2020年湖南省岳阳市中考数学试卷(解析版)

合集下载

2020年湖南省岳阳市中考数学试卷及答案

2020年湖南省岳阳市中考数学试卷及答案

2020年湖南省岳阳市中考数学试卷一、选择题(本大题共8小题,每小题3分,满分24分,在每道小题给出的四个选项中,选出符合要求的一项)1.(3分)(2020•岳阳)﹣2020的相反数是()A.﹣2020B.2020C.−12020D.120202.(3分)(2020•岳阳)2019年以来,我国扶贫攻坚取得关键进展,农村贫困人口减少11090000人,数据11090000用科学记数法表示为()A.0.1109×108B.11.09×106C.1.109×108D.1.109×107 3.(3分)(2020•岳阳)如图,由4个相同正方体组成的几何体,它的左视图是()A.B.C.D.4.(3分)(2020•岳阳)下列运算结果正确的是()A.(﹣a)3=a3B.a9÷a3=a3C.a+2a=3a D.a•a2=a25.(3分)(2020•岳阳)如图,DA⊥AB,CD⊥DA,∠B=56°,则∠C的度数是()A.154°B.144°C.134°D.124°6.(3分)(2020•岳阳)今年端午小长假复课第一天,学校根据疫情防控要求,对所有进入校园的师生进行体温检测,其中7名学生的体温(单位:℃)如下:36.5,36.3,36.8,36.3,36.5,36.7,36.5,这组数据的众数和中位数分别是()A.36.3,36.5B.36.5,36.5C.36.5,36.3D.36.3,36.7 7.(3分)(2020•岳阳)下列命题是真命题的是()A.一个角的补角一定大于这个角B.平行于同一条直线的两条直线平行C.等边三角形是中心对称图形D.旋转改变图形的形状和大小8.(3分)(2020•岳阳)对于一个函数,自变量x 取c 时,函数值y 等于0,则称c 为这个函数的零点.若关于x 的二次函数y =﹣x 2﹣10x +m (m ≠0)有两个不相等的零点x 1,x 2(x 1<x 2),关于x 的方程x 2+10x ﹣m ﹣2=0有两个不相等的非零实数根x 3,x 4(x 3<x 4),则下列关系式一定正确的是( )A .0<x 1x 3<1B .x 1x 3>1 C .0<x 2x 4<1 D .x 2x 4>1二、填空题(本大题共8个小题,每小题4分,满分32分)9.(4分)(2020•岳阳)因式分解:a 2﹣9= .10.(4分)(2020•襄阳)函数y =√x −2中自变量x 的取值范围是 .11.(4分)(2020•岳阳)不等式组{x +3≥0,x −1<0的解集是 . 12.(4分)(2020•岳阳)如图,在Rt △ABC 中,CD 是斜边AB 上的中线,∠A =20°,则∠BCD = °.13.(4分)(2020•岳阳)在﹣3,﹣2,1,2,3五个数中随机选取一个数作为二次函数y =ax 2+4x ﹣2中a 的值,则该二次函数图象开口向上的概率是 .14.(4分)(2020•岳阳)已知x 2+2x =﹣1,则代数式5+x (x +2)的值为 .15.(4分)(2020•岳阳)我国古代数学名著《九章算术》上有这样一个问题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?”其大意是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱.现用30钱,买得2斗酒.问醇酒、行酒各能买得多少?设醇酒为x 斗,行酒为y 斗,根据题意,可列方程组为 .16.(4分)(2020•岳阳)如图,AB 为半圆O 的直径,M ,C 是半圆上的三等分点,AB =8,BD 与半圆O 相切于点B .点P 为AM ̂上一动点(不与点A ,M 重合),直线PC 交BD 于点D ,BE ⊥OC 于点E ,延长BE 交PC 于点F ,则下列结论正确的是 .(写出所有正确结论的序号)①PB =PD ;②BC ̂的长为43π;③∠DBE =45°;④△BCF ∽△PFB ;⑤CF •CP 为定值.三、解答题(本大题共8小题,满分64分,解答应写出必要的文字说明、证明过程或演算步骤)17.(6分)(2020•岳阳)计算:(12)﹣1+2cos60°﹣(4﹣π)0+|−√3|. 18.(6分)(2020•岳阳)如图,点E ,F 在▱ABCD 的边BC ,AD 上,BE =13BC ,FD =13AD ,连接BF ,DE .求证:四边形BEDF 是平行四边形.19.(8分)(2020•岳阳)如图,一次函数y =x +5的图象与反比例函数y =k x (k 为常数且k≠0)的图象相交于A (﹣1,m ),B 两点.(1)求反比例函数的表达式;(2)将一次函数y =x +5的图象沿y 轴向下平移b 个单位(b >0),使平移后的图象与反比例函数y =k x 的图象有且只有一个交点,求b 的值.20.(8分)(2020•岳阳)我市某学校落实立德树人根本任务,构建“五育并举”教育体系,开设了“厨艺、园艺、电工、木工、编织”五大类劳动课程.为了解七年级学生对每类课程的选择情况,随机抽取了七年级若干名学生进行调查(每人只选一类最喜欢的课程),将调查结果绘制成如图两幅不完整的统计图:(1)本次随机调查的学生人数为人;(2)补全条形统计图;(3)若该校七年级共有800名学生,请估计该校七年级学生选择“厨艺”劳动课程的人数;(4)七(1)班计划在“园艺、电工、木工、编织”四大类劳动课程中任选两类参加学校期末展示活动,请用列表或画树状图的方法,求恰好选中“园艺、编织”这两类劳动课程的概率.21.(8分)(2020•岳阳)为做好复工复产,某工厂用A、B两种型号机器人搬运原料,已知A型机器人比B型机器人每小时多搬运20kg,且A型机器人搬运1200kg所用时间与B 型机器人搬运1000kg所用时间相等,求这两种机器人每小时分别搬运多少原料.22.(8分)(2020•岳阳)共抓长江大保护,建设水墨丹青新岳阳,推进市中心城区污水系统综合治理项目,需要从如图A,B两地向C地新建AC,BC两条笔直的污水收集管道,现测得C地在A地北偏东45°方向上,在B地北偏西68°向上,AB的距离为7km,求新建管道的总长度.(结果精确到0.1km,sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,√2≈1.41)23.(10分)(2020•岳阳)如图1,在矩形ABCD中,AB=6,BC=8,动点P,Q分别从C点,A点同时以每秒1个单位长度的速度出发,且分别在边CA,AB上沿C→A,A→B 的方向运动,当点Q运动到点B时,P,Q两点同时停止运动.设点P运动的时间为t (s),连接PQ,过点P作PE⊥PQ,PE与边BC相交于点E,连接QE.(1)如图2,当t=5s时,延长EP交边AD于点F.求证:AF=CE;(2)在(1)的条件下,试探究线段AQ,QE,CE三者之间的等量关系,并加以证明;(3)如图3,当t>94s时,延长EP交边AD于点F,连接FQ,若FQ平分∠AFP,求AFCE的值.24.(10分)(2020•岳阳)如图1所示,在平面直角坐标系中,抛物线F1:y=a(x−25)2+6415与x轴交于点A(−65,0)和点B,与y轴交于点C.(1)求抛物线F1的表达式;(2)如图2,将抛物线F1先向左平移1个单位,再向下平移3个单位,得到抛物线F2,若抛物线F1与抛物线F2相交于点D,连接BD,CD,BC.①求点D的坐标;②判断△BCD的形状,并说明理由;(3)在(2)的条件下,抛物线F2上是否存在点P,使得△BDP为等腰直角三角形,若存在,求出点P的坐标;若不存在,请说明理由.2020年湖南省岳阳市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,满分24分,在每道小题给出的四个选项中,选出符合要求的一项)1.(3分)(2020•岳阳)﹣2020的相反数是()A.﹣2020B.2020C.−12020D.12020【解答】解:﹣2020的相反数是:2020.故选:B.2.(3分)(2020•岳阳)2019年以来,我国扶贫攻坚取得关键进展,农村贫困人口减少11090000人,数据11090000用科学记数法表示为()A.0.1109×108B.11.09×106C.1.109×108D.1.109×107【解答】解:11090000=1.109×107,故选:D.3.(3分)(2020•岳阳)如图,由4个相同正方体组成的几何体,它的左视图是()A.B.C.D.【解答】解:从该几何体的左侧看到的是一列两层,因此选项A的图形符合题意,故选:A.4.(3分)(2020•岳阳)下列运算结果正确的是()A.(﹣a)3=a3B.a9÷a3=a3C.a+2a=3a D.a•a2=a2【解答】解:(﹣a)3=﹣a3,因此选项A不符合题意;a9÷a3=a9﹣3=a6,因此选项B不符合题意;a+2a=(1+2)a=3a,因此选项C符合题意;a•a2=a1+2=a3,因此选项D不符合题意;故选:C.5.(3分)(2020•岳阳)如图,DA⊥AB,CD⊥DA,∠B=56°,则∠C的度数是()A.154°B.144°C.134°D.124°【解答】解:∵DA⊥AB,CD⊥DA,∴∠A=∠D=90°,∴∠A+∠D=180°,∴AB∥CD,∴∠B+∠C=180°,∵∠B=56°,∴∠C=180°﹣∠B=124°,故选:D.6.(3分)(2020•岳阳)今年端午小长假复课第一天,学校根据疫情防控要求,对所有进入校园的师生进行体温检测,其中7名学生的体温(单位:℃)如下:36.5,36.3,36.8,36.3,36.5,36.7,36.5,这组数据的众数和中位数分别是()A.36.3,36.5B.36.5,36.5C.36.5,36.3D.36.3,36.7【解答】解:将这组数据重新排列为36.3,36.3,36.5,36.5,36.5,36.7,36.8,所以这组数据的众数为36.5,中位数为36.5,故选:B.7.(3分)(2020•岳阳)下列命题是真命题的是()A.一个角的补角一定大于这个角B.平行于同一条直线的两条直线平行C.等边三角形是中心对称图形D.旋转改变图形的形状和大小【解答】解:A、一个角的补角不一定大于这个角,如直角的补角等于它,原命题是假命题;B、平行于同一条直线的两条直线平行,是真命题;C、等边三角形不是中心对称图形,原命题是假命题;D、旋转不改变图形的形状和大小,原命题是假命题;故选:B.8.(3分)(2020•岳阳)对于一个函数,自变量x取c时,函数值y等于0,则称c为这个函数的零点.若关于x的二次函数y=﹣x2﹣10x+m(m≠0)有两个不相等的零点x1,x2(x1<x2),关于x的方程x2+10x﹣m﹣2=0有两个不相等的非零实数根x3,x4(x3<x4),则下列关系式一定正确的是()A.0<x1x3<1B.x1x3>1C.0<x2x4<1D.x2x4>1【解答】解:由题意关于x的方程x2+10x﹣m﹣2=0有两个不相等的非零实数根x3,x4(x3<x4),就是关于x的二次函数y=﹣x2﹣10x+m(m≠0)与直线y=﹣2的交点的横坐标,画出函数的图象草图如下:∵抛物线的对称轴为直线x=−−102×(−1)=−5,∴x3<x1<﹣5,由图象可知:0<x1x3<1一定成立,故选:A.二、填空题(本大题共8个小题,每小题4分,满分32分)9.(4分)(2020•岳阳)因式分解:a2﹣9=(a+3)(a﹣3).【解答】解:a2﹣9=(a+3)(a﹣3).10.(4分)(2020•襄阳)函数y=√x−2中自变量x的取值范围是x≥2.【解答】解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.11.(4分)(2020•岳阳)不等式组{x+3≥0,x−1<0的解集是﹣3≤x<1.【解答】解:解不等式x +3≥0,得:x ≥﹣3,解不等式x ﹣1<0,得:x <1,则不等式组的解集为﹣3≤x <11,故答案为:﹣3≤x <1.12.(4分)(2020•岳阳)如图,在Rt △ABC 中,CD 是斜边AB 上的中线,∠A =20°,则∠BCD = 70 °.【解答】解:在Rt △ABC 中,∠A =20°,则∠B =70°,∵∠ACB =90°,CD 是斜边AB 上的中线,∴BD =CD =AD ,∴∠BCD =∠B =70°,故答案为70.13.(4分)(2020•岳阳)在﹣3,﹣2,1,2,3五个数中随机选取一个数作为二次函数y =ax 2+4x ﹣2中a 的值,则该二次函数图象开口向上的概率是 35 .【解答】解:∵从﹣3,﹣2,1,2,3五个数中随机选取一个数,共有5种等可能结果,其中使该二次函数图象开口向上的有1、2、3这3种结果,∴该二次函数图象开口向上的概率是35, 故答案为:35. 14.(4分)(2020•岳阳)已知x 2+2x =﹣1,则代数式5+x (x +2)的值为 4 .【解答】解:∵x 2+2x =﹣1,∴5+x (x +2)=5+x 2+2x =5﹣1=4.故答案为:4.15.(4分)(2020•岳阳)我国古代数学名著《九章算术》上有这样一个问题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?”其大意是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱.现用30钱,买得2斗酒.问醇酒、行酒各能买得多少?设醇酒为x 斗,行酒为y 斗,根据题意,可列方程组为 {x +y =250x +10y =30 .【解答】解:依题意,得:{x +y =250x +10y =30.故答案为:{x +y =250x +10y =30.16.(4分)(2020•岳阳)如图,AB 为半圆O 的直径,M ,C 是半圆上的三等分点,AB =8,BD 与半圆O 相切于点B .点P 为AM ̂上一动点(不与点A ,M 重合),直线PC 交BD 于点D ,BE ⊥OC 于点E ,延长BE 交PC 于点F ,则下列结论正确的是 ②⑤ .(写出所有正确结论的序号)①PB =PD ;②BĈ的长为43π;③∠DBE =45°;④△BCF ∽△PFB ;⑤CF •CP 为定值.【解答】解:①连接AC ,并延长AC ,与BD 的延长线交于点H ,如图1, ∵M ,C 是半圆上的三等分点, ∴∠BAH =30°,∵BD 与半圆O 相切于点B . ∴∠ABD =90°, ∴∠H =60°,∵∠ACP =∠ABP ,∠ACP =∠DCH , ∴∠PDB =∠H +∠DCH =∠ABP +60°, ∵∠PBD =90°﹣∠ABP ,若∠PDB =∠PBD ,则∠ABP +60°=90°﹣∠ABP , ∴∠ABP =15°,∴P 点为AM̂的中点,这与P 为AM ̂上的一动点不完全吻合, ∴∠PDB 不一定等于∠ABD , ∴PB 不一定等于PD , 故①错误;②∵M ,C 是半圆上的三等分点, ∴∠BOC =13×180°=60°,∵直径AB =8, ∴OB =OC =4,∴BC ̂的长度=60π×4180=43π, 故②正确;③∵∠BOC =60°,OB =OC , ∴∠ABC =60°,OB =OC =BC , ∵BE ⊥OC ,∴∠OBE =∠CBE =30°, ∵∠ABD =90°, ∴∠DBE =60°, 故③错误;④∵M 、N 是AB ̂的三等分点, ∴∠BPC =30°, ∵∠CBF =30°, 但∠BFP =∠FCB , ∠PBF <∠BFC ,∴△BCF ∽△PFB 不成立, 故④错误;⑤∵△BCF ∽△PCB , ∴CB CP=CF CB,∴CF •CP =CB 2,∵CB =OB =OC =12AB =4, ∴CF •CP =16, 故⑤正确.故答案为:②⑤.三、解答题(本大题共8小题,满分64分,解答应写出必要的文字说明、证明过程或演算步骤)17.(6分)(2020•岳阳)计算:(12)﹣1+2cos60°﹣(4﹣π)0+|−√3|.【解答】解:原式=2+2×12−1+√3 =2+1﹣1+√3 =2+√3.18.(6分)(2020•岳阳)如图,点E ,F 在▱ABCD 的边BC ,AD 上,BE =13BC ,FD =13AD ,连接BF ,DE .求证:四边形BEDF 是平行四边形.【解答】解:∵四边形ABCD 是平行四边形, ∴AD =BC ,AD ∥BC , ∵BE =13BC ,FD =13AD , ∴BE =DF , ∵DF ∥BE ,∴四边形BEDF 是平行四边形.19.(8分)(2020•岳阳)如图,一次函数y =x +5的图象与反比例函数y =kx (k 为常数且k ≠0)的图象相交于A (﹣1,m ),B 两点. (1)求反比例函数的表达式;(2)将一次函数y =x +5的图象沿y 轴向下平移b 个单位(b >0),使平移后的图象与反比例函数y =kx 的图象有且只有一个交点,求b 的值.【解答】解:(1)∵一次函数y=x+5的图象与反比例函数y=kx(k为常数且k≠0)的图象相交于A(﹣1,m),∴m=4,∴k=﹣1×4=﹣4,∴反比例函数解析式为:y=−4 x;(2)∵一次函数y=x+5的图象沿y轴向下平移b个单位(b>0),∴y=x+5﹣b,∵平移后的图象与反比例函数y=kx的图象有且只有一个交点,∴x+5﹣b=−4 x,∴x2+(5﹣b)x+4=0,∵△=(5﹣b)2﹣16=0,解得b=9或1,答:b的值为9或1.20.(8分)(2020•岳阳)我市某学校落实立德树人根本任务,构建“五育并举”教育体系,开设了“厨艺、园艺、电工、木工、编织”五大类劳动课程.为了解七年级学生对每类课程的选择情况,随机抽取了七年级若干名学生进行调查(每人只选一类最喜欢的课程),将调查结果绘制成如图两幅不完整的统计图:(1)本次随机调查的学生人数为60人;(2)补全条形统计图;(3)若该校七年级共有800名学生,请估计该校七年级学生选择“厨艺”劳动课程的人数;(4)七(1)班计划在“园艺、电工、木工、编织”四大类劳动课程中任选两类参加学校期末展示活动,请用列表或画树状图的方法,求恰好选中“园艺、编织”这两类劳动课程的概率.【解答】解:(1)18÷30%=60(人),故答案为:60;(2)60﹣15﹣18﹣9﹣6=12(人),补全条形统计图如图所示:(3)800×1560=200(人),答:该校七年级800名学生中选择“厨艺”劳动课程的有200人;(4)用列表法表示所有可能出现的结果如下:共有12种可能出现的结果,其中选中“园艺、编织”的有2种,∴P(园艺、编织)=212=16.21.(8分)(2020•岳阳)为做好复工复产,某工厂用A、B两种型号机器人搬运原料,已知A型机器人比B型机器人每小时多搬运20kg,且A型机器人搬运1200kg所用时间与B 型机器人搬运1000kg所用时间相等,求这两种机器人每小时分别搬运多少原料.【解答】解:设B型机器人每小时搬运xkg原料,则A型机器人每小时搬运(x+20)kg 原料,依题意,得:1200x+20=1000x,解得:x=100,经检验,x=100是原方程的解,且符合题意,∴x+20=120.答:A型机器人每小时搬运120kg原料,B型机器人每小时搬运100kg原料.22.(8分)(2020•岳阳)共抓长江大保护,建设水墨丹青新岳阳,推进市中心城区污水系统综合治理项目,需要从如图A,B两地向C地新建AC,BC两条笔直的污水收集管道,现测得C地在A地北偏东45°方向上,在B地北偏西68°向上,AB的距离为7km,求新建管道的总长度.(结果精确到0.1km,sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,√2≈1.41)【解答】解:如图,过点C作CD⊥AB于点D,根据题意可知:AB=7,∠ACD=45°,∠CBD=90°﹣68°=22°,∴AD=CD,∴BD=AB﹣AD=7﹣CD,在Rt△BCD中,∵tan∠CBD=CD BD,∴CD7−CD≈0.40,∴CD=2,∴AD=CD=2,BD=7﹣2=5,∴AC=2√2≈2.83,BC=CDsin22°≈20.37≈5.41,∴AC+BC≈2.83+5.41≈8.2(km).答:新建管道的总长度约为8.2km.23.(10分)(2020•岳阳)如图1,在矩形ABCD中,AB=6,BC=8,动点P,Q分别从C 点,A点同时以每秒1个单位长度的速度出发,且分别在边CA,AB上沿C→A,A→B 的方向运动,当点Q运动到点B时,P,Q两点同时停止运动.设点P运动的时间为t (s),连接PQ,过点P作PE⊥PQ,PE与边BC相交于点E,连接QE.(1)如图2,当t=5s时,延长EP交边AD于点F.求证:AF=CE;(2)在(1)的条件下,试探究线段AQ,QE,CE三者之间的等量关系,并加以证明;(3)如图3,当t>94s时,延长EP交边AD于点F,连接FQ,若FQ平分∠AFP,求AFCE的值.【解答】解:(1)∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,在Rt△ABC中,AB=6,BC=8,根据勾股定理得,AC=10,由运动知,CP=t=5,∴AP=AC﹣CP=5,∴AP=CP,∵AD∥BC,∴∠P AF=∠PCE,∠AFP=∠CEP,∴△APF≌△CPE(AAS),∴AF=CE;(2)结论:AQ2+CE2=QE2,理由:如图2,连接FQ,由(1)知,△APF≌△CPE,∴AF=CE,PE=PF,∵EF⊥PQ,∴QE=QF,在Rt△QAF中,根据勾股定理得,AQ2+AF2=QF2,∴AQ2+CE2=QE2;(3)如图3,由运动知,AQ=t,CP=t,∴AP=AC﹣CP=10﹣t,∵FQ平分∠AFE,∴∠AFC=∠PFQ,∵∠F AQ=∠FPQ=90°,FQ=FQ,∴△F AQ≌△FPQ(AAS),∴AQ=PQ=t,AF=PF,∴BQ=AB﹣AQ=6﹣t,∠F AC=∠FP A,∵∠DAC=∠ACB,∠APF=∠CPE,∴∠ACB=∠CPE,∴PE=CE,过点E作EN⊥AC于N,∴CN=12CP=12t,∠CNE=90°=∠ABC,∵∠NCE=∠BCA,∴△CNE ∽△CBA , ∴CE AC =CN CB,∴CE 10=12t 8,∴CE =58t ,∴PE =58t ,BE =BC ﹣CE =8−58t , 在Rt △QPE 中,QE 2=PQ 2+PE 2, 在Rt △BQE 中,QE 2=BQ 2+BE 2, ∴PQ 2+PE 2=BQ 2+BE 2,∴t 2+(58t )2=(6﹣t )2+(8−58t )2,∴t =5011, ∴CP =t =5011, ∴AP =10﹣CP =6011, ∵AD ∥BC , ∴△APF ∽△CPE , ∴AF CE=AP CP=60115011=65.24.(10分)(2020•岳阳)如图1所示,在平面直角坐标系中,抛物线F 1:y =a (x −25)2+6415与x 轴交于点A (−65,0)和点B ,与y 轴交于点C . (1)求抛物线F 1的表达式;(2)如图2,将抛物线F 1先向左平移1个单位,再向下平移3个单位,得到抛物线F 2,若抛物线F 1与抛物线F 2相交于点D ,连接BD ,CD ,BC . ①求点D 的坐标;②判断△BCD 的形状,并说明理由;(3)在(2)的条件下,抛物线F 2上是否存在点P ,使得△BDP 为等腰直角三角形,若存在,求出点P 的坐标;若不存在,请说明理由.【解答】解:(1)把点A (−65,0)代入抛物线F 1:y =a (x −25)2+6415中得: 0=a (−65−25)2+6415, 解得:a =−53,∴抛物线F 1:y =−53(x −25)2+6415; (2)①由平移得:抛物线F 2:y =−53(x −25+1)2+6415−3, ∴y =−53(x +35)2+1915,∴53(x +35)2+1915=−53(x −25)2+6415,−103x =103, 解得:x =﹣1, ∴D (﹣1,1);②当x=0时,y=−53×425+6415=4,∴C(0,4),当y=0时,−53(x−25)2+6415=0,解得:x=−65或2,∴B(2,0),∵D(﹣1,1),∴BD2=(2+1)2+(1﹣0)2=10,CD2=(0+1)2+(4﹣1)2=10,BC2=22+42=20,∴BD2+CD2=BC2且BD=CD,∴△BDC是等腰直角三角形;(3)存在,设P[m,−53(m+35)2+1915],∵B(2,0),D(﹣1,1),∴BD2=(2+1)2+12=10,PB2=(m−2)2+[−53(m+35)2+1915]2,PD2=(m+1)2+[−53(m+35)2+1915−1]2,分三种情况:①当∠DBP=90°时,BD2+PB2=PD2,即10+(m﹣2)2+[−53(m+35)2+1915]2=(m+1)2+[−53(m+35)2+1915−1]2,解得:m=﹣4或1,当m=﹣4时,BD=√10,PB=√36+324=6√10,即△BDP不是等腰直角三角形,不符合题意,当m=1时,BD=√10,PB=√1+9=√10,∴BD=PB,即△BDP是等腰直角三角形,符合题意,∴P(1,﹣3);②当∠BDP=90°时,BD2+PD2=PB2,即10+[−53(m+35)2+1915−1]2=(m﹣2)2+[−53(m+35)2+1915]2,解得:m=﹣1(舍)或﹣2,当m=﹣2时,BD=√10,PD=√1+9=√10,∴BD=PD,即此时△BDP为等腰直角三角形,∴P(﹣2,﹣2);③当∠BPD=90°时,且BP=DP,有BD2=PD2+PB2,如图3,当△BDP为等腰直角三角形时,点P1和P2不在抛物线上,此种情况不存在这样的点P;综上,点P的坐标(1,﹣3)或(﹣2,﹣2).。

