概率论与数理统计浙大版课件

合集下载

概率论与数理统计(浙大版)第一章课件

概率论与数理统计(浙大版)第一章课件
然性, 但在大量试验或观察中, 这种结果的出现具 有一定的统计规律性 , 概率论就是研究随机现象 规律性的一门数学学科.
如何来研究随机现象? 随机现象是通过随机试验来研究的. 问题 什么是随机试验?
8
一、随机试验
在概率论中,把具有以下三个特征的试验称为随机
试验。 (1)可以在相同的条件下重复地进行; (2)每次试验的可能结果不止一个,并且能事先明确试 验的所有可能结果; (3)进行一次试验之前不能确定哪一个结果会出现。
4
实例2 用同一门炮向同 一目标发射同一种炮弹多 发 , 观察弹落点的情况.
结果: 弹落点会各不相同.
实例3 抛掷一枚骰子,观 结果有可能为: 1, 2, 3, 4, 5 或 6.
察出现的点数.
5
实例4 从一批含有正品
和次品的产品中任意抽取 一个产品. 实例5 过马路交叉口时,
其结果可能为:
正品 、次品.
则 C A B AB 格”,B=“直径合格”.
30
推广 称 Ak 为 n 个事件 A1 , A2 , , An 的和事件;
k 1
n
称 Ak 为可列个事件 A1 , A2 , 的和事件.
k 1
n
称 Ak 为 n 个 事 件 A1 , A2 , , An 的 积 事 件 ;
事件 A 发生 事件B 发生
实例 A=“长度不合格” 必然导致 B=“产品不合格” 所以 A B
27
2.事件的相等
若两个事件 A 和B 相互包 含,则称这两个事件相等, 记为 A .B
A B A =B
A B且B A
A B
A 和 B 同时发生或者同时不发生
28
3.事件的和(并)

浙大概率论与数理统计课件概率论

浙大概率论与数理统计课件概率论
人们在长期的实践中总结得到“概率很小的事件在一次试验中实际上几乎是不发生的”(称之为实际推断原理)。 现在概率很小的事件在一次试验中竟然发生了,因此有理由怀疑假设的正确性,从而推断接待站不是每天都接待来访者,即认为其接待时间是有规定的。
*
§5 条件概率
例:有一批产品,其合格率为90%,合格品中有95%为 优质品,从中任取一件, 记A={取到一件合格品}, B={取到一件优质品}。 则 P(A)=90% 而P(B)=85.5% 记:P(B|A)=95% P(A)=0.90 是将整批产品记作1时A的测度 P(B|A)=0.95 是将合格品记作1时B的测度 由P(B|A)的意义,其实可将P(A)记为P(A|S),而这里的S常常省略而已,P(A)也可视为条件概率 分析:
S
A
B
*
事件的运算
S
B
A
S
A
B
S
B
A
A与B的和事件,记为
A与B的积事件,记为
当AB=Φ时,称事件A与B不相容的,或互斥的。
*
“和”、“交”关系式
S
A
B
S
例:设A={ 甲来听课 },B={ 乙来听课 } ,则:
{甲、乙至少有一人来}
{甲、乙都来}
{甲、乙都不来}
{甲、乙至少有一人不来}
B
A
S
若记P(B|A)=x,则应有P(A):P(AB)=1:x 解得:
一、条件概率 定义: 由上面讨论知,P(B|A)应具有概率的所有性质。 例如:
二、乘法公式 当下面的条件概率都有意义时:
*
例:某厂生产的产品能直接出厂的概率为70%,余下 的30%的产品要调试后再定,已知调试后有80% 的产品可以出厂,20%的产品要报废。求该厂产 品的报废率。

