干式变压器的温升限值、过负荷能力

干式变压器的温升限值、过负荷能力

干式变压器的温升限值

表3—15 温升限值

部位绝缘系统温度()最高温升()

绕组(用电阻法测量的温升)105(A)60 120(E)75 130(B)80 155(F)100 180(H)125 220(C)150

铁心、金属部件和其他相邻的材料

在任何情况下,不会出现使铁心

本身、其他部件与其他相邻的材料

受到损害的温度

干式变压器的过负荷能力

(1)在30min内,过负荷能力比油浸式变压器的强。

(2)在~8h内,过负荷能力比油浸式变压器的弱

(3)长期运行与油浸式变压器没什么差别。参照GB1094—79中有关规定(仅作参考),见表3—16

表3—16 干式变压器过负荷能力

过电流(允许运行时间(min)

2060

3045

4032

5018

605

(完整版)箱式变压器运行规程

箱式变压器运行规程 1 适用范围本规程适用于中国水电顾问集团风电××有限公司××风电场风力发电机 组专用组合箱式变压器正常运行维护和事故处理。 2 引用标准国家电网公司电力安全工作规程(变电部分)国家电网公司电力安全工作规程(线路部分) 1995 电力变压器运行规程DLT572——电力设备预防性试验规程DLT596——1996 相关设备技术参数说明及使用手册 相关参数3 3.2 负荷开关技术参数

4 运行前检查和试验 4.1核对变压器铭牌数据、开关分接位置和变压器接线是否和电网匹配。 4.2检查箱变外观是否良好,是否有渗漏油现象,高、低压开关室门锁是否完好,有无锈蚀、磕碰和破损现象;检查低压开关室内的元件二次接线是否松动。4.3上述检查完毕后,箱变须按GB50150-1990《电气装置安装工程电气设备交接试验标准》进行安装前试验。通过上述交接试验即可投入运行。 5 运行规定 5.1投入运行 5.1.1箱变应可靠接地。高低压开关室内均有接地螺栓。 5.1.2箱变投入运行前,必须先操作压力释放阀将油箱内部可能存在的压力释放掉。 5.1.3压力释放阀的操作应在压力表处于正压的情况下进行,否则会使油箱呈负压而吸入潮气。 5.1.4在运行过程中,切换负荷开关必须由持有高压操作证书的电工使用专用操

作杆按《高压操作规定》进行操作。 5.1.5当有异常情况发生时,可通过检查油位、温度、取油样等进行判断。 5.2箱变允许运行方式 额定运行5.2.1 5.2.1.1 在规定的冷却条件下,可按铭牌规范运行。 5.2.1.2箱变运行中的允许温度应按油面温度来检查,油面温升值应不超过标准中规定的数值。 5.2.1.3箱变的输入电压可以比额定值较高,但一般不超过额定值的5‰。 5.2.2 过负荷运行 5.2.2.1箱变可以在正常过负荷和事故过负荷的情况下运行,正常过负荷可 以经常使用,其允许值根据变压器的负荷曲线,冷却介质的温度以及过负荷前变压器所带的负荷来确定,事故过负荷只允许在事故情况下(例如:运行中的若干台变压器中有一台损坏,又无备用变压器可以按事故过负荷运行)使用。 5.2.2.2 变压器事故过负荷的允许值可参考下表。 事故过负荷对1.3 1.45 1.6 1.75 2.0 额定负荷之比 过负荷允许持120 60 30 15 7.5 续时间单位(分)

变压器的过负荷能力

力变压器的过负荷能力 发布:2009-6-10 17:04 | 作者:wuguosheng | 来源:本站| 查看:4次| 字号: 小中大 从热老化的观点出发,只要绝缘强度不下降,就可以长期过载运行。 对油浸式变压器,只要绕组温度不超过98度,油温不超过85度,对绝缘强度影响不大,可以长期运行 对干式变压器按制造厂规定,视其绝缘材料而定 众所周知,变压器过载运行会使温度升高,加快变压器绝缘的老化过程,降低变压器的使用寿命。据研究统计,绝缘工作时的温度每升高8度,其寿命会减少一半。 但实际运行中,大部分变压器的负载都不是始终不变的常数,因此,变压器在不损坏绕组绝缘和不降低使用寿命的情况下,可以在短时间内过载运行,,但坚决不允许长期过载运行。具体数值大概如下: (1)当超过负载1.3倍时,室外变压器允许过载时间为2h,室内为1h; (2)当超过负载1.6倍时,室外变压器允许过载时间为30min,室内为15min; (3)当超过负载1.75倍时,室外变压器允许过载时间为15min,室内为8min; (4)当超过负载2.0倍时,室外变压器允许过载时间为7.5min,室内为4min. 瓦斯继电器动作值由变压器生产厂家在出厂前设定;1000KV A及以上容量的油浸式变压器才装设有温度信号计,一般规定正常运行时上层油温不超过85°,否则应发出信号提示值班人员。最高不超过95°,超过则动作于跳开变压器各侧开关。 在冷却条件好,的情况下,允许一定的过负荷运行,但一切的过负荷运行都有依据 当主变过负荷1。2倍时,即电流达到额定电流的一点二倍,相应损耗增加是这样的 设定主变在最大效率运行,即铜耗等于铁耗,而电流增加一点二倍时,铜耗增加的倍数是1。44倍,在电压不变的情况下 铁耗不变,那么总损耗相应增加到1。22倍。这将造成变压器的温度升高。这个温度具体会上升到多少,可以通过温升试验求出来。另外环境温度也是一个重要的因素,冬天气温低,过负荷的倍数相应可以高点,因为变压器的散热条件好,天气热的时候反之。 当温升试验做出来的温度值低于铭牌值,主变允许长时间过负荷运行。但要考虑线圈有局部过热的危险。 温升较高时你也要长时过负荷运行,那根据绝缘的六度法则:当绝缘体的平均温度比允许的正常温度每上升六度时,绝缘的寿命减少一半。这就是代价。 综上所说,1。2倍负荷长时运行,取决于主变温升。

