浙大版概率论与数理统计答案---第六章

合集下载

概率论与数理统计及其应用_习题答案_(浙大_盛骤谢式千版本)

概率论与数理统计及其应用_习题答案_(浙大_盛骤谢式千版本)

《概率论与数理统计》习题解答教材:《概率论与数理统计及其应用》,浙江大学盛骤、谢式千编,高等教育出版社,2004年7月第一版目录第一章随机事件及其概率1第二章随机变量及其分布9第三章随机变量的数字特征25第四章正态分布33第五章样本及抽样分布39第六章参数估计42第七章假设检验53第一章 随机事件及其概率1、解:(1){}67,5,4,3,2=S (2){} ,4,3,2=S (3){} ,,,TTH TH H S =(4){}6,5,4,3,2,1,,T T T T T T HT HH S =2、设A , B 是两个事件,已知81)(,21)(,41)(===AB P B P A P ,求)(B A P ,)(B A P ,)(AB P ,)])([(AB B A P 解:81)(,21)(,41)(===AB P B P A P ∴)()()()(AB P B P A P B A P -+= 85812141=-+= )()()(AB P B P B A P -=838121=-=87811)(1)(=-=-=AB P AB P)])([(AB B A P )]()[(AB B A P -=)()(AB P B A P -= )(B A AB ⊂218185=-=3、解:用A 表示事件“取到的三位数不包含数字1”2518900998900)(191918=⨯⨯==C C C A P4、在仅由0,1,2,3,4,5组成且每个数字至多出现一次的全体三位数字中,任取一个三位数,(1)该数是奇数的概率;(2)求该数大于330的概率。

解:用A 表示事件“取到的三位数是奇数”,用B 表示事件“取到的三位数大于330”(1) 455443)(2515141413⨯⨯⨯⨯==A C C C C A P =0.48 2) 455421452)(251514122512⨯⨯⨯⨯+⨯⨯=+=A C C C A C B P =0.485、袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率 (1)4只中恰有2只白球,1只红球,1只黑球; (2)4只中至少有2只红球; (3)4只中没有白球解:用A 表示事件“4只中恰有2只白球,1只红球,1只黑球”(1)412131425)(C C C C A P ==495120=338(2)用B 表示事件“4只中至少有2只红球”16567)(4124418342824=++=C C C C C C B P 或4124838141)(C C C C B P +-==16567495201= (3)用C 表示事件“4只中没有白球”99749535)(41247===C C C P 6、解:用A 表示事件“某一特定的销售点得到k 张提货单”nkn k n MM C A P --=)1()( 7、解:用A 表示事件“3只球至少有1只配对”,B 表示事件“没有配对”(1)3212313)(=⨯⨯+=A P 或321231121)(=⨯⨯⨯⨯-=A P (2)31123112)(=⨯⨯⨯⨯=B P 8、(1)设1.0)(,3.0)(,5.0)(===AB P B P A P ,求(),(),(),(),P A B P B A P A B P A A B(),()P AB A B P A AB ;(2)袋中有6只白球,5只红球每次在袋中任取一只球,若取到白球,放回,并放入1只白球,若取到红球不放回也不再放回另外的球,连续取球四次,求第一、二次取到白球且第三、四次取到红球的概率。

概率论和数理统计浙江大学第四版-课后习题答案解析[完全版]

概率论和数理统计浙江大学第四版-课后习题答案解析[完全版]

概率论与数理统计习题答案 第四版 盛骤 (浙江大学)浙大第四版(高等教育出版社) 第一章 概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)⎭⎬⎫⎩⎨⎧⨯=n n nn o S 1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。

([一] 2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。

([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,}2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。

(1)A 发生,B 与C 不发生。

表示为:C B A 或A - (AB+AC )或A - (B ∪C )(2)A ,B 都发生,而C 不发生。

表示为:C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生表示为:A+B+C(4)A ,B ,C 都发生, 表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。

故 表示为:C A C B B A ++。

(7)A ,B ,C 中不多于二个发生。

相当于:C B A ,,中至少有一个发生。

故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。

相当于:AB ,BC ,AC 中至少有一个发生。

浙大《概率论与数理统计(第四版)简明本》盛骤著 课后习题解答

浙大《概率论与数理统计(第四版)简明本》盛骤著 课后习题解答
两种方法如下: ①考虑整个样本空间。随机试验:掷两颗骰子,每颗骰子可能出现的点数都是 6 个,
即样本空间 S={ 62 个基本事件}。事件 AB={两颗骰子点数之间和为 7,且有一颗为 1 点},
两颗骰子点数之和为 7 的可能结果为 6 个,即
A={(1,6),(2,5),(3,4),(6,1),(5,2),(4,3)}
解 利用组合法计数基本事件数。从 10 人中任取 3 人组合数为 C130 ,即样本空间
{ } S= C130 = 120个基本事件 。
(1)令事件 A={最小号码为 5}。最小号码为 5,意味着其余号码是从 6,7,8,9,10 的 5
{ } 个号码中取出的,有 C52 种取法,故 A= C52 = 10个基本事件 ,所求概率为
其中由 P( AB) = P(BC) = 0, 而 ABC ⊂ AB 得 P( ABC) = 0 。
------------------------------------------------------------------------------6.在房间里有 10 个人,分别佩戴从 1 号到 10 号的纪念章,任选 3 人记录其纪念章的号码。 求 (1)最小号码为 5 的概率; (2)最大号码为 5 的概率。
∑200
P(B) = P( A2 ∪ A3 ∪⋯∪, A200)= P( Ai )
i=2
显然,这种解法太麻烦,用对立事件求解就很简单。令事件 B ={恰有 0 个次品或恰有
1 个次品},即 B = A0 ∪ A1 ,而
P(B)
=
P( A0

A1 )
=
P( A0 ) +
P( A1)
=
C 200 1100

推荐-概率论与数理统计答案浙江大学主编 精品

推荐-概率论与数理统计答案浙江大学主编  精品

第一章 概率论的基本概念注意: 这是第一稿(存在一些错误)1解:该试验的结果有9个:(0,a ),(0,b ),(0,c ),(1,a ),(1,b ),(1,c ),(2,a ),(2,b ),(2,c )。

所以,(1)试验的样本空间共有9个样本点。

(2)事件A 包含3个结果:不吸烟的身体健康者,少量吸烟的身体健康者,吸烟较多的身体健康者。

即A 所包含的样本点为(0,a ),(1,a ),(2,a )。

(3)事件B 包含3个结果:不吸烟的身体健康者,不吸烟的身体一般者,不吸烟的身体有病者。

即B 所包含的样本点为(0,a ),(0,b ),(0,c )。

2、解 (1)AB BC AC 或ABC ABC ABC ABC ;(2)ABBCAC(提示:题目等价于A ,B ,C 至少有2个发生,与(1)相似); (3)ABC ABC ABC ;(4)AB C 或ABC ;(提示:A ,B ,C 至少有一个发生,或者A B C ,,不同时发生); 3(1)错。

依题得()()()()0=-+=B A p B p A p AB p ,但空集≠B A ,故A 、B 可能相容。

(2)错。

举反例 (3)错。

举反例(4)对。

证明:由()6.0=A p ,()7.0=B p 知()()()()()3.03.1>-=-+=B A p B A p B p A p AB p ,即A 和B 交非空,故A 和B 一定相容。

4、解(1)因为A B ,不相容,所以A B ,至少有一发生的概率为:()()()=0.3+0.6=0.9P A B P A P B =+(2) A B , 都不发生的概率为:()1()10.90.1P A B P A B =-=-=;(3)A 不发生同时B 发生可表示为:A B ,又因为A B ,不相容,于是()()0.6P A B P B ==;5解:由题知()3.0=BC AC AB p ,()05.0=ABC P .因()()()()()ABC p BC p AC p AB p BC AC AB p 2-++= 得,()()()()4.023.0=+=++ABC p BC p AC p AB p故A,B,C 都不发生的概率为()()C B A p C B A p -=1()()()()()()()()[]ABC p BC p AC p AB p C p B p A p +++-++-=1 ()05.04.02.11+--= 15.0=.6、解 设A ={“两次均为红球”},B ={“恰有1个红球”},C ={“第二次是红球”} 若是放回抽样,每次抽到红球的概率是:810,抽不到红球的概率是:210,则 (1)88()0.641010P A =⨯=; (2)88()210.321010P B =⨯⨯-=();(3)由于每次抽样的样本空间一样,所以:8()0.810P C == 若是不放回抽样,则(1)2821028()45C P A C ==;(2)118221016()45C C P B C ==; (3)111187282104()5A A A A P C A +==。

