存在点D,使∠BDC=,则CD= .【分析】由已知利用三角形面积公式可求sin∠ACB=,从而可求∠ACB=,在△ABC中,由余弦定理可得AB,进而可求∠B,在△BCD中,由正弦定理可得CD的值.【解答】解:∵AC=,BC=,△ABC的面积为=AC•BC•sin∠ACB=sin∠ACB,∴sin∠ACB=,∴∠ACB=,或,∵若∠ACB=,∠BDC=<∠BAC,可得:∠BAC+∠ACB>+>π,与三角形内角和定理矛盾,∴∠ACB=,∴在△ABC 中,由余弦定理可得:AB===,∴∠B=,∴在△BCD 中,由正弦定理可得:CD===.故答案为:.【点评】本题主要考查了三角形面积公式,余弦定理,正弦定理在解三角形中的应用,考查了转化思想和数形结合思想,求∠ACB 的值是解题的关键,属于中档题.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(12分)已知数列{a n }满足a l =﹣2,a n+1=2a n +4. (I )证明数列{a n +4}是等比数列; (Ⅱ)求数列{|a n |}的前n 项和S n .【分析】(I )数列{a n }满足a l =﹣2,a n+1=2a n +4,a n+1+4=2(a n +4),即可得出.(II )由(I )可得:a n +4=2n ,可得a n =2n ﹣4,当n=1时,a 1=﹣2;n ≥2时,a n ≥0,可得n ≥2时,S n =﹣a 1+a 2+a 3+…+a n .【解答】(I )证明:∵数列{a n }满足a l =﹣2,a n+1=2a n +4,∴a n+1+4=2(a n +4),∴数列{a n +4}是等比数列,公比与首项为2.(II )解:由(I )可得:a n +4=2n ,∴a n =2n ﹣4,∴当n=1时,a 1=﹣2;n ≥2时,a n ≥0, ∴n ≥2时,S n =﹣a 1+a 2+a 3+…+a n =2+(22﹣4)+(23﹣4)+…+(2n ﹣4) =﹣4(n ﹣1)=2n+1﹣4n+2.n=1时也成立.∴S n =2n+1﹣4n+2.n ∈N *.【点评】本题考查了等比数列的通项公式与求和公式、分组求和方法,考查了推理能力与计算能力,属于中档题.18.(12分)(2017•云南一模)云南省2016年高中数学学业水平考试的原始成绩采用百分制,发布成绩使用等级制,各登记划分标准为:85分及以上,记为A等,分数在[70,85)内,记为B等,分数在[60,70)内,记为C等,60分以下,记为D等,同时认定等级分别为A,B,C都为合格,等级为D为不合格.已知甲、乙两所学校学生的原始成绩均分布在[50,100]内,为了比较两校学生的成绩,分别抽取50名学生的原始成绩作为样本进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]分别作出甲校如图1所示样本频率分布直方图,乙校如图2所示样本中等级为C、D 的所有数据茎叶图.(1)求图中x的值,并根据样本数据比较甲乙两校的合格率;(2)在选取的样本中,从甲、乙两校C等级的学生中随机抽取3名学生进行调研,用X表示所抽取的3名学生中甲校的学生人数,求随机变量X的分布列和数学期望.【分析】(1)利用频率分布直方图的性质可得x,进而定点甲校的合格率.由茎叶图可得乙校的合格率.(2)甲乙两校的C等级的学生数分别为:0.012×10×50=6,4人.X=0,1,2,3.利用P(X=k)=,即可得出.【解答】解:(1)由频率分布直方图可得:(x+0.012+0.056+0.018+0.010)×10=1,解得x=0.004.=(1﹣0.004)×10=0.96=96%,甲校的合格率P1乙校的合格率P==96%.2可得:甲乙两校的合格率相同,都为96%.(2)甲乙两校的C等级的学生数分别为:0.012×10×50=6,4人.X=0,1,2,3.则P(X=k)=,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.∴X的分布列为:X 0 1 2 3PE(X)=0+1×+2×+3×=.【点评】本题主要考查了超几何分布列的性质及其数学期望、频率分布直方图的性质、茎叶图的性质等基础知识,考查了推理能力与计算能力,属于中档题.19.(12分)如图1,在正方形ABCD中,点E,F分别是AB,BC的中点,BD与EF交于点H,G 为BD中点,点R在线段BH上,且=λ(λ>0).现将△AED,△CFD,△DEF分别沿DE,DF,EF折起,使点A,C重合于点B(该点记为P),如图2所示.(I)若λ=2,求证:GR⊥平面PEF;(Ⅱ)是否存在正实数λ,使得直线FR与平面DEF所成角的正弦值为?