干式变压器热时间常数的计算和试验方法

干式变压器热时间常数的计算和试验方法 0概述 变压器短时过负荷(以下简称过载)运行是一种发热的过渡过程。过载某一时刻的绕组温升可按下式计算: θ=θ■+(θ■-θ■)(1-e■)(1) 式中t——过载时间,min; θ——过载时间为t所对应的绕组平均温升,K; θ■——t=0时绕组平均温升,即正常运行时绕组初始温升,K; θ■——过载稳定后绕组的平均温升,K,与变压器过载倍数有关; τ——在过载状态下的热时间常数,min。 干式变压器和油浸变压器不同的是没有油,因此在讨论干式变压器短时过负荷能力时仅需考虑干式变压器高、低压绕组的短时过负荷能力。由(1)可知,绕组短时过负荷能力的大小取决于绕组的热时间常数,而热时间常数和绕组的热容量、损耗水平以及额定温升等因素密切相关。 1热时间常数的计算 干式变压器的热时间常数(理想值)是指干式变压器在恒定负债条件下,温升达到变化值的63.2%所需经历的时间,也等于变压器从稳定温升状态下断开负载,在自然冷却状况下,温升下降63.2%所需的时间,对于干式变压器,其高低压相互独立,故计算时需分别处理。 根据IEEE C57.96-1999(R2005)IEEE Guide for Loading Dry-Type Distribution and Power Transformer中A.8.3提供的公式: τ■=■(2) 式中:τ■——额定负载下的热时间常数,min; C——比热容,W·min/K; Δθ■——额定负载下的稳定温升,K; θ■——铁心引起的温升对线圈的影响,对于内线圈,取20K,外线圈,取0K; P■——线圈的负载损耗,W。 对于比热容C的计算,通常采用以下公式: C=C■*m■+C■*m■(3) 式中:C■——导体的比热值,Cu取6.42(W·min)/(kg·K),Al取14.65(W·min)/(kg·K); m■——导体质量,单位kg; C■——绝缘材料的比热,对于树脂取24.5(W·min)/(kg·K); m■——绝缘材料质量,单位kg。 需要注意的是,在式(3)中的树脂比热值取24.5(W·min)/(kg·K)与IEEE C57.96-1999(R2005)IEEE Guide for Loading Dry-Type Distribution and Power Transformer中选用的6.35(W·min)/(kg·K)是有很大区别的,这是因为,在美国,应用最广泛的干式变压器主要还是敞开式的,而不是环氧浇注式的,其绝缘材料和组成也不一样。根据相关参考资料,环氧树脂的比热约2000J/kg·K=33.3(W·min)/(kg·K),环氧浇注干式变压器绕组中的主要填充材料为玻璃纤维的比热约为800J/kg·K=13.3(W·min)/(kg·K),绕组中树脂质量与玻璃纤维质量的

变压器温升.pdf

1.变压器的温度与周围空气温度的差叫变压器的温升。 2.在变压器寿命上,引起绝缘老化的主要原因是温度。由于变压器内部热量传播不均匀, 故变压器各部位的温度差别很大,因此需要对变压器在额定负荷时,各部分温度的升高做出规定,这是变压器的允许温升。一般油浸变压器采用A级绝缘,最高允许温度105℃。 各部分允许温升为:线圈允许温升65℃。以A级绝缘105℃为基础,当环境温度为40℃时,105℃-40℃=65℃。由于变压器的温度一般比绕组低10℃,故变压器油的允许温升为55℃。为防止油的老化,上层油面的温升不得超过45℃。这样无论周围空气如何变化,只有温升不超过允许值,就能够保证变压器在规定的使用年限内安全运行。 3.变压器上层油温,变压器线圈温度要比上层油温高10℃。国标规定:变压器绕组的极限 工作温度为105℃;(即环境温度为40时℃),上层温度不得超过95℃,通常以监视温度(上层油温)设定在85℃及以下为宜。 变压器异常运行主要表现在:声音不正常,温度显著升高,油色变黑,油位升高或降低,变压器过负荷,冷却系统故障及三相负荷不对称等。当出现以上异常现象时,应按运行规程规定,采取措施将其消除,并将处理经过记录在异常记录簿上。. q0 Q3 }2 `/ P8 U 在正常负荷和正常冷却条件下,变压器上层油温较平时高出10℃以上,或变压器负荷不变而油温不断上升,则应认为变压器温度异常。变压器温度异常可能是下列原因造成的: 1)变压器内部故障。如绕组匝间短路或层间短路,绕组对围屏放电,内部引线接头发热,铁芯多点接地使涡流增大而过热等。这时变压器应停电检修 2)冷却装置运行不正常。如潜油泵停运,风扇损坏停转,散热器阀门未打开。此时,在变压器不停电状态下,可对冷却装置的部分缺陷进行处理,或按规程规定调整变压器负荷至相应值。 变压器的温升: 变压器的温度与周围空气温度的差叫变压器的温升。 回答这个问题要提到变压器的允许温升,它的规定和依据? 在变压器寿命上,引起绝缘老化的主要原因是温度。由于变压器内部热量传播不均匀,故变压器各部位的温度差别很大,因此需要对变压器在额定负荷时,各部分温度的升高做出规定,这是变压器的允许温升。一般油浸变压器采用A级绝缘,最高允许温度105℃。各部分允许温升为: 线圈允许温升65℃。以A级绝缘105℃为基础,当环境温度为40℃时,105℃-40℃=65℃。由于变压器的温度一般比绕组低10℃,故变压器油的允许温升为55℃。 为防止油的老化,上层油面的温升不得超过45℃。这样无论周围空气如何变化,只有温升不超过允许值,就能够保证变压器在规定的使用年限内安全运行。 一般变压器的主要绝缘是A级绝缘,规定最高使用温度为105度,变压器在运行中绕组的温度要比上层油温高10—15度。如果运行中的变压器上层油温总在80-90度左右,也就是绕组经常在95-105度左右。 如果变压器长时间在温度很高的情况下运行,会缩短内部绝缘纸板的寿命,使绝缘纸板变脆,容易发生破裂,失去应有的绝缘作用,造成击穿等事故;绕组绝缘严重老化,并加速绝缘油的劣化,影响使用寿命。所以能避免高温尽量避免,实在不行,时间也不宜太长。

