人教版七年级数学上第三章一元一次方程知识点总结

合集下载

人教版七年级数学上册—第3章一元一次方程单元总结

人教版七年级数学上册—第3章一元一次方程单元总结

第三章 一元一次方程知识点一 :一元一次方程的概念1.方程的定义:含有未知数的等式.①未知数;②等式. 2.一元一次方程的定义:只.含有一个..未知数(元),未知数的最高次数是.....1.,等号两边都是整式的方程叫一元一次方程. 一元一次方程的一般形式....:ax+b=0(a 、b 为常数,且a≠0,即末知数的系数一定不能为0). 3.方程的解:使方程等号左、右两边相等的未知数的值. 4.解方程:求方程的解的过程. 例题:1. (1)下列方程中是一元一次方程的是( )A .23x y =B .()7561x x +=-C .()21112x x +-= D .12x x-= (2)下列各式中,是一元一次方程的是( )A. 6x y -=B. 1223x x --= C. 34x - D. 21x x += 2.(1)已知2x1-m +4=0是一元一次方程,则m= ________.(2)已知方程04)2(1||=+--a xa 是一元一次方程,则=a __________(3)若2(21)30a x bx c +--=是关于x 的一元一次方程,则一定有( )A. 12a =-,0b ≠,c 为任意数 B. 12a =-,b 、c 为任意数 C. 12a =-,0,0b c ≠= D. 12a =,0,0bc =≠(4)若2(1)(1)30k x k x -+++=是关于x 的一元一次方程,求k 的值3.下列说法:①等式是方程; ②x=4是方程5x+20=0的解; ③x=-4和x=6都是方程│x-1│=5的解.其中说法 正确的是___ _.(填序号)4.(1)下列方程中,解为4的方程是( )A. 104x x =-B. 5(2)2(27)x x +=+C.62355y y -=+ D. 50.594x x =+ (2)已知4x =-是方程231x a x +=-的解,则a 的值是 5.根据条件列出方程(1)某数的2倍,再减去1等于5 (2)某数的3倍与它的12的和等于106.(1)买4本练习本和5支铅笔一共用了4.9元,已知铅笔每支0.5元,练习本每本多少元?若设练习本每本x 元,则可列方程为(2)一辆汽车从A 地到B 地后,用去了邮箱里的汽油的25%,还剩40升,邮箱里原有汽油多少升?若设邮箱里原有汽油x 升,可列方程为知识点二:等式的基本性质等式的性质1:等式两边都加(或减)同一个数(或式子),结果仍相等.即:如果a =b ,那么a ±c =b ±c等式的性质2:等式两边都乘同一个数,或除以同一个不为0的数,结果仍相等.即:如果a =b ,那么ac =bc ;如果a =b (c ≠0),那么c a =cb 例题:1.(1)若a b =,则下列式子正确的有( )①22a b -=- ②1132a b =③3344a b -=- ④5151a b -=-. A.1个 B.2个 C.3个 D.4个(2)如果ma mb =,那么在下列变形中,不一定成立的是( )A. 11ma mb +=+B. 33ma mb -=-C. 1122ma mb -=- D. a b = (3)下列变形中,正确的是()A.若ac=bc ,那么a=bB.若cbc a =,那么a=b C.a =b ,那么a=b D.若a 2=b 2那么a=b (4)运用等式的性质进行变形,正确的是( )A.如果a b =,那么a c b c +=-;B.如果a bc c=,那么a b = C.如果a b =,那么a bc c= D.如果23a a =,那么3a = 2.(1)给出下面四个方程及其变形:①48020x x +=+=变形为;②x x x +=-=-75342变形为;③253215x x ==变形为;④422x x =-=-变形为;其中变形正确的是( ) A .①③④ B .①②④C .②③④D .①②③(2)下列各式的变形中,错误的是 ( )A. 260x +=变形为26x =-B.312x x +=-变形为322x x +=- C. 2(4)2x --=-变形为41x -= D. 1122x +-=变形为11x -+=3.用适当的数或式子填空,使所得结果仍是等式,并说明是根据等式的哪一条性质以及怎样变形的; (1)如果810x +=,那么10x =- (2)如果437x x =+,那么4x - =7 (3)如果38x -=,那么x = (3)如果123x =-,那么 =-6 4.完成下列解方程: (1)1343x -= 解:两边 ,根据 得13343x --= 于是13x -=两边 ,根据 得x =(2)5234x x -=+解:两边 ,根据 ,得 =3x+6 两边 ,根据 ,得2x=两边 ,根据 ,得x= 5.根据下列变形,填写过程及理由21100.10.2x -= 解:20101012x -=( ) 20510x -= ( )2015x = ( )34x = ( )6.利用等式的性质解下列方程并检验 (1)1262x += (2)1543x --= (3)328x -=-7.当x 为何值时,式子453x -与31x +的和等于9?8.列方程并求解:一个两位数,个位上的数字比十位上的数字大2,个位与十位上的数字之和是10,求这个两位数(提示,设个位上的数字为x )9.如果方程21x a x +=-的解是x=-4,求32a -的值10.等式2(2)10a x ax -++=是关于x 的一元一次方程,求这个方程的解知识点三:一元一次方程的解法(一般步骤、注意事项) 1.解方程的一般步骤:把含未知数的项归在方程的一边,把常数项归到方程的另一边,将方程化为最简的形式ax b =(0)a ≠,然后根据方程两边都除以a ,化为bx a=的形式。

新人教版七年级数学上册第三章《一元一次方程》知识点和题型总结

新人教版七年级数学上册第三章《一元一次方程》知识点和题型总结

新人教版七年级数学上册第三章《一元一次方程》应知应会知识点和题型总结一、方程定义【一元一次方程的认识】1.下列各式:①3x+2y=1②m-3=6③x/2+2/3=0.5④x 2+1=2⑤z/3-6=5z ⑥(3x-3)/3=4⑦5/x+2=1⑧x+5中,一元一次方程的个数是( )A.1 B.2 C.3 D.42.下列各式中是一元一次方程的是( )。

A.1232x y -=-B.2341x x x -=-C.1123y y -=+D.1226x x -=+ 3.下列方程①313262-=+x x ②4532x x =+③2(x+1)+3=x1 ④3(2x+5)-2(x-1)=4x+6.一元一次方程共有( )个. A.1 B.2 C.3 D.4【利用定义求参数】4.如果(m-1)x |m| +5=0是一元一次方程,那么m = .【列方程】5.根据“x 的3倍与5的和比x 的13多2”可列方程( )。

A 、3525x x +=- B 、3523x x +=+ C 、3(523x x +=-) D 、3(523x x +=+) 二、方程的解【方程解的应用】1.若x=1是方程k (x-2)=2的解,则k= .2.已知3是关于x 的方程mx+1=0的根,那么m=3.一个一元一次方程的解为2,请写出这个一元一次方程 .4.若关于x 的一元一次方程23132x k x k ---=的解是1x =-,则k 的值是()A .27B .1C .1311- D .0 5.已知方程3x 2x -9x+m=0的一个根是1,则m 的值是 。

