轴对称复习课精品PPT教学课件
合集下载
《轴对称》PPT课件
轴对称
问题一: 你能从几何学的角度刻划画面中的 两个图形的特点吗
从大小 形状 位置去考虑
轴对称概念的准确描述
把一个图形沿着某一条直线折叠;如 果它能与另一个图形重合;那么就说 这两个图形关于这条直线对称 两个图形中的对应点叫做关于这条 直线的对称点
这条直线叫做对称轴 两个图形关于直线 对称也叫做轴对称
思维的延伸
1 已知:如图;CD是△ABC的外角平分 线;BD⊥CD;BD的延长线交AE于点F; 求证:点B与点F关于CD对称
FE
C D
B A
能力训练
如图:某同学打台球时想通过击主球A;使主 球A撞击桌边MN后反弹回来击中彩球B;请 画出主球A的运动路线
A B
M
N
ቤተ መጻሕፍቲ ባይዱ
H
B1
综合创新
设AD是△ABC的∠BAC的平分线;过A引直 线MN⊥AD;过B作BE⊥MN于E;求证: △EBC的周长大于△ABC的周长
概念理解与归纳
轴对称涉及两个图形;它们能完 全重合;因此;轴对称是指两个图 形之间的形状与位置关系
概念对两图形的重合有限制; 它们的位置关系必须满足沿 某一条直线对折后能重合
观察图形归纳特性
从两图形大小 形状来看:
定理1 关于某条直线对称的两 个图形是全等形
从两图形 位置来看:
定理2 如果两个图形关于某条直 线对称;那么对称轴是对应点连 线的垂直平分线
M EA
B D
C1 N
C
课后思考:
1 沿着等腰三角形底边上 的高对折;高两边的图形 完全重合吗 2 沿着直角三形斜边上的 高对折;高两边的图形完 全重合吗
小结
概念 定理 应用
轴 对 称 知 识 结
问题一: 你能从几何学的角度刻划画面中的 两个图形的特点吗
从大小 形状 位置去考虑
轴对称概念的准确描述
把一个图形沿着某一条直线折叠;如 果它能与另一个图形重合;那么就说 这两个图形关于这条直线对称 两个图形中的对应点叫做关于这条 直线的对称点
这条直线叫做对称轴 两个图形关于直线 对称也叫做轴对称
思维的延伸
1 已知:如图;CD是△ABC的外角平分 线;BD⊥CD;BD的延长线交AE于点F; 求证:点B与点F关于CD对称
FE
C D
B A
能力训练
如图:某同学打台球时想通过击主球A;使主 球A撞击桌边MN后反弹回来击中彩球B;请 画出主球A的运动路线
A B
M
N
ቤተ መጻሕፍቲ ባይዱ
H
B1
综合创新
设AD是△ABC的∠BAC的平分线;过A引直 线MN⊥AD;过B作BE⊥MN于E;求证: △EBC的周长大于△ABC的周长
概念理解与归纳
轴对称涉及两个图形;它们能完 全重合;因此;轴对称是指两个图 形之间的形状与位置关系
概念对两图形的重合有限制; 它们的位置关系必须满足沿 某一条直线对折后能重合
观察图形归纳特性
从两图形大小 形状来看:
定理1 关于某条直线对称的两 个图形是全等形
从两图形 位置来看:
定理2 如果两个图形关于某条直 线对称;那么对称轴是对应点连 线的垂直平分线
M EA
B D
C1 N
C
课后思考:
1 沿着等腰三角形底边上 的高对折;高两边的图形 完全重合吗 2 沿着直角三形斜边上的 高对折;高两边的图形完 全重合吗
小结
概念 定理 应用
轴 对 称 知 识 结
轴对称全章复习PPT课件
例、如图,在△ABC中,已知AB=AC,∠BAC=90°, D是BC上一点,△DEA等腰直角三角形,∠DAE=90°. 求证:(1)△ABD≌△ACE (2)EC⊥BC
A E
BD
C
第25页/共26页
谢谢您的观看!
第26页/共26页
轴对称的性质
轴
对
轴对称图形
中垂线的性质与判定
称 图
等腰三角形的性质
形
等腰三角形
等腰三角形的判定
等边三角形
含30°角的直角三角形的性质 应
用
第2页/共26页
一、轴对称相关定义和性质。
如果一个图形沿一条直线折叠,直线两旁
的部分能够互相重合,这个图形就叫做轴对称
定 图形,这条直线就是它的对称轴。
义
如果一个图形沿一条直线折叠,如果它能
1、如图(1),在△ABC中,∠BAC=110°,AB、BC 的垂直平分线分别交BC于点D、E,那么∠DAE= 40°.
若BC=15cm, 那么△ADE的周长是15cm .
A
A
B
DE C
图(1)
BD
EC
图(2)
2、如图(2),在△ABC中,AB=AC,∠A=120°, AB的垂直平分线交BC于点D,那么BD∶CD= 1∶2 .
第6页/共26页
四、等腰三角形的性质及判定。
有两边相等的三角形是等腰三角形.
