七年级数学培优班试题及答案

合集下载

初一培优数学试题及答案

初一培优数学试题及答案

初一培优数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. -2B. 0C. 3D. -5答案:C2. 以下哪个方程的解是x=2?A. 2x + 3 = 7B. 3x - 1 = 5C. x^2 - 4 = 0D. x + 4 = 6答案:D3. 如果一个数的平方是25,那么这个数是?A. 5B. -5C. 5或-5D. 0答案:C4. 一个角的补角是它的余角的两倍,这个角的度数是多少?A. 30°C. 90°D. 120°答案:B5. 一个数的绝对值是它本身,这个数是?A. 正数B. 负数C. 非负数D. 非正数答案:C6. 以下哪个图形是轴对称图形?A. 平行四边形B. 梯形C. 等腰三角形D. 不规则多边形答案:C7. 一个数的相反数是-3,这个数是?A. 3B. -3C. 0D. 6答案:A8. 以下哪个选项是不等式?B. 3y + 5 > 0C. 7z - 2 = 5D. 8w = 16答案:B9. 一个数的立方是-8,这个数是?A. 2B. -2C. 4D. -4答案:B10. 如果一个角的正弦值是0.5,那么这个角可能是?A. 30°B. 60°C. 90°D. 120°答案:A二、填空题(每题2分,共20分)11. 一个数的相反数是它本身,这个数是______。

答案:012. 一个角的余角是60°,那么这个角的度数是______。

答案:30°13. 如果一个数的绝对值是5,那么这个数可能是______或______。

答案:5,-514. 一个数的平方根是3,那么这个数是______。

答案:915. 一个数的立方根是2,那么这个数是______。

答案:816. 如果一个角的补角是120°,那么这个角的度数是______。

答案:60°17. 一个数的倒数是1/4,那么这个数是______。

七年级有理数培优题(有答案)

七年级有理数培优题(有答案)

七年级有理数培优题(有答案)本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March有理数培优题基础训练题一、填空:1、在数轴上表示-2的点到原点的距离等于( )。

2、若∣a ∣=-a,则a ( )0.3、任何有理数的绝对值都是( )。

4、如果a+b=0,那么a 、b 一定是( )。

5、将毫米的厚度的纸对折20次,列式表示厚度是( )。

6、已知||3,||2,||a b a b a b ==-=-,则a b +=( )7、|2||3|x x -++的最小值是( )。

8、在数轴上,点A 、B 分别表示2141,-,则线段AB 的中点所表示的数是( )。

9、若,a b 互为相反数,,m n 互为倒数,P 的绝对值为3,则()20102a b mn p p++-=( )。

10、若abc ≠0,则||||||a b c a b c++的值是( ) . 11、下列有规律排列的一列数:1、43、32、85、53、…,其中从左到右第100个数是( )。

二、解答问题:1、已知x+3=0,|y+5|+4的值是4,z 对应的点到-2对应的点的距离是7,求x 、y 、 z 这三个数两两之积的和。

3、若2|45||13|4x x x +-+-+的值恒为常数,求x 满足的条件及此时常数的值。

4、若,,a b c 为整数,且20102010||||1a b c a -+-=,试求||||||c a a b b c -+-+-的值。

5、计算:-21 +65-127+209-3011+4213-5615+72176、应用拓展:将七只杯子放在桌上,使三只口朝上,四只口朝下。

现要求每次翻转其中任意四只,使它们杯口朝向相反,问能否经有限次翻转后,让所有杯子杯口朝下?能力培训题知识点一:数轴例1:已知有理数a 在数轴上原点的右方,有理数b 在原点的左方,那么( )A .b ab <B .b ab >C .0>+b aD .0>-b a 拓广训练:1、如图b a ,为数轴上的两点表示的有理数,在a b b a a b b a ---+,,2,中,负数的个数有( )(“祖冲之杯”邀请赛试题)A .1B .2C .3D .43、把满足52≤<a 中的整数a 表示在数轴上,并用不等号连接。

初一数学培优经典试题及答案

初一数学培优经典试题及答案

初一数学培优经典试题及答案试题一:有理数的加减法题目:计算下列有理数的和:\[ 3 + (-2) + 4 + (-1) \]答案:首先,我们可以将正数和负数分别相加:\[ 3 + 4 = 7 \]\[ -2 + (-1) = -3 \]然后,将两个结果相加:\[ 7 + (-3) = 4 \]所以,最终结果是4。

试题二:绝对值的计算题目:求下列数的绝对值:\[ |-5|, |-(-3)|, |0| \]答案:绝对值表示一个数距离0的距离,不考虑正负号。

因此:\[ |-5| = 5 \]\[ |-(-3)| = |3| = 3 \]\[ |0| = 0 \]所以,这三个数的绝对值分别是5, 3, 和0。

试题三:一元一次方程的解法题目:解下列方程:\[ 2x - 3 = 7 \]答案:首先,将方程中的常数项移到等号的另一边:\[ 2x = 7 + 3 \]\[ 2x = 10 \]然后,将等式两边同时除以2,得到x的值:\[ x = \frac{10}{2} \]\[ x = 5 \]所以,方程的解是x = 5。

试题四:代数式的值题目:当a=3,b=-2时,求代数式\( ab + a - b \)的值。

答案:将给定的a和b的值代入代数式中:\[ ab + a - b = 3 \times (-2) + 3 - (-2) \]\[ = -6 + 3 + 2 \]\[ = -1 \]所以,代数式的值是-1。

试题五:几何图形的周长和面积题目:一个长方形的长是10厘米,宽是5厘米,求这个长方形的周长和面积。

答案:长方形的周长是长和宽的两倍之和:\[ 周长 = 2 \times (长 + 宽) \]\[ 周长 = 2 \times (10 + 5) \]\[ 周长 = 2 \times 15 \]\[ 周长 = 30 \] 厘米长方形的面积是长乘以宽:\[ 面积 = 长 \times 宽 \]\[ 面积 = 10 \times 5 \]\[ 面积 = 50 \] 平方厘米结束语:以上是初一数学培优的经典试题及答案,希望同学们能够通过这些题目加深对数学概念的理解和应用。

7年级数学培优竞赛试题1-25题(含详解)

7年级数学培优竞赛试题1-25题(含详解)

七年级第1题:已知0132=+-x x , 则 =++13242x x x 。

答案:0.1第2题:若,,a b c 互异,且x y a b b c c aZ ==---,求x y Z ++的值。

答案:0第3题:a 取什么值时,方程组⎩⎨⎧=+=+3135y x a y x 的解是正数?答案:6.2<a <331第4题:方程 200422=-b a的正整数解有 组.答案:2组第5题:用一张长方形的纸,折出一个30°的角,如何折?答案:第6题:(1)若A 和B 都是4次多项式,则A+B 一定是( ) A 、8次多项式 B 、4次多项式C 、次数不高于4次的整式D 、次数不低于4次的整式答案: C(2)如果316x +的立方根是4,求24x +的平方根___________。

答案:立方根是4,则这个数是43=64。

3x+16=64,解得x =16。

2x +4=2×16+4=36, 36=±6。

第7题:已知21x x +=,那么 . 答案: 2016解析:x 4+2x 3-x 2-2x +2017= x 4+2x 3+ x 2-2x 2-2x +2017=(x 2+x )2-2(x 2+x )+2017=12-2×1+2017=1-2+2017=2016。

第8题:若2a +5b +4c =0,3a +b -7c =0,则a +b -c 的值是___________________答案:2a +5b +4c =0 ① a +b -7c =0 ②将①×3得6a +15b +12c =0 ③将②×2得6a +2b -14c =0 ④由③-④得13b +26c =0 , b= -2c ⑤将⑤带入① 2a -10c +4c =0 , 2a =6c ,a =3c ⑥将⑤和⑥带入a +b -c =3c -2c-c =0。

第 9 题:如图所示,四边形ABCD 是矩形,E 、F 分别是AB 、BC 上的点,且AB AE 21=,BC CF 31=,AF 与CE 相交于G ,如果矩形ABCD 的面积为120,那么可知AEG ∆与CGF ∆的面积之和为____________。

七下数学大培优参考答案

七下数学大培优参考答案

七下数学大培优参考答案七下数学大培优参考答案数学作为一门学科,对于学生来说是一个既令人头疼又充满挑战的科目。

而七年级下册的数学课本更是如此,其中的一些题目难度较大,需要学生进行深入思考和分析。

为了帮助学生更好地理解和掌握课本知识,以下是一些七下数学大培优题的参考答案。

一、有理数的运算1. 计算下列各式的值:a) $(-3)^2 + (-5) \times (-2)$答案:$(-3)^2 + (-5) \times (-2) = 9 + 10 = 19$b) $(-4) \times (-3) + 6 \times (-2)$答案:$(-4) \times (-3) + 6 \times (-2) = 12 + (-12) = 0$c) $(-7) \times \left(\frac{1}{2}\right) - \left(-\frac{3}{4}\right)$答案:$(-7) \times \left(\frac{1}{2}\right) - \left(-\frac{3}{4}\right) = -\frac{7}{2} + \frac{3}{4} = -\frac{11}{4}$二、代数式与方程1. 化简下列各式:a) $3x + 2x - 5x + 4x$答案:$3x + 2x - 5x + 4x = 4x$b) $2a - 3b + 4a + b - 5a + 2b$答案:$2a - 3b + 4a + b - 5a + 2b = a$2. 解方程:a) $2x - 3 = 7$答案:$2x - 3 = 7 \Rightarrow 2x = 10 \Rightarrow x = 5$ b) $3y + 5 = 2y - 1$答案:$3y + 5 = 2y - 1 \Rightarrow y = -6$三、图形的认识1. 计算下列各图形的面积:a) 长方形,长为5cm,宽为3cm答案:面积 = 长× 宽= 5cm × 3cm = 15cm²b) 正方形,边长为8cm答案:面积 = 边长× 边长= 8cm × 8cm = 64cm²c) 圆形,半径为6cm答案:面积= π × 半径² = 3.14 × 6cm × 6cm ≈ 113.04cm²四、概率与统计1. 求下列各组数的平均数:a) 75, 80, 85, 90, 95答案:平均数= (75 + 80 + 85 + 90 + 95) ÷ 5 = 85b) 2, 4, 6, 8, 10答案:平均数= (2 + 4 + 6 + 8 + 10) ÷ 5 = 62. 求下列各组数的众数:a) 3, 5, 2, 5, 7, 5答案:众数 = 5b) 9, 8, 7, 6, 5, 4, 3, 2, 1答案:众数 = 没有众数以上是一些七下数学大培优题的参考答案。