6.方程2152x kx x -+=-的解为-1时,k 的值为( )。

A.10 B.-4 C.-6 D.-87.y=1是方程12()23m y y --=的解,求关于x 的方程(4)2(3)m x mx +=+的解。

8.已知x=-1是关于x 的方程328490x x kx -++=的一个解,求23159k k --5的值。

人教版七年级数学上第三章一元一次方程知识点总结

人教版七年级数学上第三章一元一次方程知识点总结

一元一次方程1.等式:用“=”号连接而成的式子叫等式.2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式: ax+b=0(x 是未知数,a 、b 是已知数,且a ≠0).8.一元一次方程解法的一般步骤:化简方程----------分数基本性质去 分母----------同乘(不漏乘)最简公分母去 括号----------注意符号变化移 项----------变号合并同类项--------合并后注意符号系数化为1---------未知数细数是几就除以几10.列一元一次方程解应用题:(1)读题分析法:………… 多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法: ………… 多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.11.解实际应用题:知识点1:市场经济、打折销售问题(1)商品利润=商品售价-商品成本价 (2)商品利润率=商品利润商品成本价×100% (3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量知能点2: 方案选择问题知能点3储蓄、储蓄利息问题(1)顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。

人教版初一七年级数学第三单元知识点及练习题

人教版初一七年级数学第三单元知识点及练习题

第三章 一元一次方程一.知识框架二.知识概念1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.2.一元一次方程的标准形式: ax+b=0(x 是未知数,a 、b 是已知数,且a ≠0).3.一元一次方程解法的一般步骤: 整理方程 …… 去分母 …… 去括号 …… 移项 …… 合并同类项 …… 系数化为1 …… (检验方程的解). 4.列一元一次方程解应用题:(1)读题分析法:………… 多用于“和,差,倍,分问题” 仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程. (2)画图分析法: ………… 多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础. 11.列方程解应用题的常用公式:(1)行程问题: 距离=速度·时间 时间距离速度=速度距离时间=; (2)工程问题: 工作量=工效·工时 工时工作量工效=工效工作量工时=; (3)比率问题: 部分=全体·比率 全体部分比率= 比率部分全体=;(4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题: 售价=定价·折·101,利润=售价-成本, %100⨯-=成本成本售价利润率;(6)周长、面积、体积问题:C 圆=2πR ,S 圆=πR 2,C 长方形=2(a+b),S 长方形=ab , C 正方形=4a ,S 正方形=a 2,S 环形=π(R 2-r 2),V 长方体=abc ,V 正方体=a 3,V 圆柱=πR 2h ,V 圆锥=31πR 2h.本章内容是代数学的核心,也是所有代数方程的基础。

最新人教版七年级数学上册第三章《一元一次方程》本章概要

最新人教版七年级数学上册第三章《一元一次方程》本章概要

第二章一元一次方程
本章概要
本章的主要内容是等式的概念和等式的两条基本性质.阐明了方程、方程的解、解方程等概念.具体地研究了一元一次方程的解法和应用.本章常用的数学思想是转化思想、数形结合的思想.
方程是代数中的主要内容之一.解一元一次方程是解其他方程和方程组的基础.通过降次和消元等方法,最后归结为解一元一次方程.方程是历年中考的重点考查内容.
在一元一次方程的学习中,应该正确理解移项法则,并注意灵活运用一元一次方程的解法步骤.
学习策略
根据具体问题中的数量关系,经历列方程、解方程和运用方程解决问题的全过程,体会到方程是刻画现实世界的有效数学模型.
了解等式、方程、一元一次方程的概念,明确它们之间的区别与联系;能正确地运用等式的性质和移项法则解一元一次方程,会对方程的解进行检验.
会分析简单应用题中的已知数、未知数,并根据表示应用题全部含义的等量关系列方程、求方程的解.
通过对列一元一次方程解应用题的学习,能够熟练掌握解决实际问题的一般步骤,了解将“未知”转化为“已知”的思想方法,从而提高分析问题、解决问题的能力.。

人教版七年级上册第三章一元一次方程全章小结复习说课稿

人教版七年级上册第三章一元一次方程全章小结复习说课稿
3.引发思考:通过提问和引导学生思考,激发他们对一元一次方程的兴趣,为新课的学习做好铺垫。
(二)新知讲授
在新知讲授阶段,我将逐步呈现知识点,引导学生深入理解:
1.理论讲解:以简明扼要的语言讲解一元一次方程的定义、一般形式,让学生明确学习目标。
2.案例分析:通过具体实例,演示一元一次方程的解法,让学生在实际操作中理解并掌握解法步骤。
2.生生互动:通过小组合作学习,学生之间将进行讨论、交流和分工合作,共同解决实际问题。在小组活动中,我会设置明确的任务和评价标准,确保每个学生都能参与到互动中来。
3.课堂讨论:组织全班范围的讨论,让学生分享各自小组的解题过程和答案,鼓励他们相互提问、质疑和补充,以提高课堂氛围和学生思维的深度。
四、教学过程设计
2.情境教学法:将一元一次方程的知识点融入到生活情境中,让学生在具体情境中感受数学的应用价值。这种方法的理论依据是情境学习理论,认为知识需要在真实情境中通过活动和实践来获得。
3.分组合作学习法:将学生分成小组,鼓励他们在小组内进行讨论、交流和合作解决问题。这种教学方法基于社会建构主义理论,强调学习是一个社会互动的过程。
3.教师评价:针对学生的表现,给予积极的评价和鼓励,同时指出需要改进的地方,并提供具体的建议。
(五)作业布置
课后作业布置如下:
1.基础作业:布置一些基础的一元一次方程题目,目的是巩固课堂所学知识,提高解题技能。
2.提高作业:设计一些综合性的题目,让学生运用所学知识解决实际问题,培养他们的应用能力和创新思维。
4.游戏化学习:设计一些与一元一次方程相关的数学游戏,让学生在轻松愉快的氛围中学习,提高他们的学习积极性。
三、教学方法与手段
(一)教学策略
在本节课中,我将采用问题驱动法、情境教学法和分组合作学习法为主要教学方法。

人教版七年级上册数学第三章一元一次方程知识点总结归纳

人教版七年级上册数学第三章一元一次方程知识点总结归纳

人教版七年级上册数学第三章一元一次方程知识点总结归纳一元一次方程知识点总结一元一次方程1.方程的概念方程是含有未知数的等式,同时也是一个等式。

等式是由等号连接的两个式子。

2.一元一次方程的概念只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。

3.方程的解的概念能使方程中等号左右两边相等的未知数的值叫方程的解,也叫根。

4.主要性质等式的性质1:等式两边(或减)同一个数(或式子),结果仍相等。

等式的性质2:等式两边乘同一个数,或除以同一个不为零的数,结果仍相等。

5.解一元一次方程的步骤1) 去分母,去括号去分母:在方程的两边都乘以各自分母的最小公倍数。

去分母时不要漏乘不含分母的项。

当分母中含有小数时,先将小数化成整数。

去括号:先去大括号,在去中括号,最后小括号。

括号前负号时,去掉括号时里面各项应变号。

2) 移项方程中的任何一项,都可以在改变符号后,从方程的一边移到另一边。

这个法则叫做移项。

移项的根据是等式的性质。

注意:移项时一定要变号,不变号不能移项。

通过移项,含未知数的项与常数项分别列与方程的左右两边。

3) 合并同类项把两个能合并的式子的系数相加,字母和字母的指数不变。

4) 系数化为1指方程中未知数的系数化为1,他的理论依据是等式的性质。

实际问题与一元一次方程1.列方程解应用题的方法综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程,这是从部分到整体的一种思维过程,其思考方向是从已知到未知。