判 定 如果一个三角形中有两个角相等,那
么这两个角所对的边也相等(简写 成“等角对等边”).
第7页/共26页
五、等边三角形的性质及判定。
⑴等边三角形的三边都相等。
⑵等边三角形的三个内角都相等,并且
性
每一个角都等于60°。
A E
BD
C
第25页/共26页
谢谢您的观看!
第26页/共26页
轴对称的性质
轴
对
轴对称图形
中垂线的性质与判定
称 图
等腰三角形的性质
形
等腰三角形
等腰三角形的判定
等边三角形
含30°角的直角三角形的性质 应
用
第2页/共26页
一、轴对称相关定义和性质。
如果一个图形沿一条直线折叠,直线两旁
的部分能够互相重合,这个图形就叫做轴对称
定 图形,这条直线就是它的对称轴。
义
如果一个图形沿一条直线折叠,如果它能
1、如图(1),在△ABC中,∠BAC=110°,AB、BC 的垂直平分线分别交BC于点D、E,那么∠DAE= 40°.
若BC=15cm, 那么△ADE的周长是15cm .
A
A
B
DE C
图(1)
BD
EC
图(2)
2、如图(2),在△ABC中,AB=AC,∠A=120°, AB的垂直平分线交BC于点D,那么BD∶CD= 1∶2 .
第6页/共26页
四、等腰三角形的性质及判定。
有两边相等的三角形是等腰三角形.
判 定 如果一个三角形中有两个角相等,那
么这两个角所对的边也相等(简写 成“等角对等边”).
第7页/共26页
五、等边三角形的性质及判定。
⑴等边三角形的三边都相等。
⑵等边三角形的三个内角都相等,并且
性
每一个角都等于60°。
轴对称课件(60张PPT)
轴对称在解直角三角形中应用
在解直角三角形时,可以利用轴对称的 性质来构造全等或相似的直角三角形,
从而简化计算过程。
例如,如果一个直角三角形关于某条直 线对称,那么它的两个锐角相等,同时 它的两条直角边也相等。这样我们就可 以通过已知的一边和一角来求解其他未
知量。
另外,如果两个直角三角形关于某条直 线对称,那么它们一定是相似的。这样 我们就可以通过已知的相似比来求解未
知量。
05
绘制和分析轴对称图形方 法技巧
使用直尺和圆规绘制轴对称图形
确定对称轴
在平面上选择一条直线作为对 称轴。
找到对称点
使用直尺和圆规,按照轴对称 的定义,找到该点关于对称轴 的对称点。
选择一个点
在对称轴的一侧选择一个点。
绘制图形
连接原点和对称点,即可得到轴对 称图形的一部分。重复以上步骤,
可以得到完整的轴对称图形。
动物
一些动物的身体结构也具 有轴对称性,如蝴蝶的翅 膀、蜻蜓的复眼等。
晶体
晶体结构中的原子排列往 往呈现出轴对称性,如雪 花、钻石等。
科技产品中的轴对称设计
电子产品
手机、平板电脑等电子产品的外观设 计中,常采用轴对称元素,实现简洁、 时尚的视觉效果。
汽车设计
航空航天
飞机、火箭等航空航天器的设计中也 广泛应用轴对称性,以确保飞行稳定 性和安全性。
典型例题解析
解析
根据轴对称性质,我们知道 △ABC≌△A'B'C',所以 ∠BAC=∠B'A'C'。
例题2
已知点P(2,3)关于x轴对称的点为P', 求点P'的坐标。
解析
由于点P关于x轴对称,所以点P'的 横坐标不变,纵坐标取反。因此, 点P'的坐标为(2,-3)。
人教版八年数学上 第13章_轴对称单元复习课件(共27张PPT)
(2)轴对称:把一个图形沿着某一条直线折叠后,能 够与另一个图形重合,那么这两个图形关于这条直线 成轴对称,这条直线叫做对称轴,两个图形中的对应 点叫做对称点。
(3)图形轴对称的性质:如果两个图形关于某直线对 称,那么对称轴是任何一对对应点所连线段的垂直平
分线。
3
(4)轴对称图形的性质:轴对称图形的对称轴是任何一 对对应点所连线段的垂直平分线。
13
例1 如图,以直线AE为对称轴,画出该图形的另一部分。
B C
A D E
解:作图过程如下:
(1)分别作出点B、C关 F 于直线AE的对称点F、H。
(2)连结AF、FD、DH、 HE,得到所求的图形。
H
14
点P(a,b)关于x轴对称的点的坐标为(a,-b)
点P(a,b)关于y轴对y 称的点的坐标为(-a,b)
到一条线段两个端点距离相等的点,在这条线段的垂直平 分线上。
4
正方形、长方形、等腰三角形、等腰梯形 和圆都是轴对称图形。有的轴对称图形有不止 一条对称轴。
5
二、题目特点:
• 判断轴对称图形或对称轴的条数 • 根据轴对称图形的性质作对称轴 • 用线段垂直平分线的性质解决计算题或进行证明说理 三、解题切入点:
4
A5E来自FG3
12
∴ AB=DB, ∠1= ∠2=60° 从而有 ∠3= ∠1=60° 在△ABF和△DBG中
∠3= ∠1
BC
∠4= ∠5
AB=DB
∴ △ABF≌ △DBG
∴BF=BG
1.如图,在△ABC中,BP、CP分别是∠ABC和 ∠ACB的平分线,且PD//AB,PE//AC,求 △PED的周长 .