湖南省岳阳市2020年中考数学试卷C卷

湖南省岳阳市2020年中考数学试卷C卷

湖南省岳阳市2020年中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、选择题. (共10题;共20分)1. (2分) (2019七上·高州期中) 一种面粉的质量标识为“ 千克”,则下列面粉中合格的有()A . 24.70千克B . 25.32千克C . 25.51千克D . 24.86千克2. (2分)(2017·聊城) 如图是由若干小正方体组成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,这个几何体的主视图是()A .B .C .D .3. (2分) (2019九下·杭州期中) 下列运算正确的是()A . x3+x2=x5B . x4+x4=2x4C . x3+x3=2x6D . x4+x4=x84. (2分)如图,AB∥ED,∠ECF=70°,则∠BAF的度数为()A . 130°B . 110°C . 70°D . 20°5. (2分) (2019八下·廉江期末) 12位参加歌唱比赛的同学的成绩各不相同,按成绩取前6名进入决赛,如果小粉知道了自己的成绩后,要判断能否进入决赛,小粉需要知道这12位同学的成绩的()A . 平均数B . 中位数C . 众数D . 方差6. (2分)用配方法解方程时,原方程应变形为()A .B .C .D .7. (2分)(2019·零陵模拟) 不等式组的解集在数轴上表示正确的是()A .B .C .D .8. (2分)(2016·新疆) 小明的父亲从家走了20分钟到一个离家900米的书店,在书店看了10分钟书后,用15分钟返回家,下列图中表示小明的父亲离家的距离与时间的函数图象是()A .B .C .D .9. (2分)我国南宋数学家杨辉曾提出这样一个问题:“直田积(矩形面积),八百六十四(平方步),只云阔(宽)不及长一十二步(宽比长少12步),问阔及长各几步.“如果设矩形田地的长为x步,那么同学们列出的下列方程中正确的是()A . x(x+12)=864B . x(x-12)=864C . x2+12x=864D . x2+12x-864=010. (2分)如图,△ABC中,AB=AC,∠B=70°,则∠A的度数是()A . 70°B . 55°C . 50°D . 40°二、填空题. (共8题;共8分)11. (1分) (2019七下·玉州期中) 若一个数的立方根等于这个数的算术平方根,则这个数是________.12. (1分)(2019·广东模拟) 舌尖上的浪费让人触目惊心!据统计,中国每年浪费的粮食总量约为50 000000吨,把50 000 000用科学记数法表示为________ 。

2020年湖南省岳阳市中考数学试卷(有详细解析)

2020年湖南省岳阳市中考数学试卷(有详细解析)

2020年湖南省岳阳市中考数学试卷班级:___________姓名:___________得分:___________一、选择题(本大题共8小题,共24.0分)1.−2020的相反数是()A. −2020B. 2020C. −12020D. 120202.2019年以来,我国扶贫攻坚取得关键进展,农村贫困人口减少11090000人,数据11090000用科学记数法表示为()A. 0.1109×108B. 11.09×106C. 1.109×108D. 1.109×1073.如图,由4个相同正方体组成的几何体,它的左视图是()A. B. C. D.4.下列运算结果正确的是()A. (−a)3=a3B. a9÷a3=a3C. a+2a=3aD. a⋅a2=a25.如图,DA⊥AB,CD⊥DA,∠B=56°,则∠C的度数是()A. 154°B. 144°C. 134°D.124°6.今年端午小长假复课第一天,学校根据疫情防控要求,对所有进入校园的师生进行体温检测,其中7名学生的体温(单位:℃)如下:36.5,36.3,36.8,36.3,36.5,36.7,36.5,这组数据的众数和中位数分别是()A. 36.3,36.5B. 36.5,36.5C. 36.5,36.3D. 36.3,36.77.下列命题是真命题的是()A. 一个角的补角一定大于这个角B. 平行于同一条直线的两条直线平行C. 等边三角形是中心对称图形D. 旋转改变图形的形状和大小8.对于一个函数,自变量x取c时,函数值y等于0,则称c为这个函数的零点.若关于x的二次函数y=−x2−10x+m(m≠0)有两个不相等的零点x1,x2(x1<x2),关于x 的方程x2+10x−m−2=0有两个不相等的非零实数根x3,x4(x3<x4),则下列关系式一定正确的是()A. 0<x1x3<1 B. x1x3>1 C. 0<x2x4<1 D. x2x4>1二、填空题(本大题共8小题,共32.0分)9.因式分解:a2−9=______.10.函数y=√4x−2中,自变量x的取值范围是______.11.不等式组{x+3≥0,x−1<0的解集是______.12.如图,在Rt△ABC中,CD是斜边AB上的中线,∠A=20°,则∠BCD=______°.13.在−3,−2,1,2,3五个数中随机选取一个数作为二次函数y=ax2+4x−2中a的值,则该二次函数图象开口向上的概率是______.14.已知x2+2x=−1,则代数式5+x(x+2)的值为______.15.我国古代数学名著《九章算术》上有这样一个问题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?”其大意是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱.现用30钱,买得2斗酒.问醇酒、行酒各能买得多少?设醇酒为x斗,行酒为y斗,根据题意,可列方程组为______.16.如图,AB为半圆O的直径,M,C是半圆上的三等分点,⏜上一动点(不AB=8,BD与半圆O相切于点B.点P为AM与点A,M重合),直线PC交BD于点D,BE⊥OC于点E,延长BE交PC于点F,则下列结论正确的是______.(写出所有正确结论的序号)π;③∠DBE=45°;④△BCF∽△PFB;⑤CF⋅CP为定值.①PB=PD;②BC⏜的长为43三、计算题(本大题共1小题,共8.0分)17.共抓长江大保护,建设水墨丹青新岳阳,推进市中心城区污水系统综合治理项目,需要从如图A,B两地向C地新建AC,BC两条笔直的污水收集管道,现测得C地在A地北偏东45°方向上,在B地北偏西68°向上,AB的距离为7km,求新建管道的总长度.(结果精确到0.1km,sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,√2≈1.41)四、解答题(本大题共7小题,共56.0分))−1+2cos60°−(4−π)0+|−√3|.18.计算:(12BC,19.如图,点E,F在▱ABCD的边BC,AD上,BE=13AD,连接BF,DE.FD=13求证:四边形BEDF是平行四边形.(k20.如图,一次函数y=x+5的图象与反比例函数y=kx为常数且k≠0)的图象相交于A(−1,m),B两点.(1)求反比例函数的表达式;(2)将一次函数y=x+5的图象沿y轴向下平移b个单位(b>0),使平移后的图象与反比例函数y=k的图象有x且只有一个交点,求b的值.21.我市某学校落实立德树人根本任务,构建“五育并举”教育体系,开设了“厨艺、园艺、电工、木工、编织”五大类劳动课程.为了解七年级学生对每类课程的选择情况,随机抽取了七年级若干名学生进行调查(每人只选一类最喜欢的课程),将调查结果绘制成如图两幅不完整的统计图:(1)本次随机调查的学生人数为______人;(2)补全条形统计图;(3)若该校七年级共有800名学生,请估计该校七年级学生选择“厨艺”劳动课程的人数;(4)七(1)班计划在“园艺、电工、木工、编织”四大类劳动课程中任选两类参加学校期末展示活动,请用列表或画树状图的方法,求恰好选中“园艺、编织”这两类劳动课程的概率.22.为做好复工复产,某工厂用A、B两种型号机器人搬运原料,已知A型机器人比B型机器人每小时多搬运20kg,且A型机器人搬运1200kg所用时间与B型机器人搬运1000kg所用时间相等,求这两种机器人每小时分别搬运多少原料.23.如图1,在矩形ABCD中,AB=6,BC=8,动点P,Q分别从C点,A点同时以每秒1个单位长度的速度出发,且分别在边CA,AB上沿C→A,A→B的方向运动,当点Q 运动到点B时,P,Q两点同时停止运动.设点P运动的时间为t(s),连接PQ,过点P 作PE⊥PQ,PE与边BC相交于点E,连接QE.(1)如图2,当t=5s时,延长EP交边AD于点F.求证:AF=CE;(2)在(1)的条件下,试探究线段AQ,QE,CE三者之间的等量关系,并加以证明;(3)如图3,当t>94s时,延长EP交边AD于点F,连接FQ,若FQ平分∠AFP,求AFCE的值.24.如图1所示,在平面直角坐标系中,抛物线F1:y=a(x−25)2+6415与x轴交于点A(−65,0)和点B,与y轴交于点C.(1)求抛物线F1的表达式;(2)如图2,将抛物线F1先向左平移1个单位,再向下平移3个单位,得到抛物线F2,若抛物线F1与抛物线F2相交于点D,连接BD,CD,BC.①求点D的坐标;②判断△BCD的形状,并说明理由;(3)在(2)的条件下,抛物线F2上是否存在点P,使得△BDP为等腰直角三角形,若存在,求出点P的坐标;若不存在,请说明理由.答案和解析1.B解:−2020的相反数是:2020.2.D解:11090000=1.109×107,3.A解:从该几何体的左侧看到的是一列两层,因此选项A的图形符合题意,4.C解:(−a)3=−a3,因此选项A不符合题意;a9÷a3=a9−3=a6,因此选项B不符合题意;a+2a=(1+2)a=3a,因此选项C符合题意;a⋅a2=a1+2=a3,因此选项D不符合题意;5.D解:∵DA⊥AB,CD⊥DA,∴∠A=∠D=90°,∴∠A+∠D=180°,∴AB//CD,∴∠B+∠C=180°,∵∠B=56°,∴∠C=180°−∠B=124°,6.B解:将这组数据重新排列为36.3,36.3,36.5,36.5,36.5,36.7,36.8,所以这组数据的众数为36.5,中位数为36.5,7.B解:A、一个角的补角不一定大于这个角,如直角的补角等于它,原命题是假命题;B、平行于同一条直线的两条直线平行,是真命题;C、等边三角形不是中心对称图形,原命题是假命题;D、旋转不改变图形的形状和大小,原命题是假命题;8.A解:由题意关于x的方程x2+10x−m−2=0有两个不相等的非零实数根x3,x4(x3<x4),就是关于x的二次函数y=−x2−10x+m(m≠0)与直线y=−2的交点的横坐标,画出函数的图象草图如下:=−5,∵抛物线的对称轴为直线x=−−102×(−1)∴x3<x1<−5,<1一定成立,由图象可知:0<x1x39.(a+3)(a−3)解:a2−9=(a+3)(a−3).10.x≥12解:依题意,得4x−2≥0,解得:x≥1,211.−3≤x<1解:解不等式x+3≥0,得:x≥−3,解不等式x−1<0,得:x<1,则不等式组的解集为−3≤x<11,12.70解:在Rt△ABC中,CD是斜边AB上的中线,∠A=20°,则∠B=70°,∵∠ACB=90°,CD是斜边AB上的中线,∴BD=CD=AD,∴∠BCD =∠B =70°,13. 35解:∵从−3,−2,1,2,3五个数中随机选取一个数,共有5种等可能结果,其中使该二次函数图象开口向上的有1、2、3这3种结果,∴该二次函数图象开口向上的概率是35,14. 4解:∵x 2+2x =−1,∴5+x(x +2)=5+x 2+2x =5−1=4.15. {x +y =250x +10y =30解:依题意,得:{x +y =250x +10y =30. 16. ②④⑤解:①连接AC ,并延长AC ,与BD 的延长线交于点H ,如图1,∵M ,C 是半圆上的三等分点,∴∠BAH =30°,∵BD 与半圆O 相切于点B .∴∠ABD =90°,∴∠H =60°,∵∠ACP =∠ABP ,∠ACP =∠DCH ,∴∠PDB =∠H +∠DCH =∠ABP +60°,∵∠PBD =90°−∠ABP ,若∠PDB =∠PBD ,则∠ABP +60°=90°−∠ABP ,∴∠ABP =15°,∴P 点为AM⏜的中点,这与P 为AM ⏜上的一动点不完全吻合, ∴∠PDB 不一定等于∠ABD ,∴PB 不一定等于PD ,故①错误;②∵M ,C 是半圆上的三等分点,∴∠BOC =13×180°=60°,∵直径AB =8,∴OB =OC =4,∴BC ⏜的长度=60π×4180=43π,故②正确;③∵∠BOC=60°,OB=OC,∴∠ABC=60°,OB=OC=BC,∵BE⊥OC,∴∠OBE=∠CBE=30°,∵∠ABD=90°,∴∠DBE=60°,故③错误;④∵M、N是AB⏜的三等分点,∴∠BPC=30°,∵∠CBF=30°,∴∠CBF=∠CPB,∵∠BCF=∠PCF,∴△BCF∽△PCB,故④正确;⑤∵△BCF∽△PCB,∴CBCP =CFCB,∴CF⋅CP=CB2,∵CB=OB=OC=12AB=4,∴CF⋅CP=16,故⑤正确.17.解:如图,过点C作CD⊥AB于点D,根据题意可知:AB=7,∠ACD=45°,∠CBD=90°−68°=22°,∴AD=CD,∴BD=AB−AD=7−CD,在Rt△BCD中,∵tan∠CBD=CDBD,∴CD7−CD≈0.40,∴CD=2,∴AD=CD=2,BD=7−2=5,∴AC=2√2≈2.83,BC=CDsin22∘≈20.37≈5.41,∴AC+BC≈2.83+5.41≈8.2(km).答:新建管道的总长度约为8.2km.18.解:原式=2+2×12−1+√3=2+1−1+√3=2+√3.19.解:∵四边形ABCD是平行四边形,∴AD=BC,AD//BC,∵BE=13BC,FD=13AD,∴BE=DF,∵DF//BE,∴四边形BEDF是平行四边形.20.解:(1)∵一次函数y=x+5的图象与反比例函数y=kx(k为常数且k≠0)的图象相交于A(−1,m),∴m=4,∴k=−1×4=−4,∴反比例函数解析式为:y=−4x;(2)∵一次函数y=x+5的图象沿y轴向下平移b个单位(b>0),∴y=x+5−b,∵平移后的图象与反比例函数y=kx的图象有且只有一个交点,∴x+5−b=−4x,∴x2+(5−b)x+4=0,∵△=(5−b)2−16=0,解得b=9或1,答:b的值为9或1.21.60解:(1)18÷30%=60(人),故答案为:60;(2)60−15−18−9−6=12(人),补全条形统计图如图所示:(3)800×1560=200(人),答:该校七年级800名学生中选择“厨艺”劳动课程的有200人;(4)用列表法表示所有可能出现的结果如下:共有12种可能出现的结果,其中选中“园艺、编织”的有2种,∴P(园艺、编织)=212=16.22.解:设B型机器人每小时搬运xkg原料,则A型机器人每小时搬运(x+20)kg原料,依题意,得:1200x+20=1000x,解得:x=100,经检验,x=100是原方程的解,且符合题意,∴x+20=120.答:A型机器人每小时搬运120kg原料,B型机器人每小时搬运100kg原料.23.解:(1)∵四边形ABCD是矩形,∴AD//BC,∠ABC=90°,在Rt△ABC中,AB=6,BC=8,根据勾股定理得,AC=10,由运动知,CP=t=5,∴AP=AC−CP=5,∴AP=CP,∵AD//BC,∴∠PAF=∠PCE,∠AFP=∠CEP,∴△APF≌△CPE(AAS),∴AF=CE;(2)结论:AQ2+CE2=QE2,理由:如图2,连接FQ,由(1)知,△APF≌△CPE,∴AF=CE,PE=PF,∵EF⊥PQ,∴QE=QF,在Rt△QAF中,根据勾股定理得,AQ2+AF2=QF2,∴AQ2+CE2=QE2;(3)如图3,由运动知,AQ=t,CP=t,∴AP=AC−CP=10−t,∵FQ平分∠AFE,∴∠AFC=∠PFQ,∵∠FAQ=∠FPQ=90°,FQ=FQ,∴△FAQ≌△FPQ(AAS),∴AQ=PQ=t,AF=PF,∴BQ=AB−AQ=6−t,∠FAC=∠FPA,∵∠DAC=∠ACB,∠APF=∠CPE,∴∠ACB=∠CPE,∴PE=CE,过点E作EN⊥AC于N,∴CN=12CP=12t,∠CNE=90°=∠ABC,∵∠NCE=∠BCA,∴△CNE∽△CBA,∴CEAC =CNCB,∴CE10=12t8,∴CE=58t,∴PE=58t,BE=BC−CE=8−58t,在Rt△QPE中,QE2=PQ2+PE2,在Rt△BQE中,QE2=BQ2+BE2,∴PQ2+PE2=BQ2+BE2,∴t2+(58t)2=(6−t)2+(8−58t)2,∴t=5011,∴CP=t=5011,∴AP=10−CP=6011,∵AD//BC,∴△APF∽△CPE,∴AFCE =APCP=60115011=65.24.解:(1)把点A(−65,0)代入抛物线F1:y=a(x−25)2+6415中得:0=a(−65−25)2+6415,解得:a=−53,∴抛物线F1:y=−53(x−25)2+6415;(2)①由平移得:抛物线F2:y=−53(x−25+1)2+6415−3,∴y=−53(x+35)2+1915,∴53(x+35)2+1915=−53(x−25)2+6415,−103x=103,解得:x=−1,∴D(−1,1);②当x=0时,y=−53×425+6415=4,∴C(0,4),当y=0时,−53(x−25)2+6415=0,解得:x=−65或2,∴B(2,0),∵D(−1,1),∴BD2=(2+1)2+(1−0)2=10,CD2=(0+1)2+(4−1)2=10,BC2=22+42=20,∴BD2+CD2=BC2且BD=CD,∴△BDC是等腰直角三角形;(3)存在,设P[m,−53(m+35)2+1915],∵B(2,0),D(−1,1),∴BD2=(2+1)2+12=10,PB2=(m−2)2+[−53(m+35)2+1915]2,PD2=(m+1)2+[−53(m+35)2+1915−1]2,分三种情况:①当∠DBP=90°时,BD2+PB2=PD2,即10+(m−2)2+[−53(m+35)2+1915]2=(m+1)2+[−53(m+35)2+1915−1]2,解得:m=−4或1,当m=−4时,BD=√10,PB=√36+324=6√10,即△BDP不是等腰直角三角形,不符合题意,当m=1时,BD=√10,PB=√1+9=√10,∴BD=PB,即△BDP是等腰直角三角形,符合题意,∴P(1,−3);②当∠BDP=90°时,BD2+PD2=PB2,即10+[−53(m+35)2+1915−1]2=(m−2)2+[−53(m+35)2+1915]2,解得:m=−1(舍)或−2,当m=−2时,BD=√10,PD=√1+9=√10,∴BD=PD,即此时△BDP为等腰直角三角形,∴P(−2,−2);③当∠BPD=90°时,且BP=DP,有BD2=PD2+PB2,如图3,当△BDP为等腰直角三角形时,点P1和P2不在抛物线上,此种情况不存在这样的点P;综上,点P的坐标(1,−3)或(−2,−2).。