概率论与数理统计浙江大学第四版盛骤概率论部分ppt精选课件

概率论与数理统计浙江大学第四版盛骤概率论部分ppt精选课件
• 性质:
1 P(A)1P(A)
P(A)0不能A; P(A)1不能AS;
A AS P(A)P(A)1 P()0
2 若 A B , 则 有 P ( B A ) P ( B ) P ( A ) P ( B ) P ( A )
BA AB P (B )P (A )P (A B )
P ( B ) P ( A ) P ( A B ) P ( B A ) 0P(B)P(A)
例:
向上抛出的物体会掉落到地上 ——确定
明天天气状况
——不确定
买了彩票会中奖 ——不确定
8
•篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
概率统计中研究的对象:随机现象的数量规律
对随机现象的观察、记录、试验统称为随机试验。 它具有以下特性:
3 概 率 的 加 法 公 式 : P ( A B ) P ( A ) P ( B ) P ( A B )
A B A ( B A B ) P ( A B ) P ( A ) P ( B A B ) 又 B A B , 由 2 。 知 P ( B A B ) P ( B ) P ( A B )
✓ A B A B { x |x A 且 x B }
S AB
✓ A 的 逆 事 件 记 为 A , A A A A S , 若 A A B B S , 称 A ,B 互 逆 、 互 斥
S
✓ “和”、“交”关系式
AA
n
n
Ai Ai A1 A2
n
n
An; Ai Ai=A1A2 An;
• 7.1 参数的点估计 • 7.2 估计量的评选标准 • 7.3 区间估计

浙江大学概率论与数理统计课件ch2new

浙江大学概率论与数理统计课件ch2new

X 01
2
3
p
1/8 3/8 3/8 1/8
6
机变量为离散
型的随机变量。概率分布(分布律)为
X x1
p k p1
x2

xi

p2

pi

pi 0, pi 1 i 1
7
概率分布
写 出 所 有 可 能 取 值 写 出 取 每 个 可 能 取 值 相 应 的 概 率
P ( X 3 ) 1 P ( X 2 ) 0 . 8 7 5 3 4 7 9 8 1
35
超几何分布
若随机变量X的概率分布律为
P(Xk)CakC CN nbnk,kl1,l11,...,l2, 其 中 , l1max(0,nb), l2min(a,n).
称X服从超几何分布
例:一袋中有a个白球,b个红球,a+b=N, 从中不放回地取n个球,设每次取到各球的 概率相等,以X表示取到的白球数,则X服从 超几何分布。
离散型的 连续型的
例:掷硬币3次,出现正面的次数记为X.
样本点 X的值
TTT TTH THT HTT HHT HTH THH HHH 0 1 1 12 2 2 3
P{X0}P{TTT}1 / 8
P{X1}P { T T H ,T H T ,H T T }3/ 8
P{X1}P { X0 }P { X 1 }1 / 2
例:某人骑自行车从学校到火车站, 一路上要经过3个独立的交通灯,设各 灯工作独立,且设各灯为红灯的概率 为p,0<p<1,以X表示首次停车时所通 过的交通灯数,求X的概率分布律。
解:设Ai={第i个灯为红灯},则P(Ai)=p, i=1,2,3 且A1,A2,A3相互独立。

《概率论与数理统计》浙大内部课件(全套).PPT

《概率论与数理统计》浙大内部课件(全套).PPT
S
“和”、“交”关系式
n i 1
A
n
A
Ai=A1 A2 An;
Ai
n i 1
Ai A1
A2
An;
Ai
n i 1
i 1
例:设A={ 甲来听课 },B={ 乙来听课 } ,则: A B {甲、乙至少有一人来} A B {甲、乙都来} A B AB {甲、乙都不来} A B AB {甲、乙至少有一人不来}
16
概率统计中研究的对象:随机现象的数量规律
对随机现象的观察、记录、试验统称为随机试验。 它具有以下特性: 1. 可以在相同条件下重复进行 2. 事先知道可能出现的结果 3. 进行试验前并不知道哪个试验结果会发生
例:



抛一枚硬币,观察试验结果; 对某路公交车某停靠站登记下车人数; 对某批电子产品测试其输入电压; 对听课人数进行一次登记;
4



随着18、19世纪科学的发展,人们注意到某些生物、物理 和社会现象与机会游戏相似,从而由机会游戏起源的概率 论被应用到这些领域中,同时也大大推动了概率论本身的 发展。 法国数学家拉普拉斯将古典概率论向近代概率论进行推进, 他首先明确给出了概率的古典定义,并在概率论中引入了 更有力的数学分析工具,将概率论推向一个新的发展阶段。 他还证明了“煤莫弗——拉普拉斯定理”.拉普拉斯于 1812年出版了他的著作《分析的概率理论》,这是一部继 往开来的作品。这时候人们最想知道的就是概率论是否会 有更大的应用价值?是否能有更大的发展成为严谨的学科 概率论在20世纪再度迅速地发展起来,则是由于科学技术 发展的迫切需要而产生的。1906年,俄国数学家马尔科夫 提出了所谓“马尔科夫链”的数学模型。1934年,前苏联 数学家辛钦又提出一种在时间中均匀进行着的平稳过程理有极重要的地位,现 今仍在常用的许多统计方法,就是建立在“所研 究的量具有或近似地具有正态分布”这个假定的 基础上,而经验和理论(概率论中所谓“中心极 限定理”)都表明这个假定的现实性,现实世界 许多现象看来是杂乱无章的,如不同的人有不同 的身高、体重。大批生产的产品,其质量指标各 有差异 。看来毫无规则,但它们在总体上服从正 态分布。这一点,显示在纷乱中有一种秩序存在, 提出正态分布的高斯,一生在多个领域里面有不 少重大的贡献,但在德国10马克的有高斯图像的 钞票上,单只画出了正态曲线,以此可以看出人 们对他这一贡献评价之高。

概率论与数理统计教学PPT浙大第三版

概率论与数理统计教学PPT浙大第三版

数据挖掘
02
通过对大量数据进行挖掘和分析,发现数据间的关联和规律,
为人工智能系统的决策提供依据。
自然语言处理
03
自然语言处理中需要进行文本分类、情感分析等任务,需要概
率论与数理统计的知识进行模型训练和优化。
05
概率论与数理统计的未来发展
概率论与数理统计与其他学科的交叉发展
概率论与数理统计与计算机科学的交叉
概率论与数理统计的应用领域
金融
风险评估、投资组合优化、保 险精算等。
科学研究
物理、生物、化学、医学等领 域的数据分析和实验设计。
工程
可靠性工程、质量控制、系统 优化等。
人工智能和机器学习
数据挖掘、模型训练和评估等 。
概率论与数理统计的发展历程
概率论的起源
可以追溯到17世纪中叶,当时赌 博游戏引发了对概率计算的兴趣。
掌握点估计的概念和方法, 如矩估计和最大似然估计。
区间估计
了解区间估计的概念,掌 握单个和多个参数的区间 估计方法。
估计量的评价准则
了解无偏性、有效性和一 致性等评价估计量的准则。
假设检验
假设检验的基本原理
理解假设检验的基本思想、假设的设定和检验步骤。
单个总体参数的检验
掌握单个总体均值、比例和方差的假设检验方法。
概率论与数理统计教学 ppt浙大第三版
• 概率论与数理统计简介 • 概率论基础 • 数理统计基础 • 概率论与数理统计的应用 • 概率论与数理统计的未来发展
01
概率论与数理统计简介
概率论与数理统计的定义
概率论
研究随机现象的数学学科,通过 概率模型和随机变量描述随机事 件和随机结果。
数理统计