七年级上册数学有理数培优50题含详细答案

七年级上册数学有理数培优50题含详细答案

(七年级上册数学有理数培优50题一.填空题(共5小题)1.=2.若|a|+|b|=2,则满足条件的整数a、b的值有组.3.已知a,b,c,d分别是一个四位数的千位,百位,十位,个位上的数字,且低位上的数字不小于高位上的数字,当|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|取得最大值时,这个四位数的最小值是.4.如图,若数轴上a的绝对值是b的绝对值的3倍,则数轴的原点在点或点.(填“A”、“B”“C”或“D”)5.|x+1|+|x﹣2|+|x﹣3|的值为.二.解答题(共45小题)6.在一个3×3的方格中填写了9个数字,使得每行、每列、每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方.(1)在图1中空格处填上合适的数字,使它构成一个三阶幻方;(2)如图2的方格中填写了一些数和字母,当x+y的值为多少时,它能构成一个三阶幻方.7.阅读下面解题过程:计算:解:原式=(第一步)=(﹣15)÷(﹣25)(第二步)=(第三步)回答:1)上面解题过程中有两个错误,第一处是第步,错误的原因是,第二处是第步,错误的原因是;( (2)正确的结果是.8.如图,已知数轴上的点A 表示的数为 6,点 B 表示的数为﹣4,点 C 是 AB 的中点,动点P 从点 B 出发,以每秒 2 个单位长度的速度沿数轴向右匀速运动,设运动时间为 x 秒(x>0).(1)当 x =秒时,点 P 到达点 A .(2)运动过程中点 P 表示的数是(用含 x 的代数式表示);(3)当 P ,C 之间的距离为 2 个单位长度时,求 x 的值.9.观察下列两个等式:3+2=3×2﹣1,4+﹣1,给出定义如下:我们称使等式 a +b =ab ﹣1 成立的一对有理数 a ,b 为“椒江有理数对”,记为(a ,b ),如:数对(3,2),(4, )都是“椒江有理数对”.(1)数对(﹣2,1),(5,)中是“椒江有理数对”的是 ;(2)若(a ,3)是“椒江有理数对”,求 a 的值;(3)若(m ,n )是“椒江有理数对”,则(﹣n ,﹣m )“椒江有理数对” 填“是”、“不是”或“不确定”).(4)请再写出一对符合条件的“椒江有理数对”(注意:不能与题目中已有的“椒江有理数对”重复)10.计算:(﹣+1 ﹣ )÷(﹣ )×|﹣110﹣(﹣3)2|11.已知 a 、b 互为相反数,c 、d 互为倒数,并且 x 的绝对值等于 2.试求:x 2﹣(a +b +cd )+2(a +b )的值.12.如图,A 、B 分别为数轴上的两点,A 点对应的数为﹣20,B 点对应的数为 100.(1)请写出与 A 、B 两点距离相等的点 M 所对应的数;(2)现有一只电子蚂蚁 P 从 B 点出发,以 6 个单位/秒的速度向左运动,同时另一只电子蚂蚁 Q 恰好从 A 点出发,以 4 个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C 点相遇,你知道 C 点对应的数是多少吗?(3)若当电子蚂蚁 P 从 B 点出发时,以 6 个单位/秒的速度向左运动,同时另一只电子蚂蚁 Q 恰好从 A 点出发,以 4 个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为20个单位长度?13.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.14.若“三角”表示运算:a﹣b+c,若“方框”,表示运算:x﹣y+z+w,求的值,列出算式并计算结果.15.对于有理数a、b,定义一种新运算“⊙”,规定:a⊙b=|a+b|+|a﹣b|.(1)计算2⊙(﹣4)的值;(2)若a,b在数轴上的位置如图所示,化简a⊙b.16.乐乐的爸爸投资股票,有一次乐乐发现爸爸持有股票的情况如表格所示:请你帮助分析:乐乐爸爸究竟是赚了还是赔了,赚或赔了多少元?股票名称每股净赚(元)股数天河北斗白马海湖﹣22+1.5﹣4﹣(﹣2)5001000100050017.阅读下列内容,并完成相关问题:小明说:“我定义了一种新的运算,叫❈(加乘)运算.”然后他写出了一些按照❈(加乘)运算的运算法则进行运算的算式:(+4)❈(+2)=+6;(﹣4)❈(﹣3)=+7;(﹣5)❈(+3)=﹣8;(+6)❈(﹣7)=﹣13;(+8)❈0=8;0❈(﹣9)=9.小亮看了这些算式后说:“我知道你定义的❈(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,.(2)计算:[(﹣2)❈(+3)]❈[(﹣12)❈0](括号的作用与它在有理数运算中的作用一致)(3)我们知道加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用吗?请你任选一个运算律,判断它在❈(加乘)运算中是否适用,并举例验证.举一个例子即可)”18.已知在纸面上有一数轴(如图),折叠纸面.例如:若数轴上数2表示的点与数﹣2表示的点重合,则数轴上数﹣4表示的点与数4表示的点重合,根据你对例题的理解,解答下列问题:若数轴上数﹣3表示的点与数1表示的点重合.(根据此情境解决下列问题)①则数轴上数3表示的点与数表示的点重合.②若点A到原点的距离是5个单位长度,并且A、B两点经折叠后重合,则B点表示的数是.③若数轴上M、N两点之间的距离为2018,并且M、N两点经折叠后重合,如果M点表示的数比N点表示的数大,则M点表示的数是.则N点表示的数是.19.现定义新运算“※”,对任意有理数a、b,规定a※b=ab+a﹣b,例如:1※2=1×2+1﹣2=1,(1)求3※(﹣5)的值;(2)若(﹣3)※b与b互为相反数,求b的值.20.已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,表示有理数dB , 的点到原点的距离为 4,求 a ﹣b ﹣c +d 的值.21.阅读下列材料:点 A 、B 在数轴上分别表示两个数 a 、b ,A 、B 两点间的距离记为|AB|,O 表示原点.当A 、B 两点中有一点在原点时,不妨设点 A 为原点,如图 1,则|AB|=|OB|=|b |=|a ﹣b |;当 A 、B 两点都不在原点时,①如图 2,若点 A 、B 都在原点的右边时,|AB|=|OB|﹣|OA|=|b |﹣|a|=b ﹣a =|a ﹣b |;②如图 3,若点 A 、B 都在原点的左边时,|AB|=|OB|﹣|OA|=|b |﹣|a|=﹣b ﹣(﹣a )=|a﹣b |;③如图 4,若点 A 、B 在原点的两边时,|AB|=|OB|+|OA|=|b |+|a|=﹣b +a =|a ﹣b |.回答下列问题:(1)综上所述,数轴上 A 、B 两点间的距离为|AB|=.(2)若数轴上的点 A 表示的数为 3,点 B 表示的数为﹣4,则 A 、 两点间的距离为 ;(3)若数轴上的点 A 表示的数为 x ,点 B 表示的数为﹣2,则|AB|= ,若|AB|=3,则 x 的值为.22.已知数轴上 A ,B 两点对应数分别为﹣2 和 5,P 为数轴上一点,对应数为 x .(1)若 P 为线段 AB 的三等分点(把一条线段平均分成相等的三部分的两个点) 求 P点对应的数.(2)数轴上是否存在点 P ,使 P 点到 A 点,B 点距离和为 10?若存在,求出 x 值;若不存在,请说明理由.(3)若点 A ,点 B 和点 P (P 点在原点)同时向左运动,它们的速度分别为 1,6,3 个长度单位/分,则第几分钟时,A ,B ,P 三点中,其中一点是另外两点连成的线段的中点?23.已知|x|=5,|y|=3.(1)若 x ﹣y >0,求 x +y 的值;(2)若 xy <0,求|x ﹣y|的值;(3)求 x ﹣y 的值.24.解答下列问题::(1)计算:6÷(﹣ + )方方同学的计算过程如下:原式=6÷(﹣ )+6÷ =﹣12+18=6.请你判断方方同学的计算过程是否正确,若不正确,请你写出正确的计算过程.(2)请你参考黑板中老师的讲解,用运算律简便计算(请写出具体的解题过程)①999×(﹣15);②999×118 +333×(﹣ )﹣999×18 .25.阅读材料,解答下列问题:例:当 a =5,则|a|=|5|=5,故此时 a 的绝对值是它本身;当 a =0 时,|a|=0,故此时 a的绝对值是 0;当 a <0 时,如 a =﹣5,则|a|=|5|=﹣(5)=5,故此时 a 的绝对值是它的相反数.综上所述,一个数的绝对值要分三种情况,即|a|=这种分析方法涌透了数学中的分类讨论思想.请仿照图例中的分类讨论,解决下面的问题:(1)|﹣4+5|=;|﹣ ﹣3|= ;(2)如果|x+1|=2,求 x 的值;(3)若数轴上表示数 a 的点位于﹣3 与 5 之间,求|a +3|+|a ﹣5|的值;(4)当 a =时,|a ﹣1|+|a +5|+|a ﹣4|的值最小,最小值是 .26.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米),﹣3,﹣4,+7,﹣5,+8,+3,﹣8.(1)最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为 0.3 升/千米,这天下午汽车共耗油多少升?27.定义一种新运算:a ⊕b =a ﹣b +ab .(1)求(﹣2)⊕(﹣3)的值;(2)求 5⊕[1⊕(﹣2)]的值.28.在学习绝对值后,我们知道,a|表示数a在数轴上的对应点与原点的距离.如:|5|表示|5在数轴上的对应点到原点的距离.而|5|=|5﹣0|,即|5﹣0|表示5、0在数轴上对应的两点之间的距离.类似的,有:|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离.一般地,点A、B 在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.请根据绝对值的意义并结合数轴解答下列问题:(1)数轴上表示2和3的两点之间的距离是;数轴上P、Q两点的距离为3,点P表示的数是2,则点Q表示的数是.(2)点A、B、C在数轴上分别表示有理数x、﹣3、1,那么A到B的距离与A到C的距离之和可表示为(用含绝对值的式子表示);满足|x﹣3|+|x+2|=7的x的值为.(3)试求|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣100|的最小值.29.夫子庙派出所巡警骑摩托车在东西大道上巡逻,某天他从岗亭出发,晚上停留在A处,规定向东方向为正,当天行驶记录如下(单位:千米)+11,﹣9,7,﹣14,+8,﹣13,+4.①该巡警巡逻时离岗亭最远是千米.②在岗亭东面6千米处有个加油站,该巡警巡逻时经过加油站次.③A在岗亭何方?距岗亭多远?④若摩托车每行1千米耗油0.06升,那么该摩托车这天巡逻共耗油多少升?30.邮递员骑车从邮局出发,先向南骑行3km到达A村,继续向南骑行2km到达B村,然后向北骑行8km到达C村,最后回到邮局,以邮局为原点,以向南方向为正方向,用1cm 表示1km,画出数轴如图.(1)在该数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有km;(3)邮递员一共骑行了km;(4)如果邮递员骑行的速度为10千米/小时,在每个村庄停留10分钟,那么邮递员从出发到回到邮局一共用了多少小时?31.已知数轴上有A、B、C三点,分别表示有理数﹣26,﹣10,10,动点P从A出发,沿(AC 方向,以每秒 1 个单位的速度向终点 C 运动,设点 P 运动时间为 t 秒.(1)用含 t 的代数式表示点 P 到点 A 、C 的距离,PA =;PC = .(2)当点 P 运动到点 B 时,点 Q 从 C 点出发,沿 CA 方向,以每秒 3 个单位的速度向 A点运动,当其中一点到达目的地时,另一点也停止运动.①当 t =,点 P 、Q 相遇,此时点 Q 运动了 秒.②请用含 t 的代数式表示出在 P 、Q 同时运动的过程中 PQ 的长.32.如图 A 在数轴上所对应的数为﹣2.(1)点 B 在点 A 右边距 A 点 4 个单位长度,求点 B 所对应的数;(2)在(1)的条件下,点 A 以每秒 2 个单位长度沿数轴向左运动,点 B 以每秒 2 个单位长度沿数轴向右运动,当点 A 运动到﹣6 所在的点处时,求 A ,B 两点间距离.(3)在(2)的条件下,现 A 点静止不动,B 点沿数轴向左运动时,经过多长时间 A ,B两点相距 4 个单位长度.33.随着手机的普及,微信(一种聊天软件)的兴起,许多人抓住这种机会,做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上,他原计划每天卖 100 斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期与计划量一+4二﹣3 三﹣5 四+14五﹣8 六+21鈤﹣6的差值(1)根据记录的数据可知前三天共卖出斤;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售 斤;(3)本周实际销售总量达到了计划数量没有?(4)若冬季每斤按 8 元出售,每斤冬枣的运费平均 3 元,那么小明本周一共收入多少元?34.如图,半径为 1 个单位的圆片上有一点 A 与数轴上的原点重合,AB 是圆片的直径. 注:结果保留 π )(1)把圆片沿数轴向右滚动半周,点 B 到达数轴上点 C 的位置,点 C 表示的数是数(填“无理”或“有理”),这个数是;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3.①第次滚动后,A点距离原点最近,第次滚动后,A点距离原点最远.②当圆片结束运动时,A点运动的路程共有,此时点A所表示的数是.35.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(,),B→C(,),C→(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N →A应记为什么?36.某公路检修组乘汽车沿公路检修,约定前进为正,后退为负,某天自A地出发到收工时所走的路程(单位:千米)为+10,﹣3,+4,﹣2,﹣8,+13,﹣2,﹣11,+7,+5.(1)问收工时相对A地是前进了还是后退了?距A地多远?(2)若检修组最后回到了A地且每千米耗油0.2升,问共耗油多少升?37.我们定义一种新运算:△a b=a﹣b+ab.3 2)(1)求 △2 (﹣)的值;(2)求(﹣△5) △[1 (﹣ ]的值.38.学校图书馆平均每天借出图书 50 册,如果某天借出 53 册,就记作+3;如果某天借出40 册,就记作﹣10.上星期图书馆借出图书记录如表:星期一0 星期二+8 星期三+6星期四﹣2 星期五﹣7(1)上期五借出图书多少册?(2)上星期二比上星期五多借出图书多少册?(3)上星期平均每天借出图书多少册?39.已知,如图 A 、B 分别为数轴上的两点,A 点对应的数为﹣10,B 点对应的数为 70(1)请写出 AB 的中点 M 对应的数(2)现在有一只电子蚂蚁 P 从 A 点出发,以 3 个单位/秒的速度向右运动,同时另一只电子蚂蚁 Q 恰好从 B 点出发,以 2 个单位/秒的速度向左运动,设两只电子蚂蚁在数轴上的 C 点相遇,请你求出 C 点对应的数(3)若当电子蚂蚁 P 从 A 点出发,以 3 个单位/秒的速度向右运动,同时另一只电子蚂蚁 Q 恰好从 B 点出发,以 2 单位/秒的速度向左运动,经过多长时间两只电子蚂蚁在数轴上相距 35 个单位长度,并写出此时 P 点对应的数.40.一辆交通巡逻车在南北公路上巡视,某天早上从 A 地出发,中午到达 B 地,行驶记录如下(规定向北为正方向,单位:千米):+15,﹣8,+6,+12,﹣8,+5,﹣10.回答下列问题:(1)B 地在 A 地的什么方向?与 A 地相距多远?(2)巡逻车在巡逻中,离开 A 地最远多少千米?