若存在,求出λ的值;若不存在,请说明理由.【分析】(I)若λ=2,证明PD⊥平面PEF,GR∥PD,即可证明:GR⊥平面PEF;(Ⅱ)建立如图所示的坐标系,求出平面DEF的一个法向量,利用直线FR与平面DEF所成角的正弦值为,建立方程,即可得出结论.【解答】(I)证明:由题意,PE,PF,PD三条直线两两垂直,∴PD⊥平面PEF,图1中,EF∥AC,∴GB=2GH,∵G为BD中点,∴DG=2GH.图2中,∵=2,∴△PDH中,GR∥PD,∴GR⊥平面PEF;(Ⅱ)解:由题意,建立如图所示的坐标系,设PD=4,则P(0,0,0),F(2,0,0),E(0,2,0),D(0,0,4),∴H(1,1,0),∵=λ,∴R(,,0),∴=(,﹣,0),∵=(2,﹣2,0),=(0,2,﹣4),设平面DEF的一个法向量为=(x,y,z),则,取=(2,2,1),∵直线FR与平面DEF所成角的正弦值为,∴=,∴λ=,∴存在正实数λ=,使得直线FR与平面DEF所成角的正弦值为.【点评】本题考查了线面垂直的判定,线面角的计算,考查向量方法的运用,属于中档题.20.(12分)已知椭圆的右焦点为F,设直线l:x=5与x轴的交点为E,过点F 与椭圆交于A,B两点,M为线段EF的中点.且斜率为k的直线l1(I)若直线l的倾斜角为,求△ABM的面积S的值;1(Ⅱ)过点B作直线BN⊥l于点N,证明:A,M,N三点共线.【分析】(I )由题意,直线l 1的x=y+1,代入椭圆方程,由韦达定理,弦长公式即可求得△ABM 的面积S 的值;(Ⅱ)直线y=k (x ﹣1),代入椭圆方程,由韦达定理,利用直线的斜率公式,即可求得k AM =k MN ,A ,M ,N 三点共线.【解答】解:(I )由题意可知:右焦点F (1,0),E (5,0),M (3,0), 设A (x 1,y 1),B (x 2,y 2), 由直线l 1的倾斜角为,则k=1,直线l 1的方程y=x ﹣1,即x=y+1, 则,整理得:9x 2+8﹣16=0.则y 1+y 2=﹣,y 1y 2=﹣,△ABM 的面积S ,S=•丨FM 丨•丨y 1﹣y 2丨=丨y 1﹣y 2丨==,∴△ABM 的面积S 的值;(Ⅱ)证明:设直线l 1的方程为y=k (x ﹣1), 则,整理得:(4+5k 2)x 2﹣10k 2x+5k 2﹣20=0.则x 1+x 2=,x 1x 2=,直线BN ⊥l 于点N ,则N (5,y 2), 由k AM =,k MN =,而y 2(3﹣x 1)﹣2(﹣y 1)=k (x 2﹣1)(3﹣x 1)+2k (x 1﹣1)=﹣k[x 1x 2﹣3(x 1+x 2)+5], =﹣k (﹣3×+5),=0, ∴k AM =k MN ,∴A ,M ,N 三点共线.【点评】本题考查椭圆的标准方程,直线与椭圆的位置关系,韦达定理,弦长公式,考查直线的斜率公式,考查计算能力,属于中档题.21.(12分)已知函数f(x)=xln(x+1)+(﹣a)x+2﹣a,a∈R.(I)当x>0时,求函数g(x)=f(x)+ln(x+1)+x的单调区间;(Ⅱ)当a∈Z时,若存在x≥0,使不等式f(x)<0成立,求a的最小值.【分析】(Ⅰ)求出函数g(x)的导数,通过讨论a的范围求出函数的单调区间即可;(Ⅱ)问题等价于a>,令h(x)=,x≥0,唯一转化为求出a>h(x),根据函数的单调性求出h(x)的最小值,从而求出a的最小值min即可.【解答】解:(Ⅰ)∵g(x)=(x+1)ln(x+1)+(1﹣a)x+2﹣a,(x>0),∴g′(x)=ln(x+1)+2﹣a,当2﹣a≥0即a≤2时,g′(x)>0对x∈(0,+∞)恒成立,此时,g(x)在(0,+∞)递增,无递减区间,当2﹣a<0即a>2时,由g′(x)>0,得x>e a﹣2﹣1,由g′(x)<0,得0<x<e a﹣2﹣1,此时,g(x)在(0,e a﹣2﹣1)递减,在(e a﹣2﹣1,+∞)递增,综上,a≤2时,g(x)在(0,+∞)递增,无递减区间;a>2时,g(x)在(0,e a﹣2﹣1)递减,在(e a﹣2﹣1,+∞)递增,(Ⅱ)由f(x)<0,得(x+1)a>xln(x+1)+x+2,当x≥0时,上式等价于a>,令h(x)=,x≥0,,由题意,存在x≥0,使得f(x)<0成立,则只需a>h(x)min∵h′(x)=,令u (x )=ln (x+1)+x ﹣,显然u (x )在[0,+∞)递增,而u (0)=﹣<0,u (1)=ln2﹣>0,故存在x 0∈(0,1),使得u (x 0)=0,即ln (x 0+1)=﹣x 0,又当x 0∈[0,x 0)时,h ′(x )<0,h (x )递减,当x ∈[x 0,+∞)时,h ′(x )>0,h (x )递增,故x=x 0时,h (x )有极小值(也是最小值),故h (x )min =,故a ≥=,x 0∈(0,1),而2<<3,故a 的最小整数值是3.