变压器的温升计算

变压器的温升计算方法探讨 1 引言 我们提出工频变压器温升计算的问题,对高频变压器的温升计算也可以用来借鉴。工频变压器的计算方法很多人认为已趋成熟没有什么可讨论的,其实麻雀虽小五脏俱全,再成熟的东西也需要不断创新才有生命力。对于一个单位的工程技术人员来讲温升计算问题可能并不存在,温升本身来源于试验数据,企业本身有大量试验数据,温升问题垂手可得,拿来主义就可以了,在本企业来说绝对有效,离开了本企业也带不走那么多数据。但冷静的考虑一下,任何一个企业不可能生产全系列变压器,总会有相当多的系列不在你生产的范围内,遇到一些新问题,只能用打样与试验的方法去解决,小铁心不在话下,耗费的工时与材料都不多,大铁心耗费的铁心与线材就要考虑考虑了。老企业可以用这样简单的办法去解决,只不过多花费一些时间罢了,一个新企业或规模不大的企业,遇到这些问题要用打样与试验的方法去解决,就耗时比较多了,有时候会损失商机。进入软件时代,软件的编写者如不能掌握这一问题,软件的用户将会大大减少。下面就温升的计算公式进行探讨,本文仅提出一个轮廓,供大家参考。 2 热阻法 热阻法基于温升与损耗成正比,不同磁心型号热阻不同,热阻法计算温升比较准确,因其本身由试验得来,磁心又是固定不变的,热阻数据由大型磁心生产厂商提供。有了厂家提供的热阻数据,简单、实用何乐而不为。高频变压器可采用这一方法。而铁心片供应商不能提供热阻这一类数据,因此低频变压器设计者很难采用。热阻法的具体计算公式如下: 式中, 温升ΔT(℃) 变压器热阻Rth(℃/w) 变压器铜损PW(w) 变压器铁损PC(w) 3 热容量法 源于早期的灌封变压器,由于开放式变压器的出现这种计算方法已被人遗忘,可以说是在考古中发现。这种计算方法的特点是把变压器看成是一个密封的元件,既无热的传导,也无热的辐射,更无热的对流,热量全部靠变压器的铁心、导线、

干式变压器绕组温升计算方法分析

干式变压器绕组温升计算方法分析 傅华强 2003 1发热与散热的平衡—绕组的稳定温升 绕组上的损耗功率是绕组温升的热源,这是比较好算的.而绕组的散热则是一个比较复杂的问题.在绕组内部热量通过传导的方式传到绕组的表面,在表面则通过对流和幅射的方式传到外界环境中去.当绕组的发热与散热达到平衡时,就是绕组的稳定温升。 绕组的散热是一个复杂过程。影响绕组散热的主要因素:绕组温度;绝缘层厚;绕组外包绝缘厚:绕组外包绝缘材料的散热性能;散热气道的宽度和长度;气流速度;铁芯和相邻绕组散热的影响等。因而绕组温升计算随其所用绝缘材料和结构的不同而不同。 2 绕组温升计算的数学模型 绕组的稳定温升一般用一个简化的公式进行计算,不同的结构和绝缘材料的绕组所用系数是不同的。公式运用的温度范围也是有限定的。如: τ= K Q X Q = W/S S=∑ αi S i 式中:τ—绕组温升; K—系数; X—与散热效果有关的系数,散热越好X的值越小; Q— 绕组的单位热负荷 W/m2 W—参考温度下的绕组损耗功率 W S— 等效散热面 m2 S i— 绕组散热面 m2 αi— 散热系数 2.1 不同结构型式的变压器所用的计算公式是不同的。 2.2 干式变压器的散热主要是对流和幅射完成的,非包封变压器的传导温升

所占比例很小,因而有些计算公式将层绝缘与外绝缘造成的传导引起的温升计算省略了,有些公式还要加上传导引起的温升,如西欧树脂绝缘干式变压器的计算公式。 2.3 黑体面的热量幅射与绝对温度的4次方成比例的,在一个不大的温度段,对流和幅射对散热的综合影响造成的温升式中系数X—与散热效果有关的系数,散热越好X的值越小.如油浸变压器层式绕组温升X值取0.8,而强迫油循环时X取0.7,饼式绕组X取0.6。一般干式变压器X值取0.8,当温升在80K 左右时,由于温度高时散热效率高,在一些计算公式中X取0.75,因而当温升在100—125K时,X的取值应该再小些。 2.4 当温升范围较大时,用一个计算公式会首尾不能兼顾,需要用两个以上的公式,它们的X值不同,即斜率不同。实际上是由几条直线组成的近似曲线。 2.5 绕组的单位热负荷Q 是指在无遮盖的单位散热面上的功率(W/m2),有气道的散热面,则要确定气道的散热系数。 2.6如果计算所得温升离参考温度很远,由于计算所用绕组损耗功率离实际功率差得太大而误差很大,则应调整计算绕组损耗功率所用的参考温度。 3 确定数学模型的工厂方法 最实用的确定数学模型的方法是通过典型变压器的温升试验。无气道绕组的温升是最基本的,如绕在厚绝缘筒上的外线圈。线圈外部的面积大小就是有效散热面,先算出热负荷Q值,由试验所得温升与Q值在双对数座标纸上打点,最少要有3个试验数据,即可在对数坐标纸上连成一条合理的直线,从这条直线上确定公式的两个系数K和X。 τ= K Q X τ1 K = ———— Q1 X Lgτ2 - Lgτ1Lgτ2/τ1 X =———————— = ———— Lg Q2 - Lg Q1Lg Q2/Q1 式中:

变压器温升及过负荷运行的危险及运行管理

变压器温升及过负荷运行的危险及运行管理 一.变压器的温升 1.温度限值 变压器内部多采用绝缘A级绝缘材料,其最高耐受温度为105℃,当超过此值,即对绝缘造成损伤。对采用ONAF冷却方式的变压器,顶层油温一般低于绕组最高温度约10℃左右。所以为保证绕组最高温度不超过105℃,应使顶层油温保持在95℃以下。 2.强迫冷却变压器的运行条件 强油循环冷却变压器运行时,必须投入冷却器。空载和轻载时不应投入过多的冷却器(空载状态下允许短时不投)。各种负载下投入冷却器的相应台数,应按制造厂的规定。按温度和(或)负载投切冷却器的自动装置应保持正常。 油浸(自然循环)风冷和干式风冷变压器,风扇停止工作时,允许的负载和运行时间,应按制造厂的规定。油浸风冷变压器当冷却系统故障停风扇后,顶层油温不超过65℃时,允许带额定负载运行。 强油循环风冷和强油循环水冷变压器,当冷却系统故障切除全部冷却器时,允许带额定负载运行20min。如20min后顶层油温尚未达到75℃,则允许上升到75℃,但在这种状态下运行的最长时间不得超过1h。 3.温度及油位异常的处理 a.检查变压器的负载和冷却介质的温度,并与在同一负载和冷却介质温度下正常的温度核对; b.核对温度测量装置; c.检查变压器冷却装置或变压器室的通风情况。 若温度升高的原因是由于冷却系统的故障,且在运行中无法修理者,应将变压器停运修理; 若不能立即停运修理,则值班人员应按现场规程的规定调整变压器的负载至允许运行温度下的相应容量。 在正常负载和冷却条件下,变压器温度不正常并不断上升,且经检查证明温度指示正确,则认为变压器已发生内部故障,应立即将变压器停运。 变压器在各种超额定电流方式下运行,若顶层油温超过105℃时,应立即降低负载。 变压器中的油因低温凝滞时,应不投冷却器空载运行,同时监视顶层油温,逐步增加负载,直至投入相应数量冷却器,转入正常运行。

变压器的温升计算公式

变压器的温升计算公式 1 引言 工频变压器的计算方法很多人认为已趋成熟没有什么可讨论的,对于一个单位的工程技术人员来讲温升计算问题可能并不存在,温升本身来源于试验数据,企业本身有大量试验数据,温升问题垂手可得。下面就温升的计算公式进行探讨,本文仅提出一个轮廓,供大家参考。 2 热阻法 热阻法基于温升与损耗成正比,不同磁心型号热阻不同,热阻法计算温升比较准确,因其本身由试验得来,磁心又是固定不变的,热阻数据由大型磁心生产厂商提供。有了厂家提供的热阻数据,简单、实用何乐而不为。高频变压器可采用这一方法。而铁心片供应商不能提供热阻这一类数据,因此低频变压器设计者很难采用。热阻法的具体计算公式如下: 式中, 温升ΔT(℃) 变压器热阻Rth(℃/w) 变压器铜损PW(w) 变压器铁损PC(w) 3 热容量法 源于早期的灌封变压器,由于开放式变压器的出现这种计算方法已被人遗忘,可以说是在考古中发现。这种计算方法的特点是把变压器看成是一个密封的元件,既无热的传导,也无热的辐射,更无热的对流,热量全部靠变压器的铁心、导线、绝缘材料消耗掉。这样引出一个热容量(比热)的概念,就可以利用古人留给我们的比热的试验数据,准确的计算出变压器的温升来。不是所有的变压器都可以利用这一计算公式,唯独只有带塑料外壳的适配器可采用这一方法,这种计算方法准确度犹如瓮中捉鳖十拿九稳。 若适配器开有百叶窗,那就有一部份热量通过对流散发出去,如不存在强迫对流,百叶窗对温升的影响只在百分之三左右。上一代的变压器设计工作者对这一计算方法很熟悉,现在的变压器设计工作者根据此线索,进行考古也会有收获。热容量法的计算模式如下: 式中,温升ΔT(℃)