3
2
B1
(3)图形轴对称的性质:如果两个图形关于某直线对 称,那么对称轴是任何一对对应点所连线段的垂直平
分线。
3
(4)轴对称图形的性质:轴对称图形的对称轴是任何一 对对应点所连线段的垂直平分线。
13
例1 如图,以直线AE为对称轴,画出该图形的另一部分。
B C
A D E
解:作图过程如下:
(1)分别作出点B、C关 F 于直线AE的对称点F、H。
(2)连结AF、FD、DH、 HE,得到所求的图形。
H
14
点P(a,b)关于x轴对称的点的坐标为(a,-b)
点P(a,b)关于y轴对y 称的点的坐标为(-a,b)
到一条线段两个端点距离相等的点,在这条线段的垂直平 分线上。
4
正方形、长方形、等腰三角形、等腰梯形 和圆都是轴对称图形。有的轴对称图形有不止 一条对称轴。
5
二、题目特点:
• 判断轴对称图形或对称轴的条数 • 根据轴对称图形的性质作对称轴 • 用线段垂直平分线的性质解决计算题或进行证明说理 三、解题切入点:
4
A5E来自FG3
12
∴ AB=DB, ∠1= ∠2=60° 从而有 ∠3= ∠1=60° 在△ABF和△DBG中
∠3= ∠1
BC
∠4= ∠5
AB=DB
∴ △ABF≌ △DBG
∴BF=BG
1.如图,在△ABC中,BP、CP分别是∠ABC和 ∠ACB的平分线,且PD//AB,PE//AC,求 △PED的周长 .
3
2
B1
《轴对称完整》课件
对轴对称的未来展望
轴对称作为数学中的一个基础概念,仍有很大的研究和发展空间。随着数学和其 他学科的发展,轴对称的应用范围也将不断扩大。我们鼓励学生们在未来的学习 和研究中继续关注轴对称,探索它的更多应用和价值。
在《轴对称完整》ppt课件的最后,我们总结了轴对称的基本原理、方法和应用 ,并提出了进一步探索的问题和方向。我们希望学生们能够带着这些问题和思考 ,继续深入探索轴对称的奥秘,为未来的研究和应用打下坚实的基础。
轴对称是数学中的一个重要概念,它描述了一个图形通过某个直线折叠后与自身重合的性质。在《轴对称完整 》ppt课件中,我们深入探讨了轴对称的定义、性质和分类,帮助学生们更好地理解这一概念。
轴对称在几何学中有着广泛的应用,它不仅在平面几何中出现,还涉及到立体几何、解析几何等多个领域。通 过对轴对称的深入理解,学生们可以更好地掌握几何学的基本原理和方法。
05
轴对称的实践应用
在设计中的应用
对称美学的运用
设计作品中,轴对称的运用可以创造出平衡、和谐的感觉。例如,在服装设计中,设计师可以通过轴对称的裁 剪方式,使服装看起来更加优雅、庄重。
产品设计的指导
在产品设计中,轴对称的原理可以帮助设计师更好地布局产品的各个部分,使其更加符合人机工程学,提高使 用体验。
04
轴对称的意义
美学的意义
美学欣赏
轴对称的形状、图案和结 构常常被视为具有美感, 可以给人带来视觉上的享 受和满足感。
艺术创作
艺术家们经常利用轴对称 的原理来创作美丽的艺术 品,如建筑设计、绘画和 雕塑等。
平衡与和谐
轴对称能够给人带来平衡 和和谐的感觉,使整体效 果更加协调和完整。
科学的意义
自然界中的轴对称
八年级数学上第13章《轴对称》期末复习课件
用
折叠(对折)
这条直线就是
对称轴
1.轴对称图形的定义: 如果一个图形沿着一条直线对折,两侧的
图形能够完全重合,这个图形就是轴对称图形。 折痕所在的这条直线叫做__对__称__轴。
图(1)能与图(2)重合吗?
这条直线也是
___对_称__轴___
2.两个图形 关于某直线对称:
把一个图形沿着某一条直线折叠,如果它能与另一个图形 重合,那么我们就说这两个图_____关__于__这__条__直__线__对_。称
A
图中有哪些等腰三角形?