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,考查转化思想,是一道综合题.请考生在第(22)、(23)题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy 中,倾斜角为α(α≠)的直线l 的参数方程为(t 为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程是ρcos 2θ﹣4sin θ=0.(I )写出直线l 的普通方程和曲线C 的直角坐标方程;(Ⅱ)已知点P (1,0).若点M 的极坐标为(1,),直线l 经过点M 且与曲线C 相交于A ,B 两点,设线段AB 的中点为Q ,求|PQ|的值.【分析】(Ⅰ)直线l 的参数方程消去参数t ,能求出直线l 的普通方程;由曲线C 的极坐标方程能求出曲线C 的直角坐标方程.(Ⅱ)求出点M的直角坐标为(0,1),从而直线l的倾斜角为,由此能求出直线l 的参数方程,代入x2=4y,得,由此利用韦达定理和两点间距离公式能求出|PQ|.【解答】解:(Ⅰ)∵直线l的参数方程为(t为参数).∴直线l的普通方程为y=tanα•(x﹣1),由曲线C的极坐标方程是ρcos2θ﹣4sinθ=0,得ρ2cos2θ﹣4ρsinθ=0,∴x2﹣4y=0,∴曲线C的直角坐标方程为x2=4y.(Ⅱ)∵点M的极坐标为(1,),∴点M的直角坐标为(0,1),∴tanα=﹣1,直线l的倾斜角为,∴直线l的参数方程为,代入x2=4y,得,设A,B两点对应的参数为t1,t2,∵Q为线段AB的中点,∴点Q对应的参数值为,又P(1,0),则|PQ|=||=3.【点评】本题考查曲线的直角坐标方程的求法,考查弦长的求法及应用,考查两点间距离公式的求法,是中档题,解题时要认真审题,注意参数方程、直角坐标方程、极坐标方程互化公式的合理运用.[选修4-5:不等式选讲]23.已知函数f(x)=x+1+|3﹣x|,x≥﹣1.(I)求不等式f(x)≤6的解集;(Ⅱ)若f(x)的最小值为n,正数a,b满足2nab=a+2b,求2a+b的最小值.【分析】(Ⅰ)根据题意,由绝对值的性质可以将f(x)≤6转化可得或,解可得x的范围,即可得答案;(Ⅱ)根据题意,由函数f(x)的解析式分析可得f(x)的最小值为4,即n=4;进而可得正数a,b满足8ab=a+2b,即+=8,将2a+b变形可得2a+b=(++5),由基本不等式的性质可得2a+b的最小值,即可得答案.【解答】解:(Ⅰ)根据题意,函数f(x)=x+1+|3﹣x|,x≥﹣1.若f(x)≤6,则有或,解可得﹣1≤x≤4,故原不等式的解集为{x|﹣1≤x≤4};(Ⅱ)函数f(x)=x+1+|3﹣x|=,分析可得f(x)的最小值为4,即n=4;则正数a,b满足8ab=a+2b,即+=8,2a+b=(+)(2a+b)=(++5)≥(5+2)=;即2a+b的最小值为.【点评】本题考查绝对值不等式的解法,涉及基本不等式的性质与应用,关键是正确求出函数f(x)的最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年四川省高考数学模拟试卷(理科)一.选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i为虚数单位,a∈R,若(a2+2a﹣3)+(a+3)i为纯虚数,则a的值为()A.1 B.﹣3 C.﹣3或1 D.3或12.已知集合M={x||x|≤2,x∈R},N={x||x﹣1|≤a,a∈R},若N⊆M,则a的取值范围为()A.0≤a≤1 B.a≤1 C.a<1 D.0<a<13.设命题p:存在四边相等的四边形不是正方形;命题q:若cosx=cosy,则x=y,则下列判断正确的是()A.p∧q为真B.p∨q为假C.¬p为真D.¬q为真4.已知抛物线x2=﹣2py(p>0)经过点(2,﹣2),则抛物线的焦点坐标为()A.B.C.D.5.小明、小王、小张、小李4名同学排成一纵队表演节目,其中小明不站排头,小张不站排尾,则不同的排法共有()种.A.14 B.18 C.12 D.166.执行如图所示的程序框图,输出P的值为()A.﹣1 B.1 C.0 D.20207.设x,y满足约束条件,则的最大值为()A.1024 B.256 C.8 D.48.