变压器绕组温度场的二维数值计算

变压器绕组温度场的二维数值计算 2D N um erical Calcu lati on of T em peratu re F ield of W inding in T ran sfo r m er 傅晨钊,汲胜昌,王世山,李彦明 (西安交通大学电气工程学院,西安710049) 摘 要 分析变压器绕组的热源和散热条件,应用传热学和流体力学的原理建立其温度场和绝缘油流场的有限元方程,并确定了边界条件。得到绕组温度场和绝缘油流场的分布,并与实测温度值进行了比较,误差均在1K范围内,证明了此方法的正确性。 Abstract T h is paper analyzed the heat sources and the ther m al dispersi on conditi ons of transfo r m er w inding.T he finite elem ent equati ons of temperature field and flow field w ere built by ther modynam ics and hydrodynam ics p rinci p le. A t the sam e ti m e,boundary conditi ons w ere confir m ed. T he temperature distributi on and flow distributi on w ere giv2 en by so lving the equati ons.T he comparison betw een the calculated results and m easured results show s the agree2 m ent:T he difference w as less than1K.It w as verified that the temperature distributi on and flow distributi on could be so lved by th is m ethod. 关键词 变压器 绕组 温度场 有限元 Key words transfo r m er w inding temperature field fi2 nite elem ent 中图分类号 TM83 文献标识码 A 0 前 言 变压器绕组温升的分析和计算对产品的研制开发和运行维护十分重要。传统的平均温升概念不能全面准确反映绕组的真实状况。本文应用传热学和流体力学的原理建立绕组温度场和绝缘油流场的有限元方程,通过数值计算求出各点的温度和绝缘油流动的状况,得到整个变压器绕组的温度场分布。 1 变压器绕组的热源和散热分析 111 变压器绕组的热源 为集中研究绕组的温度场分布,制作的小型变压器绕组实体模型中无铁心,长方环氧箱体。变压器绕组的热源主要是绕组的电阻和绕组内部的涡流损耗,其表达式为: P=P R+P WL=I2R+P W L 其中,I、R、P WL分别为变压器绕组的电流、电阻和涡流损耗。计算中,单位热源q=P V,P为测量得到的有功损耗;V为绕组体积。 112 变压器绕组的散热分析 变压器绕组的散热主要是对流换热,包括箱壁外侧与外界空气的自然对流散热和油流与箱壁内侧和绕组的强制对流散热。 对流散热主要取决于两者之间的温差、对流换热系数和换热面积。由于箱壁的几何形状比较规则,自然对流换热系数Α1采用均值对计算结果影响不大。Α1由下式得到[1]: Α1=C(Κ H)(G r m P r)n, 其中,H为箱壁高度;G r m为葛拉晓夫数;P r为普朗特数;C和n为常数;Κ为空气导热系数。 由于受许多因素的影响,如油的物理特性、绕组的生热率和几何形状、各绕组的空间位置、边界条件和油的流动方式等,油流与绕组的强制对流散热相对复杂一些,其中各绕组的空间位置决定了它们和油之间的Α1相差很大,不能用均值近似。油的流动方式决定了换热的效果,可分为层流和湍流,两者流动状态和换热效果相差较大,须通过雷诺数R e判断: R e=ΘΤL c Λ, 其中,Θ为流体密度;Τ为流体流速;L c为特征尺寸;Λ为流体绝对粘度。当R e<2300时,流动方式为层流;超过时为湍流。 由此可知,必须将变压器绕组温度场和绝缘油流场问题联立,方可得到理想结果。 2 求解的微分方程和边界条件 首先进行4点假设: 1)稳态:当发热与散热达到热平衡时,绕组及油的温、速度分布不随时间变化; 2)常数:油的物理特性,如动力粘度、密度、比热恒定不可压缩; 3)绕组的发热是唯一热源,且单位时间单位体积发热量为常数,传热系数均匀; 4)外界空气温度恒定:油的流动和散热,其温度场和速度场受质量、动量和能量传递的共同支配,由下列方程组描述[2~3]: a1连续性方程 5u 5x+5Τ 5y=0, b1x方向的动量微分方程  Θ(u 5u 5x+Τ 5u 5y)=F x- 5p 5x+Λ( 52u 5x2+ 52u 5y2), c1y方向的动量微分方程  Θ(u 5Τ 5x+Τ 5Τ 5y)=F y- 5p 5y+Λ( 52Τ 5x2+ 52Τ 5y2), 1能量微分方程 ? 1 ? M ay.2002 H IGH VOL TA GE EN G I N EER I N G V o l.28N o.5

变压器试验基本计算公式

变压器试验基本计算公式 一、电阻温度换算: 不同温度下的电阻可按下式进行换算:R=R t (T+θ)/(T+t) θ:要换算到的温度;t:测量时的温度;R t:t温度时测量的电阻值; T :系数,铜绕组时为234.5,铝绕组为224.5。 二、电阻率计算: ρ=RtS/L R=(T+θ)/(T+t)电阻参考温度20℃ 三、感应耐压时间计算: 试验通常施加两倍的额定电压,为减少励磁容量,试验电压的频率应大于100Hz,最好频率为150-400Hz,持续时间按下式计算: t=120×f n /f, 公式中:t为试验时间,s;f n 为额定频率,Hz;f为试验频率, Hz。 如果试验频率超过400 Hz,持续时间应不低于15 s。 四、负载试验计算公式: 通常用下面的公式计算:P k =(P kt +∑I n 2R×(K t 2-1))/K t 式中:P k 为参考温度下的负载损耗; P kt 为绕组试验温度下的负载损耗; K t 为温度系数; ∑I n 2R为被测一对绕组的电阻损耗。 三相变压器的一对绕组的电阻损耗应为两绕组电阻损耗之和,计算方法如下:“Y” 或“Y n ”联结的绕组:P r =1.5I n 2R xn =3 I n 2R xg ; “D”联结的绕组:P r =1.5I n 2R xn =I n 2R xg 。 式中:P r 为电阻损耗; I n 为绕组的额定电流; R xn 为线电阻; R xg 为相电阻。 五、阻抗计算公式: 阻抗电压是绕组通过额定电流时的电压降,标准规定以该压降占额定电压的百分数表示。阻抗电压测量时应以三相电流的算术平均值为准,如果试验电流无法达到额定电流时,阻抗电压应按下列公式折算并校准到表四所列的参考温度。e kt = (U kt ×I n )/(U n ×I k )×100%, e k =1) - (K ) /10S (P e2 2 N kt 2 kt % 式中:e kt 为绕组温度为t℃时的阻抗电压,%; U kt 为绕组温度为t℃时流过试验电流I k 的电压降,V; U n 为施加电压侧的额定电压,V; I n 为施加电压侧的额定电流,A; e k 为参考温度时的阻抗电压,%; P kt 为t℃的负载损耗,W;S n 为额定容量,kVA; K t 为温度系数。案例1:

关于配电变压器过负荷运行的分析与解决措施

关于配电变压器过负荷运行的分析与解决措施 【摘要】随着经济的发展和社会的进步,人们对电的依赖性越来越强,对配电网络安全可靠运行也提出更高要求,配电变压器是电气设备中使用较多的设备,配电变压器损耗约占配电系统总损耗的60%~80%,变压器的过负荷电流超过其额定电流时,将使绕组发热,轻则影响其使用寿命,重则烧坏变压器,配电变压器过负荷问题一直困扰着我们,为防止变压器过负荷,必要时予以调整解决,对此进行探讨。 【关键词】配电变压器;负载率;过负荷;空载损耗 1.配电变压器过负荷概况 保定供电公司配网变压器共计2299台,在负荷高峰期间,其中重载配电变压器334台,轻载配电变压器1378台。在334台重载配电变压器中有71台配电变压器存在过负荷运行现象,平均负载率达到130%。最高负载率达到了160%,变压器严重过负荷运行,容易造成变压器烧损,对配网安全稳定运行构成很大的威胁。 2.配电变压器过负荷原因分析 有关规程和实践经验表明,变压器绕组绝缘老化速度与温度有关,一般油浸式变压器绕组用的电缆纸适用温度为80~140摄氏度,温度增加6摄氏度,其老化速度增加1倍。为避免配电变压器过负荷运行烧损,我们可以采取安装配电变压器冷却器的办法降低变压器温度。配电变压器的冷却系统共6组冷却器,每组冷却器根据变压器的温度和负荷变化自动投入和切除,投入冷却器的组数取决于变压器的温度和负荷。当任意运行的变压器冷却器故障或变压器温度达到设定值,备用冷却器自动投入运行。备用冷却器应定时轮换,使得每台冷却器的利用率达到最优。此种措施降低了配电变压器绕组温度,减缓了其老化速度。使配电变压器因过负荷运行烧损的几率大大降低。而我们知道,造成变压器绕组温升的最根本因素是变压器的负载率过高。只有降低变压器负载率,才能降低变压器运行温度。我们可以采取在配电变压器下装设低压配电箱,将低压负荷类型进行分析,在低压配电箱将低压负荷分为2路进行供电。1路为重要负荷,1路为普通负荷。当变压器负载率达到设定上限时,普通负荷自动切断。保障了变压器的安全稳定运行,及重要负荷的正常供电。但是也影响了供电可靠性。 由此可见,以上措施只能在短时间内保障变压器安全稳定运行,如要从根本上解决配电变压器过负荷问题,只有采取增容增点的改造方案。 针对保定供电公司的配电变压器过负荷运行情况,我们进行了技术上的分析。发现保定供电公司71台配电变压器有67台为农网变压器,所占比例为94%。这67台农网变压器均为农村灌溉浇地用农网变压器,此种变压器负荷特点是在农村集中灌溉浇地时期,变压器负载率较大,变压器处在重载运行状态,特别在

油浸电力变压器温升计算设计手册

设计手册 油浸电力变压器温升计算

目 录 1 概述 第 1 页 热的传导过程 第 1 页 温升限值 第 2 页 1.2.1 连续额定容量下的正常温升限值 第 2 页 1.2.2 在特殊使用条件下对温升修正的要求 第 2 页 1.2.2.1 正常使用条件 第 2 页 1.2.2.2 安装场所的特殊环境温度下对温升的修正 第 2 页 1.2.2.3 安装场所为高海拔时对温升的修正 第 3 页 2 层式绕组的温差计算 第 3 页 层式绕组的散热面(S q c )计算 第 3 页 层式绕组的热负载(q q c )计算 第 3 页 层式绕组的温差(τq c )计算 第 4 页 层式绕组的温升(θqc )计算 第 4 页 3 饼式绕组的温升计算 第 4 页 饼式绕组的散热面(S q b )计算 第 4 页 3.1.1 饼式绕组的轴向散热面(S q bz )计算 第 4 页 3.1.2 饼式绕组的横向散热面(S q b h )计算 第 5 页 饼式绕组的热负载(q q b )计算 第 5 页 饼式绕组的温差(τq b )计算 第 5 页 3.3.1 高功能饼式绕组的温差(τq g )计算 第 5 页 3.3.2 普通饼式绕组的温差(τq b )计算 第 6 页 饼式绕组的温升(θq b )计算 第 7 页 4 油温升计算 第 8 页 箱壁几何面积(S b )计算 第 8 页 箱盖几何面积(S g )计算 第 9 页 版 次 日 期 签 字 旧底图总号 底图总号 日期 签字 油 浸 电 力 变 压 器 温 升 计 算 共 页 第 页 02 01

油箱有效散热面(S yx )计算 第 9 页 4.3.1 平滑油箱有效散热面(S yx )计算 第 9 页 4.3.2 管式油箱有效散热面(S yx )计算 第10 页 4.3.3 管式散热器油箱有效散热面(S yx )计算 第12 页 4.3.4 片式散热器油箱有效散热面(S yx )计算 第14 页 目 录 油平均温升计算 第19 页 4.4.1 油箱的热负载(q yx )计算 第19 页 4.4.2 油平均温升(θy )计算 第19 页 顶层油温升计算 第19 页 5 强油冷却饼式绕组的温升计算 第21 页 强油导向冷却方式的特点 第21 页 5.1.1 线饼温度分布 第21 页 5.1.2 横向油道高度的影响 第21 页 5.1.3 纵向油道宽度的影响 第21 页 5.1.4 线饼数的影响 第21 页 5.1.5 挡油隔板漏油的影响 第21 页 5.1.6 流量的影响 第21 页 强油冷却饼式绕组的热负载(q q p )计算 第22 页 强油冷却饼式绕组的温差(τq p )计算 第23 页 强油冷却饼式绕组的温升(θq p )计算 第23 页 强油风冷变压器本体的油阻力(ΔH T )计算 第23 页 5.5.1 油管路的油阻力(ΔH g )计算 第23 页 5.5.1.1 油管路的摩擦油阻力(ΔH M )计算 第23 页 5.5.1.2 油管路特殊部位的形状油阻力(ΔH X )计算 第24 页 5.5.1.3 油管路的油阻力(ΔH g )计算 第25 页 5.5.2 线圈内部的油阻力(ΔH q )确定 第26 页 5.5.2.1 线圈内部的摩擦油阻力(ΔH q m )计算 第26 页 5.5.2.2 线圈内部特殊部位的形状油阻力(ΔH qT )计算 第27 页 油 浸 电 力 变 压 器 温 升 计 算 共 页 第 页 02 02