本文介绍了解一元一次方程的分析法,包括列方程解应用题的步骤。

首先要分析题意,确定已知条件和所求问题,然后设定未知数,并利用等量关系列出方程。

接着求解方程,将结果代回原题检验,得出答案。

文章还归纳了实际问题的分类,包括销售中盈亏问题、顺逆流问题、数字问题的应用题、工程效率问题、球赛积分问题和行程问题。

其中,销售中盈亏问题需要计算成本价、标价、打折和售价,利润率可以用利润除以进价乘以100%计算。

七年级数学上册一元一次方程重点

七年级数学上册一元一次方程重点

七年级数学上册一元一次方程重点
一元一次方程是初中数学的重要内容,也是解方程的基础。

下面是七年级数学上册中关于一元一次方程的重点内容:
1. 方程的概念:方程是用等号连接的含有未知数的代数式。

一元一次方程指只含有一个未知数,并且该未知数的最高次数为1的方程。

2. 解一元一次方程的基本方法:通过逆运算的方式将方程变形,使得未知数单独出现在等号的一边,从而求得未知数的值。

3. 消元法:当方程中存在多个未知数时,可以利用加减消元和倍加倍减消元的方法,将方程化简为只含有一个未知数的一元一次方程,然后进行解方程。

4. 方程的解的判定:解方程时需要注意方程是否有解,以及解的唯一性。

如果一个方程没有解,我们称其为无解方程;如果一个方程有无限多个解,我们称其为恒等方程;如果一个方程只有一个解,我们称其为一般方程。

5. 方程的应用:一元一次方程在实际生活中有很多应用,例如物品的定价、速度与时间之间的关系等。

通过解方程可以求解这些实际问
题。

人教版七年级数学上册第三章、一元一次方程小结复习教案

人教版七年级数学上册第三章、一元一次方程小结复习教案
第三章、一元一次方程小结复习教案
章节 第三章 一元一次方程小结
课时
班别
复习形式
时间
教具
A: 基础 知识
1. 一元一次方程 2. 等式的性质 3. 移项 4. 移项的依据 5. 解一元一次方程的步骤 6. 各个步骤需要注意什么? 7. 那些步骤用到等式的性质? 8. 解一元一次方程的基本步骤有哪些? 9. 解一元一次方程的关键是什么? 10. 应用题有哪几个类型?基本的关系式是什么?

1 复习 投影仪
识 B:
重点

难点 重点:理解掌握这一部分的基础知识

C: 拓展 提升
难点:能利用这一部分的基础知识解决一些实际问题
1.若|x-y|+(y+1)2=0,则 x2+y2= ______;
具体内容 2.已知 x=-2 是方程 mx-6=15+m 的解,则 m= ______;
备注
3.已知 (t 1)x 2t 1 5 是关于 x 的一元一次方程,则 t=________;(易错
质 1.你还有那些不懂得问题 疑
2.质疑问难,互帮互学 问 难


结构构图 表来自总)结提
升 ( 结
1.一元一次方程 2.等式的性质 3.移项 4.移项的依据 5.解一元一次方程的步骤 6.各个步骤需要注意什么? 7.那些步骤用到等式的性质? 8.解一元一次方程的基本步骤有哪些? 9.解一元一次方程的关键是什么? 10.应用题有哪几个类型?基本的关系式是什么?
备注
9.甲、乙两个水池共蓄水 50t,甲池用去 5t,乙池又注入 8t 后,甲池的水比乙池 的水少 3t,问原来甲、乙两个水池各有多少吨水?
10.一家商店将某种服装按进价提高 40%后标价,又以 8 折优惠卖出,结果每 件仍获利 15 元,这种服装

七年级数学(上册)各章知识点第三章

七年级数学(上册)各章知识点第三章

七年级数学(上册)各章知识点三第三章一元一次方程1:等式的概念:用等号表示相等关系的式子叫做等式.2:等式的基本性质(1)等式两边加上(或减去)同一个数或同一个代数式,所得的结果仍是等式.即若a=b,则 a±c=b±c.(2) 等式两边乘以(或除以)同一个不为0的数或代数式, 所得的结果仍是等式.如果a=b,那么ac=bc;如果a=b(c≠0),那么a/c=b/c此外等式还有其它性质: 若a=b,则b=a.若a=b,b=c,则a=c.说明:①等式两边不可能同时除以为零的数或式子②等式的性质是解方程的重要依据.幻灯片223:方程的概念:含有未知数的等式叫方程,方程中一定含有未知数,而且必须是等式,二者缺一不可.说明:代数式不含等号,方程是用等号把代数式连接而成的式子,且其中一定要含有未知数. 4:一元一次方程的概念:只含有一个未知数,并且未知数的次数是1的方程叫一元一次方程.任何形式的一元一次方程,经变形后,总能变成形为ax=b(a≠0,a、b为已知数)的形式,这种形式的方程叫一元一次方程的一般式.注意:a≠0这个重要条件,它也是判断方程是否是一元一次方程的重要依据.幻灯片23一般地,如果不设定a≠0,则关于x的方程ax=b的解有如下讨论:当a≠0时,方程有唯一解 x=b/a;当a=0,b=0时,方程的解为一切数;当a=0,b≠0时,方程无解。

关于绝对值方程|x|=a的解:当a≥0时,x=±a;当a<0时,无解。

幻灯片245:方程的解与解方程:使方程两边相等的未知数的值叫做方程的解,求方程解的过程叫解方程.6:关于移项:⑴移项实质是等式的基本性质1的运用.⑵移项时,一定记住要改变所移项的符号.幻灯片257:解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、将未知数的系数化为1.(具体解题时,有些步骤可能用不上,有些步骤可以颠倒顺序,有些步骤可以合写,以简化运算,要根据方程的特点灵活运用.)说明:去分母时,易漏乘方程左、右两边代数式中的某些项.幻灯片268:方程的检验检验某数是否为原方程的解,应将该数分别代入原方程左边和右边,看两边的值是否相等.注意:应代入原方程的左、右两边分别计算,不能代入变形后的方程的左边和右边.。