已知O为△ABC内一点,且有,记△ABC,△BCO,△ACO的面积分别为S1,S2,S3,则S1:S2:S3等于()A.3:2:1 B.3:1:2 C.6:1:2 D.6:2:19.若椭圆和圆为椭圆的半焦距),有四个不同的交点,则椭圆的离心率e的取值范围是()A.B. C.D.10.已知函数,若存在x1,x2,当0≤x1<x2<2时,f(x1)=f(x2),则x1f(x2)﹣f(x2)的取值范围为()A.B.C.D.二、填空题(每题5分,满分25分,将答案填在答题纸上)11.若样本数据x1,x2,…,x10的平均数为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的平均数为_______.12.在二项式的展开式中,所有二项式系数之和为128,则展开式中x5的系数为_______.13.已知正方体ABCD﹣A1B1C1D1的棱长为a,P为棱AA1的中点,在面BB1D1D上任取一点E,使得EP+EA最小,则最小值为_______.14.在平面直角坐标系中,以(0,﹣1)为圆心且与直线ax+y++1=0(a∈R)相切的所有圆中,最大圆面积与最小圆面积的差为_______.15.已知a>0,f(x)=a2lnx﹣x2+ax,若不等式e≤f(x)≤3e+2对任意x∈[1,e]恒成立,则实数a的取值范围为_______.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.在△ABC中,角A,B,C所对的边分别为a,b,c,且=(I)求角A;(Ⅱ)若=(0,﹣1),=(cosB,2cos2),求|+|的取值范围.17.为了解班级学生对任课教师课堂教学的满意程度情况.现从某班全体学生中,随机抽取12名,测试的满意度分数(百分制)如下:65,52,78,90,86,86,87,88,98,72,86,87根据学校体制标准,成绩不低于76的为优良.(Ⅰ)从这12名学生中任选3人进行测试,求至少有1人成绩是“优良”的概率;(Ⅱ)从抽取的12人中随机选取3人,记ξ表示测试成绩“优良”的学生人数,求ξ的分布列及期望.18.如图所示,在三棱锥P﹣ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ交于点H,连接GH.(Ⅰ)求证:AB∥GH;(Ⅱ)求异面直线DP与BQ所成的角;(Ⅲ)求直线AQ与平面PDC所成角的正弦值.19.已知数列{a n}的前n项和为S n,S n=2a n﹣4,数列{b n}满足b n+1﹣b n=1,其n项和为T n,且T2+T6=32.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)若不等式nlog2(S n+4)≥λb n+3n﹣7对任意的n∈N*恒成立,求实数λ的取值范围.20.已知椭圆C: +=1(a>b>0)的左、右顶点分别为A1,A2,且|A1A2|=4,上顶点为B,若直线BA1与圆M:(x+1)2+y2=相切.(Ⅰ)求椭圆C的标准方程;(Ⅱ)直线l:x=2与x轴交于D,P是椭圆C上异于A1、A2的动点,直线A1P、A2P分别交直线l于E、F两点,求证:|DE|•|DF|为定值.21.设函数f(x)=x2﹣x+t,t≥0,g(x)=lnx.(Ⅰ)若对任意的正实数x,恒有g(x)≤x2α成立,求实数α的取值范围;(Ⅱ)对于确定的t,是否存在直线l与函数f(x),g(x)的图象都相切?若存在,讨论直线l的条数,若不存在,请说明理由.2020年四川省高考数学模拟试卷(理科)参考答案与试题解析一.选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i为虚数单位,a∈R,若(a2+2a﹣3)+(a+3)i为纯虚数,则a的值为()A.1 B.﹣3 C.﹣3或1 D.3或1【考点】复数的基本概念.【分析】直接由实部等于0且虚部不为0列式求得a值.【解答】解:∵(a2+2a﹣3)+(a+3)i为纯虚数,∴,解得:a=1.故选:A.2.已知集合M={x||x|≤2,x∈R},N={x||x﹣1|≤a,a∈R},若N⊆M,则a的取值范围为()A.0≤a≤1 B.a≤1 C.a<1 D.0<a<1【考点】集合的包含关系判断及应用.【分析】分别化简集合M,N,对a分类讨论,利用集合之间的关系即可得出.【解答】解:集合M={x||x|≤2,x∈R}=[﹣2,2],N={x||x﹣1|≤a,a∈R},∴当a<0时,N=∅,满足N⊆M.当a≥0时,集合N=[1﹣a,1+a].∵N⊆M,∴,解得0≤a≤1.综上可得:a的取值范围为a≤1.故选:B.3.