概率与数理统计第六章习题参考解答

概率与数理统计第六章习题参考解答

《概率论与数理统计》第六章习题exe6-1解:10()0x b f x b ⎧<<⎪=⎨⎪⎩其他01()()2bb E X xf x dx x dx b +∞-∞==⋅=⎰⎰ 令11μ=A ,即2b X =,解得b 的矩估计量为ˆ2b X = 2ˆ2(0.50.60.1 1.30.9 1.60.70.9 1.0) 1.6899bx ==++++++++= exe6-2解:202()()()3x E X xf x dx x dx θθθθ+∞-∞-==⋅=⎰⎰令11μ=A ,即,3θ=X 解得θ的矩估计量为ˆ3X θ= Exe6-3解:(1)由于12222()()()()(1)()E X mpE X D X E X mp p mp μμ==⎧⎨==+=-+⎩令 ⎩⎨⎧==.2211μμA A 求解得221111p m p μμμμ⎧-=-⎪⎪⎨⎪=⎪⎩,p, m 的矩估计量为22211(1)ˆ11ˆˆA A n S pA nX X m p ⎧--=-=-⎪⎪⎨⎪=⎪⎩Exe6-4解:(1)()E X λ= 令11μ=A ,即,λ=X 解得λ的矩估计量为ˆX λ= {}),2,1,0(!===-x e x x X P xλλ{}),2,1,0(!===-i i xi x e x x X P iλλ似然函数11111(){}()!!niii x n nx ni ni i i ii eL P X x e x x λλλλλ=--===∑====∏∏∏11ln ()()ln ln(!)nni i i i L n x x λλλ===-+-∑∑1ln ()0nii x d L n d λλλ==-+=∑解得λ的最大似然估计值为 11ˆnii x x n λ===∑ (2)由(1)知1ˆ(6496101163710)7.210x λ==+++++++++= Exe6-5解:(1)似然函数1(1)111(){}(1)(1)ni i i nnx x ni i i L p P X x p p p p =--==∑===-=-∏∏∑-==-ni i nx np p 1)1(1ln ()ln (1)ln ni i L p n p x p ==+-⋅∑)1ln()(ln 1p n x p n ni i --+=∑=1(1)ln ()01nii x d L p ndp pp=-=-=-∑01)(ln 1=---=∑=pnxp n dp p L d ni i解得p 的最大似然估计值为 11ˆnii npxx===∑ (2)155ˆ5174926px ===++++ Exe6-6解:由22()2()x f x μσ--=(1)2σ已知,似然函数22122()()2211()(,)ni i i x nx n nii i L f x e μμσσμμ=----==∑===∏2211ln ())()2nii L n x μμσ==---∑21ln ()1(22)02nii d L x d μμμσ==--=∑即11()0nniii i x n xμμ==-=-=∑∑解得μ的最大似然估计值 1ˆnii xx nμ===∑(2)μ已知,似然函数为212222)(222)(12122121),()(σμσμπσσπσσ∑⎪⎭⎫ ⎝⎛====----==∏∏ni i i x n x ni n i i e ex f L21222)(21)ln(2)2ln(2)(ln μσσπσ-∑---==n i i x n n L 0)()(212)(ln 2122222=-+-=∑=μσσσσni ixn L d d解得∑=-=n i i x x n 122)(1ˆσ,故2σ的最大似然估计值为 .)(1ˆ122∑=-=n i i i x x n σ Exe6-7解:(1)矩估计量2220()()()(3)2xt x xt xx E X xf x dx x e dx e dx t e dt θθθθθθθθ=--+∞+∞+∞+∞--∞==⋅===Γ=⎰⎰⎰⎰令2X θ=,得ˆ/2X θ= 似然函数211()(,)ix n nii i i x L f x eθθθθ-====∏∏1111ln ()(ln 2ln )ln 2ln nnnii i i i i i x L x x n x θθθθθ====--=--∑∑∑令21ln ()210ni i d L n x d θθθθ==-+=∑解得θ的最大似然估计值为111ˆ22ni i x x n θ===∑ (2)2311()(,)2ixnni i i i x L f x e θθθθ-====∏∏331111ln ()[2ln ln(2)]2ln ln(2)nnnii i i i i i x L x x n x θθθθθ====--=--∑∑∑ 令2321ln ()1602nii d L n xd θθθθθ==-⋅-=∑013)(ln 1223=+⋅-=∑=ni ixn d L d θθθθθ解得θ的最大似然估计值为 111ˆ33n ii x x n θ===∑(3) ),(~p m B X ,m 已知{}∏∏=-=-===ni x m x x m ni i i i ip p C x X P p L 11)1()(1111ln ()[ln ln ()ln(1)]ln ln ln(1)()i inx m i i i nnnx m i i i i i L p C x p m x p C p x p nm x =====++--=++--∑∑∑∑令 11ln ()01n ni ii i x nm x d L p dp p p==-=-=-∑∑即1111(1)1n nniiii i i x xxnmppp p p===+==---∑∑∑ 解得p 的最大似然估计值为 1ˆnii xxpmnm===∑ Exe6-8解:(1)似然函数为{}{}{})1(2)1(2121)(522θθθθθθθ-=⋅-⋅==⋅=⋅==X P X P X P L)1ln(ln 52ln )(ln θθθ-++=L 令 0115)(ln =--=θθθθL d d 解得θ的最大似然估计值为.65ˆ=θ Exe6-9解:1212222)()(22)(12)(111212121),,(),,(),(σβαβασβασβασπσπσπβαβαβα∑∑⎪⎪⎭⎫⎝⎛=====+-+---+--=---===∏∏∏∏ni i ni i i i i i y x ny ni x ni n i i Y n i i X e eey f x f L))()((21ln 2)2ln(),(ln 21212βαβασσπβα+-∑+--∑---===ni i ni i y x n n L0))()((22),(ln 112=+-+--=∂∂∑∑==βαβασβααni i n i i y x L0)()((22),(ln 112=+----=∂∂∑∑==βαβασβαβni i n i i x x L 联立 解得,2ˆ,2ˆyx y x -=+=βα故βα,的最大似然估计量为 .2ˆ,2ˆYX Y X -=+=βαExe6-10解:(1)由1/2EX μθ==,得θ的矩估计量ˆ2X θ= ˆ()2()2()22E E X E X θθθ===⋅= 故θ的矩估计量ˆ2X θ=是θ的无偏估计量。

概率论与数理统计和应用课后标准答案答案最新版(浙江大学_盛骤版)

概率论与数理统计和应用课后标准答案答案最新版(浙江大学_盛骤版)

概率论与数理统计和应⽤课后标准答案答案最新版(浙江⼤学_盛骤版)第1章随机变量及其概率1,写出下列试验的样本空间:(1)连续投掷⼀颗骰⼦直⾄6个结果中有⼀个结果出现两次,记录投掷的次数。

(2)连续投掷⼀颗骰⼦直⾄6个结果中有⼀个结果接连出现两次,记录投掷的次数。

(3)连续投掷⼀枚硬币直⾄正⾯出现,观察正反⾯出现的情况。

(4)抛⼀枚硬币,若出现H 则再抛⼀次;若出现T ,则再抛⼀颗骰⼦,观察出现的各种结果。

解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{Λ=S ;(3)},,,,{ΛTTTH TTH TH H S =;(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。

2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(______AB B A P AB P B A P B A P ??。

解:625.0)()()()(=-+=?AB P B P A P B A P ,375.0)()(])[()(=-=-=AB P B P B A S P B A P ,875.0)(1)(___--=AB P AB P ,5.0)(625.0)])([()()])([()])([(___=-=?-?=-?=?AB P AB B A P B A P AB S B A P AB B A P3,在100,101,…,999这900个3位数中,任取⼀个3位数,求不包含数字1个概率。

解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=??,所以所求得概率为72.0900648=4,在仅由数字0,1,2,3,4,5组成且每个数字⾄多出现⼀次的全体三位数中,任取⼀个三位数。

(1)求该数是奇数的概率;(2)求该数⼤于330的概率。

解:仅由数字0,1,2,3,4,5组成且每个数字之多出现⼀次的全体三位数的个数有100455=??个。

概率论与数理统计及其应用课后答案(浙江大学-盛骤版)

概率论与数理统计及其应用课后答案(浙江大学-盛骤版)

概率论与数理统计及其应用课后答案(浙江大学-盛骤版)
目录
第一章随机变量及其概率. (2)
第二章随机变量及其分布. (13)
第三章随机变量的数字特征. (30)
第四章正态分布. (39)
第五章样本及抽样分布. (49)
第六章参数估计. (55)
第七章假设检验. (68)
第一章随机变量及其概率
1,写出下列试验的样本空间:
(1)连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。

(2)连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。

(3)连续投掷一枚硬币直至正面出现,观察正反面出现的情况。

(4)抛一枚硬币,若出现H则再抛一次;若出现T,则再抛一颗骰子,观察出现的各种结果。

解:(1)S {2,345,6,7} ;(2)S {2,3,4, } ;(3)S
{H ,TH ,TTH ,TTTH , };
(4)S {HH , HT,T1,T2,T3,T4,T5,T6} o
2,设A,B 是两个事件,已知P(A) 0.25,P(B) 0.5,P(AB) 0.125,,求
P(A B), P(AB), P(AB), P[( A B)(AB)]。

解:P(A B) P(A) P(B) P(AB) 0.625,
P(AB) P[(S A)B] P(B) P(AB) 0.375,
P(AB) 1 P(AB) 0.875,
P[(A B)(AB)] P[(A B)(S AB)] P(A B) P[(A B)( AB)] 0.625 P(AB) 0.5。

概率论与数理统计六七章习题答案

概率论与数理统计六七章习题答案

第六章大数定理和中心极限定理一、大纲要求(1)了解契比雪夫不等式;(2)了解辛钦大数定律,伯努利大数定律成立的条件及结论;(3)了解独立同分布的中心极限定理和棣莫佛—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)的条件和结论,并会用相关定理近似计算有关随机事件的概率.二、重点知识结构图三、基本知识1. 马尔科夫不等式若X 为只取非负值的随机变量,则对任意常数0ε>,有{}EXP X εε≥≤.2. 契比雪夫不等式若DX 存在,则{}2DXP X EX εε-≥≤.3. 辛钦大数定律定理 1 设12,,,,n X X X 是独立同分布的随机变量序列,且具有有限的数学期望()a X E n =,则对任意的0ε>,有{}lim 0n n P X a ε→∞-≥=4. 伯努利大数定律定理2 设()p n B X n ,~,其中n=1,2, …,0<p<1 。