2020年湖南省岳阳市中考数学试题和答案

2020年湖南省岳阳市中考数学试题和答案

2020年湖南省岳阳市中考数学试卷一、选择题(本大题共8小题,每小题3分,满分24分,在每道小题给出的四个选项中,选出符合要求的一项)1.(3分)﹣2020的相反数是()A.﹣2020 B.2020 C.﹣D.2.(3分)2019年以来,我国扶贫攻坚取得关键进展,农村贫困人口减少人,数据用科学记数法表示为()A.×108B.×106C.×108D.×107(3分)如图,由4个相同正方体组成的几何体,它的左视图是()3.A.B.C.D.4.(3分)下列运算结果正确的是()A.(﹣a)3=a3B.a9÷a3=a3C.a+2a=3a D.a•a2=a2 5.(3分)如图,DA⊥AB,CD⊥DA,∠B=56°,则∠C的度数是()A.154°B.144°C.134°D.124°6.(3分)今年端午小长假复课第一天,学校根据疫情防控要求,对所有进入校园的师生进行体温检测,其中7名学生的体温(单位:℃)如下:,,,,,,,这组数据的众数和中位数分别是()A.,B.,C.,D.,7.(3分)下列命题是真命题的是()A.一个角的补角一定大于这个角B.平行于同一条直线的两条直线平行C.等边三角形是中心对称图形D.旋转改变图形的形状和大小8.(3分)对于一个函数,自变量x取c时,函数值y等于0,则称c为这个函数的零点.若关于x的二次函数y=﹣x2﹣10x+m(m≠0)有两个不相等的零点x1,x2(x1<x2),关于x的方程x2+10x﹣m﹣2=0有两个不相等的非零实数根x3,x4(x3<x4),则下列关系式一定正确的是()A.0<<1 B.>1 C.0<<1 D.>1二、填空题(本大题共8个小题,每小题4分,满分32分)9.(4分)因式分解:a2﹣9=.10.(4分)函数y=中自变量x的取值范围是.11.(4分)不等式组的解集是.12.(4分)如图,在Rt△ABC中,CD是斜边AB上的中线,∠A=20°,则∠BCD=°.13.(4分)在﹣3,﹣2,1,2,3五个数中随机选取一个数作为二次函数y=ax2+4x﹣2中a的值,则该二次函数图象开口向上的概率是.14.(4分)已知x2+2x=﹣1,则代数式5+x(x+2)的值为.15.(4分)我国古代数学名著《九章算术》上有这样一个问题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何”其大意是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱.现用30钱,买得2斗酒.问醇酒、行酒各能买得多少设醇酒为x斗,行酒为y斗,根据题意,可列方程组为.16.(4分)如图,AB为半圆O的直径,M,C是半圆上的三等分点,AB=8,BD与半圆O相切于点B.点P为上一动点(不与点A,M 重合),直线PC交BD于点D,BE⊥OC于点E,延长BE交PC于点F,则下列结论正确的是.(写出所有正确结论的序号)①PB=PD;②的长为π;③∠DBE=45°;④△BCF∽△PFB;⑤CF•CP为定值.三、解答题(本大题共8小题,满分64分,解答应写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:()﹣1+2cos60°﹣(4﹣π)0+|﹣|.18.(6分)如图,点E,F在▱ABCD的边BC,AD上,BE=BC,FD=AD,连接BF,DE.求证:四边形BEDF是平行四边形.19.(8分)如图,一次函数y=x+5的图象与反比例函数y=(k 为常数且k≠0)的图象相交于A(﹣1,m),B两点.(1)求反比例函数的表达式;(2)将一次函数y=x+5的图象沿y轴向下平移b个单位(b>0),使平移后的图象与反比例函数y=的图象有且只有一个交点,求b的值.20.(8分)我市某学校落实立德树人根本任务,构建“五育并举”教育体系,开设了“厨艺、园艺、电工、木工、编织”五大类劳动课程.为了解七年级学生对每类课程的选择情况,随机抽取了七年级若干名学生进行调查(每人只选一类最喜欢的课程),将调查结果绘制成如图两幅不完整的统计图:(1)本次随机调查的学生人数为人;(2)补全条形统计图;(3)若该校七年级共有800名学生,请估计该校七年级学生选择“厨艺”劳动课程的人数;(4)七(1)班计划在“园艺、电工、木工、编织”四大类劳动课程中任选两类参加学校期末展示活动,请用列表或画树状图的方法,求恰好选中“园艺、编织”这两类劳动课程的概率.21.(8分)为做好复工复产,某工厂用A、B两种型号机器人搬运原料,已知A型机器人比B型机器人每小时多搬运20kg,且A型机器人搬运1200kg所用时间与B型机器人搬运1000kg所用时间相等,求这两种机器人每小时分别搬运多少原料.22.(8分)共抓长江大保护,建设水墨丹青新岳阳,推进市中心城区污水系统综合治理项目,需要从如图A,B两地向C地新建AC,BC两条笔直的污水收集管道,现测得C地在A地北偏东45°方向上,在B地北偏西68°向上,AB的距离为7km,求新建管道的总长度.(结果精确到,sin22°≈,cos22°≈,tan22°≈,≈)23.(10分)如图1,在矩形ABCD中,AB=6,BC=8,动点P,Q分别从C点,A点同时以每秒1个单位长度的速度出发,且分别在边CA,AB上沿C→A,A→B的方向运动,当点Q运动到点B时,P,Q两点同时停止运动.设点P运动的时间为t(s),连接PQ,过点P作PE⊥PQ,PE与边BC相交于点E,连接QE.(1)如图2,当t=5s时,延长EP交边AD于点F.求证:AF=CE;(2)在(1)的条件下,试探究线段AQ,QE,CE三者之间的等量关系,并加以证明;(3)如图3,当t>s时,延长EP交边AD于点F,连接FQ,若FQ平分∠AFP,求的值.24.(10分)如图1所示,在平面直角坐标系中,抛物线F1:y=a(x ﹣)2+与x轴交于点A(﹣,0)和点B,与y轴交于点C.(1)求抛物线F1的表达式;(2)如图2,将抛物线F1先向左平移1个单位,再向下平移3个单位,得到抛物线F2,若抛物线F1与抛物线F2相交于点D,连接BD,CD,BC.①求点D的坐标;②判断△BCD的形状,并说明理由;(3)在(2)的条件下,抛物线F2上是否存在点P,使得△BDP为等腰直角三角形,若存在,求出点P的坐标;若不存在,请说明理由.2020年湖南省岳阳市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,满分24分,在每道小题给出的四个选项中,选出符合要求的一项)1.【解答】解:﹣2020的相反数是:2020.故选:B.2.【解答】解:=×107,故选:D.3.【解答】解:从该几何体的左侧看到的是一列两层,因此选项A 的图形符合题意,故选:A.4.【解答】解:(﹣a)3=﹣a3,因此选项A不符合题意;a9÷a3=a9﹣3=a6,因此选项B不符合题意;a+2a=(1+2)a=3a,因此选项C符合题意;a•a2=a1+2=a3,因此选项D不符合题意;故选:C.5.【解答】解:∵DA⊥AB,CD⊥DA,∴∠A=∠D=90°,∴∠A+∠D=180°,∴AB∥CD,∴∠B+∠C=180°,∵∠B=56°,∴∠C=180°﹣∠B=124°,故选:D.6.【解答】解:将这组数据重新排列为,,,,,,,所以这组数据的众数为,中位数为,故选:B.7.【解答】解:A、一个角的补角不一定大于这个角,如直角的补角等于它,原命题是假命题;B、平行于同一条直线的两条直线平行,是真命题;C、等边三角形不是中心对称图形,原命题是假命题;D、旋转不改变图形的形状和大小,原命题是假命题;故选:B.8.【解答】解:由题意关于x的方程x2+10x﹣m﹣2=0有两个不相等的非零实数根x3,x4(x3<x4),就是关于x的二次函数y=﹣x2﹣10x+m(m≠0)与直线y=﹣2的交点的横坐标,画出函数的图象草图如下:∵抛物线的对称轴为直线x=﹣=﹣5,∴x3<x1<﹣5,由图象可知:0<<1一定成立,故选:A.二、填空题(本大题共8个小题,每小题4分,满分32分)9.【解答】解:a2﹣9=(a+3)(a﹣3).10.【解答】解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.11.【解答】解:解不等式x+3≥0,得:x≥﹣3,解不等式x﹣1<0,得:x<1,则不等式组的解集为﹣3≤x<11,故答案为:﹣3≤x<1.12.【解答】解:在Rt△ABC中,CD是斜边AB上的中线,∠A=20°,则∠B=70°,∵∠ACB=90°,CD是斜边AB上的中线,∴BD=CD=AD,∴∠BCD=∠B=70°,故答案为70.13.【解答】解:∵从﹣3,﹣2,1,2,3五个数中随机选取一个数,共有5种等可能结果,其中使该二次函数图象开口向上的有1、2、3这3种结果,∴该二次函数图象开口向上的概率是,故答案为:.14.【解答】解:∵x2+2x=﹣1,∴5+x(x+2)=5+x2+2x=5﹣1=4.故答案为:4.15.【解答】解:依题意,得:.故答案为:.16.【解答】解:①连接AC,并延长AC,与BD的延长线交于点H,如图1,∵M,C是半圆上的三等分点,∴∠BAH=30°,∵BD与半圆O相切于点B.∴∠ABD=90°,∴∠H=60°,∵∠ACP=∠ABP,∠ACP=∠DCH,∴∠PDB=∠H+∠DCH=∠ABP+60°,∵∠PBD=90°﹣∠ABP,若∠PDB=∠PBD,则∠ABP+60°=90°﹣∠ABP,∴∠ABP=15°,∴P点为的中点,这与P为上的一动点不完全吻合,∴∠PDB不一定等于∠ABD,∴PB不一定等于PD,故①错误;②∵M,C是半圆上的三等分点,∴∠BOC=,∵直径AB=8,∴OB=OC=4,∴的长度=,故②正确;③∵∠BOC=60°,OB=OC,∴∠ABC=60°,OB=OC=BC,∵BE⊥OC,∴∠OBE=∠CBE=30°,∵∠ABD=90°,∴∠DBE=60°,故③错误;④∵M、N是的三等分点,∴∠BPC=30°,∵∠CBF=30°,∴∠CBF=∠CPB,∵∠BCF=∠PCF,∴△BCF∽△PCB,故④正确;⑤∵△BCF∽△PCB,∴,∴CF•CP=CB2,∵,∴CF•CP=16,故⑤正确.故答案为:②④⑤.三、解答题(本大题共8小题,满分64分,解答应写出必要的文字说明、证明过程或演算步骤)17.【解答】解:原式=2+2×﹣1+=2+1﹣1+=2+.18.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵BE=BC,FD=AD,∴BE=DF,∵DF∥BE,∴四边形BEDF是平行四边形.19.【解答】解:(1)∵一次函数y=x+5的图象与反比例函数y=(k 为常数且k≠0)的图象相交于A(﹣1,m),∴m=4,∴k=﹣1×4=﹣4,∴反比例函数解析式为:y=﹣;(2)∵一次函数y=x+5的图象沿y轴向下平移b个单位(b>0),∴y=x+5﹣b,∵平移后的图象与反比例函数y=的图象有且只有一个交点,∴x+5﹣b=﹣,∴x2+(5﹣b)x+4=0,∵△=(5﹣b)2﹣16=0,解得b=9或1,答:b的值为9或1.20.【解答】解:(1)18÷30%=60(人),故答案为:60;(2)60﹣15﹣18﹣9﹣6=12(人),补全条形统计图如图所示:(3)800×=200(人),答:该校七年级800名学生中选择“厨艺”劳动课程的有200人;(4)用列表法表示所有可能出现的结果如下:共有12种可能出现的结果,其中选中“园艺、编织”的有2种,∴P(园艺、编织)==.21.【解答】解:设B型机器人每小时搬运xkg原料,则A型机器人每小时搬运(x+20)kg原料,依题意,得:=,解得:x=100,经检验,x=100是原方程的解,且符合题意,∴x+20=120.答:A型机器人每小时搬运120kg原料,B型机器人每小时搬运100kg原料.22.【解答】解:如图,过点C作CD⊥AB于点D,根据题意可知:AB=7,∠ACD=45°,∠CBD=90°﹣68°=22°,∴AD=CD,∴BD=AB﹣AD=7﹣CD,在Rt△BCD中,∵tan∠CBD=,∴≈,∴CD=2,∴AD=CD=2,BD=7﹣2=5,∴AC=2≈,BC=≈≈,∴AC+BC≈+≈(km).答:新建管道的总长度约为.23.【解答】解:(1)∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,在Rt△ABC中,AB=6,BC=8,根据勾股定理得,AC=10,由运动知,CP=t=5,∴AP=AC﹣CP=5,∴AP=CP,∵AD∥BC,∴∠PAF=∠PCE,∠AFP=∠CEP,∴△APF≌△CPE(AAS),∴AF=CE;(2)结论:AQ2+CE2=QE2,理由:如图2,连接FQ,由(1)知,△APF≌△CPE,∴AF=CE,PE=PF,∵EF⊥PQ,∴QE=QF,在Rt△QAF中,根据勾股定理得,AQ2+AF2=QF2,∴AQ2+CE2=QE2;(3)如图3,由运动知,AQ=t,CP=t,∴AP=AC﹣CP=10﹣t,∵FQ平分∠AFE,∴∠AFC=∠PFQ,∵∠FAQ=∠FPQ=90°,FQ=FQ,∴△FAQ≌△FPQ(AAS),∴AQ=PQ=t,AF=PF,∴BQ=AB﹣AQ=6﹣t,∠FAC=∠FPA,∵∠DAC=∠ACB,∠APF=∠CPE,∴∠ACB=∠CPE,∴PE=CE,过点E作EN⊥AC于N,∴CN=CP=t,∠CNE=90°=∠ABC,∵∠NCE=∠BCA,∴△CNE∽△CBA,∴,∴,∴CE=t,∴PE=t,BE=BC﹣CE=8﹣t,在Rt△QPE中,QE2=PQ2+PE2,在Rt△BQE中,QE2=BQ2+BE2,∴PQ2+PE2=BQ2+BE2,∴t2+(t)2=(6﹣t)2+(8﹣t)2,∴t=,∴CP=t=,∴AP=10﹣CP=,∵AD∥BC,∴△APF∽△CPE,∴==.24.【解答】解:(1)把点A(﹣,0)代入抛物线F1:y=a(x﹣)2+中得:0=a(﹣﹣)2+,解得:a=﹣,∴抛物线F1:y=﹣(x﹣)2+;(2)①由平移得:抛物线F2:y=﹣(x﹣+1)2+﹣3,∴y=﹣(x+)2+,∴(x+)2+=﹣(x﹣)2+,﹣x=,解得:x=﹣1,∴D(﹣1,1);②当x=0时,y=﹣=4,∴C(0,4),当y=0时,﹣(x﹣)2+=0,解得:x=﹣或2,∴B(2,0),∵D(﹣1,1),∴BD2=(2+1)2+(1﹣0)2=10,CD2=(0+1)2+(4﹣1)2=10,BC2=22+42=20,∴BD2+CD2=BC2且BD=CD,∴△BDC是等腰直角三角形;(3)存在,设P[m,﹣],∵B(2,0),D(﹣1,1),∴BD2=(2+1)2+12=10,,,分三种情况:①当∠DBP=90°时,BD2+PB2=PD2,即10+(m﹣2)2+[﹣]2=(m+1)2+[﹣(m+)2+﹣1]2,解得:m=﹣4或1,当m=﹣4时,BD=,PB==6,即△BDP不是等腰直角三角形,不符合题意,当m=1时,BD=,PB==,∴BD=PB,即△BDP是等腰直角三角形,符合题意,∴P(1,﹣3);②当∠BDP=90°时,BD2+PD2=PB2,即10+[﹣(m+)2+﹣1]2=(m﹣2)2+[﹣]2,解得:m=﹣1(舍)或﹣2,当m=﹣2时,BD=,PD==,∴BD=PD,即此时△BDP为等腰直角三角形,∴P(﹣2,﹣2);③当∠BPD=90°时,且BP=DP,有BD2=PD2+PB2,如图3,当△BDP为等腰直角三角形时,点P1和P2不在抛物线上,此种情况不存在这样的点P;综上,点P的坐标(1,﹣3)或(﹣2,﹣2).。