(3)巡逻车行驶每千米耗油 a 升,这半天共耗油多少升?41.【概念学习】规定:求若干个相同的有理数(均不等于 0)的除法运算叫做除方,如 2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把 2÷2÷2 记作 2③,读作“2 的圈 3 次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3 的圈 4 次方”,一般地,把 (a ≠0)记作 a ,读作“a 的圈 n 次方”.+,【初步探究】(1)直接写出计算结果:2③=,(﹣ )⑤= ;(2)关于除方,下列说法错误的是A .任何非零数的圈 2 次方都等于 1;B .对于任何正整数 n ,1 =1;C .3④=4③;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=;5⑥= ;(﹣ )⑩= .(2)想一想:将一个非零有理数 a 的圈 n 次方写成幂的形式等于;(3)算一算:122÷(﹣ )④×(﹣2)⑤﹣(﹣ )⑥÷33.42.若|a|=5,|b |=2,且 a <b ,求 a ﹣b 的值.43.观察下列等式: =1﹣ , = ﹣ , = ﹣ ,把以上三个等式两边分别相加得: + + =1﹣ + ﹣ + ﹣(1)猜想并写出:=.(2)规律应用:计算: + +++ +(3)拓展提高:计算:+ +…+.44.操作探究:已知在纸面上有一数轴(如图所示)操作一:(1)折叠纸面,使表示的1 点与﹣1 表示的点重合,则﹣3 表示的点与表示的点重合;操作二:(2)折叠纸面,使﹣1 表示的点与 3 表示的点重合,回答以下问题:①5 表示的点与数表示的点重合;b :② 若数轴上 A 、B 两点之间距离为 11,(A 在 B 的左侧),且 A 、B 两点经折叠后重合,求 A 、B 两点表示的数是多少.45.阅读下面材料:点 A 、B 在数轴上分别表示实数 a 、 ,A 、B 两点之间的距离表示为|AB|.当 A 、B 两点中有一点在原点时,不妨设点 A 在原点,如图 1,|AB|=|OB|=|b |=|a ﹣b |;当 A 、B 两点都不在原点时,如图 2,点 A 、B 都在原点的右边|AB|=|OB|﹣|OA|=|b |﹣|a|=b ﹣a =|a ﹣b |;如图 3,点 A 、B 都在原点的左边,|AB|=|OB|﹣|OA|=|b |﹣|a|=﹣b ﹣(﹣a )=|a ﹣b |;如图 4,点 A 、B 在原点的两边,|AB|=|OB|+|OA|=|a|+|b |=a +(﹣b )=|a ﹣b |;回答下列问题:(1)数轴上表示 2 和 5 的两点之间的距离是,数轴上表示﹣2 和﹣5 的两点之间的距离是,数轴上表示 1 和﹣3 的两点之间的距离是.(2)数轴上表示 x 和﹣1 的两点 A 和 B 之间的距离是 ,如果|AB|=2,那么 x为;(3)当代数式|x +1|+|x ﹣2|取最小值时,相应的 x 的取值范围是.46.某淘宝商家计划平均每天销售某品牌儿童滑板车 100 辆,但由于种种原因,实际每天的销售量与计划量相比有出入.下表是某周的销售情况(超额记为正、不足记为负)星期与计划量的差值一+4二﹣3 三﹣5 四+14五﹣8 六+21 日﹣6(1)根据记录的数据可知该店前三天共销售该品牌儿童滑板车辆;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售辆;( (3)本周实际销售总量达到了计划数量没有?(4)该店实行每日计件工资制,每销售一辆车可得 40 元,若超额完成任务,则超过部分每辆另奖 15 元;少销售一辆扣 20 元,那么该店铺的销售人员这一周的工资总额是多少元?47.求若干个相同的不为零的有理数的除法运算叫做除方,如 2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把 2÷2÷2 记作 2③,读作“2 的圈 3次方”, ﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3 的圈 4 次方”.一般地,把(a ≠0)记作 ,读作“a 的圈 n 次方”.(1)直接写出计算结果:2③=,(﹣3)④=,(﹣ )⑤=;(2)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,请尝试把有理数的除方运算转化为乘方运算,归纳如下:一个非零有理数的圈 n 次方等于;(3)计算 24÷23+(﹣8)×2③.48.已知 a ,b 互为相反数,c ,d 互为倒数,且 a ≠0,那么 3a +3b + ﹣cd 的值是多少?49.已知(|x +1|+|x ﹣2|)(|y ﹣2)|+|y+1|)(|z ﹣3|+|z+1|)=36,求 2016x+2017y+2018z 的最大值和最小值50.已知 a 2=9,|b |=5,且 a <b ,求 a ﹣b 的值.(七年级上册数学有理数培优 50 题参考答案与试题解析一.填空题(共 5 小题)1.【解答】解:====,故答案为:=.2.若|a|+|b |=2,则满足条件的整数 a 、b 的值有8 组.【解答】解:∵|a|+|b |=2,∴|a|=0,|b |=2 或|a|=1|b |=1,或|a|=2,|b |=0,∴a =0,b =2;a =0,b =﹣2;a =1,b =1;a =1,b =﹣1;a =﹣1,b =1;a =﹣1,b=﹣1;a =﹣2,b =0;a =2,b =0,故答案为:8.3.已知 a ,b ,c ,d 分别是一个四位数的千位,百位,十位,个位上的数字,且低位上的数字不小于高位上的数字,当|a ﹣b |+|b ﹣c|+|c ﹣d |+|d ﹣a|取得最大值时,这个四位数的最小值是 1119 .【解答】解:若使|a ﹣b |+|b ﹣c|+|c ﹣d |+|d ﹣a|的值最大,则最低位数字最大 d =9,最高位数字最小 a =1 即可,同时为使|c ﹣d |最大,则 c 应最小,且使低位上的数字不小于高位上的数字,故 c 为 1,此时 b 只能为 1.所以此数为 1119.故答案为 1119.4.如图,若数轴上 a 的绝对值是 b 的绝对值的 3 倍,则数轴的原点在点C 或点D .填“A ”、“B ”“C ”或“D ”)|【解答】解:由图示知,b ﹣a =4,①当 a >0,b >0 时,由题意可得|a|=3|b |,即 a =3b ,解得 a =﹣6,b =﹣2,舍去;②当 a <0,b <0 时,由题意可得|a|=3|b |,即 a =3b ,解得 a =﹣6,b =﹣2,故数轴的原点在 D 点;③当 a <0,b >0 时,由题意可得 a |=3|b |,即﹣a =3b ,解得 a =﹣3,b =1,故数轴的原点在 C 点;综上可得,数轴的原点在 C 点或 D 点.故填 C 、D .5.|x +1|+|x ﹣2|+|x ﹣3|的值为.【解答】解:当 x ≤﹣1 时,|x +1|+|x ﹣2|+|x ﹣3|=﹣x ﹣1﹣x +2﹣x +3=﹣3x +4;当﹣1<x ≤2 时,|x +1|+|x ﹣2|+|x ﹣3|=x +1﹣x +2﹣x +3=﹣x +6;当 2<x ≤3 时,|x +1|+|x ﹣2|+|x ﹣3|=x +1+x ﹣2﹣x +3=x +2;当 x >3 时,|x +1|+|x ﹣2|+|x ﹣3|=x +1+x ﹣2+x ﹣3=3x ﹣4.综上所述,|x +1|+|x ﹣2|+|x ﹣3|的值为.故答案为: .二.解答题(共 45 小题)6.在一个 3×3 的方格中填写了 9 个数字,使得每行、每列、每条对角线上的三个数之和相等,得到的 3×3 的方格称为一个三阶幻方.(1)在图 1 中空格处填上合适的数字,使它构成一个三阶幻方;(2)如图 2 的方格中填写了一些数和字母,当 x +y 的值为多少时,它能构成一个三阶幻方.【解答】解:(1)2+3+4=9,9﹣6﹣4=﹣1,9﹣6﹣2=1,9﹣2﹣7=0,9﹣4﹣0=5,如图所示:(2)﹣3+1﹣4=﹣6,﹣6+1﹣(﹣3)=﹣2,﹣2+1+4=3,如图所示:x=3﹣4﹣(﹣6)=5,y=3﹣1﹣(﹣6)=8,x+y=5+8=13.7.阅读下面解题过程:计算:解:原式=(第一步)=(﹣15)÷(﹣25)(第二步)=(第三步)回答:(1)上面解题过程中有两个错误,第一处是第一步,错误的原因是在同级运算中,没有按从左到右的顺序进行,第二处是第三步,错误的原因是同号两数相除,结果为正(事实上结果应为正数);(2)正确的结果是.【解答】解:正确做法:原式=(第一步)=15××6(第二步)=(第三步).故答案为:(1)一,在同级运算中,没有按从左到右的顺序进行,二,同号两数相除,结果为正(事实上结果应为正数);(2).8.如图,已知数轴上的点A表示的数为6,点B表示的数为﹣4,点C是AB的中点,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为x秒(x >0).(1)当x=5秒时,点P到达点A.(2)运动过程中点P表示的数是2x﹣4(用含x的代数式表示);(3)当P,C之间的距离为2个单位长度时,求x的值.【解答】解:(1)∵数轴上的点A表示的数为6,点B表示的数为﹣4,∴AB=10,∵动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴运动时间为10÷2=5(秒),故答案为:5;(2)∵动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴运动过程中点P表示的数是:2x﹣4;故答案为:2x﹣4;(3)点C表示的数为:[6+(﹣4)]÷2=1,当点P运动到点C左侧2个单位长度时,2x﹣4=1﹣2解得:x=1.5,当点P运动到点C右侧2个单位长度时,2x﹣4=1+2解得:x=3.5综上所述,x=1.5或3.5.9.观察下列两个等式:3+2=3×2﹣1,4+﹣1,给出定义如下:我们称使等式a+b=ab﹣1成立的一对有理数a,b为“椒江有理数对”,记为(a,b),如:数对(3,2),(4,)都是“椒江有理数对”.(1)数对(﹣2,1),(5,)中是“椒江有理数对”的是(5,);(2)若(a,3)是“椒江有理数对”,求a的值;(3)若(m,n)是“椒江有理数对”,则(﹣n,﹣m)不是“椒江有理数对”(填“是”、“不是”或“不确定”).(4)请再写出一对符合条件的“椒江有理数对”(6,1.4)(注意:不能与题目中已有的“椒江有理数对”重复)【解答】解:(1)﹣2+1=﹣1,﹣2×1﹣1=﹣3,∴﹣2+1≠﹣2×1﹣1,∴(﹣2,1)不是“共生有理数对”,∵5+=,5×﹣1=,∴5+=5×﹣1,∴(5,)中是“椒江有理数对”;(2)由题意得:a+3=3a﹣1,解得a=2.(3)不是.理由:﹣n+(﹣m)=﹣n﹣m,﹣n•(﹣m)﹣1=mn﹣1∵(m,n)是“椒江有理数对”∴m+n=mn﹣1∴﹣n﹣m=﹣(mn﹣1)=﹣(﹣n)×(﹣m)+1=﹣[(﹣n)×(﹣m)﹣1],∴(﹣n,﹣m)不是“椒江有理数对”,(4)(6,1.4)等.故答案为:(5,);不是;(6,1.4).10.计算:(﹣+1﹣)÷(﹣)×|﹣110﹣(﹣3)2|【解答】解:原式=(﹣+﹣)×(﹣42)+×|﹣1﹣9|=27﹣54+10+×10=﹣17+15=﹣2.11.已知a、b互为相反数,c、d互为倒数,并且x的绝对值等于2.试求:x2﹣(a+b+cd)+2(a+b)的值.【解答】解:∵a、b互为相反数,c、d互为倒数,x的绝对值等于2,∴a+b=0,cd=1,x=±2,∴原式=4﹣(0+1)+2×0=4﹣1+0=3.12.如图,A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为100.(1)请写出与A、B两点距离相等的点M所对应的数;(2)现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?(3)若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为20个单位长度?【解答】解:(1)M点对应的数是(﹣20+100)÷2=40;(2)它们的相遇时间是120÷(6+4)=12(秒),即相同时间Q点运动路程为:12×4=48(个单位),即从数﹣20向右运动48个单位到数28;(3)相遇前:(100+20﹣20)÷(6﹣4)=50(秒),相遇后:(100+20+20)÷(6﹣4)=70(秒).故当它们运动50秒或70秒时间时,两只蚂蚁间的距离为20个单位长度.13.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是﹣4;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是0;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.【解答】解:(1)点B表示的数是﹣4;(2)2秒后点B表示的数是﹣4+2×2=0;(3)①当点O是线段AB的中点时,OB=OA,4﹣3t=2+t,解得t=0.5;②当点B是线段OA的中点时,OA=2OB,2+t=2(3t﹣4),解得t=2;③当点A是线段OB的中点时,OB=2OA,3t﹣4=2(2+t),解得t=8.综上所述,符合条件的t的值是0.5,2或8.故答案为:﹣4;0.14.若“三角”表示运算:a﹣b+c,若“方框”,表示运算:x﹣y+z+w,求的值,列出算式并计算结果.【解答】解:根据题意得:原式=(﹣+)×(﹣2﹣1.5+1.5﹣6)=(﹣(﹣8)=.15.对于有理数a、b,定义一种新运算“⊙”,规定:a⊙b=|a+b|+|a﹣b|.(1)计算2⊙(﹣4)的值;(2)若a,b在数轴上的位置如图所示,化简a⊙b.)×【解答】解:(1)2⊙(﹣4)=|2﹣4|+|2+4|=2+6=8;(2)由数轴知a<0<b,且|a|>|b|,则a+b<0、a﹣b<0,所以原式=﹣(a+b)﹣(a﹣b)=﹣a﹣b﹣a+b=﹣2a.16.乐乐的爸爸投资股票,有一次乐乐发现爸爸持有股票的情况如表格所示:请你帮助分析:乐乐爸爸究竟是赚了还是赔了,赚或赔了多少元?股票名称每股净赚(元)股数天河北斗白马海湖﹣22+1.5﹣4﹣(﹣2)50010001000500【解答】解:﹣22×500+1.5×1000﹣4×1000﹣(﹣2)×500=﹣2000+1500﹣4000+1000=﹣3500,答:乐乐的爸爸赔了,赔了3500元.17.阅读下列内容,并完成相关问题:小明说:“我定义了一种新的运算,叫❈(加乘)运算.”然后他写出了一些按照❈(加乘)运算的运算法则进行运算的算式:(+4)❈(+2)=+6;(﹣4)❈(﹣3)=+7;(﹣5)❈(+3)=﹣8;(+6)❈(﹣7)=﹣13;(+8)❈0=8;0❈(﹣9)=9.小亮看了这些算式后说:“我知道你定义的❈(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,同号得正、异号得负,并把绝对值相加.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,都得这个数的绝对值.(2)计算:[(﹣2)❈(+3)]❈[(﹣12)❈0](括号的作用与它在有理数运算中的作用一致)(3)我们知道加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用吗?请你任选一个运算律,判断它在❈(加乘)运算中是否适用,并举例验证.举一个例子即可)”【解答】解:(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,同号得正、异号得负,并把绝对值相加.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,都得这个数的绝对值,故答案为:同号得正、异号得负,并把绝对值相加;都得这个数的绝对值.(2)原式=(﹣5)❈12=﹣17;(3)加法的交换律仍然适用,例如:(﹣3)❈(﹣5)=8,(﹣5)❈(﹣3)=8,所以(﹣3)❈(﹣5)=(﹣5)❈(﹣3),。