人教版七年级数学上册 3.4实际问题与一元一次方程 知识点归纳

人教版七年级数学上册 3.4实际问题与一元一次方程 知识点归纳

人教版七年级数学上册实际问题与一元一次方程用方程解决实际问题的步骤:①审题,圈起关键字词。

②找出等量关系。

③设未知数,列方程。

④解方程。

⑤时间充裕的话,可以把结果代入原方程检验。

⑥作答。

和差倍分问题:先设其中一个未知数为x,再用含有x的式子表示另一个未知数,最后根据题目的等量关系列出方程。

比赛积分问题、鸡兔同笼问题:设其中一个未知数为x,则另一个未知数=总数-x,最后根据题目的等量关系列出方程。

配套问题:①设其中一种工作的人数为x,则另一种工作的人数为:(总数-x)。

②用含有x的式子表示出两种工作的总量。

③根据比找出等量关系,即可列出方程。

调配问题:先用含有未知数的式子,表示出调配前的人数和调配后的人数,再根据题目所给的等量关系列方程。

数字问题:个位上的数是几就表示几个1,十位上的数是几就表示几个10,百位上的数是几就表示几个100。

例子:个位上的数是a,十位上的数是b,百位上的数是c,则这个数表示为a+10b+100c 。

日历问题:在日历中,左右两个日期相差1天,上下两个日期相差7天。

盈亏问题:①每人所得数×人数+盈=物数②每人所得数×人数-亏=物数③两次的物数相等。

年龄问题:①每过一年,人人都长大1岁。

②无论过多少年,两人的年龄差不变。

浓度问题:①溶质+溶剂=溶液②浓度=溶质溶液①利息=本金×利率×存期②利息×税率=利息税③本息和=本金+利息行程问题:速度×时间=路程行程问题中还分相遇问题、追及问题、相离问题、环形跑道问题,我们只要抓住最原始的公式“速度×时间=路程”,再配合画线段图,即可找出等量关系。

流水行船问题:①静水速度+水流速度=顺水速度②静水速度-水流速度=逆水速度如果把船改为飞机,则也有类似的等量关系:①静风速度+风速=顺风速度②静风速度-风速=逆风速度火车过桥问题:①桥长+车长=路程②车速×通过时间=桥长+车长流水行船问题、火车过桥问题都属于行程问题,除了要明确基本的公式以外,还要会画线段图,画出线段图之后,等量关系往往就会清晰了。

七年级数学上册第三章一元一次方程3.1.1一元一次方程(图文详解)

七年级数学上册第三章一元一次方程3.1.1一元一次方程(图文详解)

为x元,则依题意可列出下列哪一个一元一次方程式( )
(A)15(2x20)=900
(B)15x202=900
(C)15(x202)=900 (D)15x220=900
【解析】选C.每份礼物的价格是(x+202)元,15份礼
物的价格是15(x202)元.
人教版七年级数学上册第三章一元一次方程
人教版七年级数学上册第三章一元一次方程
七年级上册数学
第三章一元一次方程
人教版七年级数学上册第三章一元一次方程
第三章 一元一次方程
3.1 从算式到方程
3.1.1 一元一次方程
人教版七年级数学上册第三章一元一次方程
1.了解什么是方程、一元一次方程、方程的解. 2.体会字母表示数的好处、画示意图有利于分析问题、找 相等关系是列方程的重要一步、从算式到方程(从算式到 代数)是数学的一大进步. 3.会将实际问题抽象为数学问题,通过列方程解决问题.
4.已知数x-5与2x-4的值互为相反数,列出关于x的方程. 解:由题意得:(x-5)+(2x-4)=0.
人教版七年级数学上册第三章一元一次方程
1.方程、方程的解、一元一次方程的概念. 2.根据实际问题中的等量关系,用一元一次方程表示问 题中的数量关系. 注:分析实际问题中的数量关系,利用其中的相等关系 列出方程,是用数学解决实际问题的一种方法.
人教版七年级数学上册第三章一元一次方程
一般地,要检验某个值是不是方程的解,可以用这个 值代替未知数代入方程,看方程左右两边的值是否相等.
任取x的值 代入 不成立
1 700+150x=2 450 成立
得方程的解
求方程的解的过程,叫做解方程.
人教版七年级数学上册第三章一元一次方程

人教版七年级数学上册各章知识点总结

人教版七年级数学上册各章知识点总结

0

注意:①|a|≥0即对任意有理数a,它的绝对值是非负数
②绝对值最小数为0 -
6
(5)、有理数数的比较: ①在数轴上表示的两个数右边的总 比左边的大。
②两个正数比较大小,绝对值大的数大; 两个负数绝对值大的反而小。
③正数都大于零,负数都小于零,正数大于负数。
④作差法:a-b>0↔a>b
⑤作商法:a/b>1,b>0↔a>b
3分配律:一个数于两个数的和相乘,等于把这个数分别于这两个 数相乘,再把积相加。a(b+c)= ab+ac 。
-
10
倒数:①乘积为1的两个数互为倒数。 ②零没有倒数 ③互为倒数的两个数的符号相同
(2)有理数除法法则: 1、除以一个不等于0的数,等于乘这个数的
.
2、两数相除,同号得
把绝对值相

,异号得
说明:去分母时,易漏乘方程左、 右两边代数式中的某些项.
-
25
8:方程的检验 检验某数是否为原方程的解,应将该 数分别代入原方程左边和右边,看两 边的值是否相等.
注意:应代入原方程的左、右两边分别计 算,不能代入变形后的方程的左边和右边.
-
26
第四章 图形认识初步
-
27
1、几何图形:我们把实物中抽象出来的各种 图形叫做几何图形。几何图形分为平面图形 和立体图形。
(4)单项式与多项式统称整式。
(分母含有字母的代数式不是整式)
-
18
2. 同类项:所含字母相同,并且相同字母的指数也相同的项 叫做同类项。几个常数项也是同类项。
3.把多项式中的同类项合并成一项,叫做合并同类项
合并同类项法则:合并同类项后,所得项的系数是合并前各同类 项的系数的和,且字母部分不变。

【精选】人教版七年级上册数学第三章《一元一次方程》知识点+典型例题

【精选】人教版七年级上册数学第三章《一元一次方程》知识点+典型例题

【精选】人教版七年级上册数学第三章《一元一次方程》知识点+典型例题知识点、概念总结1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。

3.条件:一元一次方程必须同时满足4个条件:(1)它是等式;(2)分母中不含有未知数;(3)未知数最高次项为1;(4)含未知数的项的系数不为0.4.等式的性质:等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。

等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。

等式的性质三:等式两边同时乘方(或开方),等式仍然成立。

解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立。

5.合并同类项(1)依据:乘法分配律(2)把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项(3)合并时次数不变,只是系数相加减。

6.移项(1)含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。

(2)依据:等式的性质(3)把方程一边某项移到另一边时,一定要变号。

7.一元一次方程解法的一般步骤:使方程左右两边相等的未知数的值叫做方程的解。

一般解法:(1)去分母:在方程两边都乘以各分母的最小公倍数;(2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号(4)合并同类项:把方程化成ax=b(a≠0)的形式;(5)系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.8.同解方程如果两个方程的解相同,那么这两个方程叫做同解方程。