解:∠1=720 ∠2=360
2
等腰三角形有:
B
⊿ABC 、⊿ABD 和 ⊿BCD
D 1
C
等边三角形的定义:三条边都相等 的三角形叫做等边三角形。
A
B
C
11.等边三角形的性质:
等边三角形的三个内角都相等, 并且每一个内角都等于60 °
12.等边三角形的判定:
判定1:
三个角都相等的三角形是 等边三角形。
判定2:
有一个角是 60°的等腰三角形是 等边三角形。
13.用法归纳
1、等腰三角形的判定方法有下列几 种:1定义 2判定定理 。
2、等边三角形的判定方法有以下几
种:1定义 2判定1 3判定2
。
3、等腰三角形的判定定理与性质定理的区别 是 条件和结论刚好相反 。
4、运用等腰三角形的判定定理时,应注 意 在同一个三角形中。
(D)
特殊的轴对称图形:
正方形、长方形、等腰三角形、等腰梯 形和圆都是轴对称图形。有的轴对称图形有不 止一条
1.找到一组对应点, 2.画出以这两点为顶点的线段的垂直 平分线。
练习4:如图,已知△ABC和直线 ,作出与△ABC 关于直线 对称的图形。
折叠(对折)
这条直线就是
对称轴
1.轴对称图形的定义: 如果一个图形沿着一条直线对折,两侧的
图形能够完全重合,这个图形就是轴对称图形。 折痕所在的这条直线叫做__对__称__轴。
图(1)能与图(2)重合吗?
这条直线也是
___对_称__轴___
2.两个图形 关于某直线对称:
把一个图形沿着某一条直线折叠,如果它能与另一个图形 重合,那么我们就说这两个图_____关__于__这__条__直__线__对_。称
A
图中有哪些等腰三角形?
解:∠1=720 ∠2=360
2
等腰三角形有:
B
⊿ABC 、⊿ABD 和 ⊿BCD
D 1
C
等边三角形的定义:三条边都相等 的三角形叫做等边三角形。
A
B
C
11.等边三角形的性质:
等边三角形的三个内角都相等, 并且每一个内角都等于60 °
12.等边三角形的判定:
判定1:
三个角都相等的三角形是 等边三角形。
判定2:
有一个角是 60°的等腰三角形是 等边三角形。
13.用法归纳
1、等腰三角形的判定方法有下列几 种:1定义 2判定定理 。
2、等边三角形的判定方法有以下几
种:1定义 2判定1 3判定2
。
3、等腰三角形的判定定理与性质定理的区别 是 条件和结论刚好相反 。
4、运用等腰三角形的判定定理时,应注 意 在同一个三角形中。
(D)
特殊的轴对称图形:
正方形、长方形、等腰三角形、等腰梯 形和圆都是轴对称图形。有的轴对称图形有不 止一条
1.找到一组对应点, 2.画出以这两点为顶点的线段的垂直 平分线。
练习4:如图,已知△ABC和直线 ,作出与△ABC 关于直线 对称的图形。
轴对称图形复习课PPT课件
第十三章 轴对称
听孙老师讲轴对称的唯一机会
一、轴对称图形
1、定义:如果一个图形沿着一条直线对折, 两侧的图形能够完全重合,这个图形就 是 轴对称图。形
折痕所在的这条直线叫做__对_称__轴_。
2、轴对称图形与轴对称的区别
轴对称图形
轴对称
图 形
区 别
(1)轴对称图形是指一 个图形。
(2)轴对称图形的对称 轴至少有一条。
垂直平分线又叫中垂线
2、垂直平分线的性质
• 线段垂直平分线上的点到线段两端点的 • 距离相等。
A
B
3、垂直平分线的判定
• 到线段两端点的距离相等的点在线段的垂 直平分线上。
A
B
三、画图
• 1、画对称轴 • 2、线段的垂直平分线 • 3、画轴对称图形
四、在平面直角坐标系中
• 点(x,y)关于x轴对称点为(x, - y)
•
关于y轴对称点为( - x,y)
写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits
41
结束语
当你尽了自己的最大努力时,失败也是伟大的, 所以不要放弃,坚持就是正确的。
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End 演讲人:XXXXXX 时 间:XX年XX月XX日
(1)轴对称是指两个图形 之间的关系。
(2)只有一条对称轴。
联 如果把两个成轴对称的图形看作一个整体,那么这就 系 是一个轴对称图形。
3、轴对称的性质
m
• 1、关于某条直线对称的两个图形是全等形。
13.1.1 轴对称 课件(共23张PPT)
①
②
③
④
⑤
√
√
√
×
√
实战演练
2.下图中,左边图形和右边图形成轴对称的有( ). A.1组 B.2组 C.3组 D.4组
C
①
②
③
实战演练
4.如图,Rt△ABC中,∠ABC=90°,∠C=60°,将其折叠,使点A落在边AB上C′处,折痕为BD,则∠C′DA的度数为_______.
把成轴对称的两个图形看成一个整体,它就是一个轴对称图形. 把一个轴对称图形分成两个图形,这两个图形关于这条轴对称.
合作探究
轴对称图形
两个图形成轴对称
图形
区别
联系
一个图形具有的特殊形状
两个全等图形的特殊的位置关系
1.都是沿着某条直线折叠后能重合.
2.可以互相转化.
比一比
合作探究
思考:如图,△ABC和△A′B′C′关于直线MN对称,点A′,B′,C′分别是点A,B,C的对称点,线段AA′,BB′,CC′与直线MN有什么关系?