设命题p:存在四边相等的四边形不是正方形;命题q:若cosx=cosy,则x=y,则下列判断正确的是()A.p∧q为真B.p∨q为假C.¬p为真D.¬q为真【考点】命题的否定.【分析】根据复合命题的真假关系进行判断即可.【解答】解:菱形的四边形的边长相等,但不一定是正方形,故命题p是真命题,当x=﹣y时,满足cosx=cosy,但x=y不成立,即命题q是假命题,故¬q为真,其余都为假命题,故选:D4.已知抛物线x2=﹣2py(p>0)经过点(2,﹣2),则抛物线的焦点坐标为()A.B.C.D.【考点】抛物线的简单性质.【分析】抛物线x2=﹣2py(p>0)经过点(2,﹣2),代值计算即可求出p,能求出焦点坐标.【解答】解:抛物线x2=﹣2py(p>0)经过点(2,﹣2),∴4=4p,∴p=1,∴抛物线的焦点坐标为(0,﹣),故选:C.5.小明、小王、小张、小李4名同学排成一纵队表演节目,其中小明不站排头,小张不站排尾,则不同的排法共有()种.A.14 B.18 C.12 D.16【考点】计数原理的应用.【分析】小明不站排头,小张不站排尾,可按小明在排尾与不在排尾分为两类,根据分类计数原理可得.【解答】解:小明不站排头,小张不站排尾排法计数可分为两类,第一类小明在排尾,其余3人全排,故有A33=6种,第二类小明不在排尾,先排小明,有A21种方法,再排小张有A21种方法,剩下的2人有A22种排法,故有2×2×2=8种根据分类计数原理可得,共有6+8=14种,故选:A.6.执行如图所示的程序框图,输出P的值为()A.﹣1 B.1 C.0 D.2020【考点】程序框图.【分析】模拟执行程序框图的运行过程,写出每次循环得到的P,i的值,当i=2020>2020时,满足条件,终止循环,输出P的值.【解答】解:执行程序框图,有p=0,i=1,P=0+cosπ=﹣1,i=2,不满足条件i>2020?,有P=﹣1+cos2π=0,i=3,不满足条件i>2020,有P=0+cos3π=﹣1,,…,i=2020,不满足条件i>2020,有P=﹣1+cos2020π=0,i=2020,满足条件i>2020,输出P的值为0.故选:C.7.设x,y满足约束条件,则的最大值为()A.1024 B.256 C.8 D.4【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.【解答】解:由z==22x﹣y,令u=2x﹣y,作出约束条件,对应的平面区域如图(阴影部分):平移直线y=2x﹣u由图象可知当直线y=2x﹣u过点A时,直线y=2x﹣u的截距最小,此时u最大,由,解得,即A(5,2).代入目标函数u=2x﹣y,得u=2×5﹣2=8,∴目标函数z==22x﹣y,的最大值是28=256.故选:B.8.已知O为△ABC内一点,且有,记△ABC,△BCO,△ACO的面积分别为S1,S2,S3,则S1:S2:S3等于()A.3:2:1 B.3:1:2 C.6:1:2 D.6:2:1【考点】平面向量的基本定理及其意义.【分析】如图所示,延长OB到点E,使得=2,分别以,为邻边作平行四边形OAFE.则+2=+=,由于+2+3=,可得﹣=3.又=2,可得=2.于是=,得到S△ABC=2S△AOB.同理可得:S△ABC=3S△AOC,S△ABC=6S△BOC.即可得出.【解答】解:如图所示,延长OB到点E,使得=2,分别以,为邻边作平行四边形OAFE.则+2=+=,∵+2+3=,∴﹣=3.又=2,可得=2.于是=,∴S△ABC=2S△AOB.同理可得:S△ABC=3S△AOC,S△ABC=6S△BOC.∴ABC,△BOC,△ACO的面积比=6:1:2.故选:C.9.若椭圆和圆为椭圆的半焦距),有四个不同的交点,则椭圆的离心率e的取值范围是()A.B. C.D.【考点】圆与圆锥曲线的综合.【分析】由题设知,由,得2c>b,再平方,4c2>b2,;由,得b+2c<2a,.综上所述,.【解答】解:∵椭圆和圆为椭圆的半焦距)的中心都在原点,且它们有四个交点,∴圆的半径,由,得2c>b,再平方,4c2>b2,在椭圆中,a2=b2+c2<5c2,∴;由,得b+2c<2a,再平方,b2+4c2+4bc<4a2,∴3c2+4bc<3a2,∴4bc<3b2,∴4c<3b,∴16c2<9b2,∴16c2<9a2﹣9c2,∴9a2>25c2,∴,∴.综上所述,.故选A.10.已知函数,若存在x1,x2,当0≤x1<x2<2时,f(x1)=f(x2),则x1f(x2)﹣f(x2)的取值范围为()A.B.C.D.【考点】分段函数的应用.【分析】先作出函数图象然后根据图象,根据f(x1)=f(x2),确定x1的取值范围然后再根据x1f(x2)﹣f(x2),转化为求在x1的取值范围即可.