则对任意ε>0,有5.独立同分布的中心极限定理定理3 (林德伯格-列维定理) 设12,,,,n X X X 为独立同分布的随机变量,22,,0,i i EX a DX σσ==<<∞则对任意实数x 有12lim )()n n P X X X na x x →∞⎫++-≤=Φ⎬⎭式中, ()x Φ是标准正态分布(0,1)N 的分布函数,即2/2()t x e dt +∞--∞Φ=6. 棣莫佛-拉普拉斯中心极限定理定理3(棣莫佛-拉普拉斯定理) 设12,,,,n X X X 独立同分布,i X 的分布是{}{}1,01,(01)i i P X p P X p p ====-<<则对任意实数x ,有12lim )()n n P X X X np x x →∞⎧⎫⎪++-≤=Φ⎬⎪⎭0lim =⎭⎬⎫⎩⎨⎧≥-∞→εp n X P n n四、典型例题例1 设随机变量X 和Y 的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则根据契比雪夫不等式{}6_____P X Y +≥≤.解 因为 ()0E X Y E X E Y +=+= ()2c o v (,D X Y D X D Y X Y +=++2DX DY ρ=++ 1420.52=+-⨯⨯= 根据契比雪夫不等式{}2DXP X EX εε-≥≤所以 {}3163612P X Y +≥≤= 例2 某保险公司经多年资料统计表明,在索赔户中被盗户占20%,在随意抽查的100家索赔户中以被盗的索赔户数为随机变量,利用中心极限定理,求被盗的索赔户大于14户且小于30户的概率近似值.[分析]本题的随机变量服从参数100,0.2n p ==的二项分布.如果要精确计算,就要用伯努利二项公式:{}291001001514300.20.8kk k k P X C -=<<=∑.如果求近似值,可用契比雪夫不等式估计.解 由于~(100,0.2)X N ,所以1000.220EX np ==⨯=168.02.0100)1(=⨯⨯=-=p np DX{}1430P X P <<=<<=Φ(2.5)-Φ(-1.5)()927.0)5.1(5.2=-Φ+Φ因此被盗的索赔户大于14户且小于30户的概率近似值为0.927.例3 某车间有200台机床,它们彼此工作独立,开工率都为0.6,工作时耗电都为1kW,问供电所至少给这个车间多少度电,才能以99.9%的概率保证这个车间不会因供电不足而影响生产.解 用X 表示工作的机床台数,则~(200,0.6)X B .设要向车间供电a kW,则有由棣莫佛-拉普拉斯定理得{}P o X a P ⎧⎫<≤=<≤020p q ⎛⎫⎛⎫⎫⎫≈Φ-≈⎪⎪⎪⎪⎪⎪⎭⎭⎭⎭()0.999 3.1≈Φ≥=Φ即3.1≥ 因此120 3.48141a ≥+= 例4 用契比雪夫不等式确定当掷一均匀硬币时,需掷多少次,才能保证使得出现正面的频率在0.4~0.6之间的概率不小于90%,并用正态逼近计算同一个问题.解 设需掷n 次,用n S 表示出现正面的次数,则1~(,)2n S B n ,有契比雪夫不等式得0.40.60.50.1n n S S P P n n ⎧⎫⎧⎫<<=-<⎨⎬⎨⎬⎩⎭⎩⎭211110022110.900.014n n n⨯⨯≥-=-≥ 所以10002504n ≥=. 由棣莫佛-拉普拉斯定理得0.40.6n S P P n ⎧⎫<<=<⎨⎬⎩⎭(((0.2210.90=Φ-Φ-=Φ-≥即(Φ≥0.95,查表得 1.645>,故68n ≥.例5 假设12,,,n X X X 是独立同分布的随机变量,且()k k i a X E =(1,2,3,4)k =,证明当n 充分大时,随机变量211n n i i Z X n ==∑近似服从正态分布,并指出其分布参数.证 由12,,,n X X X 是独立同分布的随机变量序列可知, 22212,,,nX X X 独立同分布,且有()22a X E i =, 2242i DX a a =-2211n n i i EZ EX a n ===∑, 2242211n n i i a a DZ DX n n=-==∑由林德伯格-列维定理可知,对任意x 有⎰∞--∞→=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧<--x t n n dte x n a a a Z P 22242221lim π即n Z 近似服从正态分布2422(,)a a N a n-. 例6 有一批建筑房屋用的木柱,其中80%的长度超过3m ,现从这批木柱中随机地取出100根,问其中至少有30根短于3m 的概率是多少?解 设10i X ⎧=⎨⎩()31,2,,1003i m i i m = 当所取的第根木柱短于当所取的第根木柱不短于 则()~1,0.2i X B ,记1001i i X X ==∑,则()~100,0.2X B .由棣莫佛-拉普拉斯定理得{}{}30130P X P X ≥=-<1P =-≤()302011 2.50.0062100.4-⎛⎫≈-Φ=-Φ= ⎪⨯⎝⎭例7 假设男婴的出生率为2243,某地区有7000多名产妇,试估计她们的生育情况.[分析] n 重伯努利实验中A 出现的频率nu n依概率收敛于它的概率p ,当n 很大时,有n u np ≈.解 设10i X ⎧=⎨⎩()1,2,,7000i i = 第名产妇生男婴否则显然, 12,,,n X X X 独立同分布且均服从01-分布2243p ⎛⎫= ⎪⎝⎭,1nn i i u X ==∑表示7000名产妇中生男婴的人数,有伯努利大数定理得()2243n u n n →→∞ 由于7000n =已是足够大,因此227000358143n u ≈⨯≈即该地区估计有3581名男婴出生.例8 某电视机厂每月生产10000台电视机,但它的显像管车间的正品率为0.8,为了以0.997的概率保证出厂的电视机都装上正品的显像管,该车间每月应生产多少只显像管?解 设显像管正品数为X ,月总产量为n ,则有()~,0.8X B n ,从而 0.8E X n =, ()n p np DX 16.01=-=为了使电视机都装上正品的显像管,则每月至少生产10000只正品显像管,即所求为{}100000.997P X n ≤<=由棣莫佛-拉普拉斯定理得{}100000.997P X n P ≤<=≤<=即997.05.016.08.016.08.010000=⎭⎬⎫⎩⎨⎧<-≤-n n n X n n P(0.997Φ-Φ=由题意可知,0<,且n 较大,即(1Φ≈,所以0.997Φ=2.75=,故)(1027.14只⨯≈n因此,每月至少要生产41027.1⨯只显像管才能以0.997的概率保证出厂的10000台电视机都能装上正品的显像管.例9 一养鸡场购进1万个良种鸡蛋,已知每个鸡蛋孵化成雏鸡的概率为0.84,每只雏鸡发育成种鸡的概率为0.90,试计算这批鸡蛋得到种鸡不少于7500只的概率.解 设{}k A k =第只鸡蛋孵化成雏鸡, {}k B k =第只鸡蛋育成种鸡,令 ()11,2,,100000k k k B X k B ⎧==⎨⎩ 当发生当不发生 则诸k A 独立同分布,且{}{}{}{}{}{}1k k k k k k k k P X P B P A P B A P A P B A ===+0.840.900.756=⨯+={}{}244.00===k k B P X P显然, 100001kk X X==∑表示10000个鸡蛋育成的种鸡数,则()~10000,0.756X B ,而64.1844244.07560)1(,7560756.010000=⨯=-=⨯=p np np根据棣莫佛-拉普拉斯定理可得()~0,1nkXnpN -=∑于是,所求概率为{}10000756075001k X P X P ⎧⎫-⎪⎪≥=≥≈-Φ⎪⎪⎩⎭∑()1.400.92=Φ= 因此,由这批鸡蛋得到的种鸡不少于7500只的概率为92%.五、课本习题全解6-1 设11nn i i Y X n ==∑,再对n Y 利用契比雪夫不等式:{}12222220n i i n n n n D X DY n P Y EY n n εεεε=→∞⎛⎫ ⎪⎝⎭-≥≤=≤−−−→∑ 故{}n X 服从大数定理. 6-2 设出现7的次数为X ,则有 ()~10000,0.1,1000,900X B E X n p D X === 由棣莫佛-拉普拉斯定理可得{}100096810001696810.14303015X P X P --⎧⎫⎛⎫<=<=-Φ=⎨⎬ ⎪⎩⎭⎝⎭6-3 11,212i i EX DX ==由中心极限定理可知,10110i X -⨯∑,所以101011616110.136i i i i P X P X ==⎧⎫⎧⎫>=-≤=-Φ=-Φ=⎨⎬⎨⎬⎩⎭⎩⎭∑∑6-4 设报各人数为X ,则.100,100==DX EX . 由棣莫佛-拉普拉斯定理可得()0228.021*********}120{=Φ-=⎭⎬⎫⎩⎨⎧-≥-=≥DX EX X P X P6-5 设()11,2,,100000i i X i i ⎧==⎨⎩ 第个人死亡第个人没有死亡,则{}{}10.006,00.994i i P X P X ====总保险费为51210000 1.210⨯=⨯(万元)(1) 当死亡人数在达到51.210/1000120⨯=人时,保险公司无收入.4100.00660,0.1295np =⨯==所以保险公司赚钱概率为)()12100000.129512060P X X X np ⎧⎫⎪++-≤⨯-⎬⎪⎭()7.771=Φ=因而亏本的概率为10P P '=-=.(2)若利润不少于40000,即死亡人数少于80人时,)()12100000.12958060P X X X np ⎧⎫⎪++-≤⨯-⎬⎪⎭()2.590.9952=Φ= 若利润不少于60000,即死亡人数少于60人时,)()12100000.12956060P X X X np ⎧⎫⎪++-≤⨯-⎬⎪⎭()00.5=Φ=若利润不少于80000,即死亡人数少于40人时,)()12100000.12954060P X X X np ⎧⎫⎪++-≤⨯-⎬⎪⎭()2.5920.0048=Φ-=6-6 设总机需备Y 条外线才能有95%的把握保证每个分机外线不必等候,设随机变量()11,2,,2600i i X i i ⎧==⎨⎩ 第架电话分机用外线第架电话分机不用外线,则{}{}10.04,00.96P X P X ====0.04,0.040.00160.0384i i EX DX ==-=由中心极限定理可得16%950384.026004.02602601≈=⎪⎭⎫⎝⎛⨯⨯-Φ=⎭⎬⎫⎩⎨⎧≤∑=Y Y Y X P i i6-7 密度函数为 ()10.50.50x f x -<<⎧=⎨⎩当其他故数学期望为 0.50.50E X x d x -==⎰()0.52220.5112DX EX EX x dx -=-==⎰(1)设i X 为第i 个数的误差,则9973.01)3(251515300130013001=-Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤=⎭⎬⎫⎩⎨⎧≤∑∑∑===i i i i i i DX X P X P30030011151150.0027i i i i P X P X ==⎧⎫⎧⎫>=-≤=⎨⎬⎨⎬⎩⎭⎩⎭∑∑(2)110210.9440.77n i i P X n =⎧⎫≤=Φ-≥⇒≤⎨⎬⎩⎭∑ (3)3001210.99714.855i i Y P X Y Y =⎧⎫⎛⎫≤=Φ-≥⇒≤⎨⎬ ⎪⎝⎭⎩⎭∑6-8 kg kg EX 32105,105--⨯=⨯=σ (1)设i X 为第i 个螺钉的重量,则23100510,5100.05nEX --=⨯⨯⨯=0228.0)2(105.051.51.510011001=Φ-=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧->-=⎭⎬⎫⎩⎨⎧>∑∑==σn nEX X P X P i i i i(2)设()1.11,2,,5000.1i i Y i i ⎧==⎨⎩ 第个螺钉的重量超过5kg第个螺钉的重量不超过5kg,则33.3)1(4.11=-=p np np9951.0)58.2(33.34.1120)1(450050015001=Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧->--=⎭⎬⎫⎩⎨⎧⨯<∑∑==p np np Y P Y P i i i i %6-9 设随机变量()11,2,,10000i i X i ⎧==⎨⎩ 第个人按时进入掩体其他,按时进入掩体的人数为Y ,则()1,~10000,0.9ni i Y X Y B ==∑,所以有10000.9900,9000.190EY DY =⨯==⨯=设有k 人按时进入掩体,则916884645.19090095.090900===-=⎪⎪⎭⎫⎝⎛-Φk k k k 或所以至少有884人,至多有916.六、自测题及答案1.设随机变量X 服从(),B n p ,则对区间(),a b ,恒有lim _______.n P a b →∞⎧⎫⎪⎪<≤=⎨⎬⎪⎪⎩⎭2.一大批产品中优质品占一半,现每次抽取一个,看后放回再抽,问在100次抽 取中取到优质品次数不超过45的概率等于_______.3. 129,,X X X 相互独立, ()1,11,2,9i i EX DX i === ,则对任意给定的0ε>,有( ).9922119922111(A)11(B)119(C)91(D)919i i i i i i i i P X P X P X P X εεεεεεεε--==--==⎧⎫⎧⎫-<≥--<≥-⎨⎬⎨⎬⎩⎭⎩⎭⎧⎫⎧⎫-<≥--<≥-⎨⎬⎨⎬⎩⎭⎩⎭∑∑∑∑4.设12,,,,n X X X 为独立随机变量序列,且()1,2,i X i = 服从参数为λ的泊松分布,则有().()()()()111(A)lim (B)0,1(C),(D)n i n ni i n i i n i i X n P x x n X N n X N n n n P X x x λλλ→∞===⎧⎫-⎪⎪⎪≤=Φ⎬⎪⎪⎪⎩⎭⎧⎫≤=Φ⎨⎬⎩⎭∑∑∑∑当充分大的时,近似服从当充分大的时,近似服从当充分大的时,5.设12,,X X 为独立随机变量序列,且服从服从参数为λ的指数分布,则( ).()()()()112211(A)lim (B)lim 1(C)lim (D)lim n n i i i i n n nni i i n n n X X P x x P x x n X n X n P x x P x x n λλλλλλ==→∞→∞=→∞→∞⎧⎫⎧⎫--⎪⎪⎪⎪⎪⎪⎪⎪≤=Φ≤=Φ⎨⎬⎨⎬⎪⎪⎪⎪⎪⎪⎪⎪⎩⎭⎩⎭⎧⎫⎧⎫--⎪⎪⎪⎪⎪⎪⎪≤=Φ≤=Φ⎬⎨⎬⎪⎪⎪⎪⎪⎪⎪⎩⎭⎩⎭∑∑∑∑6.设随机变量12,,,n X X X 相互独立, 12n X X X X =+++ ,根据林德伯格-列维定理,当n 充分大时, X 近似服从正态分布,只要12,,,n X X X ( )(A)(B)(C)(D)有相同的数学期望有相同的方差服从同一指数分布服从同一离散型分布7.某校有1000名学生,每人以80%的概率去图书馆自习,问图书馆至少应设多少个座位,才能以99%的概率保证去上自习的同学都有座位坐?8.某种电子器件的寿命(小时)具有数学期望μ(未知),方差2400σ=.为了估计μ,随机地取n 只这种器件,在时刻0t =投入测试(设测试是相互独立的)直到失败,测得寿命为12,,,nX X X ,以11ni i X X n ==∑作为μ的估计,为了使{}10.95P X μ-<≥,问n 至少为多少?9.利用中心极限定理证明11lim !2i n n n i n e i -→∞=⎡⎤=⎢⎥⎣⎦∑ [答案]1. 由棣莫佛-拉普拉斯定理可得22lim t b a n P a b dt -→∞⎧⎫⎪⎪<≤=⎨⎬⎪⎪⎩⎭⎰2. 令Y 表示100次抽取中取得优质品的次数()11,2,,1000i i X i i ⎧==⎨⎩ 当第次取到优质品当第次没有取到优质品则 ()1001,~100,0.5i i Y X Y B ==∑那么 1000.5,1000.50.E Y D Y =⨯=⨯⨯=由棣莫佛-拉普拉斯定理可得{}504515Y P Y P P -⎧⎫≤=≤=≤-⎨⎬⎩⎭()()11110.84130.1587≈Φ-=-Φ=-=3.由题意可得 99119,9i i i i EX EX DX DX ======∑∑又因为 9211i i DXP X EX εε=⎧⎫-<≥-⎨⎬⎩⎭∑故(D)项正确.4.因为()1,2,i X i = 服从参数为λ的泊松分布,故,i i EX DX λλ==,由林德伯格-列维定理得()lim n i n X n P x x λ→∞⎧⎫-⎪⎪⎪≤=Φ⎬⎪⎪⎪⎩⎭∑ 当n 充分大时,1nii X=∑近似服从(),N n n λλ分布,故C 项正确.5.由题意可知 211,i i EX DX λλ==由林德伯格-列维定理可得()22limntixnX nP x dt xμ-→∞⎧⎫-⎪⎪⎪≤==Φ⎬⎪⎪⎪⎩⎭∑⎰即()l i mninX nP x xλ→∞⎧⎫-⎪⎪⎪≤=Φ⎬⎪⎪⎪⎩⎭∑6.由于林德伯格-列维定理要求12,,,nX X X独立同分布,且具有有限的数学期望与方差.因此C项正确.7.设X表示同时去图书馆上自习的人数,并设图书馆至少有n个座位,才能以99%的概率保证去上自习的同学都有座位,即n满足{}0.99P X n≤≥.因为()~1000,0.8X B,所以{}⎪⎭⎫⎝⎛⨯⨯⨯-Φ-⎪⎭⎫⎝⎛⨯⨯⨯-Φ≈≤2.08.010008.01000`2.08.010008.01000`nnXP8000.9912.65n-⎛⎫=Φ≥⎪⎝⎭查表得8002.3312.65n-≥,故829.5n≥.因此图书馆至少应有830个座位.8.由于12,,,nX X X独立同分布,且2,400i iEX DXμσ===.由林德伯格-列维定理得{}1P X Pμ⎫⎛-<=<≈Φ-Φ⎝⎭⎝⎭21210.95=Φ-=Φ-≥⎝⎭⎝⎭即0.975Φ≥⎝⎭,查表得 1.9620≥,故2400 1.961536.64n≥⨯=.因此n至少为1537.9.设{}n X为独立同服从参数为1的泊松分布的随机变量序列,则1nkkX=∑服从参数为n的泊松分布,因此有101!!k k n n nn nn k k k k n n P X n e e e k k ---===⎧⎫≤==+⎨⎬⎩⎭∑∑∑由林德伯格-列维定理可得()11lim lim 02n k n k n n k X n P X n P →∞→∞=⎧⎫-⎪⎪⎧⎫≤=≤=Φ=⎨⎬⎩⎭⎪⎪⎩⎭∑∑ 所以11lim lim !k n n n n k n n k k n e P X n e k --→∞→∞==⎧⎫⎡⎤⎧⎫=≤-⎨⎨⎬⎬⎢⎥⎩⎭⎣⎦⎩⎭∑∑ 11lim lim 2n n k n n k P X n e -→∞→∞=⎧⎫=≤-=⎨⎬⎩⎭∑第7章数理统计的基础知识一、大纲要求(1)理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,了解直方图和样本分布函数的意义和作用.(2)了解2χ分布、t分布、F分布的概念和性质,了解分位数的概念并掌握查表计算.(3)了解正态总体的抽样分布.二、重点知识结构图三、基本知识1.总体和个体在数理统计中,把研究对象的全体称为总体或母体,把组成总体的每一个研究对象(元素或单元)称为个体.总体分为有限总体和无限总体.有限总体是指其总体中的成员只有有限个.相应的,无限总体是指其总体中的成员有无限个.2.样本在一个总体中,抽取n 个个体12,,,n X X X ,这n 个个体总称为总体X 的样本或子样, n 称为样本容量.样本特性:① 代表性,样本中的每一个分量()1,2,i X i n = 与总体X 有相同的分布。