A′
B′
C′
N
M
AA′⊥MN,BB′⊥MN,CC′⊥MN.
PA=PA′
QB=QB′
HC=HC′
P
Q
H
对称轴经过对称点所连线段的中点,并且垂直这条线段。
垂直平分线
合作探究
如图,MN⊥AA′,AP=A′P. 直线MN是线段AA′的垂直平分线.
如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.
√
√
×
√
小试牛刀
2.如图所示的每幅图形中的两个图案是轴对称的吗?如果是,指出它们的对称轴,并找出一对对称点. (1) (2) (3)
②
③
④
⑤
√
√
√
×
√
实战演练
2.下图中,左边图形和右边图形成轴对称的有( ). A.1组 B.2组 C.3组 D.4组
C
①
②
③
实战演练
4.如图,Rt△ABC中,∠ABC=90°,∠C=60°,将其折叠,使点A落在边AB上C′处,折痕为BD,则∠C′DA的度数为_______.
把成轴对称的两个图形看成一个整体,它就是一个轴对称图形. 把一个轴对称图形分成两个图形,这两个图形关于这条轴对称.
合作探究
轴对称图形
两个图形成轴对称
图形
区别
联系
一个图形具有的特殊形状
两个全等图形的特殊的位置关系
1.都是沿着某条直线折叠后能重合.
2.可以互相转化.
比一比
合作探究
思考:如图,△ABC和△A′B′C′关于直线MN对称,点A′,B′,C′分别是点A,B,C的对称点,线段AA′,BB′,CC′与直线MN有什么关系?
A′
B′
C′
N
M
AA′⊥MN,BB′⊥MN,CC′⊥MN.
PA=PA′
QB=QB′
HC=HC′
P
Q
H
对称轴经过对称点所连线段的中点,并且垂直这条线段。
垂直平分线
合作探究
如图,MN⊥AA′,AP=A′P. 直线MN是线段AA′的垂直平分线.
如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.
√
√
×
√
小试牛刀
2.如图所示的每幅图形中的两个图案是轴对称的吗?如果是,指出它们的对称轴,并找出一对对称点. (1) (2) (3)
第一章轴对称图形(复习课)079PPT课件
①在BC上取一点D,使BD<CD,连结AD; ②作线段AF,使AF与AB关于AD所在的直线对称; ③作线段AE,使E在BC上,且AF与AC关于AE所在的
直线对称; ④连结DF,EF. (2)通过观察和测量,猜想△DEF是什么三角形.
等腰三角形、梯形的 轴对称性
回顾与复习
等腰三角形的性质: A
= (
P
且PC=PD
O
∴点P在∠AOB的平分线上.
DB
简单应用
1. 指出下列图案是否是轴对称图形, 如果是请指出有几条对称轴
(5)
(6)
简单应用
2. 下列说法正确的是( B )
⑴ 全等的两个图形一定对称.
⑵ 成轴对称的两个图形一定全等. √
⑶ 若两个图形关于某直线对称,则它们 的对应点一定位于对称轴的两侧.
线段的垂直平分线 上的点到线段两端 的距离相等.
A
·P
a
B
练:《补充》/17(1)
动脑筋
12 如图,要在河边
修建一个水泵站, 向张庄、李庄送水. 修
在河边什么地方,可使使用的水管B最短?
A
∟
· ·P
a
把问题转化成第10题的形式画图。
练:《补充》/17(2) 课本38页/9
练一练
《课本》37-38页 复习巩固/1.2.3.4.5,9
4
形,首先应确定 对称轴,然后找
·D2
C·
出对称点。且点D 必须在格点上
·A ·B
综上所述:
·D 3
·D1
方格纸中符合要求的点D有4个。
8.分别画出(1)(2)(3)中,已知△ABC 关于直线l 的对称△A′B′C′
l
A
∟
直线对称; ④连结DF,EF. (2)通过观察和测量,猜想△DEF是什么三角形.
等腰三角形、梯形的 轴对称性
回顾与复习
等腰三角形的性质: A
= (
P
且PC=PD
O
∴点P在∠AOB的平分线上.
DB
简单应用
1. 指出下列图案是否是轴对称图形, 如果是请指出有几条对称轴
(5)
(6)
简单应用
2. 下列说法正确的是( B )
⑴ 全等的两个图形一定对称.
⑵ 成轴对称的两个图形一定全等. √
⑶ 若两个图形关于某直线对称,则它们 的对应点一定位于对称轴的两侧.
线段的垂直平分线 上的点到线段两端 的距离相等.
A
·P
a
B
练:《补充》/17(1)
动脑筋
12 如图,要在河边
修建一个水泵站, 向张庄、李庄送水. 修
在河边什么地方,可使使用的水管B最短?