【解答】解:作出函数的图象:∵存在x1,x2,当0≤x1<x2<2时,f(x1)=f(x2)∴0≤x1<,∵x+在[0,)上的最小值为;2x﹣1在[,2)的最小值为,∴x1+≥,x1≥,∴≤x1<.∵f(x1)=x1+,f(x1)=f(x2)∴x1f(x2)﹣f(x2)=x1f(x1)﹣f(x1)2=﹣(x1+)=x12﹣x1﹣,设y=x12﹣x1﹣=(x1﹣)2﹣,(≤x1<),则对应抛物线的对称轴为x=,∴当x=时,y=﹣,当x=时,y=,即x1f(x2)﹣f(x2)的取值范围为[﹣,).故选:B.二、填空题(每题5分,满分25分,将答案填在答题纸上)11.若样本数据x1,x2,…,x10的平均数为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的平均数为15.【考点】众数、中位数、平均数.【分析】根据平均数与方差的公式即可求出数据2x1﹣1,2x2﹣1,…,2x10﹣1的平均数.【解答】解:∵样本数据x1,x2,…,x10的平均数是10,∴=(x1+x2+…+x10)=8;∴数据2x1﹣1,2x2﹣1,…,2x10﹣1的平均数是:= [(2x1﹣1)+(2x2﹣1)+…+(2x10﹣1)]=2×(x1+x2+…+x10)﹣1=2×8﹣1=15.故答案为:15.12.在二项式的展开式中,所有二项式系数之和为128,则展开式中x5的系数为35.【考点】二项式定理的应用.【分析】由条件利用二项式系数的性质求得n=7,再利用二项展开式的通项公式求得x5的系数.【解答】解:由题意可得2n=128,n=7,∴=,它的通项公式为T r+1=•x21﹣4r,令21﹣4r=5,求得r=4,故展开式中x5的系数为=35,故答案为:35.13.已知正方体ABCD﹣A1B1C1D1的棱长为a,P为棱AA1的中点,在面BB1D1D上任取一点E,使得EP+EA最小,则最小值为a.【考点】棱柱的结构特征.【分析】由图形可知AC⊥平面BB1D1D,且A到平面BB1D1D的距离与C到平面BB1D1D 的距离相等,故EA=EC,所以EC就是EP+EP的最小值;【解答】解:连接AC交BD于N,连接EN,EC,则AC⊥BD,∵BB1⊥平面ABCD,∴BB1⊥AC,∴AC⊥平面BB1D1D,∴AC⊥EN,∴△AEN≌△CEN,∴EA=EC,连接EC,∴线段EC的长就是EP+EA的最小值.在Rt△EAC中,AC=a,EA=a,∴EC==a.故答案为:a.14.在平面直角坐标系中,以(0,﹣1)为圆心且与直线ax+y++1=0(a∈R)相切的所有圆中,最大圆面积与最小圆面积的差为2π.【考点】直线与圆的位置关系.【分析】圆半径r=,a=﹣1时,r min==1,a=1时,r max==,由此能求出最大圆面积与最小圆面积的差.【解答】解:∵圆以(0,﹣1)为圆心且与直线ax+y++1=0(a∈R)相切,∴圆半径r===,∴a=﹣1时,r min==1,最小圆面积S min=π×12=π,a=1时,r max==,最大圆面积S max==3π,∴最大圆面积与最小圆面积的差为:3π﹣π=2π.故答案为:2π.15.已知a>0,f(x)=a2lnx﹣x2+ax,若不等式e≤f(x)≤3e+2对任意x∈[1,e]恒成立,则实数a的取值范围为[e+1,].【考点】利用导数求闭区间上函数的最值.【分析】利用导数可求得f(x)的单调区间,由f(1)=﹣1+a≥e可得a≥e+1,从而可判断f(x)在[1,e]上的单调性,得到f(x)的最大值,令其小于等于3e+2可得答案.【解答】解:f′(x)=﹣2x+a=,∵x>0,又a>0,∴x∈(0,a)时f′(x)>0,f(x)递增;x∈(a,+∞)时,f′(x)<0,f(x)递减.又f(1)=﹣1+a≥e,∴a≥e+1,∴f(x)在[1,e]上是增函数,∴最大值为f(e)=a2﹣e2+ae≤3e+2,解得:a≤,又a≥e+1,而e+1<,∴a的取值集合是[e+1,],故答案为:[e+1,].三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.在△ABC中,角A,B,C所对的边分别为a,b,c,且=(I)求角A;(Ⅱ)若=(0,﹣1),=(cosB,2cos2),求|+|的取值范围.【考点】平面向量数量积的运算.【分析】(I)将切化弦,利于和角公式和正弦定理化简得出cosA;(II)求出+的坐标,计算|+|2,根据B的范围解出|+|的范围.【解答】解:(I)∵=,∴,整理得cosA=.∴A=.(II)∵2cos2=1+cosC=1﹣cos(B+)=1﹣cosB+sinB,∴=(cosB,1﹣cosB+ sinB).