概率论与数理统计第六章习题答案

概率论与数理统计第六章习题答案

第六章习题6-11、由一致估计的定义,对0ε∀>{}{}{}()1212max ,,,max ,,,n n P X X X P X X X θεεθεθ-<=-+<<+()()F F εθεθ=+--+()0, 0, 01, X x xF x x x θθθ<⎧⎪=≤≤⎨⎪>⎩及(){}()()()()1212max ,,,n n X X X X X X F x F x F x F x F x ==⋅⋅⋅()1F εθ∴+=(){}()12max ,,,1nn x F P X X X εθεθθ⎫⎛-+=<-+≈- ⎪⎝⎭{}()12max ,,,111()nn x P X X X n θεθ⎫⎛∴-<=--→→∞ ⎪⎝⎭2、证明:EX μ=()1111111ni i n n i i i i nn n i i i i i i i i a X E a E X a a a a μμ======⎫⎛⎪ ⎪ ==⋅=⎪ ⎪⎝⎭∑∑∑∑∑∑ 11niii nii a Xa==∴∑∑是μ的无偏估计量3、证明: ()() ()()22D E E θθθ=-()() ()()()2222E D E D θθθθθθ∴=+=+> 2θ∴不是2θ的无偏估计量4、证明:()~X P λEX λ∴=,()()222E X DX EX λλ=+=+()22E X EX λ∴-=,即()22E X X λ-=用样本矩2211n i i A X n ==∑,1A X =代替相应的总体矩()2E X 、EX所以得2λ的无偏估计量: 22111n i i A A X X n λ==-=-∑ 5、()~,X B n p ,EX np ∴=()()()()22222111E X np p n p np n n p EX n n p =-+=+-=+-()()()()222111E X EX E X X p n n n n -⎫⎛∴=-=⎪ --⎝⎭所以用样本矩2211n i i A X n ==∑,1A X =分别代替总体矩()2E X 、EX得2p 的无偏估计量: ()()()222121111ni i i A A p X X n n n n =-==---∑6、()~,1X N m ,()i E X m ∴=,()1i D X =,(1,2)i =()()()11212212121333333E m E X X E X E X m m m ⎫⎛∴=+=+=+= ⎪⎝⎭()()()1121221414153399999D m D X X D X D X ⎫⎛=+=+=+= ⎪⎝⎭同理可得: ()2E m m =, ()258D m =, ()3E m m =, ()212D m =123,,m m m ∴都是m 的无偏估计量,且在 123,,m m m 中, 3m 的方差最小习题6-21、(1)()11cccEX x c xdx cx dx θθθθθθθθ+∞+∞-+-=⋅==-⎰⎰EXEX cθ∴=-,令X EX =X X c θ∴=-为矩估计量,θ的矩估计值为 x x cθ=-,其中11n i i x x n ==∑似然函数为:()()11211,,,;nnn n n ii i i L x x x c xcx θθθθθθθ-+-====∏∏ ,i x c > 对数似然函数:()()()1ln ln ln 1ln nii L n n c x θθθθ==+-+∑求导,并令其为0,得:1ln ln ln 0ni i d L nn c x d θθ==+-=∑ 1ln ln Lnii nx n cθ=∴=-∑,即θ的最大似然估计量为 1ln ln Lnii nXn cθ==-∑(2)21111EX EX x x dx EX θθθθθ-⎫⎛=⋅=⇒= ⎪--⎝⎭⎰ 以X EX =,得: 21X X θ⎫⎛=⎪ -⎝⎭为θ的矩估计量θ的矩估计值为: 21x x θ⎫⎛=⎪ -⎝⎭,其中11ni i x x n ==∑ 而()1121211,,,;n nnn i i i i L x x x x x θθθθθ--==⎫⎛==⎪⎝⎭∏∏ ,01i x ≤≤()()1ln ln 1ln 2nii nL x θθθ=∴=+-∑令1ln 11ln 022ni i d L n x d θθθ==+⋅⋅=∑, 21ln L ni i n x θ=⎫⎛⎪ ⎪ ∴=⎪⎪⎝⎭∑ 所以θ的最大似然估计量 21ln L ni i n x θ=⎫⎛⎪ ⎪ =⎪ ⎪⎝⎭∑ (3)()~,X B m p ,EXEX mp p m∴=⇒=p ∴的矩估计量: 111n i i X p X X m mn m====∑p ∴的矩估计值为: 11n i i p x mn ==∑ 而()()()111211,,,;11nniii i ii i i nnx m x m x x x x n mm i i L x x x p Cpp C pp ==--==∑∑=-=⋅⋅-∏∏ ,0,1,,ix m = ()()()111ln ln ln ln 1i nnn x mi i i i i L p C x p m x p ====+⋅+-⋅-∑∑∑令() 111ln 111101n n n i i L ii i i d L x m x p x x dp p p mn m ====⋅--⋅=⇒==-∑∑∑ p ∴的最大似然估计量为: 1L p X m=2、(1)()01;2EX xf x dx xdx θθθθ+∞-∞===⎰⎰令11n i i EX X X n ===∑,22X X θθ∴=⇒=2X θ∴= (2)由观测的样本值得:6111(0.30.80.270.350.620.55)0.481766i i x x ===+++++≈∑20.9634x θ∴== 3、由1111122EX X θθθθθ+=⨯+⨯++⨯== 21X θ∴=-为θ的矩估计量 4、设p :抽得废品的概率;1p -:抽得正品的概率 引入{1, i i X i =第次抽到废品0,第次抽到正品,1,2,,60i =()1i P X p ∴==,()01i P X p ==-,且i EX p =所以对样本1260,,,X X X 的一个观测值1260,,,x x x由矩估计法得,p 的估计值为: 601141606015ii p x ====∑,即这批产品的废品率为1155、()()2212213132EX θθθθθ=⨯+⨯-+⨯-=-,()1412133x =⨯++=EX x = , 3526x θ-∴==为矩估计值 ()()()()()()()34511223312121i i i L P X x P X x P X x P X x θθθθθθ========⋅⋅-=-∏()()ln ln25ln ln 1L θθθ=++-令() ln 1155016Ld L d θθθθθ=⨯-=⇒=- 6、(1)λ的最大似然估计 LX λ=, ()0LX P X e e λ--∴=== (2)设X :一个扳道员在五年内引起的严重事故的次数()~X P λ∴,122n =得样本均值:5011(044142221394452) 1.123122122r r x r s ==⨯⋅=⨯⨯+⨯+⨯+⨯+⨯+⨯=∑()1.12300.3253x P X e e --∴====习题6-33、从总体中抽取容量为n 的样本12,,,n X X X 由中心极限定理:()~0,1,/X U N n nμσ-=→∞(1)当2σ已知时,近似得到μ的置信度为1α-的置信区间为:22,X u X u n n αασσ⎫⎛-⋅+⋅⎪ ⎝⎭ (2)当2σ未知时,用2σ的无偏点估计2s 代替2σ:~(0,1),/X N n s nμ-→∞于是得到μ的置信度为1α-的置信区间为:22,s s X u X u n n αα⎫⎛-⋅+⋅⎪ ⎝⎭一般要求30n ≥才能使用上述公式,称为大样本区间估计 4、40n = 属于大样本,2,X N n σμ⎫⎛∴⎪ ⎝⎭ 近似μ∴的95%的置信区间近似为:2x u n ασ⎫⎛±⋅⎪ ⎝⎭其中642x =,3σ=,40 6.32n =≈,21.96u α=()23642 1.966420.9340x u n ασ⎫⎛⎫⎛∴±⋅=±⨯≈±⎪ ⎪⎝⎭⎝⎭故μ的95%的置信区间上限为642.93,下限为641.075、100n =属于大样本,2~,X N n σμ⎛⎫∴ ⎪⎝⎭近似μ∴的99%的置信区间近似为:2x u n ασ⎫⎛±⋅⎪ ⎝⎭其中10x =,3σ=,100n =,22.58u α=()()2310 2.58100.7749.226,10.774100x u n ασ⎛⎫⎛⎫∴±⋅=±⨯=±= ⎪ ⎪⎝⎭⎝⎭由此可知最少要准备10.77410000107740()kg ⨯=这种商品,才能以0.99的概率满足要求。