9.方程的同解原理:(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。

(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。

(人教版)天津七年级数学上册第三单元《一元一次方程》知识点总结(培优)

(人教版)天津七年级数学上册第三单元《一元一次方程》知识点总结(培优)

一、选择题1.如果x =2是方程12x +a =﹣1的解,那么a 的值是( ) A .0 B .2 C .﹣2 D .﹣6 2.有两支同样长的蜡烛,一支能点燃4小时,另一支能点燃3小时,一次遇到停电,同时点燃这两支蜡烛,来电后同时吹灭,发现其中一支的长度是另一支的一半,则停电时间为( )A .2小时B .3小时C .125小时D .52小时 3.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:“你抱怨干嘛?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所驮货物的袋数是( )A .5袋B .6袋C .7袋D .8袋 4.下列各题正确的是( )A .由743x x =-移项得743x x -=B .由213132x x --=+去分母得()()221133x x -=+- C .由()()221331x x ---=去括号得42391x x ---=D .由()217x x +=+去括号、移项、合并同类项得5x =5.一项工程,甲单独做需10天完成,乙单独做需6天完成.现由甲先做2天,乙再加入合做,完成这项工程共需多少天?若设完成这项工程共需x 天,依题意可得方程( )A .106x x +=1 B .22106x x +-+=1 C .2106x x -+=1 D .222106x x x --++=1 6.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A .120元B .100元C .80元D .60元 7.已知a=2b ,则下列选项错误的是( )A .a+c=c+2bB .a ﹣m=2b ﹣mC .2a b =D .2a b = 8.已知方程(1)30m m x-+=是关于x 的一元一次方程,则m 的值是( ) A .±1 B .1 C .-1 D .0或1 9.某项工作甲单独做4天完成,乙单独做6天完成,若甲先做1天,然后甲、乙合作完成此项工作,若甲一共做了x 天,则所列方程为( )A .1146x x ++=B .1146x x ++=C .1146x x -+=D .111446x x +++=10.如图,将长和宽分别是 a ,b 的长方形纸片的四个角都剪去一个边长为 x 的正方形.用含 a ,b ,x 的代数式表示纸片剩余部分的面积为( ) A .ab+2x 2 B .ab ﹣2x 2 C .ab+4x 2 D .ab ﹣4x 2 11.整式mx n +的值随x 的取值不同而不同,下表是当x 取不同值时对应的整式的值.则关于x 的方程8mx n --=的解为( )x -2-1 0 1 2 mx n +-12 -8 -4 0 4A .1x =-B .0x =C .1x =D .2x =12.下列方程的变形,符合等式的性质的是( )A .由2x ﹣3=7,得2x=7﹣3B .由3x ﹣2=x+1,得3x ﹣x=1﹣2C .由﹣2x=5,得x=﹣3D .由﹣13x=1,得x=﹣3 13.一张试卷共有25道题,若做对1题得4分,做错1题扣1分,小明做了全部试题只得了70分,那么小明做对了( )道.A .17B .18C .19D .2014.已知代数式2x-6与3+4x 的值互为相反数,那么x 的值等于( ) A .2 B .12 C .-2 D .1-215.方程−2x +2018=2020的解是( )A .x =−2018B .x =1C .x =−1D .x =2018二、填空题16.一个“数值转换机”按如图的程序计算,例如:输入的数为36,则经过一次运算即可输出结果106.若输出的结果127是经过两次运算才输出的,则输入的数是_____.17.已知方程2224m x m +-+=是关于x 的一元一次方程,则方程的解是________. 18.当3x =时,式子22x +与5x k +的值相等,则k 的值是______.19.一条船顺流航行,每小时行驶20千米;逆流航行,每小时行驶16千米若水的流速与船在静水中的速度都是不变的,则轮船在静水中的速度为______________千米/小时. 20.若2a +1与212a +互为相反数,则a =_____. 21.一列火车匀速行驶,经过一条长600米的隧道需要45秒的时间,隧道的顶部一盏固定灯,在火车上垂直照射的时间为15秒,则火车的长为_____.22.日历中同一竖列相邻三个数的和是63,则这三个数分别是______________.23.解方程:2(1)3x --=-.解:去括号,得__________;移项,得____________;合并同类项,得____________. 24.完成下面的填空:一家商店将某种服装按成本价提高40%后标价,又以八折(即按标价的80%)优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?我们知道,每件商品的利润是商品售价与商品成本价的差,如果设每件服装的成本价为x 元,那么每件服装的标价为_________元;每件服装的实际售价为___________元; 每件服装的利润为____________元.由此,列出方程_________________.解这个方程,得x =______________.因此每件服装的成本价是___________元.25.如果ma mb =,那么下列等式一定成立的是_______.①a b =;②66ma mb -=-;③1122ma mb -=-;④88ma mb +=+;⑤3131ma mb -=-;⑥33ma mb -=+.26.若关于x 的方程3x m -2-m =0是一元一次方程,则m =________,方程的解为________.三、解答题27.某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?28.如图,一块长5厘米、宽2厘米的长方形纸板,一块长4厘米、宽1厘米的长方形纸板,一块小正方形以及另两块长方形的纸板,恰好拼成一个大正方形,求大正方形的面积.29.列方程解应用题:为参加学校运动会,七年级一班和七年级二班准备购买运动服. 下面是某服装厂给出的运动服价格表:购买服装数(套)1~3536~6061及61以上每套服装价(元)605040已知两班共有学生67人(每班学生人数都不超过60人),如果两班单独购买服装,每人只买一套,那么一共应付3650元. 问七年级一班和七年级二班各有学生多少人?30.已知关于x的方程:2(x﹣1)+1=x与3(x+m)=m﹣1有相同的解,求以y为未知数的方程3332my m x--=的解.。