∴=(cosB,﹣cosB+sinB),∴()2=cos2B+(﹣cosB+sinB)2=+﹣sin2B=1+cos(2B+).∵0<B<,∴<2B+<.∴﹣1≤cos(2B+)<,∴≤()2<.∴≤|+|<.17.为了解班级学生对任课教师课堂教学的满意程度情况.现从某班全体学生中,随机抽取12名,测试的满意度分数(百分制)如下:65,52,78,90,86,86,87,88,98,72,86,87根据学校体制标准,成绩不低于76的为优良.(Ⅰ)从这12名学生中任选3人进行测试,求至少有1人成绩是“优良”的概率;(Ⅱ)从抽取的12人中随机选取3人,记ξ表示测试成绩“优良”的学生人数,求ξ的分布列及期望.【考点】离散型随机变量的期望与方差;列举法计算基本事件数及事件发生的概率;离散型随机变量及其分布列.【分析】(Ⅰ)12名学生中成绩是“优良”的学生人数为9人,至少有1人成绩是“优良”的对立事件是抽到的两人的成绩都不是“优良”,由此能求出至少有1人成绩是“优良”的概率.(Ⅱ)由已知得ξ的可能取值为0,1,2,3,分别求出相应的概率,由此能求出ξ的分布列和Eξ.【解答】解:(Ⅰ)∵随机抽取12名,测试的满意度分数(百分制)如下:65,52,78,90,86,86,87,88,98,72,86,87,根据学校体制标准,成绩不低于76的为优良,∴12名学生中成绩是“优良”的学生人数为9人,从这12名学生中任选3人进行测试,基本事件总数n==220,至少有1人成绩是“优良”的对立事件是抽到的两人的成绩都不是“优良”,∴至少有1人成绩是“优良”的概率:p=1﹣=.(Ⅱ)由已知得ξ的可能取值为0,1,2,3,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,∴ξ有的分布列为:ξ0 1 2 3PEξ==.18.如图所示,在三棱锥P﹣ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ交于点H,连接GH.(Ⅰ)求证:AB∥GH;(Ⅱ)求异面直线DP与BQ所成的角;(Ⅲ)求直线AQ与平面PDC所成角的正弦值.【考点】直线与平面所成的角;异面直线及其所成的角.【分析】(I)根据中位线及平行公理可得CD∥EF,于是CD∥平面EFQ,利用线面平行的性质得出CD∥GH,从而GH∥AB;(II)由AQ=2BD可得AB⊥BQ,以B为原点建立空间直角坐标系,求出,的坐标,计算,的夹角得出异面直线DP与BQ所成的角;(III)求出和平面PDC的法向量,则直线AQ与平面PDC所成角的正弦值为|cos<>|.【解答】证明:(I)∵CD是△ABQ的中位线,EF是△PAB的中位线,∴CD∥AB,EF∥AB,∴CD∥EF,又EF⊂平面EFQ,CD⊄平面EFQ,∴CD∥平面EFQ,又CD⊂平面PCD,平面PCD∩平面EFQ=GH,∴GH∥CD,又CD∥AB,∴GH∥AB.(II)∵D是AQ的中点,AQ=2BD,∴AB⊥BQ.∵PB⊥平面ABQ,∴BA,BP,BQ两两垂直.以B为原点以BA,BQ,BP为坐标轴建立空间直角坐标系如图:设BA=BP=BQ=1,则B(0,0,0),P(0,0,1),D(,,0),Q(0,1,0).∴=(﹣,﹣,1),=(0,1,0).∴=﹣,||=,||=1,∴cos<>=﹣.∴异面直线DP与BQ所成的角为arccos.(III)设BA=BP=BQ=1,则A(1,0,0),Q(0,1,0),P(0,0,1),D(,,0),C(0,,0).=(﹣1,1,0),=(,0,0),=(0,﹣,1).设平面CDP的一个法向量为=(x,y,z),则,=0,∴,令z=1,得=(0,2,1).∴=2,||=,||=,∴cos<>==,∴直线AQ与平面PDC所成角的正弦值为.19.已知数列{a n}的前n项和为S n,S n=2a n﹣4,数列{b n}满足b n+1﹣b n=1,其n项和为T n,且T2+T6=32.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)若不等式nlog2(S n+4)≥λb n+3n﹣7对任意的n∈N*恒成立,求实数λ的取值范围.【考点】数列的求和;数列递推式.【分析】(I)利用等差数列与等比数列的通项公式及其前n项和公式、递推关系即可得出.(Ⅱ)S n=2×4n﹣4.不等式nlog2(S n+4)≥λb n+3n﹣7,化为:λ≤,利用单调性求出的最小值即可得出.【解答】解:(I)∵S n=2a n﹣4,∴n=1时,a1=2a1﹣4,解得a1=4;当n≥2时,a n=S n﹣S n﹣1=2a n﹣4﹣(2a n﹣1﹣4),化为:a n=2a n﹣1.