2020年湖南省岳阳市中考数学试卷

2020年湖南省岳阳市中考数学试卷

2020年湖南省岳阳市中考数学试卷题号一二三四总分得分一、选择题(本大题共8小题,共24.0分)1.-2020的相反数是()A. -2020B. 2020C. -D.2.2019年以来,我国扶贫攻坚取得关键进展,农村贫困人口减少11090000人,数据11090000用科学记数法表示为()A. 0.1109×108B. 11.09×106C. 1.109×108D. 1.109×1073.如图,由4个相同正方体组成的几何体,它的左视图是()A. B. C.D.4.下列运算结果正确的是()A. (-a)3=a3B. a9÷a3=a3C. a+2a=3aD. a•a2=a25.如图,DA⊥AB,CD⊥DA,∠B=56°,则∠C的度数是()A. 154°B. 144°C. 134°D. 124°6.今年端午小长假复课第一天,学校根据疫情防控要求,对所有进入校园的师生进行体温检测,其中7名学生的体温(单位:℃)如下:36.5,36.3,36.8,36.3,36.5,36.7,36.5,这组数据的众数和中位数分别是()A. 36.3,36.5B. 36.5,36.5C. 36.5,36.3D. 36.3,36.77.下列命题是真命题的是()A. 一个角的补角一定大于这个角B. 平行于同一条直线的两条直线平行C. 等边三角形是中心对称图形D. 旋转改变图形的形状和大小8.对于一个函数,自变量x取c时,函数值y等于0,则称c为这个函数的零点.若关于x的二次函数y=-x2-10x+m(m≠0)有两个不相等的零点x1,x2(x1<x2),关于x的方程x2+10x-m-2=0有两个不相等的非零实数根x3,x4(x3<x4),则下列关系式一定正确的是()A. 0<<1B. >1C. 0<<1D. >1二、填空题(本大题共8小题,共32.0分)9.因式分解:a2-9=______.10.函数y=中,自变量x的取值范围是______.11.不等式组的解集是______.12.如图,在Rt△ABC中,CD是斜边AB上的中线,∠A=20°,则∠BCD=______°.13.在-3,-2,1,2,3五个数中随机选取一个数作为二次函数y=ax2+4x-2中a的值,则该二次函数图象开口向上的概率是______.14.已知x2+2x=-1,则代数式5+x(x+2)的值为______.15.我国古代数学名著《九章算术》上有这样一个问题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?”其大意是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱.现用30钱,买得2斗酒.问醇酒、行酒各能买得多少?设醇酒为x斗,行酒为y斗,根据题意,可列方程组为______.16.如图,AB为半圆O的直径,M,C是半圆上的三等分点,AB=8,BD与半圆O相切于点B.点P为上一动点(不与点A,M重合),直线PC交BD于点D,BE⊥OC于点E,延长BE交PC于点F,则下列结论正确的是______.(写出所有正确结论的序号)①PB=PD;②的长为π;③∠DBE=45°;④△BCF∽△PFB;⑤CF•CP为定值.三、计算题(本大题共1小题,共8.0分)17.共抓长江大保护,建设水墨丹青新岳阳,推进市中心城区污水系统综合治理项目,需要从如图A,B两地向C地新建AC,BC两条笔直的污水收集管道,现测得C地在A地北偏东45°方向上,在B地北偏西68°向上,AB的距离为7km,求新建管道的总长度.(结果精确到0.1km,sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,≈1.41)四、解答题(本大题共7小题,共56.0分)18.计算:()-1+2cos60°-(4-π)0+|-|.19.如图,点E,F在▱ABCD的边BC,AD上,BE=BC,FD=AD,连接BF,DE.求证:四边形BEDF是平行四边形.20.如图,一次函数y=x+5的图象与反比例函数y=(k为常数且k≠0)的图象相交于A(-1,m),B两点.(1)求反比例函数的表达式;(2)将一次函数y=x+5的图象沿y轴向下平移b个单位(b>0),使平移后的图象与反比例函数y=的图象有且只有一个交点,求b的值.21.我市某学校落实立德树人根本任务,构建“五育并举”教育体系,开设了“厨艺、园艺、电工、木工、编织”五大类劳动课程.为了解七年级学生对每类课程的选择情况,随机抽取了七年级若干名学生进行调查(每人只选一类最喜欢的课程),将调查结果绘制成如图两幅不完整的统计图:(1)本次随机调查的学生人数为______人;(2)补全条形统计图;(3)若该校七年级共有800名学生,请估计该校七年级学生选择“厨艺”劳动课程的人数;(4)七(1)班计划在“园艺、电工、木工、编织”四大类劳动课程中任选两类参加学校期末展示活动,请用列表或画树状图的方法,求恰好选中“园艺、编织”这两类劳动课程的概率.22.为做好复工复产,某工厂用A、B两种型号机器人搬运原料,已知A型机器人比B型机器人每小时多搬运20kg,且A型机器人搬运1200kg所用时间与B型机器人搬运1000kg所用时间相等,求这两种机器人每小时分别搬运多少原料.23.如图1,在矩形ABCD中,AB=6,BC=8,动点P,Q分别从C点,A点同时以每秒1个单位长度的速度出发,且分别在边CA,AB上沿C→A,A→B的方向运动,当点Q运动到点B时,P,Q两点同时停止运动.设点P运动的时间为t(s),连接PQ,过点P作PE⊥PQ,PE与边BC相交于点E,连接QE.(1)如图2,当t=5s时,延长EP交边AD于点F.求证:AF=CE;(2)在(1)的条件下,试探究线段AQ,QE,CE三者之间的等量关系,并加以证明;(3)如图3,当t>s时,延长EP交边AD于点F,连接FQ,若FQ平分∠AFP,求的值.24.如图1所示,在平面直角坐标系中,抛物线F1:y=a(x-)2+与x轴交于点A(-,0)和点B,与y轴交于点C.(1)求抛物线F1的表达式;(2)如图2,将抛物线F1先向左平移1个单位,再向下平移3个单位,得到抛物线F2,若抛物线F1与抛物线F2相交于点D,连接BD,CD,BC.①求点D的坐标;②判断△BCD的形状,并说明理由;(3)在(2)的条件下,抛物线F2上是否存在点P,使得△BDP为等腰直角三角形,若存在,求出点P的坐标;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:-2020的相反数是:2020.故选:B.直接利用相反数的定义得出答案.此题主要考查了相反数,正确把握相反数的定义是解题关键.2.【答案】D【解析】解:11090000=1.109×107,故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.3.【答案】A【解析】解:从该几何体的左侧看到的是一列两层,因此选项A的图形符合题意,故选:A.它的左视图,即从该几何体的左侧看到的是一列两层,因此选项A的图形符合题意.考查简单几何体的三视图,理解三视图的意义,明确三视图的形状是正确判断的前提.4.【答案】C【解析】解:(-a)3=-a3,因此选项A不符合题意;a9÷a3=a9-3=a6,因此选项B不符合题意;a+2a=(1+2)a=3a,因此选项C符合题意;a•a2=a1+2=a3,因此选项D不符合题意;故选:C.根据合并同类项、同底数幂乘除法的性质,以及幂的乘方进行计算即可.本题考查同底数幂的乘除法的计算法则,同类项、合并同类项的法则,掌握运算性质是正确计算的前提.5.【答案】D【解析】解:∵DA⊥AB,CD⊥DA,∴∠A=∠D=90°,∴∠A+∠D=180°,∴AB∥CD,∴∠B+∠C=180°,∵∠B=56°,∴∠C=180°-∠B=124°,故选:D.根据平行线的判定和性质定理即可得到结论.本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质定理是解题的关键.6.【答案】B【解析】解:将这组数据重新排列为36.3,36.3,36.5,36.5,36.5,36.7,36.8,所以这组数据的众数为36.5,中位数为36.5,故选:B.将这组数据重新排列,再根据众数和中位数的概念求解可得.本题主要考查众数和中位数,解题的关键是掌握求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.【答案】B【解析】解:A、一个角的补角不一定大于这个角,如直角的补角等于它,原命题是假命题;B、平行于同一条直线的两条直线平行,是真命题;C、等边三角形不是中心对称图形,原命题是假命题;D、旋转不改变图形的形状和大小,原命题是假命题;故选:B.根据各个选项中的命题可以判断是否为真命题,从而可以解答本题.本题考查命题与定理,解答本题的关键是明确题意,可以判断一个命题是否为真命题.8.【答案】A【解析】解:由题意关于x的方程x2+10x-m-2=0有两个不相等的非零实数根x3,x4(x3<x4),就是关于x的二次函数y=-x2-10x+m(m≠0)与直线y=-2的交点的横坐标,画出函数的图象草图如下:∵抛物线的对称轴为直线x=-=-5,∴x3<x1<-5,由图象可知:0<<1一定成立,故选:A.根据题意画出关于x的二次函数y=-x2-10x+m(m≠0)的图象以及直线y=-2,根据图象即可判断.本题考查了抛物线与x轴的交点,二次函数图象上点的坐标特征,利用图象判断是解题的关键.9.【答案】(a+3)(a-3)【解析】【分析】本题考查了公式法分解因式,熟记平方差公式的结构特点是解题的关键.2-9可以写成a2-32,符合平方差公式的特点,利用平方差公式分解即可.【解答】解:a2-9=(a+3)(a-3).a10.【答案】x≥【解析】【分析】本题主要考查函数自变量的取值范围,考查的知识点为:二次根式的被开方数是非负数.根据二次根式的有意义的条件:被开方数大于等于0,就可以求解.【解答】解:依题意,得4x-2≥0,解得:x≥,故答案为x≥.11.【答案】-3≤x<1【解析】解:解不等式x+3≥0,得:x≥-3,解不等式x-1<0,得:x<1,则不等式组的解集为-3≤x<11,故答案为:-3≤x<1.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12.【答案】70【解析】解:在Rt△ABC中,CD是斜边AB上的中线,∠A=20°,则∠B=70°,∵∠ACB=90°,CD是斜边AB上的中线,∴BD=CD=AD,∴∠BCD=∠B=70°,故答案为70.根据直角三角形两锐角互余求得∠B=70°,然后根据直角三角形斜边上中线定理得出CD=BD,求出∠BCD=∠B即可.本题考查了直角三角形斜边上的中线性质,等腰三角形性质等知识点的理解和运用,能求出BD=CD=AD和∠B的度数是解此题的关键.13.【答案】【解析】解:∵从-3,-2,1,2,3五个数中随机选取一个数,共有5种等可能结果,其中使该二次函数图象开口向上的有1、2、3这3种结果,∴该二次函数图象开口向上的概率是,故答案为:.二次函数图象开口向上得出a>0,从所列5个数中找到a>0的个数,再根据概率公式求解可得.本题主要考查概率公式及二次函数的性质,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.14.【答案】4【解析】解:∵x2+2x=-1,∴5+x(x+2)=5+x2+2x=5-1=4.故答案为:4.直接将原式变形,再利用已知代入原式得出答案.此题主要考查了单项式乘以多项式,正确将原式变形是解题关键.15.【答案】【解析】解:依题意,得:.故答案为:.根据“现用30钱,买得2斗酒”,即可得出关于x,y的二元一次方程组,此题得解.本题考查了由实际问题抽象出二元一次方程组和数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.16.【答案】②④⑤【解析】解:①连接AC,并延长AC,与BD的延长线交于点H,如图1,∵M,C是半圆上的三等分点,∴∠BAH=30°,∵BD与半圆O相切于点B.∴∠ABD=90°,∴∠H=60°,∵∠ACP=∠ABP,∠ACP=∠DCH,∴∠PDB=∠H+∠DCH=∠ABP+60°,∵∠PBD=90°-∠ABP,若∠PDB=∠PBD,则∠ABP+60°=90°-∠ABP,∴∠ABP=15°,∴P点为的中点,这与P为上的一动点不完全吻合,∴∠PDB不一定等于∠ABD,∴PB不一定等于PD,故①错误;②∵M,C是半圆上的三等分点,∴∠BOC=,∵直径AB=8,∴OB=OC=4,∴的长度=,故②正确;③∵∠BOC=60°,OB=OC,∴∠ABC=60°,OB=OC=BC,∵BE⊥OC,∴∠OBE=∠CBE=30°,∵∠ABD=90°,∴∠DBE=60°,故③错误;④∵M、N是的三等分点,∴∠BPC=30°,∵∠CBF=30°,∴∠CBF=∠CPB,∵∠BCF=∠PCF,∴△BCF∽△PCB,故④正确;⑤∵△BCF∽△PCB,∴,∴CF•CP=CB2,∵,∴CF•CP=16,故⑤正确.故答案为:②④⑤.①连接AC,并延长AC,与BD的延长线交于点H,若PD=PB,得出P为的中点,与实际不符,即可判定正误;②先求出∠BOC,再由弧长公式求得的长度,进而判断正误;③由∠BOC=60°,得△OBC为等边三角形,再根据三线合一性质得∠OBE,再由角的和差大灌篮∠DBE,便可判断正误;④证明∠CPB=∠CBF=30°,再利用公共角,可得△BCF∽△PCB,便可判断正误;⑤由等边△OBC得BC=OB=4,再由相似三角形得CF•CP=BC2,便可判断正误.本题主要考查了切线的性质,圆周角定理,直角三角形的性质,等边三角形的性质与判定,等腰三角形的性质,相似三角形的性质与判定,关键是熟练掌握这些性质,并能灵活应用.17.【答案】解:如图,过点C作CD⊥AB于点D,根据题意可知:AB=7,∠ACD=45°,∠CBD=90°-68°=22°,∴AD=CD,∴BD=AB-AD=7-CD,在Rt△BCD中,∵tan∠CBD=,∴≈0.40,∴CD=2,∴AD=CD=2,BD=7-2=5,∴AC=2≈2.83,BC=≈≈5.41,∴AC+BC≈2.83+5.41≈8.2(km).答:新建管道的总长度约为8.2km.【解析】过点C作CD⊥AB于点D,根据锐角三角函数即可求出新建管道的总长度.本题考查了解直角三角形的应用-方向角问题,解决本题的关键是掌握方向角定义.18.【答案】解:原式=2+2×-1+=2+1-1+=2+.【解析】直接利用特殊角的三角函数值以及零指数幂的性质、负整数指数幂的性质、绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.19.【答案】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵BE=BC,FD=AD,∴BE=DF,∵DF∥BE,∴四边形BEDF是平行四边形.【解析】根据平行四边形的性质得出AD=BC,AD∥BC,进而得出DF=BE,利用平行四边形的判定解答即可.此题主要考查了平行四边形的判定与性质,关键是掌握平行四边形两直线平行和两线段相等;对边平行且相等的四边形是平行四边形.20.【答案】解:(1)∵一次函数y=x+5的图象与反比例函数y=(k为常数且k≠0)的图象相交于A(-1,m),∴m=4,∴k=-1×4=-4,∴反比例函数解析式为:y=-;(2)∵一次函数y=x+5的图象沿y轴向下平移b个单位(b>0),∴y=x+5-b,∵平移后的图象与反比例函数y=的图象有且只有一个交点,∴x+5-b=-,∴x2+(5-b)x+4=0,∵△=(5-b)2-16=0,解得b=9或1,答:b的值为9或1.【解析】(1)根据一次函数y=x+5的图象与反比例函数y=(k为常数且k≠0)的图象相交于A(-1,m),可得m=4,进而可求反比例函数的表达式;(2)根据一次函数y=x+5的图象沿y轴向下平移b个单位(b>0),可得y=x+5-b,根据平移后的图象与反比例函数y=的图象有且只有一个交点,联立方程根据判别式=0即可求出b的值.本题考查了反比例函数与一次函数的交点问题,解决本题的关键是掌握反比例函数与一次函数的性质.21.【答案】60【解析】解:(1)18÷30%=60(人),故答案为:60;(2)60-15-18-9-6=12(人),补全条形统计图如图所示:(3)800×=200(人),答:该校七年级800名学生中选择“厨艺”劳动课程的有200人;(4)用列表法表示所有可能出现的结果如下:共有12种可能出现的结果,其中选中“园艺、编织”的有2种,∴P(园艺、编织)==.(1)从两个统计图中可得,选择“园艺”的有18人,占调查人数的30%,可求出调查人数;(2)求出选择“编制”的人数,即可补全条形统计图;(3)样本中,选择“厨艺”的占,因此估计总体800人的是选择“厨艺”的人数.(4)用列表法表示所有可能出现的结果,进而计算选中“园艺、编织”的概率.本题考查条形统计图、扇形统计图的意义和制作方法,列表法求随机事件发生的概率,理解数量关系和列举所有可能出现的结果情况是解决问题的关键.22.【答案】解:设B型机器人每小时搬运xkg原料,则A型机器人每小时搬运(x+20)kg原料,依题意,得:=,解得:x=100,经检验,x=100是原方程的解,且符合题意,∴x+20=120.答:A型机器人每小时搬运120kg原料,B型机器人每小时搬运100kg原料.【解析】设B型机器人每小时搬运xkg原料,则A型机器人每小时搬运(x+20)kg原料,根据工作时间=工作总量÷工作效率结合A型机器人搬运1200kg所用时间与B型机器人搬运1000kg所用时间相等,即可得出关于x的分式方程,解之即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.23.【答案】解:(1)∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,在Rt△ABC中,AB=6,BC=8,根据勾股定理得,AC=10,由运动知,CP=t=5,∴AP=AC-CP=5,∴AP=CP,∵AD∥BC,∴∠PAF=∠PCE,∠AFP=∠CEP,∴△APF≌△CPE(AAS),∴AF=CE;(2)结论:AQ2+CE2=QE2,理由:如图2,连接FQ,由(1)知,△APF≌△CPE,∴AF=CE,PE=PF,∵EF⊥PQ,∴QE=QF,在Rt△QAF中,根据勾股定理得,AQ2+AF2=QF2,∴AQ2+CE2=QE2;(3)如图3,由运动知,AQ=t,CP=t,∴AP=AC-CP=10-t,∵FQ平分∠AFE,∴∠AFC=∠PFQ,∵∠FAQ=∠FPQ=90°,FQ=FQ,∴△FAQ≌△FPQ(AAS),∴AQ=PQ=t,AF=PF,∴BQ=AB-AQ=6-t,∠FAC=∠FPA,∵∠DAC=∠ACB,∠APF=∠CPE,∴∠ACB=∠CPE,∴PE=CE,过点E作EN⊥AC于N,∴CN=CP=t,∠CNE=90°=∠ABC,∵∠NCE=∠BCA,∴△CNE∽△CBA,∴,∴,∴CE=t,∴PE=t,BE=BC-CE=8-t,在Rt△QPE中,QE2=PQ2+PE2,在Rt△BQE中,QE2=BQ2+BE2,∴PQ2+PE2=BQ2+BE2,∴t2+(t)2=(6-t)2+(8-t)2,∴t=,∴CP=t=,∴AP=10-CP=,∵AD∥BC,∴△APF∽△CPE,∴==.【解析】(1)先利用勾股定理求出AC,再判断出CP=AP,进而判断出△APF≌△CPE,即可得出结论;(2)先判断出AF=CE,PE=PF,再用勾股定理得出AQ2+AF2=QF2,即可得出结论;(3)先判断出△FAQ≌△FPQ(AAS),得出AQ=PQ=t,AF=PF,进而判断出PE=CE,再判断出△CNE∽△CBA,得出CE=t,在Rt△QPE中,QE2=PQ2+PE2,在Rt△BQE中,QE2=BQ2+BE2,得出PQ2+PE2=BQ2+BE2,∴t2+(t)2=(6-t)2,进而求出t,即可得出结论.此题是四边形综合题,主要考查了矩形的性质,勾股定理,全等三角形的判定和性质,相似三角形的判定和性质,求出t是解本题的关键.24.【答案】解:(1)把点A(-,0)代入抛物线F1:y=a(x-)2+中得:0=a(--)2+,解得:a=-,∴抛物线F1:y=-(x-)2+;(2)①由平移得:抛物线F2:y=-(x-+1)2+-3,∴y=-(x+)2+,∴(x+)2+=-(x-)2+,-x=,解得:x=-1,∴D(-1,1);②当x=0时,y=-=4,∴C(0,4),当y=0时,-(x-)2+=0,解得:x=-或2,∴B(2,0),∵D(-1,1),∴BD2=(2+1)2+(1-0)2=10,CD2=(0+1)2+(4-1)2=10,BC2=22+42=20,∴BD2+CD2=BC2且BD=CD,∴△BDC是等腰直角三角形;(3)存在,设P[m,-],∵B(2,0),D(-1,1),∴BD2=(2+1)2+12=10,,,分三种情况:①当∠DBP=90°时,BD2+PB2=PD2,即10+(m-2)2+[-]2=(m+1)2+[-(m+)2+-1]2,解得:m=-4或1,当m=-4时,BD=,PB==6,即△BDP不是等腰直角三角形,不符合题意,当m=1时,BD=,PB==,∴BD=PB,即△BDP是等腰直角三角形,符合题意,∴P(1,-3);②当∠BDP=90°时,BD2+PD2=PB2,即10+[-(m+)2+-1]2=(m-2)2+[-]2,解得:m=-1(舍)或-2,当m=-2时,BD=,PD==,∴BD=PD,即此时△BDP为等腰直角三角形,∴P(-2,-2);③当∠BPD=90°时,且BP=DP,有BD2=PD2+PB2,如图3,当△BDP为等腰直角三角形时,点P1和P2不在抛物线上,此种情况不存在这样的点P;综上,点P的坐标(1,-3)或(-2,-2).【解析】(1)把点A(-,0)代入抛物线F1:y=a(x-)2+中,求出a的值,即可求解;(2)①由平移的原则:左加,右减,上加,下减,可得抛物线F2的解析式,与抛物线F1联立方程组,解出可得点D的坐标;②根据两点的距离公式和勾股定理的逆定理可得:△BDC是等腰直角三角形;(3)设P[m,-],根据两点的距离公式和勾股定理列方程可解出m的值,并确认两直角边是否相等,可得符合条件的点P的坐标.本题是二次函数综合题型,主要利用了待定系数法和平移求二次函数解析式,勾股定理及逆定理,两点的距离,难点在于(3)根据直角三角形的直角顶点分情况讨论.。