干式变压器温升试验

干式变压器温升试验之“模拟负载法” 1.试验方法:模拟负载法。 2.试验原理:通过短路试验和空载试验的组合来确定的。 3.试验目的:是验证变压器冷却能力,能否将由总损耗所产生的热量散发出去,达 到热平衡时使变压器绕组(平均)高于冷却介质的温升不超过规定的限值,同时还要通过红热扫描观测电路联结点、铁心及结构件、绕组等是否有局部过热。 4.试验接线图: 5.试验过程:在额定电压下连续进行的空载试验应一直持续到绕组和铁心的稳定状态, 然后测量各个线圈的温升Δθe;立即进行短路试验,此时一个线圈由开路变成短路,另一 个线圈输入额定电流,直到绕组和铁心稳定为止,然后测量各个线圈的温升Δθc。(试验顺序可以互换) 绕组温升:Δθc(Δθe)=R2/R1(T+θ1)-( T+θ2) 各个线圈的总温升: Δθc’=Δθc [1+(Δθe /Δθc)1/k1]k1 式中:Δθc’--绕组总温升;Δθc—短路试验下的绕组温升; Δθe—空载试验下的绕组温升;T—温度系数,铜时为:235铝时为:225 R1、R2、θ1、θ2—冷态电阻、热态电阻、冷电阻环温、热电阻环温; k1—对于自冷式为0.8;对于风冷式为0.9。 备注:由于某种原因,施加电流没有达到额定电流时折算: I r Δθr=Δθ×(-)q I t 式中:Δθr、Δθt-额定电流下、试验电流下的绕组温升; I r、I t-额定电流、试验电流;(I t >0.9I r) q-AN:1.6、AF:1.8。 首先要测冷电阻并准确的记录绕组温度,接线方式分别同空载试验和负载试验。负载状态下试验的电流应尽可能接近额定持续电流,并不小于此值的90%,电流应持续直到变压器 任何部分每小时的温度上升少于2K。测量高、低压热电阻并准确的记录绕组温度,记录数 据并计算结果。检验绕组的温升是否符合设计要求。 6.温升试验分接位置的选择: a. 对分接范围在±5%以内,且额定容量不超过2500kVA的变压器,如无特殊要求,温 升试验选在主分接上进行。 b. 对分接范围超过±5%,或额定容量大于2500kVA的变压器,温升试验选在最大电流分接上进行。 7.海拔与温升限值的关系: 变压器运行高度超过海拔1000米,但试验场地是正常海拔,温升限值应递减,变压器运行高度低于海拔1000米,但试验场地高于海拔1000米,温升限值应递增,海拔超过1000米每500米为一级, AN:2.5% AF:5% 8.温升稳定的判断方法: 铁芯、绕组温升持续三小时且每小时不超过1K时,变压器视为稳定。 国家标准对温升限值的要求: 部位绝缘系统温度℃最高温升K 线圈 A 105 60 (电阻法) E 120 75 B 130 80

主变压器运行规定

主变压器运行规定 1、变压器的外加一次电压可以较额定值为高,但一般不应超过相应电压分头额定值的5%,且各分头位置的额定电流,应严格遵守制造厂规定; 2、变压器运行中的允许温度应按上层油温来检查,上层油温的允许值,一般不得超过85 ℃。 3、变压器正常运行电流不得超过其额定电流(根据当时主变分接头电流定)。非经调度许可,变压器不得过负荷运行。全天满负荷运行的变压器不宜过负荷运行;存在较大缺陷的变压器(如冷却系统不正常、严重漏油、色谱分析异常等)不准过负荷运行。 4、过负荷运行要求 A. 变压器可以在正常过负荷和事故过负荷的情况下运行。正常过负荷不能经常使用,其允许值根据变压器的负荷曲线、冷却介质温度以及过负荷前变压器所带的负荷等来确定,事故过负荷只允许在事故情况下使用; B. 变压器在较严重的缺陷(例如:冷却系统不正常、严重漏油、有局部过热现象、油中溶解气体分析结果异常等)或绝缘有弱点时,不准过负荷运行; C. 全天满负荷运行的变压器不宜过负荷运行; D. 变压器正常过负荷及事故过负荷,应将过负荷大小和持续时间,温度记入运行记录薄和变压器技术档案内。 E. 当变压器出现过负荷时,立即向调度汇报,由调度明确告诉变电站值班员是正常过负荷,还是事故过负荷。变压器过负荷后,应将过负荷大小和持续时间记录存档,过负荷运行时,应加强监视,每半小时向调度及所领导汇

报主变运行数据一次。 F. 正常或事故过负荷允许运行时间见下表(表1和表2.)。 正常过负荷允许运行时(表1) 事故过负荷允许运行时间(表2) 5、主变停电或送电之前,必须将220kV、110kV侧中性点接地刀闸合上,主变停送电操作完毕后,是否再断开或要改变主变中性点的运行方式,应由

变压器常识ABC

变压器常识A B C③ 1.变压器允许温升 2.变压器的参数偏差值与使用峰值的参数 3.铁心 4.温升试验 5.冲击试验 1.变压器允许温升 变压器各个部门有不同的允许温升,不同的运行工况也有不同的允许温升。决定允许温升的因素有:变压器的运行预期寿命、变压器的安全运行、变压器的检测技术。 绕组允许温升:绕组的允许温升是指整个绕组的平均温升,由电阻法测得,允许温升与绝缘耐热等级有关。油浸式变压器属A级绝缘,由于传统的绕组温升测量法为电阻法,测得的温升为平均温升,A级绝缘允许的平均温升为65K。平均温升与绕组最热点温升之差假使为13K。在年平均温度为20℃时,A级绝缘绕组最热点温度为 20+65+13=98℃,此时A级绝缘具有正常寿命。干式变压器各种绝缘的允许平均温升:A级为60K,E级为75K,B级为80K,F级为100K,H级为125K,C级为150K。冬季绕组温升低于平均温升,绕组可延长寿命,夏季的绕组温升高于平均温升,绕组要牺牲寿命。如超名牌容量也要牺牲寿命,但超名牌容量运行时,油浸式变压器A级绝缘绕组最热点温度不能超过140℃,即使牺牲的寿命不多,也不允许超过140℃,因超过140℃时油要分解出气体而影响绝缘强度。所以油浸式变压器A级绝缘的最热点温度不 能超过140℃是从变压器安全运行出发的。 大容量变压器有时有几种冷却方式,例如ONAN/ONAF,变压器额定容量一般是指ONAF下的允许值,当风扇失去电源后,冷却效率下降,如仍按ONAF冷却方式下容量运行时,绕组平均温升必将升高,故ONAN冷却方式下必须降低容量运行,使绕组平均 温升不超过65K。 另外,双绕组或三绕组变压器中,二个或三个绕组应同时达相同的温升,当一个绕组达65K平均温升时另一个或二个绕组低于65K,则这样的设计是不经济的。油浸式变压器还应使油面顶层与几个绕组平均温升同时达允许温升是较为经济的。即油面顶层温升达55K,绕组平均温升达65K为经济的方案。在设计阶段,就合理选取每一绕组的电流密度,在保持负载损耗不超过标准值时使各个绕组的温升接近65K,同时油面顶层也达55K。但是,这对强油循环的变压器是难以达到的。因强油风冷式变压器的油顶层温升一般为40K,强油水冷式变压器的油顶层温升一般为35K。 实际上,油面顶层温升与绕组平均温升很难同时到达极限允许值,因此,一般不能根据油面顶层温升来判断绕组平均温升。这也是大容量变压器既装油面温度指示仪与