浙江大学《概率论与数理统计》课件ch3

浙江大学《概率论与数理统计》课件ch3

1 0.04 0.0375 0.035 0.1125
P ( X i)
0 1 2
P (Y j )
0.80 0.15 0.05 1
16
( 人 吸 ) 2 P 患 病X 中或 2烟Y P 1 |
P X 1或 2 | Y 1 1 0 .0 3 7 5 0 .0 3 5 P X 0 .0 或 5 Y0 .0 1 13 7 2 | 3 5 0 .6 4 4 0 .6 4 4 4 1 2 5 0 .1 0 .0 3 7 5 0 .1 1 2 5 .0 3 5 0 .6 4 4 4 0 .1 1 2 5
1 2 X 0 解 :1 由 题 意 可 得 : p 0.80 0.15 0.05
P Y 1 | X 0 0 .0 5, P Y 1 | X 1 0 .2 5, P
.2 5, P Y 1 | X 2 0 .7 0
X \Y
0 0.76 0.1125 0.015 0.8875
1
二元随机变量
问题的提出
例1:研究某一地区学龄儿童的发育情况。仅研
究身高H的分布或仅研究体重W的分布是不够的。
需要同时考察每个儿童的身高和体重值,研究
身高和体重之间的关系,这就要引入定义在同
一样本空间的两个随机变量。
例2:研究某种型号炮弹的弹着点分布。每枚
炮弹的弹着点位置需要由横坐标和纵坐标来确
t2
t 1 。 试 写 出 X 1 , X 2的
解 : P N t k
e
t
t
k!
k
, k 0 ,1, 2 ,
P X 1 i , X 2 j P X 1 i P X 2 j | X 1 i

浙大概率论与数理统计课件数理统计

浙大概率论与数理统计课件数理统计

假设检验
假设检验是统计学中常用的方法,用于判断总体参数是否符合某种假设。在本节,我们将学习如何根据样本数 据进行假设检验,并进行统计推断。
方差分析
方差分析用于比较两个或多个总体均值之间的差异。在本节,我们将学习如 何进行方差分析,并解释分析结果,以帮助我们做出合理的决策。
相关分析
相关分析用于研究两个变量之间的关系强度和方向。在本节,我们将学习如何计算相关系数,并解释相关分析 结果的意义。
回归分析
回归分析用于建立变量之间的函数关系。在本节,我们将学习如何进行简单线性回归和多元线性回归,并解释 回归分析的应用和预测能力。
Байду номын сангаас
浙大概率论与数理统计课 件数理统计
欢迎来到浙江大学概率论与数理统计课程!本课程将介绍常见概率分布、参 数估计、假设检验、方差分析、相关分析和回归分析等重要内容。
课程介绍与目的
通过本课程,你将深入了解概率论与数理统计的核心概念与应用。我们将讨 论统计学的基本原理和方法,以帮助你更好地理解和分析数据。无论是研究、 工作还是日常生活,都必定会涉及到概率和统计问题。
常见概率分布
在本节中,我们将学习一些常见的概率分布,如正态分布、二项分布和泊松 分布。掌握这些概率分布的特点和应用,有助于我们理解和预测不同类型的 随机现象。
参数估计
参数估计是统计学中的重要概念。通过样本数据,我们可以估计总体的参数, 如均值和方差。在本节,我们将介绍最大似然估计和置信区间等参数估计方 法。

浙大概率论与数理统计课件数理统计 共76页

浙大概率论与数理统计课件数理统计 共76页

§2 中心极限定理
背景:
有许多随机变量,它们是由大量的相互独立 的随机变量的综合影响所形成的,而其中每 个个别的因素作用都很小,这种随机变量往 往服从或近似服从正态分布,或者说它的极 限分布是正态分布,中心极限定理正是从数 学上论证了这一现象,它在长达两个世纪的 时期内曾是概率论研究的中心课题。
9
定 理 5 . 4 独 立 同 分 布 的 中 心 极 限 定 理
设随机变量X1, X2, , Xn, 相互独立同分布,
E Xi , D Xi 2,i 1, 2,
n
Xi n
则前n个变量的和的标准化变量为:Yn i1 n
思考题:
X