人教版初中数学七年级上学期培优强化训练试卷及答案(1-8)

人教版初中数学七年级上学期培优强化训练试卷及答案(1-8)

培优强化训练11.下列关于单项式532xy -的说法中,正确的是()A.系数是3,次数是2B.系数是53,次数是2C.系数是53,次数是3D.系数是53-,次数是32.下列四个平面图形中,不能折叠成无盖的长方体盒子的是()A B C D3.某顾客以八折的优惠价买了一件商品,比标价少付了30元,那么他购买这件商品花了()A.70元B.120元C.150元D.300元4.若021=+a ,则=3a 。

5.如图,点A 在射线OX 上,OA 的长等于2cm。

如果OA 绕点O 按逆时针方向旋转30°到/OA ,那么点/A 的位置可以用(2,30°)表示。

如果将/OA 再沿逆时针方向继续旋转45°,到//OA ,那么点//A 的位置可以用(,)表示。

X/A O 6.已知线段AB=20cm,直线..AB 上有一点C,且BC=6cm,M 是线段AC 的中点,则AM=cm。

7.某校的一间阶梯教室,第1排的座位数为12,从第2排开始,每一排都比前一排增加a 个座位。

(1)请你在下表的空格里填写一个适当的代数式:第1排的座位数第2排的座位数第3排的座位数第4排的座位数…第n排的座位数1212+a…(2)已知第15排座位数是第5排座位数的2倍,求a的值,并计算第21排有多少个座位?8.在平整的地面上,有若干个完全相同的棱长为10cm的小正方体堆成一个几何体,如图所示。