A
∟
· ·P
a
把问题转化成第10题的形式画图。
练:《补充》/17(2) 课本38页/9
练一练
《课本》37-38页 复习巩固/1.2.3.4.5,9
4
形,首先应确定 对称轴,然后找
·D2
C·
出对称点。且点D 必须在格点上
·A ·B
综上所述:
·D 3
·D1
方格纸中符合要求的点D有4个。
8.分别画出(1)(2)(3)中,已知△ABC 关于直线l 的对称△A′B′C′
l
A
∟
轴对称复习课课件
1 如何判断一个形状是否具有轴对称性?
通过观察图形是否可以折叠或旋转成与自身完全重合的形状来判断是否具有轴对称性。
知识点三:轴对称在几何变换中的应用
在平对称来确定平移后的位置。
轴对称可以帮助确定旋转后的位 置。
通过轴对称可以实现等比例的缩 放。
轴对称在几何变换中的应用十分广泛,能够帮助我们更好地理解和操作图形。
如何应用轴对称完成各 种几何变换?
通过利用轴对称的性质和特 点,我们可以更轻松地完成 平移、旋转和缩放等几何变 换。
轴对称是什么,以及它 的性质和应用?
轴对称是一种图形的对称性 质,具有相等性、对称性、 可叠加性和保角性等特点, 并在日常生活和几何变换中 得到广泛应用。
轴对称复习课ppt课件
本课件将带您复习轴对称的重要概念和性质,并探讨其在几何变换和日常生 活中的应用。
知识点一:轴对称的定义及性质
什么是轴对称?
轴对称是指一个图形可以通过一条直线作为轴进 行对称,两侧完全相同。
轴对称的性质有哪些?
轴对称的图形具有对称性、相等性、可叠加性和 保角性等特点。
知识点二:轴对称的判断
知识点四:轴对称的作图方法
如何通过轴对称画出对称图形?
通过找到图形的轴对称中心,结合对称性质来作图。
知识点五:轴对称的应用
轴对称在日常生活中的应用举例
1. 建筑物的对称设计 2. 对称的艺术品和装饰品 3. 自然界中的轴对称形状
总结
轴对称是何时使用的几 何工具?
轴对称是一种用于描述和操 作图形的重要几何工具。
通过观察图形是否可以折叠或旋转成与自身完全重合的形状来判断是否具有轴对称性。
知识点三:轴对称在几何变换中的应用
在平对称来确定平移后的位置。
轴对称可以帮助确定旋转后的位 置。
通过轴对称可以实现等比例的缩 放。
轴对称在几何变换中的应用十分广泛,能够帮助我们更好地理解和操作图形。
如何应用轴对称完成各 种几何变换?
通过利用轴对称的性质和特 点,我们可以更轻松地完成 平移、旋转和缩放等几何变 换。
轴对称是什么,以及它 的性质和应用?
轴对称是一种图形的对称性 质,具有相等性、对称性、 可叠加性和保角性等特点, 并在日常生活和几何变换中 得到广泛应用。
轴对称复习课ppt课件
本课件将带您复习轴对称的重要概念和性质,并探讨其在几何变换和日常生 活中的应用。
知识点一:轴对称的定义及性质
什么是轴对称?
轴对称是指一个图形可以通过一条直线作为轴进 行对称,两侧完全相同。
轴对称的性质有哪些?
轴对称的图形具有对称性、相等性、可叠加性和 保角性等特点。
知识点二:轴对称的判断
知识点四:轴对称的作图方法
如何通过轴对称画出对称图形?
通过找到图形的轴对称中心,结合对称性质来作图。
知识点五:轴对称的应用
轴对称在日常生活中的应用举例
1. 建筑物的对称设计 2. 对称的艺术品和装饰品 3. 自然界中的轴对称形状
总结
轴对称是何时使用的几 何工具?
轴对称是一种用于描述和操 作图形的重要几何工具。
人教版八年级数学上册第13章轴对称(复习课)课件
B
A
C B1
P
C1
O
A1
x
并直接写出P点的坐标:
A1
2.在直角坐标系中,点P(a,2)与点A(-3,m)关于y轴对称,则a,m的值
分别为( C )
A. 3,-2
B. -3,-2
C. 3,2
D. -3,2
考点4.等腰三角形的性质及判定
顶角
1.性质
腰
腰
(1)两腰相等;
底角
底角
底边
(2)轴对称图形,等腰三角形的顶角平分线所在的直线是它的对称轴;
(3)两个__底__角___相等,简称“等边对等角”;
(4)_顶__角__平__分__线__、底边上的中线和底边上的高互相重合,简称“三线合一”
A
2.判定
(1)有两边相等的三角形是等腰三角形;
B
D
C
(2)如果一个三角形中有两个角相等,那么这两个角所对的边也相等 (简写成“__等__角__对__等__边__”).
考点3.平面直角坐标系中轴对称
点(x, y)关于x轴对称的点的坐标为 (x,-y) . 点(x, y)关于y轴对称的点的坐标为 (-x,y) .
关于谁对称谁不变
点(x, y)关于原点对称的点的坐标为 (-x,-y) .
常见题型
y
1 按要求完成作图: (1)作△ABC关于y轴对称的△A1B1C1; (2)在x轴上找出点P,使PA+PC最小,
为_6__.