变压器温升测量方法的比较

变压器温升测量方法的比较 在设备中,变压器作为安全件有着极其重要的作用。如果设备在正常工作或局部产生故障的情况下,而引起变压器温升过高且已超出变压器材料件(如骨架、线包、漆层等)所能承受的温度,可能会使变压器绝缘失效,引起触电危险或着火危险。所以在设备中对变压器温升的测量是必不可少的。通常对变压器温升的测量,我们采用两种方法:热电偶法和电阻法。 一、热电偶法:目前可采用DR030数字温度巡回检测仪来测量变压器温升。测试时可用胶布或用涂 料(氧化铝+溶剂将热电偶丝粘贴在变压器被测部位上。贴好热电偶后,受试变压器加上负载,接通电源,待热稳定或4h后测量其温升。二、电阻法:首先在变压器加负载并接通电源前,应先测量变压器的冷态电阻R1, 然后,给变压器加上负载并接通电源,4h或热稳定后,断开电源,立即测量变压器各线包的热态电阻R2,由以下公式计算出变压器的温升:Δt=R2-R1∕R1(234.5+t1)-( t2- t1) ;R1:试验开始时的阻值(Ω);R2:试验结束时的阻值(Ω);t1:试验开始时的室温(℃) ;t2:试验结束时的室温(℃)。 从上述测试方法不难发现,用热电偶法和电阻法测量变压器温升时,前者测量的是变压器线包外层的温升,后者测得的是变压器线包的平均温升。在GB4943中规定测量变压器的线包温升允许采用热电偶法,测得的结果增加10℃,GB8898则要求用电阻法测量变压器线包的温升。为了了解这两种方法的差异,同时, 为了了解我们在测量变压器温升时,是测量变压器初级线包还是次级线包更能反应出变压器温升的实际情况,所以在对变压器进行温升试验时,特留意了以下两种结构的电源变压器,根据测量结果,进行了比对。热电偶法和电阻法变压器温升测量结果表(纯电阻负载)

变压器过载能力

油浸式变压器过载能力及时间:过载10% 变压器可持续运行180 分钟 过载20% 变压器可持续运行150 分钟 过载30% 变压器可持续运行120 分钟 过载60% 变压器可持续运行45 分钟 过载75% 变压器可持续运行15 分钟 过载100% 变压器可持续运行7.5 分钟 过载140% 变压器可持续运行3.5 分钟 过载200% 变压器可持续运行1.5 分钟

干式变压器的过载能力分析 干式变压器的过载能力与环境温度、过载前的负载情况(起始负载)、变压器的绝缘散热情况和发热时间常数等有关,若有需要,可向生产厂索取干变的过负荷曲线。 目前,我国树脂绝缘干式变压器年产量已达10000MVA,成为世界上干式变压器产销量最大的国家之一。随着低噪(2500kVA以下配电变压器噪声已控制在50dB以内)、节能(空载损耗降低达25%)的 SC(B)9系列的推广应用,使得我国干式变压器的性能指标及其制造技术已达到世界先进水平。 随着干式变压器的推广应用,其生产制造技术也获得长足发展,可以预测,未来的干式变压器将在如下几方面获得进一步发展。 (1)节能低噪:随着新的低耗硅钢片,箔式绕组结构,阶梯铁芯接缝,环境保护要求,噪声研究的深入,以及计算机优化设计等新材料、新工艺、新技术的引入,将使未来的干式变压器更加节能、更加宁静。 (2)高可靠性:提高产品质量和可靠性,将是人们的不懈追求。 (3)环保特性认证:以欧洲标准HD464为基础,开展干式变压器的耐气候(C0、C1、C2)、耐环境(E0、E1、E2)及耐火(F0、F1、F2)特性的研究与认证。

(4)大容量:从50~2500kVA配电变压器为主的干式变压器,向10000~20000kVA/35kV电力变压器拓展,随着城市用电负荷不断增加,城网区域变电所越来越深入城市中心区、居民小区、大型厂矿等负荷中心,35kV大容量的小区中心供电电力变压器将获广泛应用。 (5)多功能组合:从单一变压器向带有风冷、保护外壳、温度计算机接口、零序互感器、功率计量、封闭母线及侧出线等多功能组合式变压器发展。 (6)多领域发展:从以配电变压器为主,向发电站厂用变压器、励磁变压器、地铁牵引整流变压器、大电流电炉变压器、核电站、船用及采油平台用等特种变压器及多用途领域发展。其中,用于城市地铁及轨道交通的干式牵引变压器,电压有10、20和35kV三个等级,容量有800、2500和3300kVA,为减少谐波污染,从12脉波整流发展到24脉波整流;举世瞩目的长江三峡世界最大的840000kW发电机的励磁变压器,已由顺特厂研制成功,并通过了国家验收。 可以预言,21世纪的配电变压器将属于性能优越、低噪声及节能的树脂绝缘干式变压器。

相关文档
最新文档