∴数列{a n}是等比数列,首项为4,公比为2,∴a n=4×2n﹣1=2n+1.∵数列{b n}满足b n+1﹣b n=1,∴数列{b n}是等差数列,公差为1.∵T2+T6=32,∴2b1+1+6b1+×1=32,解得b1=2.∴b n=2+(n﹣1)=n+1.(Ⅱ)S n=2×2n+1﹣4.∴不等式nlog2(S n+4)≥λb n+3n﹣7,化为:λ≤,∵=(n+1)+﹣3≥2﹣3=3,当n=2时,取得最小值3,∴实数λ的取值范围是λ≤3.20.已知椭圆C: +=1(a>b>0)的左、右顶点分别为A1,A2,且|A1A2|=4,上顶点为B,若直线BA1与圆M:(x+1)2+y2=相切.(Ⅰ)求椭圆C的标准方程;(Ⅱ)直线l:x=2与x轴交于D,P是椭圆C上异于A1、A2的动点,直线A1P、A2P分别交直线l于E、F两点,求证:|DE|•|DF|为定值.【考点】椭圆的简单性质.【分析】(Ⅰ)由条件可得到A1(﹣2,0),B(0,b),从而可以写出直线BA1的方程,这样即可得出圆心(﹣1,0)到该直线的距离为,从而可以求出b,这便可得出椭圆C的标准方程为;(Ⅱ)可设P(x1,y1),从而有,可写出直线A1P的方程为,从而可以求出该直线和直线x=的交点E的坐标,同理可得到点F的坐标,这样即可得出|DE|,|DF|,然后可求得|DE|•|DF|=3,即得出|DE|•|DF|为定值.【解答】解:(Ⅰ)由题意得A1(﹣2,0),B(0,b);∴直线BA1的方程为;∴圆心(﹣1,0)到直线BA1的距离为;解得b2=3;∴椭圆C的标准方程为;(Ⅱ)证明:设P(x1,y1),则,;∴直线A1P的方程为;∴;同理得,;∴;∴|DE|•|DF|为定值.21.设函数f(x)=x2﹣x+t,t≥0,g(x)=lnx.(Ⅰ)若对任意的正实数x,恒有g(x)≤x2α成立,求实数α的取值范围;(Ⅱ)对于确定的t,是否存在直线l与函数f(x),g(x)的图象都相切?若存在,讨论直线l的条数,若不存在,请说明理由.【考点】利用导数研究曲线上某点切线方程.【分析】(1)由题意可得lnx﹣x2α≤0恒成立,讨论当α≤0时,h(x)=lnx﹣x2α递增,无最大值;当α>0时,求出导数,求得单调区间,可得极大值,也为最大值,由恒成立思想解不等式即可得到所求范围;(2)分别设出切点,再根导数的几何意义求出切线方程,构造方程组,消元,再构造函数F(x)=ln x+﹣(t+1),利用导数求出函数F(x)的最小值,再分类讨论,得到方程组的解得个数,继而得到切线的条数.【解答】解:(1)对任意的正实数x,恒有g(x)≤x2α成立,即为lnx﹣x2α≤0恒成立,当α≤0时,h(x)=lnx﹣x2α递增,无最大值;当α>0时,h′(x)=﹣2α•x2α﹣1,当x>时,h′(x)<0,h(x)递减;当0<x<时,h′(x)>0,h(x)递增.即有x=时,h(x)取得最大值,且为ln﹣,由ln﹣≤0,可得α≥,综上可得,实数α的取值范围是[,+∞);(2)记直线l分别切f(x),g(x)的图象于点(x1,x12﹣x1+t),(x2,ln x2),由f′(x)=2x﹣1,得l的方程为y﹣(x12﹣x1+t)=(2x1﹣1)(x﹣x1),即y=(2x1﹣1)x﹣x12+t.由g′(x)=,得l的方程为y﹣ln x2=(x﹣x2),即y=•x+ln x2﹣1.所以(*)消去x1得ln x2+﹣(t+1)=0 (**).令F(x)=ln x+﹣(t+1),则F′(x)=﹣==,x>0.由F'(x)=0,解得x=1.当0<x<1时,F'(x)<0,当x>1时,F'(x)>0,所以F(x)在(0,1)上单调递减,在(1,+∞)上单调递增,从而F(x)min=F(1)=﹣t.当t=0时,方程(**)只有唯一正数解,从而方程组(*)有唯一一组解,即存在唯一一条满足题意的直线;当t>0时,F(1)<0,由于F(e t+1)>ln(e t+1)﹣(t+1)=0,故方程(**)在(1,+∞)上存在唯一解;令k(x)=ln x+﹣1(x≤1),由于k'(x)=﹣=≤0,故k(x)在(0,1]上单调递减,故当0<x<1时,k(x)>k(1)=0,即ln x>1﹣,从而ln x+﹣(t+1)>(﹣)2﹣t.所以F()>(+)2﹣t=+>0,又0<<1,故方程(**)在(0,1)上存在唯一解.所以当t>0时,方程(**)有两个不同的正数解,方程组(*)有两组解.即存在两条满足题意的直线.综上,当t=0时,与两个函数图象同时相切的直线的条数为1;当t>0时,与两个函数图象同时相切的直线的条数为2.2020年9月9日。

相关文档
最新文档