浙江大学《概率论与数理统计》配套题库【课后习题】(样本及抽样分布)

浙江大学《概率论与数理统计》配套题库【课后习题】(样本及抽样分布)

第6章样本及抽样分布1.在总体中随机抽取一容量为36的样本,求样本均值落在50.8到53.8之间的概率.解:由已知得,,,则,从而2.在总体N(12,4)中随机抽一容量为5的样本.(1)求样本均值与总体均值之差的绝对值大于1的概率;(2)求概率.解:(1)由已知得,从而(2)记,因的分布函数为,则M的分布函数为因而记,则N的分布函数为故3.求总体N(20,3)的容量分别为10,15的两独立样本均值差的绝对值大于0.3的概率.解:将总体N(20,3)的容量分别为10,15的两独立样本的均值分别记作,则,从而,即.故所求概率为4.(1)设样本来自总体N(0,1),,试确常数C使CY服从分布.(2)设样本来自总体N(0,1),,试确定常数C 使Y服从t分布.(3)已知X~t(n),求证.解:(1)因是总体N(0,1)的样本,故且两者是相互独立,因此又两者相互独立,按分布的定义即,因此所求常数.(2)因是总体N(0,1)的样本,故,即有又与相互独立,于是因此所求的常数.(3)由已知得X~t(n),故X可表示成,其中,,则,.又Z,Y相互独立,知Z2与Y相互独立,按F分布的定义得5.(1)已知某种能力测试的得分服从正态分布,随机取10个人参与这一测试.求他们得分的联合概率密度,并求这10个人得分的平均值小于的概率.(2)在(1)中设,若得分超过70就能得奖,求至少有一人得奖的概率.解:(1)10个人的得分分别记为,它们的联合概率密度为(2)若一人得奖的概率为p,则得奖人数Y~b(10,P),此处p是随机选取一人,其考分X在70分以上的概率.因X~N(62,25),故则至少一人得奖的概率为.6.设总体X~b(1,p),是来自X的样本.(1)求的分布律;(2)求的分布律;(3)求.解:(1)因相互独立,且有,即具有分布律因此的分布律为(2)因相互独立,且有,故,其分布律为(3)由于总体,则,,故有7.设总体,是来自X的样本,求, , .解:由已知得,因是来自X的样本,故,,8.设总体是来自X的样本.(1)写出的联合概率密度.(2)写出的概率密度.解:(1)由已知得的概率密度为,故的联合概率密度为(2),故的概率密度为9.设在总体中抽得一容量为16的样本,这里均未知;(1)求,其中为样本方差;(2)求.解:(1)因为,现在n=16,即有,故有查分布表得,从而知p=1-0.01=0.99(2)由,得,即。

概率论与数理统计浙大版习题答案六

概率论与数理统计浙大版习题答案六

第六章 样本及抽样分布1.[一] 在总体N (52,6.32)中随机抽一容量为36的样本,求样本均值X 落在50.8到53.8之间的概率。

解:8293.0)78()712(}63.68.163.65263.62.1{}8.538.50{),363.6,52(~2=-Φ-Φ=<-<-=<<X P X P N X2.[二] 在总体N (12,4)中随机抽一容量为5的样本X 1,X 2,X 3,X 4,X 5. (1)求样本均值与总体平均值之差的绝对值大于1的概率。

(2)求概率P {max (X 1,X 2,X 3,X 4,X 5)>15}. (3)求概率P {min (X 1,X 2,X 3,X 4,X 5)>10}.解:(1)⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧>-=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧>-=>-25541225415412}112{|X P X P X P=2628.0)]25(1[2=Φ- (2)P {max (X 1,X 2,X 3,X 4,X 5)>15}=1-P {max (X 1,X 2,X 3,X 4,X 5)≤15} =.2923.0)]21215([1}15{1551=-Φ-=≤-∏=i iXP (3)P {min (X 1,X 2,X 3,X 4,X 5)<10}=1- P {min (X 1,X 2,X 3,X 4,X 5)≥10} =.5785.0)]1([1)]21210(1[1}10{15551=Φ-=-Φ--=≥-∏=i i X P 4.[四] 设X 1,X 2…,X 10为N (0,0.32)的一个样本,求}.44.1{1012>∑=i iXP解:)5(1.0}163.0{}44.1{),10(~3.0101221012221012查表=>=>∑∑∑===i i i i i i X P X P χX7.设X 1,X 2,…,X n 是来自泊松分布π (λ )的一个样本,X ,S 2分别为样本均值和样本方差,求E (X ), D (X ), E (S 2 ).解:由X ~π (λ )知E (X )= λ ,λ=)(X D∴E (X )=E (X )= λ, D (X )=.)()(,)(2λX D S E nλn X D === [六] 设总体X~b (1,p),X 1,X 2,…,X n 是来自X 的样本。

数理统计_浙大四版_习题解_第6章_抽样分布

数理统计_浙大四版_习题解_第6章_抽样分布
n
注意到,若随机变量系 X 1 , X 2 , , X n 的最小分量大于 x ,则其余分量均大于 x 。再考 虑到独立事件积的概率等于独立事件概率的连乘积,于是得
P min X 1 , X 2 , , X n x 1 P min X 1 , X 2 , , X n x 1 P X 1 x X 2 x X n x 1 1 F x
引用区间事件的概率算法,样本均值落在 50.8 到 53.8 之间的概率计算如下
P 50.8 X 53.8 FX 53.8 FX 50.8 53.8 52 50.8 52 1.05 1.05 53.8 52 50.8 52 1.05 1.05 1.7143 1.1429 1.71 1.14 1 0.9564 0.8729 1 0.8293
结论:样本均值与总体均值之差的绝对值大于 1 的概率为 0.2628。 〖解(2) 〗 注意到,若样本 X 1 , X 2 , , X n 的最大分量小于 x ,则其余分量均小于 x 。再考虑到独 立事件积的概率等于独立事件概率的连乘积,于是得
P max X 1 , X 2 , , X n x 1 P max X 1 , X 2 , , X n x 1 P X 1 x X 2 x X n x 1 F x
结论:样本最小分量小于 10 的概率为 0.5785。
5
2
【习题 6.3】求总体 N 20,3 的容量分别为 10、15 的两独立样本均值差的绝对值大于 0.3 的概率。 〖解〗 设两独立样本分别为 X 1 , X 2 , X n1 和 Y1 , Y2 ,Yn2 ,则有