3.如图,等腰三角形ABC中,已知AB=AC,∠A=30°,AB的垂直
平分线交AC于D,则∠CBD的度数为_4_5__°.
4.已知△ABC,∠BAC=110°,DE,FG分别是AB,AC的垂直 平分线且DE交BC于M点,FG交BC于N点,求∠MAN的度数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/12/8
M
B
C
8
由一个平面图形得到它的轴对称图形叫做轴对称变换
m
A
.A1
C
B
∴△A1B1C1为所求
2020/12/8
.
B1
.C1
9
点P(a,b)关于x轴对称的点的坐标为(a,-b)
点P(a,b)关于y轴对y 称的点的坐标为(-a,b)
5
如图,利用关于坐标轴对称的点的坐标 的特点,分别作出△ABC关于X轴和y 轴
5
A
D
B
2020/12/8
CE
F
6
经过线段的中点并且垂直于这条线段的直线,叫做 这条线段的个端点的距离相等
练习
A
如图:△ABC中,MN是AC的
M
垂直平分线,若CM=3cm,△ABC
的周长是22cm,则△ABN的周长是
( 16cm )
B N
C
2020/12/8
作轴对称图形
等腰三角形
等边三角形
2020/12/8
16
感谢你的阅览
Thank you for reading
温馨提示:本文内容皆为可修改式文档,下载后,可根据读者的需求 作修改、删除以及打印,感谢各位小主的阅览和下载
日期:
演讲者:蒝味的薇笑巨蟹
C
30°
A
2020/12/8
12
潮州市政府为了方便居民的生活,计划在
三个住宅小区A、B、C之间修建一个购物
A
中心,试问,该购物中心应建于何处,才
能使得它到三个小区的距离相等。
B
2020/12/8
C
13
实际问题
求作一点P,使它和 △ABC的三个顶点 距离相等.
2020/12/8
B ∴点P为所求
数学化
__7_0_°__,_4_0_°__或__5_5_°__,5_5.°
2.等腰三角形一个角为110°,它的另外两个角为 _3_5_°__,__35. °
3、等腰三角形的两条边的长为7,5,则三角形
的周长是 17或19
4.如图:在Rt△ABC中
B
∠A=300,AB+BC=12cm
则AB=__8___cm
7
和一条线段两个端点的距离相等的点在这条线段的垂直 平分线上
练习:如图:△ABC中,AB=AC,MB=MC,A
直线AM是线段BC的垂直平分线吗?
解:直线AM是线段BC的垂直平分线 ∵ AB=AC, MB=MC ∴点A在线段BC的垂直平分线上
点M在线段BC的垂直平分线上 ∴直线AM是线段BC的垂直平分线
只要找出轴对称图形的一对对应点,作这对对应点所连线段的 垂直平分线,那么这条垂直平分线就是轴对称图形的对称轴了!
轴对称的有关性质
A
B
(1)、如果两个图形关于某 条直线对称,那么对称轴是 任何一对对应点所连线段的 垂直平分线
(2)轴对称图形的对称轴是 任何一对对应点所连线段的 垂直平分线
2020/12/8
A
P
C
14
应用新知
水泵站修在什么地方?
如图,要在河边修建一个水泵站,分别向张村、李 庄送水,修在河边什么地方,可使所用的水管最短?
张村 A
B 李庄
C A’
如图所示,水泵站修在 C 点可使所用的水管最短.
2020/12/8
15
返回
上一页 下一页
本章知识结构图
轴对称 轴对称变换 用坐标表示轴对称
作图形的对称轴(线段的垂直平分线)
2020/12/8
1
1、生活中存在着大量的轴对称现象,你能举出一些例 子吗?成轴对称的两个图形有什么特点?
2、如何作出轴对称图形及成轴对称的两个图 形的对称轴?
3、什么是线段的垂直平分线?线段的垂直平分线 有何性质?如何去识别点在线段的垂直平分线上?
4、什么是轴对称变换?如何作出一个图形的轴对称图形?
4 对称的图形。
C(-3,2)
3
B`(-1,1)2
A(-4,1)
1
· C``(3,2) ·A``(4,1)
x
· -4 -3 -2 -1 0 1 2 3 4 5
A`(-4,-1)
-1 B``(1,-1)
B(-1,-1)
C`(-3,-2)
-2
-3
2020/12/8
10
-4
等腰 三角形
等边 三角形
2020/12/8
5、在平面直角坐标系中,如果两个图形关于x轴或y轴对称, 那么对应点的坐标有什么关系?
6、等腰三角形有何性质?有什么识别方法?
7、轴对称在生活中的应用
2020/12/8
2
下列英文字母中,哪些是轴对称图形?
ACDEFGHI JLMNOPQR STUVWXYZ
2020/12/8
3
2020/12/8
4
定义
性质
识别 方法
有二条边相等 的三角形
有三条边相等 三角形
1、等边对等角 2、三线合一 3、一条对称轴
1、定义 2、等角对等边
1、等边对等角 2、三线合一
1、定义
3、三条对称轴
2、三个角相等
4、直角三角形中,30° 3、等腰三角形
的锐角所对的直角边等 于斜边的一半
有一个角是600
11
1.等腰三角形一个角为70°,它的另外两个角为
M
B
C
8
由一个平面图形得到它的轴对称图形叫做轴对称变换
m
A
.A1
C
B
∴△A1B1C1为所求
2020/12/8
.