七年级数学上册第三章一元一次方程常考必考知识点总结

七年级数学上册第三章一元一次方程常考必考知识点总结

七年级数学上册第三章一元一次方程常考必考知识点总结单选题1、若关于x的方程2k−3x=4与x−2=0的解相同,则k的值为()A.−10B.10C.−5D.5答案:D解析:根据同解方程的定义,先求出x-2=0的解,再将它的解代入方程2k-3x=4,求得k的值.解:∵方程2k-3x=4与x-2=0的解相同,∴x=2,把x=2代入方程2k-3x=4,得2k-6=4,解得k=5.故选:D.小提示:本题考查了同解方程的概念和方程的解法,关键是根据同解方程的定义,先求出x-2=0的解.2、已知关于x的方程(2k−1)x2−(2k+1)x+3=0是一元一次方程,则k的值为()A.1B.1C.0D.22答案:A解析:根据一元一次方程的定义可得2k-1=0,-(2k+1)≠0,据此进行求解即可得.∵关于x的方程(2k−1)x2−(2k+1)x+3=0是一元一次方程,∴2k-1=0且-(2k+1)≠0,∴k=1,2故选A.小提示:本题考查了一元一次方程的概念,熟练掌握一元一次方程是指含有一个未知数,并且未知数的次数为1的整式方程是解题的关键.3、下列方程中,解为x=5的是()=1C.7−(x−1)=3D.3x−1=2x+6A.2x+3=5B.10x答案:C解析:解:A.把x=5代入方程得:左边=2×5+3=13,右边=5,∴左边≠右边,故本选项错误;B.把x=5代入方程得:左边=2,右边=1,∴左边≠右边,故本选项错误;C.把x=5代入方程得:左边=7﹣(5﹣1)=3,右边=3,∴左边=右边,故本选项正确;D.把x=5代入方程得:左边=15﹣1=14,右边=,16,∴左边≠右边,故本选项错误.故选C.4、下列各式中,是方程的是()B.14﹣5=9C.a>3bD.x=1A.x−2y3答案:D解析:根据方程的定义:含有未知数的等式叫方程可得答案.A、没有等号,故不是方程,故此选项错误;B、等式中没有未知数,不是方程,故此选项错误;C、是不等式,不是方程,故此选项错误;D、符合方程的定义,是方程,故此选项正确;故选D.小提示:此题主要考查了方程,关键是掌握方程定义.5、买一支钢笔要5元钱,买3支圆珠笔的钱正好是一支钢笔钱的35.买一支圆珠笔要多少元?下列方法错误的是().A.5×35÷3B.5÷35÷3C.35÷3×5D.设买一支圆珠笔x元,3x=5×35答案:B解析:通过有理数计算或者一元一次方程,即可完成求解.∵买一支钢笔要5元钱,买3支圆珠笔的钱正好是一支钢笔钱的35∴三只圆珠笔的总价=5×35∴一只圆珠笔的价格=5×35÷3故选项B错误,选项A正确;∵5×35÷3=35÷3×5∴选项C正确;设买一支圆珠笔x元,3x=5×35∴x=5×35÷3∴选项D正确;故选:B .小提示:本题考察了有理数计算和一元一次方程的知识;求解的关键是熟练掌握有理数计算和一元一次方程的性质,从而完成求解.6、已知关于x 的方程mx +2=2(m −x)的解满足方程|x −12|=0,则m 的值是( ) A .12B .2C .32D .3答案:B解析:先求出方程|x −12|=0的解;再把求出的解代入方程mx +2=2(m −x),求关于m 的一元一次方程即可. 解:∵|x −12|=0,解得:x =12,将x =12代入方程mx +2=2(m −x)得:12m +2=2(m −12), 解得:m =2,故选:B .小提示:此题考查了方程的解,解题的关键是熟练掌握方程的解即为能使方程左右两边相等的未知数的值.7、在方程6x +1=1,2x =23,7x −1=x −1,5x =2−x 中,解为13的方程个数是( ). A .1个B .2个C .3个D .4个答案:B解析:把x =13代入各方程进行检验即可.解:当x =13时,左边=6×13+1=3≠1,不符合题意;当x =13时,左边=2×13=23=右边,符合题意;当x =13时,左边=7×13-1=43,右边=13-1=-23,左边≠右边,不符合题意; 当x =13时,左边=5×13=53,右边=2-13=53,左边=右边,符合题意.综上,符合题意的有2个,故选:B .小提示:本题考查了一元一次方程的解,熟知使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解是解答此题的关键.8、解方程−2(2x +1)=x ,以下去括号正确的是( )A .−4x +1=−xB .−4x +2=−xC .−4x −1=xD .−4x −2=x答案:D解析:去括号得法则:括号前面是正因数,去掉括号和正号,括号里的每一项都不变号;括号前面是负因数,去掉括号和负号,括号里的每一项都变号.解:−2(2x +1)=x−4x −2=x ,故选:D .小提示:此题主要考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.去括号注意几点:①不要漏乘括号里的每一项;②括号前面是负因数,去掉括号和负号,括号里的每一项一定都变号.填空题9、若a,b为常数,无论k为何值时,关于x的一元一次方程(b+1)x=12−4ka,它的解总是1,则a,b的值分别是_______.答案:a=0,b=11解析:将方程的解代入原方程,并化简.因为无论k为何值,它的解总是1,即可列出{4a=011−b=0,解出a和b即可.把x=1代入方程得b+1=12−4ka,化简得4ka=11−b,∵k的值为全体实数,∴4a=0,且11−b=0,∴a=0,b=11.小提示:本题考查一元一次方程的解.理解方程的解的定义“能够使方程左右两边相等的未知数的值”是解答本题的关键.10、若(a﹣1)x|a|+4=﹣6是关于x的一元一次方程,则a=_____.答案:-1解析:根据一元一次方程的特点求出a的值.