概率论与数理统计+第六章+样本及抽样分布+练习题答案

概率论与数理统计+第六章+样本及抽样分布+练习题答案

Ⅲ、典型例题分析〖填空题〗例6.1(F 分布) 设随机变量X 服从自由度为),(21f f 的F 分布,则随机变量X Y 1=服从参数为 的 分布 .分析 因为服从自由度为),(21f f 的F 分布的随机变量X ,可以表示为222121f f X χχ=,1212221f f X Y χχ==, 其中2221 χχ和独立,分别服从自由度为21f f 和的2χ分布.由F 分布变量的典型模式,知Y 服从自由度为),(12f f 的F 分布.例6.2(2χ分布) 设4321,,,X X X X 是来自正态总体()22 ,0N 的简单随机样本,记()()243221432X X b X X a X -+-=,则当=a ,=b 时, 统计量X 服从2χ分布,其自由度为 .分析 由条件知4321,,,X X X X 相互独立且同正态分布()22 ,0N .因此()212X X -服从正态分布()20,0N ,而()4343X X -服从正态分布()100,0N ,并且相互独立.由2χ变量典型模式知()()10043202243221X X X X T -+-=服从自由度为2的2χ分布,从而a=1/20 , b= 1/100.例6.3(2χ分布) 设4321,,,X X X X 相互独立同服从标准正态分布,X 是算术平均值,则24X 服从参数为 的 分布.分析 熟知4321X X X X +++服从正态分布)4,0(N ,因此()44243212X X X X X +++=服从自由度为“1”的“2χ”分布.例6.4(t 分布) 假设总体)3,0(~2N X ,821,,,X X X 是来自总体X 的简单随机样本,则统计量282726254321X X X X X X X X Y ++++++=服从参数为 的 分布.分析 由于独立正态分布的随机变量的线性组合仍然服从正态分布,易见.)1,0(~6)(432143214321N X X X X X X X X X X X X U +++=++++++=D作为独立标准正态随机变量的平方和,99992822252X X X X +++=76χ服从2χ分布,自由度为4;随机变量2 χ和U 显然相互独立.随机变量Y 可以表示为()4496228222541χUX X X X X X X X Y =++++++=7632.由t 分布随机变量的典型模式,可见随机变量Y 服从自由度为4的t 分布.例6.5(F 分布) 设(1521,,,X X X )是来自正态总体()9,0N 的简单随机样本,则统计量2152122112102221 21X X X X X X Y ++++++= 的概率分布是参数为 的 分布 .分析 由2χ分布的典型模式,知99215211222102121X X X X ++=++= χχ和服从自由度相应为10和5的2χ分布,并且相互独立.从而,由F 变量的典型模式,知510 21222121521121021χχ=++++=X X X X Y 服从自由度为(10, 5)的F 分布.例6.6(F 分布) 设X 服从自由度为ν的t 分布,则2X Y =服从参数为 的 分布.分析 由自由度为ν的t 分布随机变量X 可以表示为νχν2UX =,其中2 ),1,0(~νχN U 服从自由度为ν的2χ分布,并且2νχ和U 独立.由2χ分布变量的典型模式,可见221U =χ服从自由度为1的2χ分布.因此,由F 分布变量的典型模式,可见随机变量νχχνχνν2212221===U X Y服从自由度为(1,ν)的F 分布.例6.7(F 分布) 设随机变量X 和Y 都服从标准正态分布并且相互独立,则22Y X Z =服从参数为 的 分布,.分析 由于X 和Y 都服从标准正态分布,可见2X 和2Y 都服从自由度为1的2χ分布.此外,由X 和Y 独立,可见2X 和2Y .从而,由服从F 分布的变量的典型模式,知22Y X Z =服从自由度为(1,1)的F 分布.例6.8(2χ分布) 设总体)2,(~)2,(~b N Y a N X ,并且独立;基于分别来自总体X 和Y的容量相应为n m 和的简单随机样本,得样本方差22yx S S 和,则统计量 []22)1()1(21y x S n S m T -+-=服从参数为 的 分布.分析 统计量T 服从自由度为2-+n m 的2χ分布.由(6.14)知2221)1(21 )1(21y x S n T S m T -=-=, 分别服从自由度为m -1和服从自由度为n -1的2χ分布,并且相互独立.从而,由2χ分布随m+n -2的2χ分布.机变量的可加性知,T 服从自由度为例6.9(经验分布函数) 设总体X 在区间[0,2]上服从均匀分布;()x F n 是基于来自X 的容量为n 的简单随机样本的经验分布函数,则对于任意[]2,0∈x ,()x F n E = .分析 总体X 的分布函数为()x F =x/2,若[]2,0∈x ;()x F =0,若[]2,0∉x .对于任意[]2,0∈x ,以)(x n ν表示n 次简单随机抽样事件}{x X ≤的出现的次数,则)(x n ν服从参数为()()x F n ,的二项分布,因此)()(E x nF x n =ν,从而()()2)(x x F nx x F n n ===νEE . 例6.10(经验分布函数) 设(2,1,5,2,1,3,1)是来自总体X 的简单随机样本值,则总体X 的经验分布函数()xF n = .分析 将各观测值按从小到大的顺序排列,得1,1,1, 2, 2, 3, 5,则经验分布函数为()⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<≤<=.若;若;若;若若 5 , 1 53 , 76 3 2 , 75 21 , 73;1 , 08x x x x x x F例6.11 设Y X 和是两个样本均值,基于来自同一正态总体),(2σμN 的两个相互独立且容量相同的简单随机样本,则满足{}05.0≤>-σY X P 的最小样本容量≥n 8 .分析 由于总体服从正态分布),(2σμN ,可见{}.05.022≤⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>-=>-n YX n Y X σσP P 6832.796.1296.122≈⨯≥≥n n,.5.14 (1)3ln4(2)532(3))(12χ(4))5,10(F (5)23〖选择题〗例6.13(常用分布) 设随机变量)1,0(~),1,0(~N Y N X ,则 (A) Y X +服从正态分布. (B) 22Y X +服从2χ分布. (C) 22Y X 服从F 分布. (D) 22Y X 和服从2χ分布. [ D ]分析 因为标准正态分布变量的平方服从自由度为1的2χ分布.当随机变量Y X 和独立时可以保证选项(A),(B),(C)成立,但是题中并未要求随机变量Y X 和独立,选项(A),(B),(C)未必成立.6.14(F 分布) 设n X X X ,,,21 是来自正态总体),0(~2σN X 的简单随机样本,则服从F 分布的统计量是()()]D [ 2)D (2)C ()B ( )A (2925242322212925242322212726252424232221292524232221.. . . X X X X X X Y X X X X X X Y X X X X X X X X Y X X X X X X Y +++++=+++++=++++++=+++++=分析 本题可以直接选出正确的选项.事实上,选项(D )可以表示为636)(3)(2623292524232221χχ=+++++=X X X X X X Y . 因为随机变量,,)(1)(1292524226232221223X X X X X X +++=++=σχσχ分别服从自由度为3和6的2χ分布,并且相互独立.因此,由服从F 分布的随机变量典型模式,知随机变Y 量服从自由度为)6,3(的F 分布.例6.17(正态总体) 设总体X 的概率密度为)(x f ,而),,,(21n X X X 是来自总体X 的简单随机样本,)()1(n X X X 和,相应为n X X X ,,,21 的样本均值、最小观测值和最大观测值,则)(x f 是(A) )1(X 的概率密度. (B) )(n X 的概率密度.(C) 1X 的概率密度. (D) X 的概率密度. [C ] 分析 应选(C ).1X 作为总体X 的一个观测值,与总体X 有相同的概率密度)(x f .5.13 (1)C (2)D (3)D (4)C (5)A〖计算题〗例6.21(经验分布函数) 假设)(x F 是总体X 的分布函数,)(x F n 是基于来自总体X 的容量为n 的简单随机样本的经验分布函数.对于任意给定的)(∞<<-∞x x ,试求)(x F n 的概率分布、数学期望和方差.解 以n ν表示自总体X 的n 次简单随机抽样中,事件{}x X ≤出现的次数,则n ν服从参数为())(,x F n 的二项分布.经验分布函数)(x F n 可以表示为)()()(∞<<-∞=x nx x F n n ν.由此可见,)(x F n 的概率分布、数学期望和方差相应为:{}[][][][][].,;)(1)()()()(),,2,1,0()(1)(C )()(x F x nF x F x nF x F n k x F x F k x n k x F n n kn k k n n n -===-===⎭⎬⎫⎩⎨⎧=-D E P P νk m ki i k mi m 20C C C=∑=-.对于任意n>2,变量n X X X ,,,21 独立同服从参数为),(p m 的二项分布,则用数学归纳法容易证明n X X X +++ 21服从参数为),(p nm 的二项分布.从而,得X 的概率分布{}().mn k p p C k X X n k X k mn k kmn n ,,1,0)1(1 =-==++=⎭⎬⎫⎩⎨⎧=-P P例6.26(样本容量) 假设总体X服从正态分布)4,(μN ,由来自体X 的简单随机样本得样本均值X .试分别求满足下列各关系式的最小样本容量n :(1) {}95.010.0≥≤-μX P ; (2) 10.0≤X D ; (3) 10.0≤-μX E . 解 由于)4,(~μN X ,可见()n N X 4,~μ,从而)1,0(~2N nX U μ-=.(1) 由标准正态分布函数)(u Φ的数值表(附表1)或标准正态分布双侧分位数αu 表(附表2),可见()()()().96.196.195.005.005.0210.02--=≥--=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤-ΦΦΦΦμnn n n X P ; 由此,得96.105.0≥n .于是,为使{}10.010.0≤≤-μX P ,样本容量n 应满足153705.096.12≈⎪⎭⎫ ⎝⎛≥n .(2) 由于10.04≤=n X D ,可见40≥n . (3) 由于)1,0(~N U ,有. 22d e22d e21202222πππμ====⎪⎪⎭⎫⎝⎛-⎰⎰∞-∞∞--uu uu U n X u u E E由于10.0≤-μX E ,可见.,,255205.02210.022210.022≈⎪⎪⎭⎫ ⎝⎛≥≤≤⎪⎪⎭⎫ ⎝⎛-ππμn n n n X E 例6.23 假设总体X 服从正态分布)4,12(N ,而()521,,,X X X 是来自体X 的简单随机样本;X 的样本均值,)1(X 和)5(X 分别是最小观测值和最大观测值.试分别求事件{}13>X ,{}10)1(<X 和{}15)5(>X 的概率.解 设)(x Φ是标准正态分布函数.(1) 由于总体X~)4,12(N ,可见样本均值X ~()4,12N ,因此{}{}{}.1414.08686.01)12.1(112.1118.1255212521213521213=-=-=≤-=>=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧->-=>ΦU U X X X P P P P P (2) 为求事件{}10)1(<X 的概率,先求最小观测值)1(X 的概率分布.对于任意x ,有{}{}{}{}{};5515151521521)1(21211212212111],,,min[1],,,min[⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛---=⎭⎬⎫⎩⎨⎧-≤--=≤-=>-=>-=≤=≤∏∏∏===x x X x Xx Xx X X X x X X X x X i i i ii iΦP P P P P P{}()[]()[].4684.011111212101110555)1(=-=---=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛---=≤ΦΦΦX P (3) 为求事件{}15)5(>X 的概率,先求最大观测值)5(X 的概率分布.对于任意x ,有{}{}{}{}()[].; 2922.05.1121215115212212212],,,max[55)5(511521)5(=-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--=>⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-=⎭⎬⎫⎩⎨⎧-≤-=≤=≤=≤∏∏==ΦΦΦX x x X x Xx X X X x X i i i iP P P P P 55〖证明题〗例6.28 设总体()2,~σμN X ,而),,,,(121+n n X X X X 是来自正态总体X 的简单随机样本;X 和2S 相应为根据),,,(21n X X X 计算的样本均值和样本方差.利用正态总体的样本均值和样本方差的性质,证明统计量11+-=+n nS X X t n 服从自由度为1-=n ν的t 分布.证明 首先对所给统计量作变换,在统计量的表达式中将分子和分母同除以σ,得1)111222121-=-=+-==+-=++n S n n n XX U Un nS X X t n n νσχσνχ,(,,由于总体()2,~σμN X ,可见()21,~σμN X n +,()n N X 2,~σμ,从而()1,0~111,0~121N n nX X U n N X X n n +-=⎪⎪⎭⎫⎝⎛⎥⎦⎤⎢⎣⎡+-++σσ,. 熟知,对于正态总体,X 和2S 独立,随机变量222)1(σχS n -=服从自由度为1-=n ν的2χ分布.现在证明,1+n X ,X 和2S 独立.首先它们显然两两独立;其次对于任意实数w v ,,u ,有{},,,, }{}{}{}{}{212121w v w v wv ≤≤≤=≤≤≤=≤≤≤+++S X u X S X u X S X u X n n n P P P P P P 其中第一个等式成立,因为n X X ,,1 和1+n X 独立;第二个等式成立,因为正态总体的样本均值和样本方差独立.从而1+n X -X 和2S 独立.于是,由服从t 分布的随机变量的典型模式,知统计量νχ2Ut =服从自由度为1-=n ν的t 分布.例6.29(样本均值和方差的独立性) 假设总体()2,1=i X i 服从正态分布()2,i i μN σ;1X 和2X 相互独立;由来自总体()2,1=i X i 的简单随机样本,得样本均值i X 和样本方差2i S .(1) 利用正态总体样本均值和样本方差的性质,证明4个随机变量1X ,21S ,2X ,22S 相互独立.(2) 假设μμμ==21,证明()μαα=+2211X X E ,其中i α是统计量:()2,1 22212=+=i S S S i i α. 证明 (1) 由于(1X ,21S )与(2X ,22S )分别依赖于两个相互独立的样本,可见它们相互独立;此外,由于正态总体的样本均值和样本方差相互独立,可见1X 和21S 以及2X 和22S 分别相互独立.因此,对于任意实数v ,,,u t s ,有{}{}{}{}{}{}{}.;v vv≤≤≤≤=≤≤≤≤=≤≤≤≤222211222211222211 , , , , S u Xt S s X S u X t S s XS u X t S s X P P P P P P P从而1X ,21S ,2X ,22S 相互独立.(2) 由于1X ,21S ,2X ,22S 相互独立,可见1α和1X 以及2α和2X 相互独立.从而,有()()().2121221122112211μααμααμαααααα=+=+=+=+=+E E E E E E E E E E X X X X X X 例6.30(F 分布分位数) 设),(21f f F α是自由度为),(21f f 的F 分布水平α上侧分位数,证明1),(),(12121=-f f F f f F αα.证明 设随机变量X 服从自由度为),(21f f 的F 分布,则随机变量X Y 1=服从自由度为),(12f f 的F 分布(例6.7).因此,有..,ααααα=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≥⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤=⎭⎬⎫⎩⎨⎧≥=----),(1),(1),(11121121121f f F X f f F X f f F X P P P由此可见),(),(121121f f F f f F --=αα,即1),(),(12121=-f f F f f F αα.例5.15 设某商店一小时内到达的顾客数X 服从参数为2的Poisson 分布, 1021,,,X X X 是来自总体X 的简单随机样本.(1) 求),,,(1021X X X 的联合分布律; (2)求X 的分布律.解:),,,(1021X X X 的联合分律为(){}∏======101102211,,,i i in x XP x X x X x X P,!!!!21101101λλλλn n x i i xe x x x ex i ii-=-∑===∏n i x i ,2,1,10,,1,0==(2)先求21X X +的概率分布()()()∑===+===+mk K X m X X P k X P m X X P 0121121|()()()λλλλ-=--=∑∑-⋅=-===e k m ek k m X P k X P mk km km k 021!!() ,2,1,0,!2!202===-=-∑m e m Cem mmk k mkλλλλ即()λ2~21p X X +,从而可用数学归纳法证明()λ10~101P Xi i∑=即∑==1011i i X n X 的分布函数为() ,3,2,1,0,!1010101==⎪⎭⎫ ⎝⎛==⎪⎭⎫ ⎝⎛=-=∑k e k n k X P k X P ki i λλ例5.16 设总体X 和Y 同服从)3,0(2N 分布, 而921,,,X X X 和921,,,Y Y Y 分别是取自总体X 和Y 的两个独立简单随机样本, 试证:统计量)9(~292929921t YY Y X X X Z ++++++=解:)9(~292929921t YY Y X X X Z ++++++=()1,0~33921N X X X ⋅+++ ,()9~3332229222221χY Y Y +++故)9(~292929921t YY Y X X X Z ++++++=例5.17 设1+n 21,,,X X X 是正态总体的简单样本,设∑==n i i X n X 11和=2n S ()∑=-n i X i X n 121(1) 试求])([))(1(2221∑=---ni i X X n μμ的分布. (2) 试求111+n +--n n S X X n的分布. 解:1+n 21,,,X X X 设他们的方差为2σ,期望为μ(1)()()()()()1~)(,1~,1,0~2222211----∑=n X X N X ni i χσμχσμσμ()1,1~)()(1)1(])([))(1(2222212221----=---∑∑==n F X X n X X n ni i ni i σμσμμμ(2) 1+n 21,,,X X X 设他们的方差为2σ,期望为μ因为()()1~,1,0~12221+n -+-n nS N nn X X nχσ()1~111221+n 1+n -+-=+--n t nS n n X X n n S X X n nσ例5.18 设921,,,X X X 和921,,,Y Y Y 分别是取自两个独立的正态总体),(21σμN 和),(22σμN 的随机样本, α和β是两个实数, 试求nmn m S n S m Y X Z nm 222221212)1()1()()(βαμβμα+-+-+--+-=的概率分布. 其中21,m S X 和22,n S Y 分别是两个总体的样本均值和样本方差.解:由正态样本总体均值与样本方差的抽样分布定理知()(),1~,1~,,~,,~222222212221--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛n mS m mS n N Y m N X χσχσσμσμ 得 ()()⎪⎪⎭⎫⎝⎛+-+-n m N Y X 2221,0~σσμβμα()2~222221-++n m mS mS χσ由t 分布的定义知()2~-+n m t Z例5.19 设 4321,,,X X X X 是来自正态总体)4,0(N 的简单样本, 记243221)43(1001)2(201X X X X Y -+-=求EY 和DX .解: ()()()()02,2044442212121=-=⨯+=+=-X X E X D X D X X D()()()()043,10016943212143=-=+=-X X E X D X D X X D()()()(),1,0~10043,1,0~2024321N X X N X X --()()()()()()1~1004310043,1~20220222432432221221χχX X X X X X X X -=⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛- 由2χ分布的可加性,得()2~)43(1001)2(2012243221χX X X X Y -+-=故()()4,2==Y D Y E例5.20 设n X X X ,,,21 为取自总体),(~2σμN X 的一个样本,求样本的二阶原点矩的期望与方差.解:n X X X ,,,21 为独立同分布的随机变量,∑==n i i X n A 1221()()()()()()221212122111σμ+=+==⎪⎭⎫ ⎝⎛=∑∑∑===n i i i n i i n i i X E X D n X E n X n E A E()()241212211n X D n X n D A D n i i n i i σ==⎪⎭⎫ ⎝⎛=∑∑==例5.21 设2621,,,X X X 是总体),0(~2σN X 的一个样本,求概率))16((26112101αt XXP j ji i≤∑∑==解:()(),16~,1,0~102611222101∑∑==j ji iX N Xχσσ()16~16110261122101t X Xj ji i∑∑==σσ所以αα-=≤∑∑==1))16(104(26112101t XXP j ji i例5.22 设921,,,X X X 是总体),0(~2σN X 的一个样本,试确定σ的值,使)31(<<X P 为最大.例5.23 设n X X X ,,,21 为取自总体)2,(~2μN X 的一个样本,X 为样本均值,要使1.0)(2≤-μX E 成立,则样本容量n 至少应取多少?例5.24 设总体X 服从)4,(a N 分布,Y 服从)4,(b N 分布, 而921,,,X X X 和1621,,,Y Y Y 分别是来自X 和Y 的两个独立的随机样本, 记∑=-=9121)(i i X XW ,∑=-=16122)(j iY Y W ,其中∑==9191i i X X ,∑==161161i i X Y(1) 求常数C, 使9.0)||(2=<-C W b Y P ; (2) 求)038.6709.0(12<<W WP参考答案(样本与抽样分布部分)5.15 (1) ,1,0,!!!2),,,(20102110102211101=∑====-=j x x e x x x x X x X x X P i i(2) ,2,1,0,!10)10(10===-k k e k X P k 5.17 (1))1,1(-n F (2))1(-n t ,5.18 )2(-+n m t ,5.19 2; 45.20 n4222;σμσ+,5.21 α-1,5.223ln 6,5.23 40,5.24 (1) 0.1132; (2) 0.9。