B1
.C1
9
点P(a,b)关于x轴对称的点的坐标为(a,-b)
点P(a,b)关于y轴对y 称的点的坐标为(-a,b)
5
如图,利用关于坐标轴对称的点的坐标 的特点,分别作出△ABC关于X轴和y 轴
5
A
D
B
2020/12/8
CE
F
6
经过线段的中点并且垂直于这条线段的直线,叫做 这条线段的个端点的距离相等
练习
A
如图:△ABC中,MN是AC的
M
垂直平分线,若CM=3cm,△ABC
的周长是22cm,则△ABN的周长是
( 16cm )
B N
C
2020/12/8
作轴对称图形
等腰三角形
等边三角形
2020/12/8
16
感谢你的阅览
Thank you for reading
温馨提示:本文内容皆为可修改式文档,下载后,可根据读者的需求 作修改、删除以及打印,感谢各位小主的阅览和下载
日期:
演讲者:蒝味的薇笑巨蟹
C
30°
A
2020/12/8
12
潮州市政府为了方便居民的生活,计划在
三个住宅小区A、B、C之间修建一个购物
A
中心,试问,该购物中心应建于何处,才
能使得它到三个小区的距离相等。
B
2020/12/8
C
13
实际问题
求作一点P,使它和 △ABC的三个顶点 距离相等.
2020/12/8
B ∴点P为所求
数学化
__7_0_°__,_4_0_°__或__5_5_°__,5_5.°
2.等腰三角形一个角为110°,它的另外两个角为 _3_5_°__,__35. °
3、等腰三角形的两条边的长为7,5,则三角形
的周长是 17或19
4.如图:在Rt△ABC中
B
∠A=300,AB+BC=12cm
则AB=__8___cm
7
和一条线段两个端点的距离相等的点在这条线段的垂直 平分线上
练习:如图:△ABC中,AB=AC,MB=MC,A
直线AM是线段BC的垂直平分线吗?
解:直线AM是线段BC的垂直平分线 ∵ AB=AC, MB=MC ∴点A在线段BC的垂直平分线上
点M在线段BC的垂直平分线上 ∴直线AM是线段BC的垂直平分线
只要找出轴对称图形的一对对应点,作这对对应点所连线段的 垂直平分线,那么这条垂直平分线就是轴对称图形的对称轴了!
轴对称的有关性质
A
B
(1)、如果两个图形关于某 条直线对称,那么对称轴是 任何一对对应点所连线段的 垂直平分线
(2)轴对称图形的对称轴是 任何一对对应点所连线段的 垂直平分线
2020/12/8
A
P
C
14
应用新知
水泵站修在什么地方?
如图,要在河边修建一个水泵站,分别向张村、李 庄送水,修在河边什么地方,可使所用的水管最短?
张村 A
B 李庄
C A’
如图所示,水泵站修在 C 点可使所用的水管最短.
2020/12/8
15
返回
上一页 下一页
本章知识结构图
轴对称 轴对称变换 用坐标表示轴对称
作图形的对称轴(线段的垂直平分线)
2020/12/8
1
1、生活中存在着大量的轴对称现象,你能举出一些例 子吗?成轴对称的两个图形有什么特点?
2、如何作出轴对称图形及成轴对称的两个图 形的对称轴?
3、什么是线段的垂直平分线?线段的垂直平分线 有何性质?如何去识别点在线段的垂直平分线上?
4、什么是轴对称变换?如何作出一个图形的轴对称图形?
4 对称的图形。
C(-3,2)
3
B`(-1,1)2
A(-4,1)
1
· C``(3,2) ·A``(4,1)
x
· -4 -3 -2 -1 0 1 2 3 4 5
A`(-4,-1)
-1 B``(1,-1)
B(-1,-1)
C`(-3,-2)
-2
-3
2020/12/8
10
-4
等腰 三角形
等边 三角形
2020/12/8
5、在平面直角坐标系中,如果两个图形关于x轴或y轴对称, 那么对应点的坐标有什么关系?
6、等腰三角形有何性质?有什么识别方法?
7、轴对称在生活中的应用
2020/12/8
2
下列英文字母中,哪些是轴对称图形?
ACDEFGHI JLMNOPQR STUVWXYZ
2020/12/8
3
2020/12/8
4
定义
性质
识别 方法
有二条边相等 的三角形
有三条边相等 三角形
1、等边对等角 2、三线合一 3、一条对称轴
1、定义 2、等角对等边
1、等边对等角 2、三线合一
1、定义
3、三条对称轴
2、三个角相等
4、直角三角形中,30° 3、等腰三角形
的锐角所对的直角边等 于斜边的一半
有一个角是600
11
1.等腰三角形一个角为70°,它的另外两个角为