只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).解:根据题意知:|a|=1且a﹣1≠0.解得a=﹣1.故答案是:﹣1.小提示:本题主要考查了一元一次方程的定义,解题的关键在于能够熟练掌握一元一次方程的定义.11、若a,b为常数,无论k为何值时,关于x的一元一次方程(b+1)x=12−4ka,它的解总是1,则a,b 的值分别是_______.答案:a=0,b=11解析:将方程的解代入原方程,并化简.因为无论k为何值,它的解总是1,即可列出{4a=011−b=0,解出a和b即可.把x=1代入方程得b+1=12−4ka,化简得4ka=11−b,∵k的值为全体实数,∴4a=0,且11−b=0,∴a=0,b=11.小提示:本题考查一元一次方程的解.理解方程的解的定义“能够使方程左右两边相等的未知数的值”是解答本题的关键.12、已知一个角的补角是这个角的4倍,那么这个角的度数是_________.答案:36°解析:设这个角的度数为x,根据补角的性质列出方程求解即可.设这个角的度数为x,可得180°−x=4x解得x=36°所以答案是:36°.小提示:本题考查了一元一次方程的应用,掌握解一元一次方程的解法、补角的性质是解题的关键.13、《九章算术》是我国古代数学名著,卷七“盈不足”中题目译文如下:“今有人合伙买羊,每人出5钱,还差45钱;每人出7钱,还差3钱.问合伙人数、羊价各是多少?”设合伙人数为x人,根据题意可列一元一次方程为_____.答案:5x+45=7x+3解析:根据题意列一元一次方程即可;解:根据题意列方程5x+45=7x+3;所以答案是:5x+45=7x+3.小提示:本题主要考查了一元一次方程的应用,准确分析列方程是解题的关键.解答题14、解方程:(1)9x−14=8+7x(2)x+x−12=3−2x−13答案:(1)x=11(2)x=2313解析:(1)解一元一次方程,先移项,然后合并同类项,最后系数化1求解;(2)解一元一次方程,先去分母,然后去括号,移项,合并同类项,最后系数化1求解.(1)解:9x−14=8+7x移项,得:9x−7x=14+8合并同类项,得:2x=22系数化1,得:x=11(2)x+x−12=3−2x−13去分母,得:6x+3(x−1)=18−2(2x−1)去括号,得:6x+3x−3=18−4x+2移项,得:6x+3x +4x=18+2+3合并同类项,得:13x=23系数化1,得:x=2313小提示:本题考查了解一元一次方程,掌握解方程的步骤正确计算是解题关键.15、某糕点厂中秋节前要制作一批盒装月饼,每盒中装2块大月饼和4块小月饼.制作1块大月饼要用0.05kg 面粉,1块小月饼要用0.02kg面粉.现共有面粉4500kg,制作两种月饼应各用多少面粉,才能生产最多的盒装月饼?答案:制作大月饼要用2500kg 面粉,小月饼要用2000kg 面粉解析:方法1 设大月饼要用x kg 面粉,根据大月饼数量:小月饼数量=2:4得等量关系式:2倍大月饼数量=1倍小月饼数量,根据等量关系列出方程,解方程即可;方法2 设大月饼做了x 块,则小月饼做了2x 块,根据等量关系:大月饼所需的面粉质量+小月饼所需的面粉质量=现共有面粉4500kg ,列出方程并解方程即可;方法3 用算术方法解决.先计算出一盒月饼的面粉用量:一盒月饼面粉用量=2块大月饼面粉用量+4块小月饼面粉用量,则4500kg 面粉可制作月饼盒数可求出,根据:每盒月饼中大月饼的数量×总盒数×每块大月饼的面粉用量,可求得用于制作大月饼的面粉质量,从而也可求得用于制作小月饼的面粉质量;方法4 用比来解.先求得每盒月饼中,大月饼和小月饼的面粉用量比为5:4,然后按比分配即可解决; 方法5 设一共制作x 盒月饼,则可分别表示出制作大月饼和小月饼所需的面粉用量,根据等量关系:制作大月饼所需的面粉用量+小月饼所需的面粉用量=4500,列出方程,解方程即可.【方法1】设大月饼要用x kg 面粉,小月饼要用(4500−x )kg 面粉大月饼的数量为x 0.05块;小月饼的数量为(4500−x )0.02块. 依题意列方程:2x 0.05=(4500−x )0.02,解得:x =2500.4500−x =2000. ∴制作大月饼要用2500kg 面粉,小月饼要用2000kg 面粉.【方法2】设大月饼做了x 块,则小月饼做了2x 块.大月饼用了0.05x kg 面粉,小月饼用了0.04x kg 面粉.依题意列方程:0.05x +0.04x =4500;解得:x =50000;0.05x =2500;0.04x =2000.∴制作大月饼要用2500kg 面粉,小月饼要用2000kg 面粉.【方法3】一盒月饼面粉用量=2块大月饼面粉用量+4块小月饼面粉用量=2×0.05+4×0.02=0.18(kg) 4500kg面粉可制作月饼:4500÷0.18=25000(盒)其中用于制作大月饼的面粉有:每盒月饼中大月饼的数量×总盒数×每块大月饼的面粉用量=2×25000×0.05=2500(kg)其中用于制作小月饼的面有:每盒月饼中小月饼的数量×总盒数×每块小月饼的面粉用量=4×25000×0.02=2000(kg)【方法4】每盒月饼中,大月饼和小月饼的面粉用量比为:(2×0.05):(4×0.02)=5:4∴用于制作大月饼的面粉有:4500×5=2500(kg);5+4=2000(kg).用于制作小月饼的面粉有:4500×45+4【方法5】设一共制作x盒月饼,面粉用量为:大月饼0.05×2x=0.1x kg;小月饼0.02×4x=0.8x kg依题意列方程:0.1x+0.8x=4500;解得x=25000;0.1x=2500;0.8x=2000,∴制作大月饼要用2500kg面粉,小月饼要用2000kg面粉.11。