2020年湖南省岳阳市中考数学试卷(含解析)印刷版

2020年湖南省岳阳市中考数学试卷(含解析)印刷版

5.(3 分)如图,DA⊥AB,CD⊥DA,∠B=56°,则∠C 的度数是( )
A.154°
B.144°
C.134°
6
D.124°
【分析】根据平行线的判定和性质定理即可得到结论.
【解答】解:∵DA⊥AB,CD⊥DA,∴∠A=∠D=90°,
∴∠A+∠D=180°,∴AB∥CD,∴∠B+∠C=180°,
小时多搬运 20kg,且 A 型机器人搬运 1200kg 所用时间与 B 型机器人搬运 1000kg 所用时间相等,求这
3
两种机器人每小时分别搬运多少原料.
22.(8 分)共抓长江大保护,建设水墨丹青新岳阳,推进市中心城区污水系统综合治理项目,需要从如图 A,B 两地向 C 地新建 AC,BC 两条笔直的污水收集管道,现测得 C 地在 A 地北偏东 45°方向上,在 B 地北偏西 68°向上,AB 的距离为 7km,求新建管道的总长度.(结果精确到 0.1km,sin22°≈0.37,cos22° ≈0.93,tan22°≈0.40, ≈1.41)
一、选择题(本大题共 8 小题,每小题 3 分,满分 24 分,在每道小题给出的四个选项中,选出符合要求 的一项)
1.(3 分)﹣2020 的相反数是( )
A.﹣2020
B.2020
C.﹣
D.
【分析】直接利用相反数的定义得出答案.
【解答】解:﹣2020 的相反数是:2020.故选:B.
2.(3 分)2019 年以来,我国扶贫攻坚取得关键进展,农村贫困人口减少 11090000 人,数据 11090000 用
5.(3 分)如图,DA⊥AB,CD⊥DA,∠B=56°,则∠C 的度数是( )
A.154°

2020湖南省岳阳市中考数学试卷(解析版)

2020湖南省岳阳市中考数学试卷(解析版)

2020年岳阳市初中学业水平考试试卷数学温馨提示:1.本试卷共三大题,24小题,考试时量90分钟;2.本试卷分为试题卷和答题卡两部分,所有答案都必须填涂或填写在答题卡上规定的答题区域内;3.考试结束后,考生不得将试题卷、答题卡、草稿纸带出考场.一、选择题(本大题共8小题,在每道小题给出的四个选项中,选出符合要求的一项)1.-2020的相反数是( )A. 2020B. -2020C. 12020D. -12020【答案】A【解析】【分析】根据相反数直接得出即可.【详解】-2020的相反数是2020,故选A.【点睛】本题是对相反数的考查,熟练掌握相反数知识是解决本题的关键.2.2019年以来,我国扶贫攻坚取得关键进展,农村贫困人口减少11090000人,数据11090000用科学记数法表示为()A. 80.110910⨯B. 611.0910⨯C. 81.10910⨯D. 71.10910⨯【答案】D【解析】【分析】根据科学记数法的定义即可得.【详解】科学记数法:将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法则711090000 1.10910⨯=故选:D .【点睛】本题考查了科学记数法的定义,熟记定义是解题关键.3.如图,由4个相同正方体组成的几何体,它的左视图是( )A. B. C. D.【答案】A【解析】【分析】根据左视图是从左面看得到的图形,结合所给图形以及选项进行求解即可.【详解】观察图形,从左边看得到两个叠在一起的正方形,如下图所示:故选A .【点睛】本题考查了简单几何体的三视图,解题的关键是掌握左视图的观察位置.4.下列运算结果正确的是( )A. 33()a a -=B. 933a a a ÷=C. 23a a a +=D. 22a a a ⋅=【答案】C【解析】【分析】根据幂的乘方、同底数幂的乘法和除法及合并同类项的计算法则分别计算即可得解.【详解】解:A 、33()a a -=-,故错误;B 、936a a a ÷=,故错误;C 、23a a a +=,故正确;D 、23a a a ⋅=故错误;故选:C【点睛】本题考查了幂的乘方、同底数幂的乘法和除法及合并同类项,是基础题,关键是掌握整式的运算法则.5.如图,DA AB ⊥,CD DA ⊥,56B ∠=︒,则C ∠的度数是( )A. 154︒B. 144︒C. 134︒D. 124︒【答案】D【解析】【分析】 由平行线的判定和性质,即可求出答案.【详解】解:∵DA AB ⊥,CD DA ⊥,∴//AB CD ,∴180C B ∠+∠=︒,∵56B ∠=︒,∴124C ∠=︒;故选:D .【点睛】本题考查了平行线的判定和性质,解题的关键是掌握两直线平行,同旁内角互补.6.今年端午小长假复课第一天,学校根据疫情防控要求,对所有进入校园的师生进行体温检测,其中7名学生的体温(单位:℃)如下:36.5,36.3,36.8,36.3,36.5,36.7,36.5,这组数据的众数和中位数分别是( )A. 36.3,36.5B. 36.5,36.5C. 36.5,36.3D. 36.3,36.7【答案】B【解析】【分析】根据众数、中位数的概念求出众数和中位数即可判断.【详解】解:将这7名学生的体温按从小到大的顺序排列如下:36.3,36.3,36.5,36.5, 36.5,36.7,36.8则中位数就是第4个数:36.5;出现次数最多的数是36.5,则众数为:36.5;故选:B【点睛】本题考查的是众数、中位数,掌握它们的概念和计算方法是解题的关键.7.下列命题是真命题的是( )A. 一个角的补角一定大于这个角B. 平行于同一条直线的两条直线平行C. 等边三角形是中心对称图形D. 旋转改变图形的形状和大小 【答案】B【解析】【分析】由补角的定义、平行线公理,中心对称图形的定义、旋转的性质分别进行判断,即可得到答案.【详解】解:A 、一个角的补角不一定大于这个角,故A 错误;B 、平行于同一条直线的两条直线平行,故B 正确;C 、等边三角形是轴对称图形,不是中心对称图形,故C 错误;D 、旋转不改变图形的形状和大小,故D 错误;故选:B .【点睛】本题考查了补角的定义、平行线公理,中心对称图形的定义、旋转的性质,以及判断命题的真假,解题的关键是熟练掌握所学的知识,分别进行判断.8.对于一个函数,自变量x 取c 时,函数值y 等于0,则称c 为这个函数的零点.若关于x 的二次函数210y x x m =--+(0)m ≠有两个不相等的零点1212,()x x x x <,关于x 的方程21020x x m +--=有两个不相等的非零实数根3434,()x x x x <,则下列关系式一定正确的是( ) A. 1301x x << B. 131x x > C. 2401x x << D. 241x x > 【答案】B【解析】【分析】根据根与系数的关系可以求出12,x x ,34,x x 的值,用作差法比较13,x x 的大小关系,24,x x 的大小关系,根据∆可求出m 的取值范围,结合13,x x 的大小关系,24,x x 的大小关系从而得出选项.【详解】解:∵12,x x 是210y x x m =--+(0)m ≠的两个不相等的零点即12,x x 是2100x x m --+=的两个不相等的实数根∴12125x x x x m +=-⎧⎨=-⎩∵12x x <解得125522x x ---==∵方程21020x x m +--=有两个不相等的非零实数根34,x x∴343452x x x x m +=-⎧⎨=--⎩∵34x x <解得345522x x --+==∴(13552x x ---==<0∴13x x <∵10x =<,30x =< ∴131x x >∴(2455022x x ---==>∴24x x >而由题意知()10040100420m m +>⎧⎨++>⎩解得25m >-当250m -<<时,240,0x x <<,241x x >;当03m <<时,240,0x x ><,240x x <; 当m=3时,24x x 无意义; 当3m >时,241x x >, ∴24x x 取值范围不确定, 故选B .【点睛】本题考查了一元二次方程的根与系数的关系,判别式与根的关系及一元二次方程与二次函数的关系.解题的关键是熟记根与系数的关系,对于2y ax bx c =++(a≠0)的两根为12,x x ,则1212,b c x x x x a a+=-=. 二、填空题(本大题共8个小题)9.因式分解:29a -=_________【答案】(3)(3)a a +-【解析】【分析】a 2-9可以写成a 2-32,符合平方差公式的特点,利用平方差公式分解即可.【详解】解:a 2-9=(a+3)(a-3).点评:本题考查了公式法分解因式,熟记平方差公式的结构特点是解题的关键.10.函数y =x 的取值范围是_____.【答案】2x ≥【解析】【分析】根据被开方式是非负数列式求解即可.【详解】依题意,得20x -≥,解得:2x ≥,故答案为2x ≥.。

湖南省岳阳市2020版中考数学试卷(I)卷

湖南省岳阳市2020版中考数学试卷(I)卷

湖南省岳阳市2020版中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题: (共8题;共16分)1. (2分)﹣(﹣2)等于()A . ﹣2B . 2C .D . ±22. (2分)若(﹣a)2012b2013<0,则下列各式正确的是()A . a>0,b>0B . a<0,b>0C . a<0,b<0D . a≠0,b<03. (2分)(2016·茂名) 如图是某几何体的三视图,该几何体是()A . 球B . 三棱柱C . 圆柱D . 圆锥4. (2分)有个零件(正方体中间挖去一个圆柱形孔)如图放置,它的左视图是()A .B .C .D .5. (2分)若m、n是方程x2-x-2010=0的两根.则代数式(m2-2m-2010)(-n2+2n+2010)的值()A . -2010B . 2010C . 0D . 16. (2分) (2016九上·苏州期末) 已知直角三角形中,斜边的长为,,则直角边的长是()A .B .C .D .7. (2分) (2016八下·大石桥期中) 如图,在矩形ABCD中,AB=2,AD=2 ,点E在BC的延长线上,且BD=CE,连接AE,则∠E的度数为()A . 15°B . 20°C . 30°D . 45°8. (2分)(2017·微山模拟) 如图,梯形ABCD的对角线AC、BD相交于O,G是BD的中点.若AD=3,BC=9,则GO:BG=()A . 1:2B . 1:3C . 2:3D . 11:20二、填空题 (共10题;共10分)9. (1分)若a2+a+1=0,那么a2001+a2000+a1999=________.10. (1分) (2018·吉林模拟) 反比例函数的图象经过点(2,3),则 =________.11. (1分)如图所示,在△ABC中,∠C=90°,DE垂直平分斜边AB,分别交AB、BC于D、E,若∠CAE=∠B+30°,则∠B=________度.12. (1分) (2016八下·新城竞赛) 若关于x的分式方程有整数解,m的值是________.13. (1分)如图,△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的,则= ________14. (1分)(2017·天门) 有5张看上去无差别的卡片,正面分别写着1,2,3,4,5,洗匀后正面向下放在桌子上,从中随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是________.15. (1分)如图,分别以Rt△ABC的直角边AC及斜边AB为边向外作等边△ACD、等边△AB E,EF⊥AB,垂足为F,连接DF,当=________ 时,四边形ADFE是平行四边形.16. (1分)(2016·大庆) 如图,在矩形ABCD中,AB=5,BC=10 ,一圆弧过点B和点C,且与AD相切,则图中阴影部分面积为________.17. (1分)如图,△ABC中,AB=AC,AD⊥BC于D点,DE⊥AB于点E,BF⊥AC于点F,DE=3cm,则BF=________cm.18. (1分)(2016·南平模拟) 计算: =________.三、解答题 (共8题;共90分)19. (10分)计算:(1)(2)化简:.20. (10分)(2017·乐山) 某公司从2014年开始投入技术改进资金,经技术改进后,其产品的成本不断降低,具体数据如下表:年度2013201420152016投入技改资金x(万元) 2.534 4.5产品成本y(万元/件)7.26 4.54(1)请你认真分析表中数据,从一次函数和反比例函数中确定哪一个函数能表示其变化规律,给出理由,并求出其解析式;(2)按照这种变化规律,若2017年已投入资金5万元.①预计生产成本每件比2016年降低多少万元?②若打算在2017年把每件产品成本降低到3.2万元,则还需要投入技改资金多少万元?(结果精确到0.01万元).21. (10分)(2017·钦州模拟) 如图,已知Rt△ABC,∠C=90°,AC≠BC.(1)请用尺规作图(不写作法,保留作图痕迹).①作∠B的角平分线,与AC相交于点D;②以点B为圆心、BC为半径画弧交AB于点E,连接DE.(2)根据(1)所作的图形,写出一对全等三角形.22. (6分)(2016·苏州) 在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为________;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.23. (11分)(2012·大连) 如图,梯形ABCD中,AD∥BC,∠ABC=2∠BCD=2α,点E在AD上,点F在DC上,且∠BEF=∠A.(1)∠BEF=________(用含α的代数式表示);(2)当AB=AD时,猜想线段EB、EF的数量关系,并证明你的猜想;(3)当AB≠AD时,将“点E在AD上”改为“点E在AD的延长线上,且AE>AB,AB=mDE,AD=nDE”,其他条件不变(如图),求的值(用含m,n的代数式表示)24. (10分)(2017·金乡模拟) 某超市销售甲、乙两种糖果,购买3千克甲种糖果和1千克乙种糖果共需44元,购买1千克甲种糖果和2千克乙种糖果共需38元.(1)求甲、乙两种糖果的价格;(2)若购买甲、乙两种糖果共20千克,且总价不超过240元,问甲种糖果最少购买多少千克?25. (15分)(2019·绥化) 如图①,在正方形ABCD中,AB=6,M为对角线BD上任意一点(不与B、D重合),连接CM,过点M作MN⊥CM,交线段AB于点N(1)求证:MN=MC:(2)若DM:DB=2:5,求证:AN=4BN2(3)如图②,连接MC交BD于点G.若BG:MG=3:5,求NG·CG的值26. (18分) (2015九上·宜春期末) 课题学习:我们知道二次函数的图象是抛物线,它也可以这样定义:如果一个动点M(x,y)到定点A(0,m)(m>0)的距离与它到定直线y=﹣m的距离相等,那么动点M形成的图形就是抛物线y=ax2(a>0)的图象,如图所示.(1)探究:当x≠0时,a与m有何数量关系?(2)应用:已知动点M(x,y)到定点A(0,4)的距离与到定直线y=﹣4的距离相等,请写出动点M形成的抛物线的解析式.(3)拓展:根据抛物线的平移变换,抛物线y= (x﹣1)2+2的图象可以看作到定点A(________,________)的距离与它到定直线y=________的距离相等的动点M(x,y)所形成的图形.(4)若点D的坐标是(1,8),在(2)中求得的抛物线上是否存在点P,使得PA+PD最短?若存在,求出点P的坐标,若不存在,请说明理由.参考答案一、选择题: (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共10题;共10分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共90分)19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、26-4、。

湖南省岳阳市2020年中考数学试题(Word版,含答案与解析)

湖南省岳阳市2020年中考数学试题(Word版,含答案与解析)