(1)这个几何体由个小正方体组成,请画出这个几何体的三视图。

主视图左视图俯视图(2)如果在这个几何体的表面喷上黄色的漆,则在所有的小正方体中,有个正方体只有一个面是黄色,有个正方体只有两个面是黄色,有个正方体只有三个面是黄色。

(3分)(3)若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加几个小正方体?这时如果要重新给这个几何体表面喷上红漆,需要喷漆的面积比原几何体增加还是减少了?增加或减少了多少cm2?(4分)数学培优强化训练(一)答案1.下列关于单项式532xy -的说法中,正确的是(D )A.系数是3,次数是2B.系数是53,次数是2C.系数是53,次数是3D.系数是53-,次数是32.下列四个平面图形中,不能折叠成无盖的长方体盒子的是(A)A B C D3.某顾客以八折的优惠价买了一件商品,比标价少付了30元,那么他购买这件商品花了(B)A.70元B.120元C.150元D.300元4.若021=+a ,则=3a 。

七年级(下)数学培优试题(一)含答案

七年级(下)数学培优试题(一)含答案

七年级(下)数学培优试题(一)含答案一.选择题(共10小题,每小题3分,计30分.每小题只有一个选项符合题意)1.下列各式计算正确的是( )A.3332x x x ⋅= B .235()x x = C .358x x x += D .444()xy x y =2.下列能用平方差公式计算的是( )A.)y x )(y x (-+- B .)x 1)(1x (--- C.)x y 2)(y x 2(-+ D.)1x )(2x (+-3.如图1,已知∠1=110°,∠2=70°,∠4=115°,则∠3的度数为( ) A .65º B .70º C .97º D .115º4.2011世界园艺博览会在西安浐灞生态区举办,这次会园占地面积为418万平方米,这个数据用科学记数法可表示为(保留两个有效数字)( ) 图1A.4.18×106平方米B. 4.1×106平方米 C . 4.2×106平方米 D.4.18×104平方米5.某校组织的联欢会上有一个闯关游戏:将四张画有含30°的直角三角形、正方形、等腰三角形、平行四边形这四种图形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是轴对称图形就可以过关,那么翻一次就过关的概率是( )A.1/4B. 1/2 C . 1/3 D.16.如图2,一块实验田的形状是三角形(设其为△ABC ),管理员从BC 边上的一点D 出发,沿DC →CA →AB →BD 的方向走了一圈回到D 处,则管理员从出发到回到原处在途中身体( )A.转过90° B .转过180° C.转过270° D.转过a b c d2 4 1360°7. 如图3所示,在△ABC 和△DEF 中,BC ∥EF ,∠BAC =∠D ,且AB =DE =4,BC =5,AC =6,则EF 的长为( ).A 4B .5C .6 D.不能确定8.地表以下的岩层温度y 随着所处深度x 的变化而变化,在某个地点 y 与x 的关系可以由公式2035+=x y 来表示,则y 随x 的增大而( ) 图3A 、增大B 、减小C 、不变D 、以上答案都不对9. 如图4,图象描述了某汽车在行驶过程中速度与时间的关系,下列说法中错误的是( ) .A.第3分时汽车的速度是40千米/时B.第12分时汽车的速度是0千米/时C .从第3分到第6分,汽车行驶了120千米D.从第9分到第12分,汽车的速度从60千米/时减少到0千米/时10. 下列交通标志中,轴对称图形的个数是( )A.4个B.3个C.2个D.1个二.填空题:(每空3分,共36分)11.代数式3234155a x a x x -+是___ ____项式,次数是__ ___次 图4124︒78︒ED CB A12.计算:2--+-=___________x x x(1)(23)(23)13. 如图5,DAE是一条直线,DE∥BC,则∠BAC=_____.图514.北冰洋的面积是1475.0万平方千米,精确到___ __位,有___ _个有效数字15.某七年级(2)班举行“建党九十周年”演讲比赛,共有甲、乙、丙三位选手,班主任让三位选手抽签决定演讲先后顺序,从先到后恰好是甲、乙、丙的概率是.图616. 如图6,⊿ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF =17. 如图7,AB∥EF∥DC,∠ABC=90°,AB=DC,则图中有全等三角形对.18.一根弹簧原长13厘米,挂物体质量不得超过16千克,并且图7每挂1千克就伸长0.5厘米,则当挂物体质量为10千克,弹簧长度为________厘米,挂物体X(千克)与弹簧长度y(厘米)的关系式为_______.(不考虑x的取值范围)19.如图8,D,E为AB,AC的中点,DE//BC,将△ABC沿线段DE 折叠,使点A落在点F处,若∠B=50°,则∠BDF=______.图8三.解答题(共54分)20. 计算:(每小题5分,共10分)①3b-2a2-(-4a+a2+3b)+a2②(4m3n-6 m2n2+12mn3)÷2mn21.(7分)先化简,再求值:22+---÷,其中10xy xy x y xy[(2)(2)2(2)]()x=,1y=-.2522.(8分)小明家的阳台地面,水平铺设着仅颜色不同的18块黑色方砖(如图10所示),他从房间里向阳台抛小皮球,小皮球最终随机停留在某块方砖上.(1)分别求出小皮球停在黑色方砖和白色方砖上的概率;(2)要使这两个概率相等,可以改变第几行第即列的哪块方砖颜色?怎样改变?23.(9分)公园里有一条“Z ”字型道路ABCD ,如图,其中AB ∥CD ,在AB 、BC 、CD 三段路旁各有一只石凳E 、M 、F ,M 恰为BC 的中点,且E 、F 、M 在同一直线上,在BE 道路中停放着一排小汽车,从而无法直接测量B 、E 之间的距离,你能想出解决的方法吗?请说明其中的道理.图1024. (10分)小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校. 以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题: (1)小明家到学校的路程是多少米?(2)在整个上学的途中哪个时间段小明骑车速度最快,最快的速度是多少米/分?(3)小明在书店停留了多少分钟?(4)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?0 2 4 6 8 10 12 14 时间(分家25.(10分)两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B C E,,在同一条直线上,连结CD,AB AC∴=,AE AD=.请找出图②中的全等三角形,并说明理由(说明:结论中不得含有未标识的字母);C图图七年级(下)数学期末试题评分标准及参考答案2011.6 命题:李丹(教研室) 检测:史晓锋(龙泉中学)一、单项选择题(每小题3分,计30分)1.D2.B3.D4.C5.B6.B7.B8.A9.C 10.B二、填空题(每空3分,计36分)11. 三,五 12.-3x 2-2x +10 13. 46° 14. 千,五 15. 61 16. 74° 17.318. 18,y=13+0.5x 19. 80°三、解答题(共54分)20. ①解:原式=3b -2a 2+4a -a 2-3b +a2 (3分) =-2a 2+4a (5分)②解:原式=4m 3n÷2mn -6m 2n 2÷2mn +12mn 3÷2mn (2分) =2m 2-3mn +6n 2(5分)21. 解:原式2222(424)()x y x y xy =--+÷22()x y xy xy =-÷=-.(5分) 当10x =,125y =-时,原式1210255⎛⎫=-⨯-= ⎪⎝⎭.(7分) 22. 解:(1)P (黑色方砖)=95,P (白色方砖)=94;(6分)(2)要使这两个概率相等,可将其中的一块黑色方砖换为白色方砖,所改变的黑色方砖所在的行、列数答案不唯一,只要写准确即可得分.(8分)23.解:能.在图中连结E 、M 、F .(1分)理由:AB ∥CD →⎪⎭⎪⎬⎫=∠=∠∠=∠CM BM C B FMC EMB (4分)∴△EBM ≌△FCM (ASA )(7分)∴BE=CF .因此测量C 、F 之间的距离就是B 、E 之间的距离.(9分)24. 解:(1)1500米; (2分)(2)12-14分钟最快,速度为450米/分. (5分)(3)小明在书店停留了4分钟. (7分)(4)小明共行驶了2700米,共用了14分钟. (10分)25. 解:图2中ABE ACD △≌△.(2分)理由如下: ABC △与AED △都是直角三角形∴90BAC EAD ∠=∠= (4分)BAC CAE EAD CAE ∴∠+∠=∠+∠即BAE CAD ∠=∠ (6分)又∵AB=AC,AE=ADABE ACD ∴△≌△ (10分。

培优试卷答案七年级数学

培优试卷答案七年级数学

一、选择题1. 下列各数中,有理数是()A. √2B. πC. -3D. 1/3答案:C解析:有理数是可以表示为两个整数之比的数,即分数形式。

在选项中,只有-3可以表示为整数之比(-3/1),因此选C。

2. 若a > b,那么下列不等式中错误的是()A. a + 2 > b + 2B. a - 2 < b - 2C. 2a > 2bD. a^2 < b^2答案:D解析:选项D中,如果a和b都是负数,且|a| < |b|,那么a^2 > b^2,所以D 选项错误。

3. 在下列各数中,属于无理数的是()A. 0.333...B. √4C. πD. 1/2答案:C解析:无理数是不能表示为两个整数之比的数。

在选项中,只有π是无理数,因此选C。

4. 下列各式中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^2答案:C解析:平方差公式是(a + b)^2 = a^2 + 2ab + b^2,所以选C。

5. 下列图形中,面积最小的是()A. 正方形B. 长方形C. 等腰三角形D. 梯形答案:D解析:在相同底和高的情况下,梯形的面积小于正方形、长方形和等腰三角形的面积,因此选D。

二、填空题1. 如果一个数加上它的相反数等于0,那么这个数是______。

答案:0解析:一个数加上它的相反数等于0,即a + (-a) = 0,因此这个数是0。

2. 下列各数中,正数是______。

答案:2解析:在给出的数中,只有2是正数,其他都是负数或零。

3. 若a = 3,b = -2,那么a - b的值是______。

答案:5解析:a - b = 3 - (-2) = 3 + 2 = 5。

4. 若x^2 = 25,那么x的值是______。

七年级数学培优班试题及答案

七年级数学培优班试题及答案

七年级数学培优班选拔试题填空题(共25题,满分100)1、有一只手表每小时比准确时间慢3分钟,若在清晨4:30与准确时间对准,则当天上午手表指示的时间是10:50,准确时间应该是。

2、将正方形纸片由下往上对折,再由左向右对折,称为完成一次操作(见下图).按上边规则完成五次操作以后,剪去所得小正方形的左下角. 问:当展开这张正方形纸片后,一共有个小孔3、已知关于x的整系数的二次三项式ax2+bx+c,当x分别取1,3,6,8时,某同学算得这个二次三项式的值分别为1,5,25,50,经过验算,只有一个结果是错误的,这个错误的结果是。