1 n
n
由 于 n A X 1 X 2 X n ,
n p (1 p )
由 定 理 5 .4 ,n l im P an n p A ( 1 n p p ) b a b
1e t2 2d t 2
即 : n A (近 似 )~ N (n p ,n p ( 1 p )).
1 2.3210.01 答案:0.937
13
例4:设某工厂有400台同类机器,各台机器发生故障的概 率都是0.02,各台机器工作是相互独立的,试求机 器出故障的台数不小于2的概率。
解 : 设 机 器 出 故 障 的 台 数 为 X , 则 X b 4 0 0 , 0 . 0 2 , 分 别 用 三 种 方 法 计 算 :
P X 2 1 P X 0 P X 1 1 0 .0 0 0 3 3 5 0 .0 0 2 6 8 4 0 .9 9 6 9
3 . 用 正 态 分 布 近 似 计 算

浙江大学概率论与数理统计ppt课件

浙江大学概率论与数理统计ppt课件

e e dy
(
x1 )2 212
1 2(1 2
)
y2 2
x1 1
2
1
e
(
x1 )2 212
21
1
e dy
1
2
2 2
(1
2
)
y
2
2 1
(
x1
)
2
2 2 1 2
1
( x1 )2
e 212
x
即二维正态分布的 两个边缘分布都是
2 1
一维正态分布,
同理 fY ( y)
记为
P( X xi ) P( X xi,Y ) pij == pi• i 1, 2,
j 1
注意:
X Y y1
… y2
yj
… P X xi
记号pi•表示是由pij关于j求和 后得到的;同样p• j是由pij关于 i求和后得到的.
xp 1 11
xp
2
21