湖南省岳阳市2020年中考数学试卷一、单选题(共8题;共16分)1.-2020的相反数是()A. 2020B. -2020C. 12020D. -12020【答案】A【考点】相反数及有理数的相反数【解析】【解答】-2020的相反数是2020,故答案为:A.【分析】根据相反数直接得出即可.2.2019年以来,我国扶贫攻坚取得关键进展,农村贫困人口减少11090000人,数据11090000用科学记数法表示为()A. 0.1109×108B. 11.09×106C. 1.109×108D. 1.109×107【答案】 D【考点】科学记数法—表示绝对值较大的数【解析】【解答】科学记数法:将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数的方法叫做科学记数法则11090000=1.109×107故答案为:D.【分析】根据科学记数法的定义即可得.3.如图,由4个相同正方体组成的几何体,它的左视图是()A. B.C. D.【答案】A【考点】简单组合体的三视图【解析】【解答】观察图形,从左边看得到两个叠在一起的正方形,如下图所示:故答案为:A.【分析】根据左视图是从左面看得到的图形,结合所给图形以及选项进行求解即可.4.下列运算结果正确的是()A. (−a)3=a3B. a9÷a3=a3C. a+2a=3aD. a⋅a2=a2【答案】C【考点】同底数幂的乘法,同底数幂的除法,合并同类项法则及应用,幂的乘方【解析】【解答】解:A、(−a)3=−a3,故不符合题意;B、a9÷a3=a6,故不符合题意;C、a+2a=3a,故符合题意;D、a⋅a2=a3故不符合题意;故答案为:C【分析】根据幂的乘方、同底数幂的乘法和除法及合并同类项的计算法则分别计算即可得解.5.如图,DA⊥AB,CD⊥DA,∠B=56°,则∠C的度数是()A. 154°B. 144°C. 134°D. 124°【答案】 D【考点】平行线的判定与性质【解析】【解答】解:∵DA⊥AB,CD⊥DA,∴AB//CD,∴∠C+∠B=180°,∵∠B=56°,∴∠C=124°;故答案为:D.【分析】先证出AB∥CD,再根据平行线的性质得出∠C+∠B=180°,即可求出∠C的度数.6.今年端午小长假复课第一天,学校根据疫情防控要求,对所有进入校园的师生进行体温检测,其中7名学生的体温(单位:℃)如下:36.5,36.3,36.8,36.3,36.5,36.7,36.5,这组数据的众数和中位数分别是()A. 36.3,36.5B. 36.5,36.5C. 36.5,36.3D. 36.3,36.7【答案】B【考点】中位数,众数【解析】【解答】解:将这7名学生的体温按从小到大的顺序排列如下:36.3,36.3,36.5,36.5,36.5,36.7,36.8则中位数就是第4个数:36.5;出现次数最多的数是36.5,则众数为:36.5;故答案为:B【分析】根据众数、中位数的概念求出众数和中位数即可判断.7.下列命题是真命题的是()A. 一个角的补角一定大于这个角B. 平行于同一条直线的两条直线平行C. 等边三角形是中心对称图形D. 旋转改变图形的形状和大小【答案】B【考点】真命题与假命题【解析】【解答】解:A、一个角的补角不一定大于这个角,故A不符合题意;B、平行于同一条直线的两条直线平行,故B符合题意;C、等边三角形是轴对称图形,不是中心对称图形,故C不符合题意;D、旋转不改变图形的形状和大小,故D不符合题意;故答案为:B.【分析】由补角的定义、平行线公理,中心对称图形的定义、旋转的性质分别进行判断,即可得到答案.8.对于一个函数,自变量x取c时,函数值y等于0,则称c为这个函数的零点.若关于x的二次函数y=−x2−10x+m(m≠0)有两个不相等的零点x1,x2(x1<x2),关于x的方程x2+10x−m−2=0有两个不相等的非零实数根x3,x4(x3<x4),则下列关系式一定正确的是()A. 0<x1x3<1 B. x1x3>1 C. 0<x2x4<1 D. x2x4>1【答案】B【考点】一元二次方程的根与系数的关系,二次函数图象与一元二次方程的综合应用【解析】【解答】解:∵x1,x2是y=−x2−10x+m(m≠0)的两个不相等的零点即x1,x2是−x2−10x+m=0的两个不相等的实数根∴{x1+x2=−5x1x2=−m∵x1<x2解得x1=−5−√25+4m2,x2=−5+√25+4m2∵方程x2+10x−m−2=0有两个不相等的非零实数根x3,x4∴{x3+x4=−5x3x4=−m−2∵x3<x4解得x3=−5−√13+4m2,x4=−5+√13+4m2∴x1−x3=−5−√25+4m−(−5−√13+4m)2=−√25+4m+√13+4m2<0∴x1<x3∵ x 1=−5−√25+4m 2<0 , x 3=−5−√13+4m 2<0 ∴ x1x 3>1 ∴ x 2−x 4=−5+√25+4m−(−5+√13+4m)2=√25+4m−√13+4m 2>0 ∴ x 2>x 4而由题意知 {100+4m >0100+4(m +2)>0解得 m >−25当 −25<m <0 时, x 2<0,x 4<0 , x2x 4>1 ; 当 0<m <3 时, x 2>0,x 4<0 , x 2x 4<0 ;当m=3时, x 2x 4 无意义;当 m >3 时, x2x 4>1 , ∴ x 2x 4 取值范围不确定, 故答案为:B .【分析】根据根与系数的关系可以求出 x 1,x 2 , x 3,x 4 的值,用作差法比较 x 1,x 3 的大小关系, x 2,x 4 的大小关系,根据 Δ 可求出m 的取值范围,结合 x 1,x 3 的大小关系, x 2,x 4 的大小关系从而得出选项.二、填空题(共8题;共11分)9.因式分解: a 2−9= ________.【答案】 (a +3)(a −3)【考点】因式分解﹣运用公式法【解析】【解答】a 2-9=(a+3)(a-3)。

2020年湖南省岳阳市中考数学试卷-普通用卷

2020年湖南省岳阳市中考数学试卷-普通用卷

2020年湖南省岳阳市中考数学试卷1.−2020的相反数是()A. −2020B. 2020C. −12020D. 120202.2019年以来,我国扶贫攻坚取得关键进展,农村贫困人口减少11090000人,数据11090000用科学记数法表示为()A. 0.1109×108B. 11.09×106C. 1.109×108D. 1.109×1073.如图,由4个相同正方体组成的几何体,它的左视图是()A.B.C.D.4.下列运算结果正确的是()A. (−a)3=a3B. a9÷a3=a3C. a+2a=3aD. a⋅a2=a25.如图,DA⊥AB,CD⊥DA,∠B=56°,则∠C的度数是()A. 154°B. 144°C. 134°D. 124°6.今年端午小长假复课第一天,学校根据疫情防控要求,对所有进入校园的师生进行体温检测,其中7名学生的体温(单位:℃)如下:36.5,36.3,36.8,36.3,36.5,36.7,36.5,这组数据的众数和中位数分别是()A. 36.3,36.5B. 36.5,36.5C. 36.5,36.3D. 36.3,36.77.下列命题是真命题的是()A. 一个角的补角一定大于这个角B. 平行于同一条直线的两条直线平行C. 等边三角形是中心对称图形D. 旋转改变图形的形状和大小8.对于一个函数,自变量x取c时,函数值y等于0,则称c为这个函数的零点.若关于x的二次函数y=−x2−10x+m(m≠0)有两个不相等的零点x1,x2(x1<x2),关于x的方程x2+10x−m−2=0有两个不相等的非零实数根x3,x4(x3<x4),则下列关系式一定正确的是()A. 0<x1x3<1 B. x1x3>1 C. 0<x2x4<1 D. x2x4>19.因式分解:a2−9=______.10.函数y=√4x−2中,自变量x的取值范围是______.11.不等式组{x+3≥0,x−1<0的解集是______.12.如图,在Rt△ABC中,CD是斜边AB上的中线,∠A=20°,则∠BCD=______°.13.在−3,−2,1,2,3五个数中随机选取一个数作为二次函数y=ax2+4x−2中a的值,则该二次函数图象开口向上的概率是______.14.已知x2+2x=−1,则代数式5+x(x+2)的值为______.15.我国古代数学名著《九章算术》上有这样一个问题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?”其大意是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱.现用30钱,买得2斗酒.问醇酒、行酒各能买得多少?设醇酒为x斗,行酒为y斗,根据题意,可列方程组为______.16.如图,AB为半圆O的直径,M,C是半圆上的三等分点,AB=8,BD与半圆O相切于点B.点P为AM⏜上一动点(不与点A,M重合),直线PC交BD于点D,BE⊥OC于点E,延长BE交PC于点F,则下列结论正确的是______.(写出所有正确结论的序号)①PB=PD;②BC⏜的长为43π;③∠DBE=45°;④△BCF∽△PFB;⑤CF⋅CP为定值.17.计算:(12)−1+2cos60°−(4−π)0+|−√3|.BC,18.如图,点E,F在▱ABCD的边BC,AD上,BE=13AD,连接BF,DE.FD=13求证:四边形BEDF是平行四边形.19.如图,一次函数y=x+5的图象与反比例函数y=k(k为常数且k≠0)的图象相交于A(−1,m),B两点.x(1)求反比例函数的表达式;(2)将一次函数y=x+5的图象沿y轴向下平移b个单位(b>0),使平移后的图象与反比例函数y=k的x 图象有且只有一个交点,求b的值.20.我市某学校落实立德树人根本任务,构建“五育并举”教育体系,开设了“厨艺、园艺、电工、木工、编织”五大类劳动课程.为了解七年级学生对每类课程的选择情况,随机抽取了七年级若干名学生进行调查(每人只选一类最喜欢的课程),将调查结果绘制成如图两幅不完整的统计图:(1)本次随机调查的学生人数为______人;(2)补全条形统计图;(3)若该校七年级共有800名学生,请估计该校七年级学生选择“厨艺”劳动课程的人数;(4)七(1)班计划在“园艺、电工、木工、编织”四大类劳动课程中任选两类参加学校期末展示活动,请用列表或画树状图的方法,求恰好选中“园艺、编织”这两类劳动课程的概率.21.为做好复工复产,某工厂用A、B两种型号机器人搬运原料,已知A型机器人比B型机器人每小时多搬运20kg,且A型机器人搬运1200kg所用时间与B型机器人搬运1000kg所用时间相等,求这两种机器人每小时分别搬运多少原料.22.共抓长江大保护,建设水墨丹青新岳阳,推进市中心城区污水系统综合治理项目,需要从如图A,B两地向C地新建AC,BC两条笔直的污水收集管道,现测得C地在A地北偏东45°方向上,在B地北偏西68°向上,AB的距离为7km,求新建管道的总长度.(结果精确到0.1km,sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,√2≈1.41)23.如图1,在矩形ABCD中,AB=6,BC=8,动点P,Q分别从C点,A点同时以每秒1个单位长度的速度出发,且分别在边CA,AB上沿C→A,A→B的方向运动,当点Q运动到点B时,P,Q两点同时停止运动.设点P运动的时间为t(s),连接PQ,过点P作PE⊥PQ,PE与边BC相交于点E,连接QE.(1)如图2,当t=5s时,延长EP交边AD于点F.求证:AF=CE;(2)在(1)的条件下,试探究线段AQ,QE,CE三者之间的等量关系,并加以证明;s时,延长EP交边AD于点F,连接FQ,若FQ平分∠AFP,求(3)如图3,当t>94AF的值.CE24.如图1所示,在平面直角坐标系中,抛物线F1:y=a(x−25)2+6415与x轴交于点A(−65,0)和点B,与y轴交于点C.(1)求抛物线F1的表达式;(2)如图2,将抛物线F1先向左平移1个单位,再向下平移3个单位,得到抛物线F2,若抛物线F1与抛物线F2相交于点D,连接BD,CD,BC.①求点D的坐标;②判断△BCD的形状,并说明理由;(3)在(2)的条件下,抛物线F2上是否存在点P,使得△BDP为等腰直角三角形,若存在,求出点P的坐标;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:−2020的相反数是:2020.故选:B.直接利用相反数的定义得出答案.此题主要考查了相反数,正确把握相反数的定义是解题关键.2.【答案】D【解析】【分析】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:11090000=1.109×107,故选:D.3.【答案】A【解析】解:从该几何体的左侧看到的是一列两层,因此选项A的图形符合题意,故选:A.它的左视图,即从该几何体的左侧看到的是一列两层,因此选项A的图形符合题意.考查简单几何体的三视图,理解三视图的意义,明确三视图的形状是正确判断的前提.4.【答案】C【解析】解:(−a)3=−a3,因此选项A不符合题意;a9÷a3=a9−3=a6,因此选项B不符合题意;a+2a=(1+2)a=3a,因此选项C符合题意;a⋅a2=a1+2=a3,因此选项D不符合题意;故选:C.根据合并同类项、同底数幂乘除法的性质,以及幂的乘方进行计算即可.本题考查同底数幂的乘除法的计算法则,合并同类项的法则,掌握运算性质是正确计算的前提.5.【答案】D【解析】【分析】根据平行线的判定和性质定理即可得到结论.本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质定理是解题的关键.【解答】解:∵DA⊥AB,CD⊥DA,∴∠A=∠D=90°,∴∠A+∠D=180°,∴AB//CD,∴∠B+∠C=180°,∵∠B=56°,∴∠C=180°−∠B=124°,故选:D.6.【答案】B【解析】解:将这组数据重新排列为36.3,36.3,36.5,36.5,36.5,36.7,36.8,所以这组数据的众数为36.5,中位数为36.5,故选:B.将这组数据重新排列,再根据众数和中位数的概念求解可得.本题主要考查众数和中位数,解题的关键是掌握求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.【答案】B【解析】【试题解析】解:A、一个角的补角不一定大于这个角,如直角的补角等于它,原命题是假命题;B、平行于同一条直线的两条直线平行,是真命题;C、等边三角形不是中心对称图形,原命题是假命题;D、旋转不改变图形的形状和大小,原命题是假命题;故选:B.根据各个选项中的命题可以判断是否为真命题,从而可以解答本题.本题考查命题与定理,解答本题的关键是明确题意,可以判断一个命题是否为真命题.8.【答案】A【解析】【分析】本题考查了抛物线与x轴的交点,二次函数图象上点的坐标特征,利用图象判断是解题的关键.根据题意画出关于x的二次函数y=−x2−10x+m(m≠0)的图象以及直线y=−2,根据图象即可判断.【解答】解:由题意关于x的方程x2+10x−m−2=0有两个不相等的非零实数根x3,x4(x3< x4),就是关于x的二次函数y=−x2−10x+m(m≠0)与直线y=−2的交点的横坐标,画出函数的图象草图如下:=−5,∵抛物线的对称轴为直线x=−−102×(−1)∴x3<x1<−5,<1一定成立,由图象可知:0<x1x3故选:A.9.【答案】(a+3)(a−3)【解析】【分析】本题考查了公式法分解因式,熟记平方差公式的结构特点是解题的关键. 2−9可以写成a2−32,符合平方差公式的特点,利用平方差公式分解即可.【解答】解:a2−9=(a+3)(a−3).a10.【答案】x≥12【解析】【分析】本题主要考查函数自变量的取值范围,考查的知识点为:二次根式的被开方数是非负数.根据二次根式的有意义的条件:被开方数大于等于0,就可以求解.【解答】解:依题意,得4x−2≥0,解得:x≥1,2.故答案为x≥1211.【答案】−3≤x<1【解析】解:解不等式x+3≥0,得:x≥−3,解不等式x−1<0,得:x<1,则不等式组的解集为−3≤x<1,故答案为:−3≤x<1.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12.【答案】70【解析】解:在Rt△ABC中,CD是斜边AB上的中线,∠A=20°,则∠B=70°,∵∠ACB=90°,CD是斜边AB上的中线,∴BD=CD=AD,∴∠BCD=∠B=70°,故答案为70.根据直角三角形两锐角互余求得∠B=70°,然后根据直角三角形斜边上中线定理得出CD=BD,求出∠BCD=∠B即可.本题考查了直角三角形斜边上的中线性质,等腰三角形性质等知识点的理解和运用,能求出BD=CD=AD和∠B的度数是解此题的关键.13.【答案】35【解析】【分析】本题主要考查概率公式及二次函数的性质,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.二次函数图象开口向上得出a>0,从所列5个数中找到a>0的个数,再根据概率公式求解可得.【解答】解:∵从−3,−2,1,2,3五个数中随机选取一个数,共有5种等可能结果,其中使该二次函数图象开口向上的有1、2、3这3种结果,∴该二次函数图象开口向上的概率是3,5.故答案为3514.【答案】4【解析】解:∵x2+2x=−1,∴5+x(x+2)=5+x2+2x=5−1=4.故答案为:4.直接将原式变形,再利用已知代入原式得出答案.此题主要考查了单项式乘以多项式,正确将原式变形是解题关键.15.【答案】{x +y =250x +10y =30【解析】【试题解析】解:依题意,得:{x +y =250x +10y =30. 故答案为:{x +y =250x +10y =30. 根据“现用30钱,买得2斗酒”,即可得出关于x ,y 的二元一次方程组,此题得解. 本题考查了由实际问题抽象出二元一次方程组和数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.16.【答案】②④⑤【解析】解:①连接AC ,并延长AC ,与BD 的延长线交于点H ,如图1, ∵M ,C 是半圆上的三等分点,∴∠BAH =30°,∵BD 与半圆O 相切于点B .∴∠ABD =90°,∴∠H =60°,∵∠ACP =∠ABP ,∠ACP =∠DCH ,∴∠PDB =∠H +∠DCH =∠ABP +60°,∵∠PBD =90°−∠ABP ,若∠PDB =∠PBD ,则∠ABP +60°=90°−∠ABP ,∴∠ABP =15°,∴P 点为AM⏜的中点,这与P 为AM ⏜上的一动点不完全吻合, ∴∠PDB 不一定等于∠ABD ,∴PB 不一定等于PD ,故①错误;②∵M ,C 是半圆上的三等分点,∴∠BOC =13×180°=60°,∵直径AB =8,∴OB =OC =4,∴BC⏜的长度=60π×4180=43π,故②正确;③∵∠BOC=60°,OB=OC,∴∠ABC=60°,OB=OC=BC,∵BE⊥OC,∴∠OBE=∠CBE=30°,∵∠ABD=90°,∴∠DBE=60°,故③错误;④∵M、N是AB⏜的三等分点,∴∠BPC=30°,∵∠CBF=30°,∴∠CBF=∠CPB,∵∠BCF=∠PCB,∴△BCF∽△PCB,故④正确;⑤∵△BCF∽△PCB,∴CBCP =CFCB,∴CF⋅CP=CB2,∵CB=OB=OC=12AB=4,∴CF⋅CP=16,故⑤正确.故答案为:②④⑤.①连接AC,并延长AC,与BD的延长线交于点H,若PD=PB,得出P为AM⏜的中点,与实际不符,即可判定正误;②先求出∠BOC,再由弧长公式求得BC⏜的长度,进而判断正误;③由∠BOC=60°,得△OBC为等边三角形,再根据三线合一性质得∠OBE,再由角的和差大灌篮∠DBE,便可判断正误;④证明∠CPB=∠CBF=30°,再利用公共角,可得△BCF∽△PCB,便可判断正误;⑤由等边△OBC得BC=OB=4,再由相似三角形得CF⋅CP=BC2,便可判断正误.本题主要考查了切线的性质,圆周角定理,直角三角形的性质,等边三角形的性质与判定,等腰三角形的性质,相似三角形的性质与判定,关键是熟练掌握这些性质,并能灵活应用.17.【答案】解:原式=2+2×12−1+√3=2+1−1+√3=2+√3.【解析】直接利用特殊角的三角函数值以及零指数幂的性质、负整数指数幂的性质、绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.18.【答案】解:∵四边形ABCD是平行四边形,∴AD=BC,AD//BC,∵BE=13BC,FD=13AD,∴BE=DF,∵DF//BE,∴四边形BEDF是平行四边形.【解析】根据平行四边形的性质得出AD=BC,AD//BC,进而得出DF=BE,利用平行四边形的判定解答即可.此题主要考查了平行四边形的判定与性质,关键是掌握平行四边形两直线平行和两线段相等;对边平行且相等的四边形是平行四边形.19.【答案】解:(1)∵一次函数y=x+5的图象与反比例函数y=kx(k为常数且k≠0)的图象相交于A(−1,m),∴m=4,∴k=−1×4=−4,∴反比例函数解析式为:y=−4x;(2)∵一次函数y=x+5的图象沿y轴向下平移b个单位(b>0),∴y=x+5−b,∵平移后的图象与反比例函数y=k的图象有且只有一个交点,x∴x+5−b=−4,x∴x2+(5−b)x+4=0,∵△=(5−b)2−16=0,解得b=9或1,答:b的值为9或1.(k为常数且k≠0)的图象【解析】(1)根据一次函数y=x+5的图象与反比例函数y=kx相交于A(−1,m),可得m=4,进而可求反比例函数的表达式;(2)根据一次函数y=x+5的图象沿y轴向下平移b个单位(b>0),可得y=x+5−b,根据平移后的图象与反比例函数y=k的图象有且只有一个交点,联立方程根据判别式x=0即可求出b的值.本题考查了反比例函数与一次函数的交点问题,解决本题的关键是掌握反比例函数与一次函数的性质.20.【答案】解:(1)60;(2)60−15−18−9−6=12(人),补全条形统计图如图所示:=200(人),(3)800×1560答:该校七年级800名学生中选择“厨艺”劳动课程的有200人;(4)用列表法表示所有可能出现的结果如下:共有12种等可能出现的结果,其中选中“园艺、编织”的有2种,∴P (园艺、编织)=212=16.【解析】【分析】本题考查条形统计图、扇形统计图的意义和制作方法,列表法求随机事件发生的概率,理解数量关系和列举所有可能出现的结果情况是解决问题的关键.(1)从两个统计图中可得,选择“园艺”的有18人,占调查人数的30%,可求出调查人数;(2)求出选择“编制”的人数,即可补全条形统计图;(3)样本中,选择“厨艺”的占1560,因此估计总体800人的1560是选择“厨艺”的人数.(4)用列表法表示所有可能出现的结果,进而计算选中“园艺、编织”的概率.【解答】解:(1)18÷30%=60(人),故答案为60;(2)(3)(4)见答案.21.【答案】解:设B 型机器人每小时搬运xkg 原料,则A 型机器人每小时搬运(x +20)kg 原料,依题意,得:1200x+20=1000x , 解得:x =100,经检验,x =100是原方程的解,且符合题意,∴x +20=120.答:A 型机器人每小时搬运120kg 原料,B 型机器人每小时搬运100kg 原料.【解析】设B 型机器人每小时搬运xkg 原料,则A 型机器人每小时搬运(x +20)kg 原料,根据工作时间=工作总量÷工作效率结合A 型机器人搬运1200kg 所用时间与B 型机器人搬运1000kg 所用时间相等,即可得出关于x 的分式方程,解之即可得出结论. 本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 22.【答案】解:如图,过点C 作CD ⊥AB 于点D ,根据题意可知:AB=7,∠ACD=45°,∠CBD=90°−68°=22°,∴AD=CD,∴BD=AB−AD=7−CD,在Rt△BCD中,∵tan∠CBD=CDBD,∴CD7−CD≈0.40,∴CD=2,∴AD=CD=2,BD=7−2=5,∴AC=2√2≈2.83,BC=CDsin22∘≈20.37≈5.41,∴AC+BC≈2.83+5.41≈8.2(km).答:新建管道的总长度约为8.2km.【解析】过点C作CD⊥AB于点D,根据锐角三角函数即可求出新建管道的总长度.本题考查了解直角三角形的应用−方向角问题,解决本题的关键是掌握方向角定义.23.【答案】解:(1)∵四边形ABCD是矩形,∴AD//BC,∠ABC=90°,在Rt△ABC中,AB=6,BC=8,根据勾股定理得,AC=10,由运动知,CP=t=5,∴AP=AC−CP=5,∴AP=CP,∵AD//BC,∴∠PAF=∠PCE,∠AFP=∠CEP,∴△APF≌△CPE(AAS),∴AF=CE;(2)结论:AQ2+CE2=QE2,理由:如图2,连接FQ,由(1)知,△APF≌△CPE,∴AF=CE,PE=PF,∵EF⊥PQ,∴QE=QF,在Rt△QAF中,根据勾股定理得,AQ2+AF2=QF2,∴AQ2+CE2=QE2;(3)如图3,由运动知,AQ=t,CP=t,∴AP=AC−CP=10−t,∵FQ平分∠AFE,∴∠AFQ=∠PFQ,∵∠FAQ=∠FPQ=90°,FQ=FQ,∴△FAQ≌△FPQ(AAS),∴AQ=PQ=t,AF=PF,∴BQ=AB−AQ=6−t,∠FAC=∠FPA,∵∠DAC=∠ACB,∠APF=∠CPE,∴∠ACB=∠CPE,∴PE=CE,过点E作EN⊥AC于N,∴CN=12CP=12t,∠CNE=90°=∠ABC,∵∠NCE=∠BCA,∴△CNE∽△CBA,∴CEAC =CNCB,∴CE10=12t8,∴CE=58t,∴PE=58t,BE=BC−CE=8−58t,在Rt△QPE中,QE2=PQ2+PE2,在Rt△BQE中,QE2=BQ2+BE2,∴PQ2+PE2=BQ2+BE2,∴t2+(58t)2=(6−t)2+(8−58t)2,∴t=5011,∴CP=t=5011,∴AP=10−CP=6011,∵AD//BC,∴△APF∽△CPE,∴AFCE =APCP=60115011=65.【解析】(1)先利用勾股定理求出AC,再判断出CP=AP,进而判断出△APF≌△CPE,即可得出结论;(2)先判断出AF=CE,PE=PF,再用勾股定理得出AQ2+AF2=QF2,即可得出结论;(3)先判断出△FAQ≌△FPQ(AAS),得出AQ=PQ=t,AF=PF,进而判断出PE=CE,再判断出△CNE∽△CBA,得出CE=58t,在Rt△QPE中,QE2=PQ2+PE2,在Rt△BQE中,QE2=BQ2+BE2,得出PQ2+PE2=BQ2+BE2,∴t2+(58t)2=(6−t)2,进而求出t,即可得出结论.此题是四边形综合题,主要考查了矩形的性质,勾股定理,全等三角形的判定和性质,相似三角形的判定和性质,求出t是解本题的关键.24.【答案】解:(1)把点A(−65,0)代入抛物线F1:y=a(x−25)2+6415中得:0=a(−65−25)2+6415,解得:a=−53,∴抛物线F1:y=−53(x−25)2+6415;(2)①由平移得:抛物线F2:y=−53(x−25+1)2+6415−3,∴y=−53(x+35)2+1915,∴−53(x+35)2+1915=−53(x−25)2+6415,−103x=103,解得:x=−1,∴D(−1,1);②当x=0时,y=−53×425+6415=4,∴C(0,4),当y=0时,−53(x−25)2+6415=0,解得:x=−65或2,∴B(2,0),∵D(−1,1),∴BD2=(2+1)2+(1−0)2=10,CD2=(0+1)2+(4−1)2=10,BC2=22+42=20,∴BD2+CD2=BC2且BD=CD,∴△BDC是等腰直角三角形;(3)存在,设P[m,−53(m+35)2+1915],∵B(2,0),D(−1,1),∴BD2=(2+1)2+12=10,PB2=(m−2)2+[−53(m+35)2+1915]2,PD2=(m+1)2+[−53(m+35)2+1915−1]2,分三种情况:①当∠DBP=90°时,BD2+PB2=PD2,即10+(m−2)2+[−53(m+35)2+1915]2=(m+1)2+[−53(m+35)2+1915−1]2,解得:m=−4或1,当m=−4时,BD=√10,PB=√36+324=6√10,即△BDP不是等腰直角三角形,不符合题意,当m=1时,BD=√10,PB=√1+9=√10,∴BD=PB,即△BDP是等腰直角三角形,符合题意,∴P(1,−3);②当∠BDP=90°时,BD2+PD2=PB2,即10+[−53(m+35)2+1915−1]2=(m−2)2+[−53(m+35)2+1915]2,第21页,共22页解得:m=−1(舍)或−2,当m=−2时,BD=√10,PD=√1+9=√10,∴BD=PD,即此时△BDP为等腰直角三角形,∴P(−2,−2);③当∠BPD=90°时,且BP=DP,有BD2=PD2+PB2,如图3,当△BDP为等腰直角三角形时,点P1和P2不在抛物线上,此种情况不存在这样的点P;综上,点P的坐标(1,−3)或(−2,−2).【解析】(1)把点A(−65,0)代入抛物线F1:y=a(x−25)2+6415中,求出a的值,即可求解;(2)①由平移的原则:左加,右减,上加,下减,可得抛物线F2的解析式,与抛物线F1联立方程组,解出可得点D的坐标;②根据两点的距离公式和勾股定理的逆定理可得:△BDC是等腰直角三角形;(3)设P[m,−53(m+35)2+1915],根据两点的距离公式和勾股定理列方程可解出m的值,并确认两直角边是否相等,可得符合条件的点P的坐标.本题是二次函数综合题型,主要利用了待定系数法和平移求二次函数解析式,勾股定理及逆定理,两点的距离,难点在于(3)根据直角三角形的直角顶点分情况讨论.第22页,共22页。