4、下表记录了某次钓鱼比赛中,钓到n条鱼的选手数:n 0 1 2 3 …13 14 15 钓到n条鱼的人数9 5 7 23 … 5 2 1已知:(1)冠军钓到了15条鱼; (2)钓到3条或更多条鱼的所有选手平均钓到6条鱼; (3)钓到12条或更少鱼的所有选手平均钓到5条鱼;则参加钓鱼比赛的所有选手共钓到条鱼。

5、如图,在一个正方体的两个面上画了两条对角线AB,AC,那么这两条对角线的夹角等于度。

6、一个木制的立方体,棱长为n(n是大于2的整数),表面涂上黑色,用刀片平行于立方体的各面,将它切成3n个棱长为1的小立方体,若恰有一个面涂黑色的小立方体的个数等于没有一个面涂黑色的小立方体的个数,则n= .7、把8张不同的扑克牌交替的分发成左右两叠:左一张,右一张,左一张,右一张,……;然后把左边一叠放在右边一叠上面,称为一次操作。

重复进行这个过程,为了使扑克牌恢复到最初的次序,至少要进行操作的次数是。

8、一台大型计算机中排列着500个外形相同的同一种元件,其中有一只元件已损坏,为了找出这一元件,检验员将这些元件按1-500的顺序编号,第一次先从中取出单数序号的元件,发现其中没有坏元件,他将剩下的元件在原来的位置上又按1-250编号。

(原来的2号变成1号,原来的4号变成2号…)又从中取出单数序号的元件进行检查,仍没有发现…如此下去,检查到最后一个元件,才是坏元件。

初一数学培优试卷附答案

初一数学培优试卷附答案

初一数学培优试卷附答案初一数学培优试卷附答案导语:根据优差生的实际情况制定方案,比如优秀生可以给他们一定难度的题目让他们进行练习,学困生则根据他们的程度给与相应的题目进行练习和讲解,已达到循序渐进的目的。

下面由店铺为您整理出的.初一数学培优试卷附答案内容,一起来看看吧。

1. 绝对值不大于4的整数的积是 ( )A. 16B. 0C. 576D. -12. x的方程ax+3=4x+1的解为正整数, 则整数a的值为 ( )A. 2B. 3C. 1或2D. 2或33. 下图右边四个图形中是左边展形图的立体图的是 ( )4. 设“〇、△、□” 表示三种不同的物体, 现用天平称了两次, 情况如图所示, 那么这三种物体质量大小从大到小的顺序排列正确的是( )A. □〇△B. □△〇C. △〇□D. △□〇5. 方程2x3 =1-1-x6 去分母后得___________________.6. 计算题. (1)(2)-1100 -(1-0.5)× ×[3-(-3)2](3)-32+(-3)2+(-5)2×(-45 )-0.32÷|-0.9|(4) (-2×5)3-(-179 )×(-34 )2-(-10.1 )27. 解方程. (1) 5(x+8)-5=6(2x-7)(2)(3)8. 若a、b互为相反数, c是最小的非负数, d是最小的正整数, 求(a+b)d+d-c的值.9.如图所示, 直线AB、CD相交于O, OE平分∠AOD, ∠FOC=900, ∠1=400, 求∠2和∠3的度数.10.一项工程由甲单独做需12天完成, 由乙单独做需8天完成, 若两人合作3天后, 剩下部分由乙单独完成, 乙还需做多少天?【答案】1. 绝对值不大于4的整数的积是 ( B )A. 16B. 0C. 576D. -12. 关于x的方程ax+3=4x+1的解为正整数, 则整数a的值为 ( D )A. 2B. 3C. 1或2D. 2或33. 下图右边四个图形中是左边展形图的立体图的是 ( D )4. 设“〇、△、□” 表示三种不同的物体, 现用天平称了两次, 情况如图所示, 那么这三种物体质量大小从大到小的顺序排列正确的是( B )A. □〇△B. □△〇C. △〇□D. △□〇5. 方程2x3 =1-1-x6 去分母后得___________________. 4x=6-(1-x)6. 计算题. (1)(2)-110 0 -(1-0.5)× ×[3-(-3)2]6 解原式=(3)-32+(-3)2+(-5)2×(-45 )-0.32÷|-0.9|解析: “+” “-”号把式子分成四部分, 分别计算再加减.解原式=-9+9+25×( )-0.09÷0.9=-9+9+(-20)-0.1=-20-0.1=-20.1(4) (-2×5)3-(-179 )×(-34 )2 -(-10.1 )2-10997. 解方程. (1) 5(x+8)-5=6(2x-7) (2)x=11 x=-9(3) y=8. 若a、b互为相反数, c是最小的非负数, d是最小的正整数, 求(a+b)d+d-c的值.a+b=0, c=0, d=1 (a+b)d+d-c=19.如图所示, 直线AB、CD相交于O, OE平分∠AOD, ∠FOC=900, ∠1=400, 求∠2和∠3的度数.解: ∠1=400, ∠BOD=900-400=500∠AOD=1800-500=1300,∠AO C与∠AOD互补,∴∠3=500, ∠2= ∠AOD=65010.一项工程由甲单独做需12天完成, 由乙单独做需8天完成, 若两人合作3天后, 剩下部分由乙单独完成, 乙还需做多少天?解: 设乙还需做x天, 由题意得 , x=3【初一数学培优试卷附答案】。

七年级培优数学试卷答案

七年级培优数学试卷答案

一、选择题(每题3分,共30分)1. 如果a > b,那么下列不等式中正确的是()A. a - b > 0B. a + b > 0C. a - b < 0D. a + b < 0答案:A2. 下列数中,是偶数的是()A. 0.5B. 1.1C. 2.2D. 3.3答案:C3. 一个长方形的长是8cm,宽是4cm,它的周长是()A. 16cmB. 24cmC. 32cmD. 40cm答案:B4. 下列代数式中,含有字母的是()A. 5 + 2B. 3x + 4C. 7 - 8D. 9 × 3答案:B5. 若x + 3 = 5,则x的值为()A. 2B. 3C. 4D. 5答案:A6. 下列图形中,是轴对称图形的是()A. 正方形B. 长方形C. 平行四边形D. 梯形答案:A7. 下列数中,是质数的是()A. 14B. 15C. 16D. 17答案:D8. 下列方程中,有唯一解的是()A. 2x + 3 = 7B. 3x = 6C. 4x - 2 = 10D. 5x + 5 = 20答案:B9. 一个等腰三角形的底边长为6cm,腰长为8cm,它的面积是()A. 24cm²B. 28cm²C. 32cm²D. 36cm²答案:A10. 下列运算中,结果是正数的是()A. (-3) × (-4)B. (-2) × (-5)C. (-1) × (-6)D. (-4) × (-7)答案:B二、填空题(每题5分,共25分)11. 若x - 2 = 5,则x = _______。

答案:712. 0.25 + 0.5 = _______。

答案:0.7513. 下列数中,是奇数的是 _______。

答案:714. 下列图形中,是圆的是 _______。

答案:圆15. 若a = 3,b = 4,则a² + b² = _______。

初中数学培优班试卷及答案

初中数学培优班试卷及答案

1. 下列各数中,有理数是()。

A. $\sqrt{2}$B. $\pi$C. $-3.14$D. $i$2. 已知 $a=5$,$b=-2$,则 $a^2 + b^2$ 的值为()。

A. 17B. 23C. 29D. 333. 下列函数中,一次函数是()。

A. $y=2x^2+3$B. $y=x+1$C. $y=\sqrt{x}$D. $y=3x^3+2$4. 若 $\angle A$ 是等腰三角形 $ABC$ 的顶角,则 $\angle BAC$ 的度数可能是()。

A. $40^\circ$B. $50^\circ$C. $60^\circ$D. $70^\circ$5. 在平面直角坐标系中,点 $P(2,3)$ 关于 $y$ 轴的对称点坐标是()。

A. $(-2,3)$B. $(2,-3)$C. $(-2,-3)$D. $(2,3)$6. 已知 $x^2 - 5x + 6 = 0$,则 $x$ 的值为()。

A. $2$ 或 $3$B. $1$ 或 $4$C. $2$ 或 $1$D. $3$ 或 $2$7. 下列各组数中,成等差数列的是()。

A. $1, 3, 5, 7$B. $1, 4, 9, 16$C. $2, 4, 8, 16$D. $1, 5, 10, 20$8. 若 $a$、$b$、$c$ 成等比数列,且 $a+b+c=12$,$abc=27$,则 $b$ 的值为()。

A. $3$B. $6$C. $9$D. $12$9. 下列图形中,不是轴对称图形的是()。

A. 正方形B. 等腰三角形C. 圆D. 长方形10. 若 $\sin \theta = \frac{1}{2}$,则 $\cos \theta$ 的值为()。

A. $\frac{\sqrt{3}}{2}$B. $-\frac{\sqrt{3}}{2}$C. $\frac{1}{2}$D. $-\frac{1}{2}$11. 若 $x^2 - 4x + 3 = 0$,则 $x^2 - 6x + 9$ 的值为______。

七年级数学培优试卷答案

七年级数学培优试卷答案

1. 下列各数中,有理数是()A. √3B. πC. -1/2D. 0.101001001…答案:C解析:有理数包括整数和分数,其中分数可以表示为两个整数的比。

在给出的选项中,只有-1/2是分数,因此选C。

2. 若a < b,那么下列不等式中正确的是()A. a + 2 < b + 2B. a - 2 > b - 2C. 2a < 2bD. a^2 < b^2答案:A解析:由不等式的性质,如果两边同时加上或减去同一个数,不等号的方向不变。

因此,A选项正确。

3. 下列各组数中,成比例的是()A. 2, 4, 8, 16B. 3, 6, 9, 12C. 1, 2, 3, 4D. 0, 0, 0, 0答案:D解析:成比例意味着比值相等。

在给出的选项中,只有D选项中的四个数都是0,比值都是0,因此选D。

4. 下列各图中,是圆的是()A. 正方形B. 等腰三角形C. 等边三角形D. 椭圆答案:D解析:圆的定义是平面上到一个固定点距离相等的点的集合。

在给出的选项中,只有椭圆符合这个定义,因此选D。

5. 若一个长方形的长是6cm,宽是4cm,那么它的面积是()A. 10cm²B. 12cm²C. 24cm²D. 36cm²答案:C解析:长方形的面积计算公式是长乘以宽。