概率论与数理统计课后习题答案(高等教育出版社) (浙江大学)(盛骤、谢式千、潘承毅)

概率论与数理统计课后习题答案(高等教育出版社) (浙江大学)(盛骤、谢式千、潘承毅)

第一章 概率论的基本概念[四] 设A ,B ,C 是三事件,且0)()(,41)()()(=====BC P AB P C P B P A P ,81)(=AC P . 求A ,B ,C 至少有一个发生的概率。

解:P (A ,B ,C 至少有一个发生)=P (A +B +C ) = P (A )+ P (B )+ P (C )-P (AB )-P (BC )-P (AC )+ P (ABC )= 8508143=+-.[九] 从5双不同鞋子中任取4只,4只鞋子中至少有2只配成一双的概率是多少? 记A 表“4只全中至少有两支配成一对” 则A 表“4只人不配对” ∵ 从10只中任取4只,取法有⎪⎭⎫⎝⎛410种,每种取法等可能。

要4只都不配对,可在5双中任取4双,再在4双中的每一双里任取一只。

取法有4245⨯⎪⎭⎫ ⎝⎛21132181)(1)(2182)(410445=-=-==⋅=∴A P A P C C A P[十四] )(,21)|(,31)|(,41)(B A P B A P A B P A P ⋃===求。

解:由61)()(314121)()|()()()()|(=⇒⨯=−−−−→−=B P B P B P A B P A P B P AB P B A P 有定义由已知条件 由乘法公式,得121)|()()(==A B P A P AB P 由加法公式311216141)()()()(=-+=-+=⋃AB P B P A P B A P [十七] 已知10只晶体管中有2只次品,在其中取二次,每次随机地取一只,作不放回抽样,求下列事件的概率。

(1)二只都是正品(记为事件A )法一:用组合做 在10只中任取两只来组合,每一个组合看作一个基本结果,每种取法等可能。

62.04528)(21028===CC A P法二:用排列做 在10只中任取两个来排列,每一个排列看作一个基本结果,每个排列等可能。

浙江大学《概率论与数理统计》(第4版)【名校笔记+课后习题+考研真题】第6章 样本及抽样分布【圣才出

浙江大学《概率论与数理统计》(第4版)【名校笔记+课后习题+考研真题】第6章 样本及抽样分布【圣才出
圣才电子书

十万种考研考证电子书、题库视频学习平台
第 6 章 样本及抽样分布
6.1 复习笔记
一、抽样分布 1.样本统计量 (1)常用的统计量(见表 6-1-1)
表 6-1-1 常用统计量
2.经验分布函数 设 x1,x2,…, xn 是总体 F 的一个容量为 n 的样本值,将 x1,x2,…,xn 按从小到大的
1
4 / 5 4 / 5
0.2628
(2)记 M=max{X1,X2,X3,X4,X5},因 Xi X i 的分布函数为Φ((x-12)/2),则
M 的分布函数为
FM(m)=[Φ((m-12)/2)]5
因而
P{max{X1,X2,X3,X4,X5}>15}=P{M>15}=1-P{M≤15}=1-FM(15)=1-[Φ ((15-12)/2)]5=0.2923
①定理一
设 X1,X2,…,Xn 是来自正态总体 N (, 2 ) 的样本,其样本均值和样本方差为
X
1 n
n i 1
Xi,S2
1 n 1
n i 1
Xi X
2
a.
(n 1)S 2 2
~
2 (n 1)
b. X ~ N (, 2 ) n
c. X 与 S2 相互独立。
③定理二
设 X1,X2,…,Xn 是来自正态总体 N (, 2 ) 的样本, X ,S2 分别是该样本的均值和
且两者是相互独立,因此
X1 X 2 X3 ~ N 0,1 , X 4 X5 X 6 ~ N 0,1
3
3
又两者相互独立,按χ2 分布的定义
(X1+X2+X3)2/3+(X4+X5+X6)2/3~χ2(2)
即 1/3Y~χ2(2),因此所求常数 C=1/3。

概率论与数理统计浙大四版习题答案第六章1-成考类

概率论与数理统计浙大四版习题答案第六章1-成考类

第六章 样本及抽样分布1.[一] 在总体N (52,6.32)中随机抽一容量为36的样本,求样本均值X 落在50.8到53.8之间的概率。

解:8293.0)78()712(}63.68.163.65263.62.1{}8.538.50{),363.6,52(~2=-Φ-Φ=<-<-=<<X P X P N X2.[二] 在总体N (12,4)中随机抽一容量为5的样本X 1,X 2,X 3,X 4,X 5. (1)求样本均值与总体平均值之差的绝对值大于1的概率。