七年级下册数学湖南省岳阳市2020年中考数学试题(精校word版有答案)

七年级下册数学湖南省岳阳市2020年中考数学试题(精校word版有答案)

2020年岳阳市初中学业水平考试试卷数学一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.6的相反数是( ) A .6- B .16C .6D .6± 2.下列运算正确的是( ) A .()235xx = B .()55x x -=- C .326x x x ⋅= D .235325x x x +=3.据国土资源部数据显示,我国是全球“可燃冰”资源储量最多的国家之一,海、陆总储量约为39000000000吨油当量,将39000000000用科学记数法表示为( )A .103.910⨯ B .93.910⨯ C .110.3910⨯ D .93910⨯ 4.下列四个立体图形中,主视图、左视图、俯视图都相同的是( )A B C D5.0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是( )A .15 B .25 C.35 D .456.解分式方程22111xx x -=--,可知方程的解为( )A .1x =B .3x = C.12x = D .无解7.观察下列等式:122=,224=,328=,4216=,5232=,6264=,⋅⋅⋅,根据这个规律,则1234201722222++++⋅⋅⋅+的末尾数字是( )A .0B .2 C.4 D .6 8.已知点A 在函数11y x=-(0x >)的图象上,点B 在直线21y kx k =++(k 为常数,且0k ≥)上,若A ,B 两点关于原点对称,则称点A ,B 为函数1y ,2y 图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为( )A .有1对或2对B .只有1对 C.只有2对 D .有2对或3对二、填空题(每题4分,满分32分,将答案填在答题纸上)9.函数17y x =-中自变量x 的取值范围是 . 10.因式分解:269x x -+= .11.在环保整治行动中,某市环保局对辖区内的单位进行了抽样调查,他们的综合得分如下:95,85,83,95,92,90,96,则这组数据的中位数是 ,众数是 .12.如右图,点P 是∠NOM 的边OM 上一点,D P ⊥ON 于点D ,D 30∠OP =o,Q//P ON ,则Q ∠MP 的度数是 .13.不等式组()()303129x x x -≥⎧⎪⎨->+⎪⎩的解集是 .14.在C ∆AB 中C 2B =,23AB =,C b A =,且关于x 的方程240x x b -+=有两个相等的实数根,则C A 边上的中线长为 .15.我国魏晋时期的数学家刘徽创立了“割圆术”,认为圆内接正多边形边数无限增加时,周长就越接近圆周长,由此求得了圆周率π的近似值.设半径为r 的圆内接正n 边形的周长为L ,圆的直径为d .如右图所示,当6n =时,L 632r d r π≈==,那么当12n =时,Ldπ≈= .(结果精确到0.01,参考数据:sin15cos750.259=≈oo)QDB COAP16.如右图,⊙O 为等腰C ∆AB 的外接圆,直径12AB =,P 为弧¼C B 上任意一点(不与B ,C 重合),直线C P 交AB 延长线于点Q ,⊙O 在点P 处切线D P 交Q B 于点D ,下列结论正确的是 .(写出所有正确结论的序号)①若30∠PAB =o,则弧»BP的长为π; ②若D//C P B ,则AP 平分C ∠AB ; ③若D PB =B ,则D 3P = ④无论点P 在弧»C B上的位置如何变化,C CQ P⋅为定值. 三、解答题 (本大题共8小题,共64分.解答应写出文字说明、证明过程或演算步骤.)17. (本题满分6分)计算:()112sin 603322π-⎛⎫+-- ⎪⎝⎭o18. (本题满分6分)求证:对角线互相垂直的平行四边形是菱形.小红同学根据题意画出了图形,并写出了已知和求证的一部分,请你补全已知和求证,并写出证明过程.Q N D已知:如图,在□CD AB 中,对角线C A ,D B 交于点O , . 求证: .19. (本题满分8分)如图,直线y x b =+与双曲线ky x=(k 为常数,0k ≠)在第一象限内交于点()1,2A ,且与x 轴、y 轴分别交于B ,C 两点. (1)求直线和双曲线的解析式;(2)点P 在x 轴上,且C ∆B P 的面积等于2,求P 点的坐标. 20. (本题满分8分)我市某校组织爱心捐书活动,准备将一批捐赠的书打包寄往贫困地区,其中每包书的数目相等.第一次他们领来这批书的23,结果打了16个包还多40本;第二次他们把剩下的书全部取来,连同第一次打包剩下的书一起,刚好又打了9个包.那么这批书共有多少本? 21. (本题满分8分)为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动.学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:请根据图表信息回答下列问题:(1)频数分布表中的a = ,b = ; (2)将频数分布直方图补充完整;(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2000名学生中评为“阅读之星”的有多少人? 22.(本题满分8分)某太阳能热水器的横截面示意图如图所示.已知真空热水管AB 与支架CD 所在直线相交于点O ,且D OB =O .支架CD 与水平线AE 垂直,C CD 30∠BA =∠E =o ,D 80E =cm ,C 165A =cm .(1)求支架CD 的长;(2)求真空热水管AB 的长.(结果均保留根号)23.(本题满分10分)问题背景:已知DF ∠E 的顶点D 在C ∆AB 的边AB 所在直线上(不与A ,B 重合).D E 交C A 所在直线于点M ,DF 交C B 所在直线于点N .记D ∆A M 的面积为1S ,D ∆BN 的面积为2S .(1)初步尝试:如图①,当C ∆AB 是等边三角形,6AB =,DF ∠E =∠A ,且D //C E B ,D 2A =时,则12S S ⋅= ;(2)类比探究:在(1)的条件下,先将点D 沿AB 平移,使D 4A =,再将DF ∠E 绕点D 旋转至如图②所示位置,求12S S ⋅的值;(3)延伸拓展:当C ∆AB 是等腰三角形时,设DF α∠B =∠A =∠E =.(I )如图③,当点D 在线段AB 上运动时,设D a A =,D b B =,求12S S ⋅的表达式(结果用a ,b 和α的三角函数表示).(II )如图④,当点D 在BA 的延长线上运动时,设D a A =,D b B =,直接写出12S S ⋅的表达式,不必写出解答过程.图①图②图③24.(本题满分10分) 如图,抛物线223y x bx c =++经过点()3,0B ,()C 0,2-,直线:l 2233y x =--交y 轴于点E ,且与抛物线交于A ,D 两点.P 为抛物线上一动点(不与A ,D 重合). (1)求抛物线的解析式;(2)当点P 在直线l 下方时,过点P 作//x PM 轴交l 于点M ,//y PN 轴交l 于点N .求PM+PN 的最大值;(3)设F 为直线l 上的点,以E ,C ,P ,F 为顶点的四边形能否构成平行四边形?若能,求出点F 的坐标;若不能,请说明理由.2020年岳阳市初中学业水平考试试卷数学答案一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.6的相反数是( A ) A .6- B .16C .6D .6± 2.下列运算正确的是( B ) A .()235xx = B .()55x x -=- C .326x x x ⋅= D .235325x x x +=3.据国土资源部数据显示,我国是全球“可燃冰”资源储量最多的国家之一,海、陆总储量约为39000000000吨油当量,将39000000000用科学记数法表示为( A )A .103.910⨯ B .93.910⨯ C .110.3910⨯ D .93910⨯ 4.下列四个立体图形中,主视图、左视图、俯视图都相同的是( B )A B C D5.0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是( B )A .15 B .25 C.35 D .456.解分式方程22111xx x -=--,可知方程的解为( D )A .1x =B .3x = C.12x = D .无解7.观察下列等式:122=,224=,328=,4216=,5232=,6264=,⋅⋅⋅,根据这个规律,则1234201722222++++⋅⋅⋅+的末尾数字是( B )A .0B .2 C.4 D .6 8.已知点A 在函数11y x=-(0x >)的图象上,点B 在直线21y kx k =++(k 为常数,且0k ≥)上,若A ,B 两点关于原点对称,则称点A ,B 为函数1y ,2y 图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为( A )A .有1对或2对B .只有1对 C.只有2对 D .有2对或3对二、填空题(每题4分,满分32分,将答案填在答题纸上)9.函数17y x =-中自变量x 的取值范围是 x ≠ 7 . 10.因式分解:269x x -+= (x - 3)2.11.在环保整治行动中,某市环保局对辖区内的单位进行了抽样调查,他们的综合得分如下:95,85,83,95,92,90,96,则这组数据的中位数是 92 ,众数是 95 .12.如右图,点P 是∠NOM 的边OM 上一点,D P ⊥ON 于点D ,D 30∠OP =o,Q//P ON ,则Q ∠MP 的度数是 60° .13.不等式组()()303129x x x -≥⎧⎪⎨->+⎪⎩的解集是 x <-3 .14.在C ∆AB 中C 2B =,23AB =,C b A =,且关于x 的方程240x x b -+=有两个相等的实数根,则C A 边上的中线长为 2 .15.我国魏晋时期的数学家刘徽创立了“割圆术”,认为圆内接正多边形边数无限增加时,周长就越接近圆周长,由此求得了圆周率π的近似值.设半径为r 的圆内接正n 边形的周长为L ,圆的直径为d .如右图所示,当6n =时,L 632r d r π≈==,那么当12n =时,Ldπ≈= 3.11 .(结果精确到0.01,参考数据:sin15cos750.259=≈oo)QDB COAP16.如右图,⊙O 为等腰C ∆AB 的外接圆,直径12AB =,P 为弧¼C B 上任意一点(不与B ,C 重合),直线C P 交AB 延长线于点Q ,⊙O 在点P 处切线D P 交Q B 于点D ,下列结论正确的是 ②③④ .(写出所有正确结论的序号)①若30∠PAB =o,则弧»BP的长为π; ②若D//C P B ,则AP 平分C ∠AB ; ③若D PB =B ,则D 3P = ④无论点P 在弧»C B上的位置如何变化,C CQ P⋅为定值. 三、解答题 (本大题共8小题,共64分.解答应写出文字说明、证明过程或演算步骤.)17. (本题满分6分)计算:()112sin 603322π-⎛⎫+-- ⎪⎝⎭o= 218. (本题满分6分)求证:对角线互相垂直的平行四边形是菱形.小红同学根据题意画出了图形,并写出了已知和求证的一部分,请你补全已知和求证,并写出证明过程.Q N D已知:如图,在□CD AB 中,对角线C A ,D B 交于点O , 且C A ⊥D B . 求证: □CD AB 是菱形 .证明:∵四边形CD AB 是平行四边形 ∴对角线C A 平分D B 又C A ⊥D B∴AB=AD (线段的垂直平分线上的一点到这条线段两个端点的距离相等) ∴□CD AB 是菱形 19. (本题满分8分)如图,直线y x b =+与双曲线ky x=(k 为常数,0k ≠)在第一象限内交于点()1,2A ,且与x 轴、y 轴分别交于B ,C 两点. (1)求直线和双曲线的解析式;(2)点P 在x 轴上,且C ∆B P 的面积等于2,求P 点的坐标. 解:(1)1y x =+,2y x=(2)∵点P 在x 轴上,则1=22BPC S BP OC ∆⨯⨯=,又OC =1 ∴BP =4设P 点横坐标为m ,又B 点横坐标为-1,则()14m --=, 解得m =3或-5,则P 点坐标为(3,0)或(-5,0) 20. (本题满分8分)我市某校组织爱心捐书活动,准备将一批捐赠的书打包寄往贫困地区,其中每包书的数目相等.第一次他们领来这批书的23,结果打了16个包还多40本;第二次他们把剩下的书全部取来,连同第一次打包剩下的书一起,刚好又打了9个包.那么这批书共有多少本?解:设这批书共有x 本,每包书有y 本,根据题意,得:21640319403y x y x ⎧+=⎪⎪⎨⎪=+⎪⎩解得150060x y =⎧⎨=⎩ 答:这批书共有1500本。