因此,6cm乘以4cm等于24cm²,选C。

6. -3的相反数是______,3的绝对值是______。

答案:3,3解析:一个数的相反数是指与这个数相加等于0的数,因此-3的相反数是3。

一个数的绝对值是指这个数去掉符号的值,所以3的绝对值是3。

7. 如果a = 2,那么a² - a的值是______。

答案:2解析:将a的值代入表达式,得到2² - 2 = 4 - 2 = 2。

8. 若m和n是方程2m + 3n = 12的解,那么m和n的可能值是______。

七年级(下)数学培优试题(六)含答案

七年级(下)数学培优试题(六)含答案

七年级(下)数学培优试题(六)含答案(时间:90分钟,满分:100分)一、填空题:(每空2分,共26分)1、232zyx-的系数是,次数是 .2、一个两位数,个位上的数字是a,十位上的数字是b,交换这个两位数个位上与十位上数的位置,得到新的两位数,这两个两位数的和是 .3、写一个关于x的二次三项式,使它的二次项系数为21-,一次项系数为3-,常数项为2,则这个二次三项式是 .4、若18031=∠+∠,18042=∠+∠,且21∠=∠,则3∠=4∠,理由是 .5、若α∠的余角为38,则α∠= , α∠的补角是度.6、花粉的直径约为30微米,相当于米(用科学记数法表示).7、小明在一个小正方体的六个面上分别标了1、2、3、4、5、6六个数字,随意地掷出小正方体,则P(掷出的数字小于7)=______;P(掷出的数字小于3)=_______.8、如图所示,要使AB∥CD,只需要添加一个条件,这个条件是 .(填一个你认为正确的条件即可)9、如下图,在⊿ABC中∠ABC和∠ACB的角平分线相交于O,∠BOC=116度,求∠A的度数_________.10、如上图,已知:BO平分∠CBA,CO平分∠ACB,MN∥BC,AB=12,AC=18.则△AMN的周长是 .11.生物学校发现一种病毒的长度约为0.0000405毫米,用科学计数法表示为______.有效数字是______.12.完全平方公式有许多变形,如:()2222a b a ab b+=++,可以变形为()2222a b a b ab+=+-.请你再写出一个完全平方公式的变形:______.二、选择题:(每题3分,共30分)13、下列各式中,不能用平方差公式计算的是()A、))((yxyx+--B、))((yxyx--+-C、))((yxyx---D、))((yxyx+-+14、下列运算中正确的是 ( ) A 、a 2·(a 3)2=a 8 B 、3332a a a =⋅ C 、6332a a a =+ D 、532)(a a = 15、两直线被第三条直线所截,则 ( ) A 、内错角相等 B 、同位角相等 C 、同旁内角互补 D 、以上结论都不对 16、下列说法正确的是 ( ) A.概率很大的事情必然会发生B.如果一件事不可能发生,那么它就是必然事件,即发生的概率为1C.不太可能发生的事情的概率不为0D.一件事情肯定会发生,小明说“这件事200%会发生”17、一个游戏的中将率是1%,小花买100张奖券,下列说法正确的是 ( ) A.一定会中奖 B.一定不中奖 C.中奖的可能性大 D.中奖的可能性小 18、如图,在下列四组条件中,能判定AB ∥CD 的是 ( )A 、21∠=∠B 、43∠=∠C 、 180=∠+∠ABC BAD D 、BDC ABD ∠=∠19、如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形20、如图加条件能满足AAS 来判断⊿ACD ≌⊿ABE 的条件是 ( ) A 、∠AEB=∠ADC ,∠C=∠D B 、∠AEB=∠ADC ,CD=BE C 、AC=AB ,AD=AE D 、AC=AB ,∠C=∠B21、如图,某人不小心把一块三角形的玻璃打碎成三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是 ( )A 、带①去B 、带②去C 、带③去D 、带①和②去22、如图,AB=CD ,AD=BC ,AC 和BD 交于点M , 那么图中全等三角形有 ( )A 、2对B 、3对C 、4对D 、5对 23.下列语句正确的是( )A.近似数0.009精确到了百分位B.近似数800精确到个位,有一个有效数字 C.近似数56.7万精确到千位,有三个有效数字 D.近似数53.67010⨯精确到千分位三、计算题()2464''=⨯第16题DB②③①MCBA24、(2x+3y )-3(2x-y) 25、(3x+9)(x+2)26、)32)(32(c b a c b a +--- 27、)4()4816(2234a a a a -÷--四、作图题(5分) 28、如图,已知∠α和∠β,线c 求作△ABC :使用使∠A=∠α;∠B=∠β;AB=c.五、化简求值(5分) 29、当2=x ,25=y 时,求()()()()x xy y x y x y x 2]4222[2÷--++-的值。

七年级(上)数学培优试题(一)含答案

七年级(上)数学培优试题(一)含答案

七年级(上)数学培优试题(一)含答案说明:1.试题卷共4页,答题卡共4页。

考试时间90分钟,满分100分。

2.请在答题卡上填涂学校、班级、姓名、学号,不得在其它地方作任何标记。

3.答案必须写在答题卡指定位置上,否则不给分。

一、选择题(每小题3分,共36分。

)每小题有四个选项,其中只有一个是正确的,请把答案按要求填涂到答题卷相应位置上。

1.21-的倒数是A .–1B .–2C .21 D .22.2012年11月3日凌晨左右,“神舟八号”飞船与“天宫一号”目标飞行器经过捕获、缓冲、拉近、锁紧4个步骤,成功对接,形成组合体,对接时速达到28000公里以上。

将数据28000用科学记数法表示为 A .0.28×105 B .28×103 C .2.8×104 D .2.8×105 3.下列运算中,正确的是 A .2a a 3=-B .2a + 3b = 5abC .()()326-=-÷-D .94322=⎪⎭⎫ ⎝⎛-4.下列事件属于确定事件的是A .任意掷出一枚硬币,落地后硬币一定正面朝上。

B .在电影院任意买一张电影票,座位号是奇数。

C .打开电视,它正在播放《喜洋洋和灰太狼》的动画。

D .今年冬天深圳一定会下雪。

5.一个正方体的表面展开图如图1所示,则原正方体中字母“A ”所在面的对面所标的字是A .深B .圳C .大D .运6.若21m y x2+-与1n 3y x 3-是同类项,则m+n 的值A .3B .4C .5D .67.已知x=2是关于x 的方程2x+3a -1=0的解,则a 的值是A .-1B .0C .1D .2 8.时钟9点30分时,分针和时针之间形成的角的度数等于 A .75º B .90º C .105º D .120º9.下列四个说法:①射线有一个端点,它能够度量长度;②连结两点之间的直线的长度叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与直线上各点连接的所有线段中,垂线段最短。

初一培优数学试题及答案

初一培优数学试题及答案

初一培优数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. -5B. 0C. 3D. -7答案:C2. 计算下列哪个表达式的结果为负数?A. 5 - 3B. 2 + (-4)C. 6 × 2D. 8 ÷ 2答案:B3. 下列哪个分数是最简分数?A. 4/8B. 3/6C. 5/10D. 7/14答案:A4. 哪个数的绝对值最大?A. 2B. -3C. 0D. 4答案:B5. 哪个数的平方最小?A. 2B. -3C. 0D. 4答案:C6. 下列哪个方程的解是x = 2?A. 2x - 4 = 0B. 3x + 6 = 0C. 4x - 8 = 0D. 5x + 10 = 0答案:A7. 哪个不等式的解集是x > 3?A. x - 3 > 0B. x + 3 > 0C. x - 3 < 0D. x + 3 < 0答案:A8. 下列哪个图形的周长最长?A. 边长为3的正方形B. 长为4,宽为2的长方形C. 直径为5的圆D. 边长为4的等边三角形答案:C9. 哪个数是无理数?A. 2B. 1/2C. πD. 0.7510. 下列哪个图形的面积最大?A. 边长为4的正方形B. 长为5,宽为3的长方形C. 半径为3的圆D. 底为4,高为5的三角形答案:C二、填空题(每题4分,共40分)11. 计算:(-3) × (-2) = ______。

答案:612. 计算:(-4) ÷ 2 = ______。

13. 计算:|-5| = ______。

答案:514. 计算:√9 = ______。

答案:315. 计算:(1/2) + (1/3) = ______。

答案:5/616. 计算:(2/3) × (3/4) = ______。

答案:1/217. 计算:(-2)² = ______。

答案:418. 计算:(-3)³ = ______。

7年级下册数学培优试题

7年级下册数学培优试题

1、下列哪个数不是有理数?A. 3/4B. -7C. √2D. 0.1解析:有理数是可以表示为两个整数之比的数,包括整数、有限小数和无限循环小数。

3/4是分数,属于有理数;-7是整数,也属于有理数;0.1是有限小数,同样属于有理数。

而√2是无限不循环小数,不能表示为两个整数的比,因此不是有理数。

(答案)C2、若a < 0,b > 0,则a - b的结果为:A. 正数B. 负数C. 零D. 无法确定解析:根据有理数的减法法则,减去一个数等于加上这个数的相反数。

因为a < 0,b > 0,所以a的相反数-a > 0,b的相反数-b < 0。

那么a - b = a + (-b),即一个负数加上一个负数,结果仍为负数。

(答案)B3、下列哪个数既是2的倍数又是3的倍数?A. 6B. 8C. 9D. 11解析:一个数如果是2的倍数,那么它能被2整除,即个位数为0、2、4、6、8;一个数如果是3的倍数,那么它各位上的数字之和能被3整除。

6的个位数是6,能被2整除,且6的各位数字之和为6,能被3整除,所以6既是2的倍数又是3的倍数。

8虽然是2的倍数但不是3的倍数;9虽然是3的倍数但不是2的倍数;11既不是2的倍数也不是3的倍数。

(答案)A4、下列哪个选项表示的是互为相反数的两个数?A. 3和-3B. 3和3C. -3和-3D. 3和|-3|解析:互为相反数的两个数,它们的和为零。

3和-3的和为0,所以它们互为相反数。

3和3的和不为0,它们不是相反数;-3和-3是相等的数,不是相反数;3和|-3|,因为|-3|等于3,它们的和也不为0,所以它们不是相反数。

(答案)A5、下列哪个数不是整数?A. -5B. 0C. 3.14D. 100解析:整数包括正整数、0和负整数。

-5是负整数,0是整数,100是正整数,它们都是整数。

而3.14是一个小数,不是整数。

(答案)C6、下列哪个式子表示的是“a的3倍与b的2倍的差”?A. 3a + 2bB. 3a - 2bC. 2a - 3bD. (3a)(2b)解析:“a的3倍”可以表示为3a,“b的2倍”可以表示为2b。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学培优班选拔试题填空题(共25题,满分100)1、有一只手表每小时比准确时间慢3分钟,若在清晨4:30与准确时间对准,则当天上午手表指示的时间是10:50,准确时间应该是。