人教版七年级上册数学:第三章《一元一次方程》全章复习与巩固(提高)知识讲解(含答案)

人教版七年级上册数学:第三章《一元一次方程》全章复习与巩固(提高)知识讲解(含答案)

《一元一次方程》全章复习与巩固(提高)知识讲解【学习目标】1.理解方程,等式及一元一次方程的概念,并掌握它们的区别和联系;2.会解一元一次方程,并理解每步变形的依据;3.会根据实际问题列方程解应用题.【知识网络】【要点梳理】要点一、一元一次方程的概念1.方程:含有未知数的等式叫做方程.2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:(1)一元一次方程变形后总可以化为ax+b=0(a≠0)的形式,它是一元一次方程的标准形式.(2)判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;②未知数所在的式子是整式,即分母中不含未知数.3.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.4.解方程:求方程的解的过程叫做解方程.要点二、等式的性质与去括号法则1.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.2.合并法则:合并时,把系数相加(减)作为结果的系数,字母的指数不变.3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反. 要点三、一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax =b (a ≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解b x a=(a ≠0). (6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.要点四、用一元一次方程解决实际问题的常见类型1.行程问题:路程=速度×时间2.和差倍分问题:增长量=原有量×增长率3.利润问题:商品利润=商品售价-商品进价4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.【典型例题】类型一、一元一次方程的相关概念1.已知方程(3m -4)x 2-(5-3m )x -4m =-2m 是关于x 的一元一次方程,求m 和x 的值.【思路点拨】若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.【答案与解析】解:因为方程(3m -4)x 2-(5-3m )x -4m =-2m 是关于x 的一元一次方程,所以3m -4=0且5-3m ≠0.由3m -4=0解得43m =,又43m =能使5-3m ≠0,所以m 的值是43. 将43m =代入原方程,则原方程变为485333x ⎛⎫--⨯= ⎪⎝⎭,解得83x =-. 所以43m =,83x =-. 【总结升华】解答这类问题,一定要严格按照一元一次方程的定义.方程(3m -4)x 2-(5-3m )x -4m =-2m 2是关于x 的一元一次方程,就是说x 的二次项系数3m -4=0,而x的一次项系数5-3m≠0,m的值必须同时符合这两个条件.举一反三:【高清课堂:一元一次方程复习393349 等式和方程例3】【变式】下面方程变形中,错在哪里:(1)方程2x=2y两边都减去x+y,得2x-(x+y)=2y-(x+y), 即x-y=-(x-y).方程 x-y=-(x-y)两边都除以x-y, 得1=-1.(2)3721223x xx-+=+,去分母,得3(3-7x)=2(2x+1)+2x,去括号得:9-21x=4x+2+2x.【答案】(1)答:错在第二步,方程两边都除以x-y.(2)答:错在第一步,去分母时2x项没乘以公分母6.2.如果5(x+2)=2a+3与(31)(53)35a x a x+-=的解相同,那么a的值是________.【答案】7 11【解析】由5(x+2)=2a+3,解得275ax-=.由(31)(53)35a x a x+-=,解得95x a=-.所以27955aa-=-,解得711a=.【总结升华】因为两方程的解相同,可把a看做已知数,分别求出它们的解,令其相等,转化为求关于a的一元一次方程.举一反三:【变式】已知|x+1|+(y+2x)2=0,则y x=________.【答案】1类型二、一元一次方程的解法3.解方程:4621132x x-+-=.【答案与解析】解:去分母,得:2(4-6x)-6=3(2x+1).去括号,得:8-12x-6=6x+3.移项,合并同类项,得:-18x=1.系数化为1,得:118x=-.【总结升华】转化思想是初中数学中一种常见的思想方法,它能将复杂的问题转化为简单的问题,将生疏的问题转化为熟悉的问题,将未知转化为已知.事实上解一元一次方程就是利用方程的同解原理,将复杂的方程转化为简单的方程直至求出它的解.举一反三:【变式1】解方程26752254436z z z zz+---++=-【答案】解:把方程两边含有分母的项化整为零,得267522544443366z z z z z +++-=--+. 移项,合并同类项得:1122z =,系数化为1得:z =1. 【高清课堂:一元一次方程复习 393349 解方程例1(2)】 【变式2】解方程: 0.10.050.20.05500.20.54x x +--+=. 【答案】 解:把方程可化为:0.520.550254x x +--+=, 再去分母得:232x =-解得:16x =-4.解方程3{2x -1-[3(2x -1)+3]}=5.【答案与解析】解:把2x -1看做一个整体.去括号,得:3(2x -1)-9(2x -1)-9=5.合并同类项,得-6(2x -1)=14. 系数化为1得:7213x -=-,解得23x =-. 【总结升华】把题目中的2x -1看作一个整体,从而简化了计算过程.本题也可以考虑换元法:设2x -1=a ,则原方程化为3[a -(3a+3)]=5.类型三、特殊的一元一次方程的解法1.解含字母系数的方程5.解关于x 的方程:11()(2)34m x n x m -=+ 【思路点拨】这个方程化为标准形式后,未知数x 的系数和常数都是以字母形式出现的,所以方程的解的情况与x 的系数和常数的取值都有关系.【答案与解析】解:原方程可化为:(43)462(23)m x mn m m n -=+=+ 当34m ≠时,原方程有唯一解:4643mn m x m +=-; 当33,42m n ==-时,原方程无数个解; 当33,42m n =≠-时,原方程无解; 【总结升华】解含字母系数的方程时,一般化为最简形式ax b =,再分类讨论进行求解,注意最后的解不能合并,只能分情况说明.2.解含绝对值的方程6. 解方程|x -2|=3.【答案与解析】解:当x -2≥0时,原方程可化为x -2=3,得x =5.当x -2<0时,原方程可化为-(x -2)=3,得 x =-1.所以x =5和x =-1都是方程|x -2|=3的解.【总结升华】如图所示,可以看出点-1与5到点2的距离均为3,所以|x -2|=3的意义为在数轴上到点2的距离等于3的点对应的数,即方程|x -2|=3的解为x =-1和x =5.举一反三:【变式1】若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,则,,m n k 的大小关系为: ( )A . m n k >> B.n k m >> C.k m n >> D.m k n >>【答案】A【变式2】若9x =是方程123x m -=的解,则__m =;又若当1n =时,则方程123x n -=的解是 .【答案】1; 9或3. 类型四、一元一次方程的应用7.李伟从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟;若每小时行18千米,则比火车开车时间迟到15分钟,现在李伟打算在火车开车前10分钟到达火车站,求李伟此时骑摩托车的速度应是多少?【思路点拨】本题中的两个不变量为:火车开出的时间和李伟从家到火车站的路程不变.【答案与解析】 解:设李伟从家到火车站的路程为y 千米,则有:151530601860y y +=-,解得:452y = 由此得到李伟从家出发到火车站正点开车的时间为4515213060+=(小时). 李伟打算在火车开车前10分钟到达火车站时,设李伟骑摩托车的速度为x 千米/时, 则有:452271010116060y x ===--(千米/时) 答:李伟此时骑摩托车的速度应是27千米/时.【总结升华】在解决问题时,当发现某种方法不能解决问题时,应该及时变换思维角度,如本题直接设未知数较难时,应迅速变换思维的角度,合理地设置间接未知数以寻求新的解决问题的途径和方法.8. 黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用刚好为4920元时,问公司租用的四座车和十一座车各多少辆?【答案与解析】解:设四座车租x 辆,十一座车租70411x -辆,依题意得: 7047060601110492011x x -⨯++⨯⨯= 解得:x =1,704611x -= 答:公司租用的四座车和十一座车分别是1辆和6辆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程
1.等式:用“=”号连接而成的式子叫等式.
2.等式的性质:
等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;
等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.
3.方程:含未知数的等式,叫方程.
4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!
5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.
6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.
7.一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a≠0).
8.一元一次方程解法的一般步骤:
化简方程----------分数基本性质
去分母----------同乘(不漏乘)最简公分母
去括号----------注意符号变化
移项----------变号
合并同类项--------合并后注意符号
系数化为1---------未知数细数是几就除以几
10.列一元一次方程解应用题:
(1)读题分析法:…………多用于“和,差,倍,分问题”
仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.
(2)画图分析法: …………多用于“行程问题”
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.
11.解实际应用题:
知识点1:市场经济、打折销售问题
(1)商品利润=商品售价-商品成本价(2)商品利润率=
商品利润
商品成本价
×100%
(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量
知能点2:方案选择问题
知能点3储蓄、储蓄利息问题
(1)顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。

利息的20%付利息税
(2)利息=本金×利率×期数本息和=本金+利息利息税=利息×税率(20%)
(3)%,100⨯=本金
每个期数内的利息利润 知能点4:工程问题
工作量=工作效率×工作时间 工作效率=工作量÷工作时间
工作时间=工作量÷工作效率 完成某项任务的各工作量的和=总工作量=1
知能点5:若干应用问题等量关系的规律
(1)和、差、倍、分问题 此类题既可有示运算关系,又可表示相等关系,要结合题意特别注意题目中的关键词
语的含义,如相等、和差、几倍、几分之几、多、少、快、慢等,它们能指导我们正确地列出代数式或方程式。

增长量=原有量×增长率 现在量=原有量+增长量
(2)等积变形问题
常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.
①圆柱体的体积公式 V=底面积×高=S ·h =πr 2h
②长方体的体积 V =长×宽×高=abc
知能点6:行程问题
基本量之间的关系: 路程=速度×时间 时间=路程÷速度 速度=路程÷时间
(1)相遇问题 (2)追及问题
快行距+慢行距=原距 快行距-慢行距=原距
(3)航行问题 顺水(风)速度=静水(风)速度+水流(风)速度
逆水(风)速度=静水(风)速度-水流(风)速度
抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系
知能点7:数字问题
(1)要搞清楚数的表示方法:一个三位数的百位数字为a ,十位数字是b ,个位数字为c (其中a 、b 、c 均为整数,
且1≤a ≤9, 0≤b ≤9, 0≤c ≤9)则这个三位数表示为:100a+10b+c 。

然后抓住数字间或新数、原数之间的关系找等量关系列方程.
(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n 表示,连续的偶数用2n+2
或2n —2表示;奇数用2n+1或2n —1表示。

相关文档
最新文档