2020年湖南岳阳中考数学试卷(解析版)

2020年湖南岳阳中考数学试卷(解析版)

2020年湖南岳阳中考数学试卷(解析版)一、选择题1.的相反数是( ).A. B. C. D.2.年以来,我国扶贫攻坚取得关键进展,农村贫困人口减少人,数据用科学记数法表示为( ).A. B. C. D.3.如图,由个相同正方体组成的几何体,它的左视图是( ).A. B.C. D.4.下列运算结果正确的是( ).A. B. C. D.5.如图,,,,则的度数是( ).A. B. C.D.A., B., C., D.,6.今年端午小长假复课第一天,学校根据疫情防控要求,对所有进入校园的师生进行体温检测,其中名学生的体温(单位:)如下:,,,,,,,这组数据的众数和中位数分别是( ).7.下列命题是真命题的是( ).A.一个角的补角一定大于这个角B.平行于同一条直线的两条直线平行C.等边三角形是中心对称图形 D.旋转改变图形的形状和大小A. B. C. D.8.对于一个函数,自变量取时,函数值等于,则称为这个函数的零点,若关于的二次函数有两个不相等的零点,,关于的方程有两个不相等的非零实数根,,则下列关系式一定正确的是().二、填空题9.因式分解:.10.函数中,自变量的取值范围是 .11.不等式组的解集是 .12.如图,在中,是斜边上的中线,若,则 .13.在,,,,五个数中随机选取一个数作为二次函数中的值,则该二14.已知,则代数式的值为 .15.《九章算术》中有这样一个题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?”其译文是:今有醇酒(优质酒)斗,价值钱;行酒(劣质酒)斗,价值钱.现有钱,买得斗酒.问醇酒、行酒各能买得多少?设醇酒为斗,行酒为斗,则可列二元一次方程组为 .ABDOC P FE M 16.如图,为半⊙的直径,,是半圆上的三等分点,,与半⊙相切于点,点为上一动点(不与点,重合),直线交于点,于点,延长交于点,则下列结论正确的是 .(写出所有正确结论的序号)①;②的长为;③;④;⑤为定值.三、解答题17.计算:.18.如图,点,在平行四边形的边,上,,,连接,.求证:四边形是平行四边形.19.如图,一次函数的图象与反比例函数(为常数且)的图象相交于,两点.(1)(2)求反比例函数的表达式.将一次函数的图象沿轴向下平移个单位,使平移后的图象与反比例函数的图象有且只有一个交点,求的值.(1)(2)(3)(4)20.我市某学校落实立德树人根本任务,构建“五育并举”教育体系,开设了“厨艺、园艺、电工、木工、编织”五大类劳动课程.为了解七年级学生对每类课程的选择情况,随机抽取了七年级若干名学生进行调查(每人只选一类最喜欢的课程),将调查结果绘制成如下两幅不完整的统计图:厨艺园艺木工编织劳动课程电工人数园艺厨艺编织电工木工本次随机调查的学生人数为 人.补全条形统计图.若该校七年级共有名学生,请估计该校七年级学生选择“厨艺”劳动课程的人数.七()班计划在“园艺、电工、木工、编织”四大类劳动课程中任选两类参加学校期末展示活动,请用列表或画树状图的方法,求恰好选中“园艺、编织”这两类劳动课程的概率.21.为做好复工复产,某工厂用、两种型号机器人搬运原料,已知型机器人比型机器人每小时多搬运,且型机器人搬运所用时间与型机器人搬运所用时间相等,求这两种机器人每小时分别搬运多少原料.22.共抓长江大保护,建设水墨丹青新岳阳,推进市中心城区污水系统综合治理项目,需要从如图,两地向地新建,两条笔直的污水收集管道,现测得地在地北偏东方向上,在地北偏西方向上,的距离为,求新建管道的总长度.(结果精确到,,,,)(1)23.如图,在矩形,中,,,动点,分别从点,点同时以每秒个单位长度的速度出发,且分别在边,上沿,的方向运动,当点动到点时,,两点同时停止运动,设点运动的时间为,连接,过点作,与边相交于点,连接.图如图,当时,延长交边于点,求证:.(2)(3)图在()的条件下,试探究线段,,三者之间的等量关系,并加以证明.如图,当时,延长交边于点,连接,若平分,求值.图(1)(2)24.如图所示,在平面直角坐标系中,抛物线:与轴交于点和点,与轴交于点.xy图求抛物线的表达式.如图,将抛物线先向左平移个单位,再向下平移个单位,得到抛物线,若抛物线与抛物线相交于点,连接,,.【答案】解析:互为相反数的两个数和为,∴故选.解析:科学记数法:将一个数表示成的形式,其中,为整数,这种记数的方法叫做科学记数法,则,12(3)xy图求点的坐标.判断的形状,并说明理由,在()的条件下,抛物线上是否存在点,使得为等腰直角三角形,若存在,求出点的坐标;若不存在,请说明理由.A 1.D 2.故选:.解析:观察图形,从左边看得到两个叠在一起的长方形,如图所示.故选.解析:∵,,∴∴,∵,∴.故选:.解析:将这名学生的体温按从小到大的顺序排列如下:,,,,,,,则中位数就是第个数:;出现次数最多的数是,则众数为:;故选:.解析:∵,是的两个不相等的零点,即,是的两个不相等的实数根,∴,A 3.C 4.D 5.B 6.B 7.B 8.解得,,∵方程有两个不相等的非零实数根,,∴,∵,解得,,∴,∴,∵,,∴,∴,∴,而由题意知,解得,当时,,,;当时,,,;当时,无意义;当时,,∴取值范围不确定.故选.9.解析:,平方差公式.10.解析:依题意,得,故答案为:.解析:,解不等式①得:,解不等式②得:,则不等式组的解集为.故答案为:.解析:∵是斜边的中线,∴,∴,∴.故答案是.解析:当大于时,二次函数图象开口向上,,,,,中大于的数有个,所以该二次函数图象开口向上的概率是.解析:,将代入得:原式,故答案为:.解析:11.①②12.13.14.15.设醇酒购买了斗,行酒购买了斗,根据题意,得.解析:如图,连接,ABDOC P FE M ∵与半⊙相切于点,∴.∵是半圆上的三等分点,∴.∵,∴是等边三角形.由圆周角定理得:,假设,则,∴,∴,又∵点为上一动点,∴不是一个定值,与相矛盾,即与不一定相等,结论①错误.∵,∴,则的长为,结论②正确.∵是等边三角形,,∴,∴,则结论③错误.②⑤16.(1)∵,即对应角与不可能相等,∴与不相似,则结论④错误.在和中,,∴,∴,即,又∵是等边三角形,,∴,∴,即为定值,结论⑤正确.综上,结论正确的是②⑤.解析:原式.解析:∵四边形是平行四边形,∴,.∵,,∴,∴四边形是平行四边形.解析:由题意,将点代入一次函数得:,.17.证明见解析.18.(1).(2)或.19.(2)(1)(2)(3)(4)∴,将点代入得:,解得,则反比例函数的表达式为.将一次函数的图象沿轴向下平移个单位得到的一次函数的解析式为,联立,整理得:,∵一次函数的图象与反比例函数的图象有且只有一个交点,∴关于的一元二次方程只有一个实数根,∴此方程的根的判别式,解得,.则的值为或.解析:根据题意,本次随机调查的学生人数为:(人).故答案为:.选择编织的人数为:(人),补全条形图如下:厨艺园艺木工编织劳动课程电工人数该校七年级学生选择“厨艺”劳动课程人数为:(人).根据题意,“园艺、电工、木工、编织”可分别用字母,,,表示,则列表如下:(1)(2)画图见解析.(3)人.(4).20.∵共有种等可能的结果,其中恰好抽到“园艺、编织”类的有种结果,∴恰好抽到“园艺、编织”类的概率为:.解析:设型号机器人每小时搬运原料,则型号机器人每小时搬运原料,由题意得:解得,经检验,是所列分式方程的解,则答:型号机器人每小时搬运原料,型号机器人每小时搬运原料.解析:如图,过点作于点,由题意得:,,,设,则,∵,,∴是等腰直角三角形,∴,,在中,,即,解得,型号机器人每小时搬运原料,型号机器人每小时搬运原料.21.新建管道的总长度约为.22.(1)(2)经检验,是所列分式方程的解,∴,,在中,,即,解得,则.答:新建管道的总长度约为.解析:由题意得:,四边形是矩形,,,,,,,,,在和中,,≌,.,如图,连接,由()已证:≌,,(1)证明见解析.(2),证明见解析.(3).23.(3),是线段的垂直平分线,,在中,由勾股定理得:,则.如图,设与的交点为点,由题意得:,,,平分,,,(角平分线的性质),是等腰三角形,在和中,,≌,,即是的角平分线,,(等腰三角形的三线合一),在,,在中,,,解得,,,∵,即,,故的值为.(1).12(2).等腰直角三角形,证明见解析.24.(1)12(2)(3)解析:将点代入抛物线的表达式得:.解得,则抛物线的表达式为,故抛物线的表达式为.由二次函数的平移规律得:抛物线的表达式为,即:,联立,解得,则点的坐标为.对于,当时,,解得或,则点的坐标为,当时,,则点的坐标为,由两点之间的距离公式得:,,,则,,故是等腰直角三角形.抛物线的表达式为,设点的坐标为,由题意,分以下三种情况:①当,时,为等腰直角三角形,∵是等腰直角三角形,,,∴,∴点是的中点,则,解得,即点的坐标为,(3)存在,或.对于抛物线的表达式,当时,,即点在抛物线上,符合题意;②当,时,为等腰直角三角形,∵,,∴,,∴四边形是平行四边形,∴点至点的平移方式与点至点的平移方式相同,∵,,∴点至点的平移方式为先向下平移个单位长度,再向右平移个单位长度,∵,,∴,即点的坐标为,对于抛物线的表达式,当时,,即点在抛物线上,符合题意;③当,时,为等腰直角三角形,则点在线段的垂直平分线上,设直线的解析式,将点,代入得:,解得,则直线的解析式,设的垂直平分线所在直线的解析式为,点,的中点的坐标为,即,将点代入得:,解得,则的垂直平分线所在直线的解析式为,因此有,即点的坐标为,由两点之间的距离公式得:,又∵,为等腰直角三角形,∴,则,解得或,当时,,即点的坐标为,当时,,即点的坐标为,对于抛物线的表达式,当时,,即点不在抛物线上,不符合题意,舍去,当时,,即点不在抛物线上,不符合题意,舍去.综上,符合条件的点的坐标为或.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020 年岳阳市初中学业水平考试试卷数学
温馨提示:
1.本试卷共三大题,24 小题,考试时量 90 分钟;
2.本试卷分为试题卷和答题卡两部分,所有答案都必须填涂或填写在答题卡上规定的答题区
域内;
3.考试结束后,考生不得将试题卷、答题卡、草稿纸带出考场.
一、选择题(本大题共 8 小题,在每道小题给出的四个选项中,选出符合要求的一项)
4
CE
5
24.如图
1
所示,在平面直角坐标系中,抛物线
F1
:
y
a(x
2)2 5
64 15

x
轴交于点
A(
6 5
,
0)
和点
B
,与
y
轴交于点 C .
(1)求抛物线 F1 的表达式;
(2)如图 2,将抛物线 F1 先向左平移 1 个单位,再向下平移 3 个单位,得到抛物线 F2 ,若抛物线 F1 与抛
物线 F2 相交于点 D ,连接 BD , CD , BC .
1.-2020 的相反数是( )
A. 2020
B. -2020
1
C.
2020
1
D. -
2020
2.2019 年以来,我国扶贫攻坚取得关键进展,农村贫困人口减少 11090000 人,数据 11090000 用科学记数
法表示为( )
A. 0.1109 108
B. 11.09 106
C. 1.109 108
故选 A.
【点睛】本题考查了简单几何体的三视图,解题的关键是掌握左视图的观察位置.
4.下列运算结果正确的是( )
A. (a)3 a3
B. a9 a3 a3
C. a 2a 3a
D. a a2 a2
【答案】C
【解析】
【分析】
根据幂的乘方、同底数幂的乘法和除法及合并同类项的计算法则分别计算即可得解.
19.如图,一次函数 y x 5 的图象与反比例函数 y k ( k 为常数且 k 0 )的图象相交于 A(1, m) ,B 两 x
点. (1)求反比例函数的表达式;
(2)将一次函数 y x 5 的图象沿 y 轴向下平移 b 个单位 (b 0) ,使平移后的图象与反比例函数 y k 的 x
¼AM 上一动点(不与点 A ,M 重合),直线 PC 交 BD 于点 D ,BE OC 于点 E ,延长 BE 交 PC 于点 F ,
则下列结论正确的是______________.(写出所有正确结论的序号)

PB
PD ;②
BC
的长为
4 3
;③
DBE
45 ;④△BCF∽△PFB
;⑤
CF
CP
为定值.
y x2 10x m (m 0) 有两个不相等的零点 x1, x2 (x1 x2 ) ,关于 x 的方程 x2 10x m 2 0 有两个
不相等的非零实数根 x3 , x4 ( x3 x4 ) ,则下列关系式一定正确的是( )
A.
0 x1 1 x3
B.
x1 1 x3
C.
0 x2 x4
2.2019 年以来,我国扶贫攻坚取得关键进展,农村贫困人口减少 11090000 人,数据 11090000 用科学记数 法表示为( )
A. 0.1109 108
【答案】D 【解析】
B. 11.09 106
C. 1.109 108
D. 1.109 107
【分析】
根据科学记数法的定义即可得.
【详解】科学记数法:将一个数表示成 a 10 n 的形式,其中1 a 10 ,n 为整数,这种记数的方法叫做
QE .
(1)如图 2,当 t 5s 时,延长 EP 交边 AD 于点 F .求证: AF CE ; (2)在(1)的条件下,试探究线段 AQ, QE, CE 三者之间的等量关系,并加以证明;
(3)如图 3,当 t 9 s 时,延长 EP 交边 AD 于点 F ,连接 FQ ,若 FQ 平分 AFP ,求 AF 的值.
13.在 3 , 2 ,1,2,3 五个数中随机选取一个数作为二次函数 y ax2 4x 2 中 a 的值,则该二次函数
图象开口向上的概率是_____________.
14.已知 x2 2x 1 ,则代数式 5 x(x 2) 的值为___________.
15.《九章算术》中有这样一个题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二
3.考试结束后,考生不得将试题卷、答题卡、草稿纸带出考场.
一、选择题(本大题共 8 小题,在每道小题给出的四个选项中,选出符合要求的一项)
1.-2020 的相反数是( )
A. 2020
【答案】A 【解析】
B. -2020
1
C.
2020
1
D. -
2020
【分析】
根据相反数直接得出即可.
【详解】-2020 的相反数是 2020, 故选 A. 【点睛】本题是对相反数的考查,熟练掌握相反数知识是解决本题的关键.
8
A. 154
【答案】D
B. 144
C. 134
D. 124
【解析】
【分析】
由平行线的判定和性质,即可求出答案.
【详解】解:∵ DA AB , CD DA ,
∴ AB / /CD , ∴ C B 180 , ∵ B 56 , ∴ C 124 ;

故选:D.
【点睛】本题考查了平行线的判定和性质,解题的关键是掌握两直线平行,同旁内角互补.
21.为做好复工复产,某工厂用 A 、 B 两种型号机器人搬运原料,已知 A 型机器人比 B 型机器人每小时多搬 运 20kg ,且 A 型机器人搬运1200kg 所用时间与 B 型机器人搬运1000kg 所用时间相等,求这两种机器人
每小时分别搬运多少原料.
4
22.共抓长江大保护,建设水墨丹青新岳阳,推进市中心城区污水系统综合治理项目,需要从如图 A , B 两 地向 C 地新建 AC , BC 两条笔直的污水收集管道,现测得 C 地在 A 地北偏东 45 方向上,在 B 地北偏西 68 方向上, AB 的距离为 7km ,求新建管道的总长度.(结果精确到 0.1km , sin 22 0.37 , cos 22 0.93 , tan 22 0.40 , 2 1.41)
B. 36.5,36.5
C. 36.5,36.3
D. 36.3,36.7
7.下列命题是真命题的是( )
A. 一个角的补角一定大于这个角
B. 平行于同一条直线的两条直线平行
C. 等边三角形是中心对称图形
D. 旋转改变图形的形状和大小
8.对于一个函数,自变量 x 取 c 时,函数值 y 等于 0,则称 c 为这个函数的零点.若关于 x 的二次函数
①求点 D 的坐标; ②判断 BCD 的形状,并说明理由;
(3)在(2)的条件下,抛物线 F2 上是否存在点 P ,使得 △BDP 为等腰直角三角形,若存在,求出点 P 的
坐标;若不存在,请说明理由.
6
2020 年岳阳市初中学业水平考试试卷数学
温馨提示: 1.本试卷共三大题,24 小题,考试时量 90 分钟; 2.本试卷分为试题卷和答题卡两部分,所有答案都必须填涂或填写在答题卡上规定的答题区 域内;
A. 154
B. 144
C. 134
D. 124
6.今年端午小长假复课第一天,学校根据疫情防控要求,对所有进入校园的师生进行体温检测,其中 7 名学
1
生的体温(单位:℃)如下:36.5,36.3,36.8,36.3,36.5,36.7,36.5,这组数据的众数和中位数分别是
()
A. 36.3,36.5
(1)本次随机调查的学生人数为
人;
(2)补全条形统计图;
(3)若该校七年级共有 800 名学生,请估计该校七年级学生选择“厨艺”劳动课程的人数;
(4)七(1)班计划在“园艺、电工、木工、编织”四大类劳动课程中任选两类参加学校期末展示活动,请用
列表或画树状图的方法,求恰好选中“园艺、编织”这两类劳动课程的概率.
D. 1.109 107
3.如图,由 4 个相同正方体组成的几何体,它的左视图是( )
A.
B.
C.
D.
4.下列运算结果正确的是( )
A. (a)3 a3
B. a9 a3 a3
C. a 2a 3a
5.如图, DA AB , CD DA , B 56 ,则 C 的度数是( )
D. a a2 a2
科学记数法
则11090000 1.109 107 故选:D. 【点睛】本题考查了科学记数法的定义,熟记定义是解题关键.
3.如图,由 4 个相同正方体组成的几何体,它的左视图是( )
7
A.
B.
C.
D.
【答案】A 【解析】 【分析】 根据左视图是从左面看得到的图形,结合所给图形以及选项进行求解即可. 【详解】观察图形,从左边看得到两个叠在一起的正方形,如下图所示:
【详解】解:A、一个角的补角不一定大于这个角,故 A 错误;
B、平行于同一条直线的两条直线平行,故 B 正确;
9
C、等边三角形是轴对称图形,不是中心对称图形,故 C 错误; D、旋转不改变图形的形状和大小,故 D 错误; 故选:B. 【点睛】本题考查了补角的定义、平行线公理,中心对称图形的定义、旋转的性质,以及判断命题的真假,
斗.问醇、行酒各得几何?”其译文 是:今有醇酒(优质酒)1 斗,价值 50 钱;行酒(劣质酒)1 斗,价值
10 钱.现有 30 钱,买得 2 斗酒.问醇酒、行酒各能买得多少?设醇酒为 x 斗,行酒为 y 斗,则可列二元一
次方程组为_____.
相关文档
最新文档