2、将正方形纸片由下往上对折,再由左向右对折,称为完成一次操作(见下图).按上边规则完成五次操作以后,剪去所得小正方形的左下角. 问:当展开这张正方形纸片后,一共有个小孔3、已知关于x的整系数的二次三项式ax2+bx+c,当x分别取1,3,6,8时,某同学算得这个二次三项式的值分别为1,5,25,50,经过验算,只有一个结果是错误的,这个错误的结果是。

4、下表记录了某次钓鱼比赛中,钓到n条鱼的选手数:n 0 1 2 3 …13 14 15 钓到n条鱼的人数9 5 7 23 … 5 2 1已知:(1)冠军钓到了15条鱼; (2)钓到3条或更多条鱼的所有选手平均钓到6条鱼; (3)钓到12条或更少鱼的所有选手平均钓到5条鱼;则参加钓鱼比赛的所有选手共钓到条鱼。

5、如图,在一个正方体的两个面上画了两条对角线AB,AC,那么这两条对角线的夹角等于度。

6、一个木制的立方体,棱长为n(n是大于2的整数),表面涂上黑色,用刀片平行于立方体的各面,将它切成3n个棱长为1的小立方体,若恰有一个面涂黑色的小立方体的个数等于没有一个面涂黑色的小立方体的个数,则n= .7、把8张不同的扑克牌交替的分发成左右两叠:左一张,右一张,左一张,右一张,……;然后把左边一叠放在右边一叠上面,称为一次操作。

重复进行这个过程,为了使扑克牌恢复到最初的次序,至少要进行操作的次数是。

8、一台大型计算机中排列着500个外形相同的同一种元件,其中有一只元件已损坏,为了找出这一元件,检验员将这些元件按1-500的顺序编号,第一次先从中取出单数序号的元件,发现其中没有坏元件,他将剩下的元件在原来的位置上又按1-250编号。

(原来的2号变成1号,原来的4号变成2号…)又从中取出单数序号的元件进行检查,仍没有发现…如此下去,检查到最后一个元件,才是坏元件。

则这只元件的最初编号是 。

9、已知0132=+-x x , 则 =++13242x x x 。

10、一个长方体的长、宽、高分别为9cm, 6cm, 5cm ,先从这个长方体上尽可能大的切下一个正方体,再从剩余部分上又尽可能大的切下一个正方体,最后再从第二次剩余部分上又尽可能大的切下一个正方体,那么经过三次切割后剩余部分的体积为 cm 3.11、如图所示八角星中,∠A+∠B+∠C+∠D +∠E+∠F+∠H+∠G=_______度。

12、电影胶片绕在盘上,空盘的盘心直径为60mm, 现有厚度为0.15mm 的胶片,它紧紧的缠绕在盘上,共600圈,那么这盘胶片的总长度约为 米(π≈3.14)。

13、如图,三角形ABC 的面积为1,BD ∶DC=2∶1,E 为AC 的中点,AD 与BE 相交于P ,那么四边形PDCE 的面积为 。

14 、A ,B ,C ,D 四个盒子中分别放有6,5,4,3个球,第一个小朋友找到放球最少的盒子,从其它的盒子中各取1个球放入这个盒子中,然后第二个小朋友又找到一个放球最少的盒子,从其它的盒子中各取1个球放入这个盒子中,……如此进行下去,当第2004个小朋友放完后,A ,B ,C ,D 四个盒子中的球数依次是 。

15、在一个乘法幻方中,每一行之积,每一列之积,对角线上数的积都相等。

如果在右图的空格中填上正整数,构成一个乘法幻方。

那么x 的值是______。

5 x 4116、在一个立方体的八个顶点分别写上数字1,2,3,…,8, 使得六个面的顶点上的数字分别为{1,2,6,7},{1,4,6,8}, {1,2,5,8} {2,3,5,7},{3,4,6,7}和{3,4,5,8}写有数字______的顶点与写有数字6的顶点距离最远。

17、方程200422=-b a 的正整数解有 组.18、如图,已知梯形ABCD ,AD ∥BC ,∠B+∠C=90°,EF=10,E ,F 分别是AD ,BC 的中点,则BC -AD =________19、如图,正方形ABCD 的边长为1,P 为AB 上的点, Q 为AD 上的点,且△APQ 的周长为2, 则∠PCQ=_______20、绕湖的一周是24千米,小张和小王从湖边某一地点同时出发,反向而行,小王以每小时4千米速度每走60分钟后休息5分钟;小张以每小时6千米速度每走50分钟后休息10分钟,则两人出发后_______分钟后第一次相遇。

21、在长方形内画一些直线,已知边上有三块面积分别为13,35,49,图中的数据表示所在的小块面积,则图中的阴影部分的面积为 。

22、一张三角形的纸片内有2004个点,连接三角形的三个顶点和这2004个点(共2007个点),将三角形纸片分割成互不重叠的m 个小三角形的纸片(这些三角形都是以这2007个点为顶点),则m = 。

23、选取四个正整数a,b,c,d ,且a<b<c<d ,使得dc b a 1111+++是一个整数,那么符合要求的a,b,c,d 共有 种选取方式。

24、有7只小猴A 1,A 2,A 3,A 4,A 5,A 6,A 7,每只小猴有若干粒花生。

它们互相赠送:第一次由A 1给其它小猴,所给的花生数等于其它小猴手中原有的花生粒数;第二次由A 2给其它小猴,所给的花生数等于其它小猴手中现有的花生粒数,…最后由A 7给其它小猴,所给的花生数等于其它小猴手中现有的花生粒数。

结果每只小猴都有花生640粒。

那么A 4原有的花生粒数为______。

25、如图,设O 是等边三角形ABC 内一点,已知∠AOB=115°,∠BOC=125°,则以 OA ,OB ,OC 为边所构成的三角形的各内 角的度数分别为 。

参考答案填空题(共25题,满分100)1、有一只手表每小时比准确时间慢3分钟,若在清晨4:30与准确时间对准,则当天上午手表指示的时间是10:50,准确时间应该是11:10。

设标准时间经过了x小时,则3x=(4.5+x-10又5/6)x60 得x=6小时40分2、将正方形纸片由下往上对折,再由左向右对折,称为完成一次操作(见下图).按上边规则完成五次操作以后,剪去所得小正方形的左下角. 问:当展开这张正方形纸片后,一共有256个小孔3、已知关于x的整系数的二次三项式ax2+bx+c,当x分别取1,3,6,8时,某同学算得这个二次三项式的值分别为1,5,25,50,经过验算,只有一个结果是错误的,这个错误的结果是 25。

(由36a+6b+c=25知c为奇数,由64a+8b+c=50知c为偶数,则两式中必有一错)4、下表记录了某次钓鱼比赛中,钓到n条鱼的选手数:n 0 1 2 3 …13 14 15 钓到n条鱼的人数9 5 7 23 … 5 2 1已知:(1)冠军钓到了15条鱼; (2)钓到3条或更多条鱼的所有选手平均钓到6条鱼; (3)钓到12条或更少鱼的所有选手平均钓到5条鱼;则参加钓鱼比赛的所有选手共钓到943条鱼。

(设所有选手共x人,6·(x-9-5-7)+19=5(x-5-2-1)+13x5+14x2+15 )5、如图,在一个正方体的两个面上画了两条对角线AB,AC,那么这两条对角线的夹角等于60度。

6、一个木制的立方体,棱长为n(n是大于2的整数),表面涂上黑色,用刀片平行于立方体的各面,将它切成3n个棱长为1的小立方体,若恰有一个面涂黑色的小立方体的个数等于没有一个面涂黑色的小立方体的个数,则n=8 .( 列方程6(n-2)2=(n-2)3得n=8 )7、把8张不同的扑克牌交替的分发成左右两叠:左一张,右一张,左一张,右一张,……;然后把左边一叠放在右边一叠上面,称为一次操作。

重复进行这个过程,为了使扑克牌恢复到最初的次序,至少要进行操作的次数是 3 。

8、一台大型计算机中排列着500个外形相同的同一种元件,其中有一只元件已损坏,为了找出这一元件,检验员将这些元件按1-500的顺序编号,第一次先从中取出单数序号的元件,发现其中没有坏元件,他将剩下的元件在原来的位置上又按1-250编号。

(原来的2号变成1号,原来的4号变成2号…)又从中取出单数序号的元件进行检查,仍没有发现…如此下去,检查到最后一个元件,才是坏元件。

则这只元件的最初编号是 256 。

9、已知0132=+-x x , 则 =++13242x x x 1/10 。

(倒数法,将所求的算式取倒数,即x 2+1/x 2+3,已知x+1/x=3, x 2+1/x 2=7)10、一个长方体的长、宽、高分别为9cm, 6cm, 5cm ,先从这个长方体上尽可能大的切下一个正方体,再从剩余部分上又尽可能大的切下一个正方体,最后再从第二次剩余部分上又尽可能大的切下一个正方体,那么经过三次切割后剩余部分的体积为 73 cm 3.(第一次切下53,第二次切下43, 第三次切下23)11、如图所示八角星中,∠A+∠B+∠C+∠D +∠E+∠F+∠H+∠G=___360_度。

(180x8-所求=360x3)12、电影胶片绕在盘上,空盘的盘心直径为60mm, 现有厚度为0.15mm 的胶片,它紧紧的缠绕在盘上,共600圈,那么这盘胶片的总长度约为 256 米(π≈3.14)。

(圆环的面积等于胶片的总长度乘以厚度)13、如图,三角形ABC 的面积为1,BD ∶DC=2∶1,E 为AC 的中点,AD 与BE 相交于P ,那么四边形PDCE 的面积为 7/30 。

(如图可知4x=3y, 4x+x+x+y+2y=1,得x=1/10)14 、A ,B ,C ,D 四个盒子中分别放有6,5,4,3个球,第一个小朋友找到放球最少的盒子,从其它的盒子中各取1个球放入这个盒子中,然后第二个小朋友又找到一个放球最少的盒子,从其它的盒子中各取1个球放入这个盒子中,……如此进行下去,当第2004个小朋友放完后,A ,B ,C ,D 四个盒子中的球数依次是 6, 5, 4, 3 。

(6,5,4,3→5,4,3,6→4,3,6,5→3,6,5,4→6,5,4,3…周期4)15、在一个乘法幻方中,每一行之积,每一列之积,对角线上数的积都相等。

如果在右图的空格中填上正整数,构成一个乘法幻方。

那么x 的值是___2__。

5 x 4116、在一个立方体的八个顶点分别写上数字1,2,3,…,8, 使得六个面的顶点上的数字分别为{1,2,6,7},{1,4,6,8}, {1,2,5,8} {2,3,5,7},{3,4,6,7}和{3,4,5,8}写有数字___5___的顶点与写有数字6的顶点距离最远。

相关文档
最新文档