xp i i1 …
p
12

p
1j
FX (x) F(x, )
x
f
(t,
y)dydt
同理:
x
fX (t)dt
FY ( y) F(, y)
y
f
( x, t )dx dt
y
fY (t)dt
17
例1:对一群体的吸烟及健康状况进行调查,引入随机变量
0, 健康
0, 不吸烟
X 和Y如下:X 1, 一般 , Y 10, 一天吸烟不多于15支
由条件概率公式可得:
P( X
xi
|Y
yj)
f (x, y) 0,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P(0<X ≤2)=3/4;
(4)随机变量的类型: 离散型与连续型随机变量。 这两种类型的随机变量因其取值方式的பைடு நூலகம்同各
有特点,学习时注意它们各自的特点及描述方式 的不同。
例1(用随机变量的取值表示随机事件)一报童 卖报,每份报0.50元, 其成本为0.30元。 报馆每天给 报童1000份报纸,并规定卖不出的报纸不得退回。
令X=“正面出现的次数”,则X是一个随着试 验结果不同而取值不同的量,其对应关系如下:
基本结果(e) 正面出现的次数X(e)
e1=(正,正)
2
e2=(正,反)
1
e3=(反,正)
1
e4=(反,反)
0
由上可知,对每一个样本点e,都有一个X的取值X(e)
与之对应。我们把X称为定义在这个试验上的随机变量。
一、离散型随机变量的定义及其分布律
1.离散型随机变量的定义 如果随机变量X所有可能的取值是有限个或无 穷可列个,则称X为离散型随机变量。
2.离散型随机变量的分布律
要掌握一个离散型随机变量的分布律,必须 且只需知道以下两点:
(1) X所有可能的取值: X x1, x2 , , xk , (2)X取每个值时的概率: P( X xk ) pk , k 1,2,3,
figure('color','w')
bar(x,pk,0.1,'r')
plot(x,pk,'r.','MarkerSize',31) ylim([0 0.6]) xlim([0,2.3])
ylim([0 0.6]) text(x(1),pk(1), num2str(pk(1)),'FontSize',21); xlim([0,2.3]) text(x(2),pk(2), num2str(pk(2)),'FontSize',21);
例如:上例中,事件“正面出现两次”可表示为:“X=2” ;
事件“正面至少出现一次”可表示为:“X≥1”; “0<X≤2”表示事件“正面至少出现一次”。
(3)随机变量的特点: 具有随机性:在一次试验之前不知道它取哪一个 值,但事先知道它全部可能的取值。
随机变量的取值具有一定的概率:
例如:上例中P(X=2)=1/4; P(X≥1)=3/4;
figure('color','w')
stem(x,pk,'r.','MarkerSize',31)
plot(x,pk,'r.','MarkerSize',31) hold on plot(x,pk,'r-.') ylim([0 0.6]) hold off
ylim([0 0.6]) xlim([0,2.3]) text(x(1),pk(1), num2str(pk(1)),'FontSize',21); text(x(2),pk(2), num2str(pk(2)),'FontSize',21); text(x(3),pk(3), num2str(pk(3)),'FontSize',21);
令X=“报童每天卖出的报纸份数” 试将“报童赔钱”这一事件用X的取值表 示出来。
解:分析
{报童赔钱}
{卖出报纸的钱不够成本}
当 0.50 X<1000× 0.3时,报童赔钱.
故{报童赔钱} {X 600}
3、随机变量的概率分布 对于一个随机试验,我们关心下列两件事情: (1)试验会发生一些什么事件? (2)每个事件发生的概率是多大?
E2:掷一枚骰子,观察出现的点数. 令X=“正面出现的点数”
E3:某产品的使用寿命X,X>=0.
E4:掷一枚质地均匀的硬币,观察正反面出现的 情况.
令X
1, 0,
正面 反面
一般地,对每一个随机试验,我们都可以引入 一个变量X,使得试验的每一个样本点都有一个X 的取值X(e)与之对应,这样就得到随机变量的概念.
P( X xk ) pk k 1,2,3, (1)
称 (1) 式为离散型随机变量X的分布律. 注:离散型随机变量X的分布律可用公式法和表格 法描述。
1)公式法: P( X xk ) pk k 1,2,3,
2) 表格法:
X x1 x2 L pk p1 p2 L
例1:将一枚硬币连掷两次,求“正面出现的次 数X ”的分布律。
text(x(1),pk(1), num2str(pk(1)),'FontSize',21); text(x(3),pk(3), num2str(pk(3)),'FontSize',21);
text(x(2),pk(2), num2str(pk(2)),'FontSize',21);
text(x(3),pk(3), num2str(pk(3)),'FontSize',21); figure('color','w')
解:在此试验中,所有可能的结果有: e1=(正,正);e2=(正,反); e3=(反,正) ;e4=(反,反)。
于是,正面出现的次数X ”的分布律:
X0 1 2
pk 1/4 2/4 1/4
图形表示
程序
x=[0, 1, 2];
pk=[1/4,2/4,1/4];
figure('color','w')
第二章 随机变量及其分布
关键词: 随机变量 概率分布函数 离散型随机变量 连续型随机变量 随机变量的函数
第一节 随 机 变 量
在上一章中,我们把随机事件看作样本空间 的子集;这一章里我们将引入随机变量的概念, 用随机变量的取值来描述随机事件。
一、随机变量 引例:
E1: 将一枚硬币连掷两次,观察正反面出现的情况。
引入随机变量后, 上述说法相应变为下列表述方式: (1)随机变量X可能取哪些值? (2)随机变量X取某个值的概率是多大?
对一个随机变量X,若给出了以上两条,我们 就说给出了随机变量X的概率分布(也称分布律)。
这一章我们的中心任务是学习离散型随机变量 与连续型随机变量的概率分布.
§2 离散型随机变量及其分布
1、随机变量的定义:
设E是一个随机试验,其样本空间为S={e},在E 上引入一个变量X,如果对S中每一个样本点e,都 有一个X的取值X(e)与之对应,我们就称X为定义 在随机试验E的一个随机变量.
2、随机变量的说明 (1)随机变量的表示:常用字母X,Y,Z,….表示; (2)引入随机变量的目的: 用随机变量的取值范围表示随机事件,利用高等数 学的工具研究随机现象。
相关文档
最新文档