(2)求概率P {max (X 1,X 2,X 3,X 4,X 5)>15}. (3)求概率P {min (X 1,X 2,X 3,X 4,X 5)>10}.解:(1)⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧>-=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧>-=>-25541225415412}112{|X P X P X P=2628.0)]25(1[2=Φ- (2)P {max (X 1,X 2,X 3,X 4,X 5)>15}=1-P {max (X 1,X 2,X 3,X 4,X 5)≤15} =.2923.0)]21215([1}15{1551=-Φ-=≤-∏=i iXP (3)P {min (X 1,X 2,X 3,X 4,X 5)<10}=1- P {min (X 1,X 2,X 3,X 4,X 5)≥10} =.5785.0)]1([1)]21210(1[1}10{15551=Φ-=-Φ--=≥-∏=i i X P 4.[四] 设X 1,X 2…,X 10为N (0,0.32)的一个样本,求}.44.1{1012>∑=i iXP解:)5(1.0}163.0{}44.1{),10(~3.0101221012221012查表=>=>∑∑∑===i i i i i i X P X P χX7.设X 1,X 2,…,X n 是来自泊松分布π (λ )的一个样本,X ,S 2分别为样本均值和样本方差,求E (X ), D (X ), E (S 2 ).解:由X ~π (λ )知E (X )= λ ,λ=)(X D∴E (X )=E (X )= λ, D (X )=.)()(,)(2λX D S E nλn X D === [六] 设总体X~b (1,p),X 1,X 2,…,X n 是来自X 的样本。

浙江大学概率论与数理统计第六章

浙江大学概率论与数理统计第六章
第一节
随机样本
一、总体与个体 二、随机样本的定义 三、小结
一、总体与个体
1. 总体
试验的全部可能的观察值称为总体.
2. 个体
总体中的每个可能观察值称为个体.
实例1 在研究2000名学生的 年龄时, 这些学生的年龄的全 体就构成一个总体, 每个学生 的年龄就是个体.
3. 有限总体和无限总体
实例2 某工厂10月份生产的灯泡寿命所组成的 总体中, 个体的总数就是10月份生产的灯泡数, 这是一个有限总体; 而该工厂生产的所有灯泡寿 命所组成的总体是一个无限总体, 它包括以往生 产和今后生产的灯泡寿命. 当有限总体包含的个体的 总数很大时, 可近似地将它看 成是无限总体.
i 1 n
又若 X 具有概率密度 f ,
则 X1 , X 2 ,, X n 的联合概率密度为
f * ( x1 , x2 , , xn ) f ( xi ).
i 1 n
例4 设总体 X 服从参数为 ( 0) 的指数分
布, ( X 1 , X 2 ,, X n ) 是来自总体的样本 , 求样本
4. 总体分布
实例3 在2000名大学一年级学生的年龄中, 年 龄指标值为“15”,“16”,“17”,“18”, “19”,“20” 的依次有9,21,132,1207, 588,43 名, 它们在总体中所占比率依次为
9 , 2000 21 132 , , 2000 2000 1207 588 43 , , , 2000 2000 2000
第二节
抽样分布
一、基本概念 二、常见分布
三、小结
一、基本概念
1. 统计量的定义
设 X 1 , X 2 ,, X n 是来自总体 X 的一个样本, g( X 1 , X 2 ,, X n )是 X 1 , X 2 ,, X n 的函数 , 若 g中 不含未知参数 , 则称 g( X 1 , X 2 ,, X n ) 是一个统 计量.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 统计量与抽样分布注意: 这是第一稿(存在一些错误)1、解:易知的X 期望为μ,方差为2nσ,则()0,1X N μσ-近似地, 所以,()(0.10.10.909X P X P μσμσσ⎛⎫- ⎪-<=<≈Φ=⎪ ⎪⎪⎝⎭。

2、解 (1)由题意得:2222211111()()()()n n i i i i E X D X E X D X E X n n nσμ==⎛⎫=+=+=+ ⎪⎝⎭∑∑()2211111111()()n n i i i i E X X E X X E X X n n nσμ==⋅=⋅==+∑∑(2)1X X -服从正态分布,其中:1()0E X X -=,221122111()()()()n n n D X X D X D X n n nσ----=+= 从而 211~(0,)n X X N nσ-- 由于~(0,1)i X N μσ-,1,2,i n =,且相互独立,因此:()()2221~ni i X n μχσ=-∑~(0,1)X N μ-,所以()()222~1n X μχσ-由于()222(1)~1n S n χσ--,所以()()()222222(1)/~1,1(1)n X n X n SF n n S μμσσ---=--(3)由于()2/221~(/2)n i i X n μχσ=-∑,以及()221/2~(/2)ni i n X n μχσ=+-∑,因此有:()()()()22/2/2222211/211/2//~(,)22n nn ni i i i i i n i i n X X n n X X F μμμμσσ==+==+--=--∑∑∑∑3、解:(1)()1111111n nn iin n n i i n X X XX nX X ++++==+==+=+∑∑故1111n n n X nX X n n ++=+++ (2)()()()()122222111111n n nnn n in ini i nS n S X X XX XX ++++==----=---∑∑()()2211ni n i n i X XX X +=⎡⎤=---⎢⎥⎣⎦∑()()1112nin n nn i XX X XX ++==---∑()21n n n X X +=-()211111n n n n n X X X n +++⎧⎫⎡⎤=+--⎨⎬⎣⎦⎩⎭()2111n n X X n++=-()2111n n X X n++=- 4、解 用X 表示a~(0,1)X a N -。

由题意得:95%(0.5)2(0.5)121P X a P X a ≤-≤=-≤-=Φ- 经查表有:97n =5、解:(1)221111lim n n pi i n i i X X E n n σσ→∞==⎛⎫⎛⎫⎛⎫−−→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑, 因()0,1iX N σ,故()221ni i X n χσ=⎛⎫⎪⎝⎭∑,所以2211111lim 1n n i i n i i X X E E n n n n σσ→∞==⎛⎫⎛⎫⎛⎫⎛⎫==⋅= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑。

(2)因21n i i X E n σ=⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭∑,212n i i X D n σ=⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭∑,()20,1niXnN⎛⎫-⎪∑近似地,由分布函数的的右连续性知,()()limnnF x x→∞=Φ,即()()lim11nnF→∞=Φ。

(3)()()()()222111niiE X X X E n S nσ=⎛⎫--=-=-⎪⎝⎭∑()()()2211niiD X X X D n S DX=⎛⎫--=-+⎪⎝⎭∑()22421n SDnσσσ⎛⎫-=+⎪⎝⎭因()()22211n Snχσ--,故()()22121n SD nσ⎛⎫-=-⎪⎝⎭故()()224121niiD X X X nnσσ=⎛⎫--=-+⎪⎝⎭∑6、解(1)由题意得:()210221~(10)iiXμχσ=-∑,于是:()()210102222111(0.26 2.3)(2.623)0.978610iii iXP X Pμσμσσ==-≤-≤=≤≤=∑∑(2)由于()222(101)~1Snχσ--,即()210221~(9)iiX Xχσ=-∑,于是()()210102222111(0.26 2.3)(2.623)0.971910iii iX XP X X Pσσσ==-≤-≤=≤≤=∑∑7、解:()1120,8Y X X N=+,()23450,12Y X X X N=++,()367890,16Y X X X X N=+++,显然1Y,2Y和3Y相互独立。

()0,1N()0,1N,()30,14YN,取1a=,1b=,1c=,则()23Yχ8、 解 由题意得:91~(0,1)3ii X N =∑,以及()9221~9i i Y χ=∑,从而有91/~(9)3ii X t =∑,即91/~(9)i i X t =∑9、解:(1)1Y 和2Y 相互独立,13112X X X Y --=,31312X X X Y --=, 24222X X X Y --=,42422X X X Y --=, ()2130,2X X N σ-, ()2240,2X X N σ-,()()(((()()2213132224241,1X X X X Z F X X XX --==--,(2)22222213132222222424X X X X Z X X X X σσσσ++==++ 因()2221i X χσ,1,2,3,4i =,则()()()2222222222131313222222222224242422,22X X X X X X Z F X X X X X X σσσσσσσσ+++===+++10、解 (1)由题意得:()0E X =,()2D X =,从而()0E X =,21()10050D X ==(2)由题意可计算:()21001001002221111112*22()(2)(2)2999999100100i i i i i i E S E X XE X X X X ===⎛⎫=-=-+=-+= ⎪ ⎪⎝⎭∑∑∑(3)X 近似服从正态分布1~(0,)50X N ,于是(0.04)(220.7794P X P P >=>≈-Φ= 11、解:()10,1n X N +,10,XN n ⎛⎫ ⎪⎝⎭,()0,1XN ,()()2211n S nχ--,()1XY t n==-12、解(1)20.05(5)11.070χ=,20.06(5)10.596χ=,20.95(5) 1.145χ=,20.94(5) 1.250χ=(2)0.05(8) 2.306t=,0.06(8) 2.189t=,0.95(8)0.065t=,0.94(8)0.078t=,(3)0.05(3,5) 5.409F=,0.05(5,3)9.013F=,0.04(3,5) 6.098F=,0.04(5,3)10.617F=13、解:()1X和()1nX是统计量,()()()()()()()()1111111n n xXF x P X x P X x F x eλ-=≤=-≥=--=-,则()()1X E nλ,()()()()()11111111nx nxnnXx xF x P nX x P X F e en nλλ-⋅-⎛⎫⎛⎫⎛⎫=≤=-≥=--=-=-⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,则()()1nX Eλ。

14、解由题意得:2122~(6,6)SFS,2221~(6,6)SFS,于是:2221212222120.05(max(,))2()S S SP C P CS S S=>=>,从而:0.025(6,6) 5.82C F==15、解:X和2S分别是总体X的期望EX和方差DX的无偏估计。

又12EX x dxθθθ==⎰,()222221412DX EX EX x dxθθθθ=-=-=⎰,故2E Xθ=,()2212E S DXθ==,()225522211114()()525415i ii iE X DX E X D X E X DXθθ==⎛⎫=+=+=+=⎪⎝⎭∑∑。

16、解(1)由于~(0,1)iXNμσ-,1,2,i n=,且相互独立,以及()22125~5Sχσ,因此:()26221~(6)i i X μχσ=-∑,()26221~(5)i i X Xχσ=-∑(2~(0,1)X N μ-,所以()()2226~1X μχσ-同时()()()2221222166/~1,5X X S F Sμμσσ--=(3)由题意得:0(())(()())0X YaE a E X E Y σσ-==-=2211()(()())4X Y a D a D X D Y a σσ⎛⎫-⎛⎫==+= ⎪ ⎪⎝⎭⎝⎭从而求得:2a = (4)由(3)知:2()~(0,1)X YN σ-,又22125~(5)S χσ和222211~(11)S χσ,于是222122511~(11)S S χσ+,从而2()/~(16)X Yt σ-化简后求得:8b = 17、解:()8218ii Xn χ=∑,()16298ii X n χ=∑,且81i i X =∑和169i i X =∑相互独立。

则()8116988,88ii ii XnF n n Xn==∑∑, 则()()88118,816169981110.58i i i i n n i i i i X X n P P F X X n ====⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪≤=≤== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭∑∑∑∑,又81169i i i i X X ==∑∑为连续分布,故8116910i i i i X P X ==⎛⎫⎪ ⎪== ⎪ ⎪⎝⎭∑∑。

相关文档
最新文档