算法分析习题详细答案五
算法设计技巧与分析习题答案
算法设计技巧与分析习题答案【篇一:算法设计与分析考试题及答案】一特殊类型问题的一系列运算,此外,算法还应具有以下五个重要特性:_________,________,________,__________,__________。
2.算法的复杂性有_____________和___________之分,衡量一个算法好坏的标准是______________________。
3.某一问题可用动态规划算法求解的显著特征是____________________________________。
4.若序列x={b,c,a,d,b,c,d},y={a,c,b,a,b,d,c,d},请给出序列x和y的一个最长公共子序列_____________________________。
5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含___________。
6.动态规划算法的基本思想是将待求解问题分解成若干____________,先求解___________,然后从这些____________的解得到原问题的解。
7.以深度优先方式系统搜索问题解的算法称为_____________。
8.0-1背包问题的回溯算法所需的计算时间为_____________,用动态规划算法所需的计算时间为____________。
9.动态规划算法的两个基本要素是___________和___________。
10.二分搜索算法是利用_______________实现的算法。
二、综合题(50分)1.写出设计动态规划算法的主要步骤。
2.流水作业调度问题的johnson算法的思想。
3.若n=4,在机器m1和m2上加工作业i所需的时间分别为ai和bi,且(a1,a2,a3,a4)=(4,5,12,10),(b1,b2,b3,b4)=(8,2,15,9)求4个作业的最优调度方案,并计算最优值。
4.使用回溯法解0/1背包问题:n=3,c=9,v={6,10,3},w={3,4,4},其解空间有长度为3的0-1向量组成,要求用一棵完全二叉树表示其解空间(从根出发,左1右0),并画出其解空间树,计算其最优值及最优解。
算法设计与分析基础课后习题答案
Program算法设计与分析基础中文版答案习题5..证明等式gcd(m,n)=gcd(n,m mod n)对每一对正整数m,n都成立.Hint:根据除法的定义不难证明:如果d整除u和v, 那么d一定能整除u±v;如果d整除u,那么d也能够整除u的任何整数倍ku.对于任意一对正整数m,n,若d能整除m和n,那么d一定能整除n和r=m mod n=m-qn;显然,若d能整除n和r,也一定能整除m=r+qn和n。
数对(m,n)和(n,r)具有相同的公约数的有限非空集,其中也包括了最大公约数。
故gcd(m,n)=gcd(n,r)6.对于第一个数小于第二个数的一对数字,欧几里得算法将会如何处理?该算法在处理这种输入的过程中,上述情况最多会发生几次?Hint:对于任何形如0<=m<n的一对数字,Euclid算法在第一次叠代时交换m和n, 即gcd(m,n)=gcd(n,m)并且这种交换处理只发生一次..对于所有1≤m,n≤10的输入, Euclid算法最少要做几次除法?(1次)b. 对于所有1≤m,n≤10的输入, Euclid算法最多要做几次除法?(5次)gcd(5,8)习题1.(农夫过河)P—农夫 W—狼 G—山羊 C—白菜2.(过桥问题)1,2,5,10---分别代表4个人, f—手电筒4. 对于任意实系数a,b,c, 某个算法能求方程ax^2+bx+c=0的实根,写出上述算法的伪代码(可以假设sqrt(x)是求平方根的函数)算法Quadratic(a,b,c)描述将十进制整数表达为二进制整数的标准算法a.用文字描述b.用伪代码描述解答:a.将十进制整数转换为二进制整数的算法输入:一个正整数n输出:正整数n相应的二进制数第一步:用n除以2,余数赋给Ki(i=0,1,2...),商赋给n第二步:如果n=0,则到第三步,否则重复第一步第三步:将Ki按照i从高到低的顺序输出b.伪代码算法 DectoBin(n).n]中i=1while n!=0 do {Bin[i]=n%2;n=(int)n/2;i++;}while i!=0 do{print Bin[i];i--;}9.考虑下面这个算法,它求的是数组中大小相差最小的两个元素的差.(算法略)对这个算法做尽可能多的改进.算法 MinDistance(A[0..n-1])n-1]a.应用该算法对列表”60,35,81,98,14,47”排序b.该算法稳定吗?c.该算法在位吗?解:a. 该算法对列表”60,35,81,98,14,47”排序的过程如下所示:b.该算法不稳定.比如对列表”2,2*”排序c.该算法不在位.额外空间for S and Count[]4.(古老的七桥问题)习题1.请分别描述一下应该如何实现下列对数组的操作,使得操作时间不依赖数组的长度.a.删除数组的第i个元素(1<=i<=n)b.删除有序数组的第i个元素(依然有序)hints:a. Replace the i th element with the last element and decrease the array size of 1b. Replace the ith element with a special symbol that cannot be a value of the array’s element., 0 for an array of positive numbers ) to mark the i th position is empty. (“lazy deletion”)第2章习题7.对下列断言进行证明:(如果是错误的,请举例)a. 如果t(n)∈O(g(n),则g(n)∈Ω(t(n))b.α>0时,Θ(αg(n))= Θ(g(n))解:a. 这个断言是正确的。
算法分析课后习题解答
2-34、Gray码是一个长度为2n的序列。
序列中无相同元素。
每个元素都是长度为n位的串。
相邻元素恰好只有一位不同。
用分治策略设计一个算法对任意的n构造相应的Gray码。
答:设序列中元素由0、1组成。
当 n=1 时 Gray码的序列有2个元素(21=2),分别为:0,| 1当 n=2 时 Gray码的序列有4个元素(22=4),分别为:00,10,| 11,01当 n=3 时 Gray码的序列有8个元素(23=8),分别为:000,100,110,010,| 011,111,101,001当 n=4 时 Gray码的序列有16个元素(24=16),分别为:0000,1000、1100、0100,0110,1110,1010,0010,| 0011,1011,1111,0111,0101,1101,1001,0001从上面的列举可得如下规律:n=k时,Gray码的序列有2k个元素,分别为:n=k-1时的Gray码元素正向后加0,得前2k-1个元素,反向后加1的后2k-1个元素。
如 n=2时 Gray码序列的4个元素分别为:00,10, 11,01当 n=3 时 Gray码序列的前4个元素(23=8),分别为:000,100,110,010是n=2时Gray码四个元素正向后加0,即:000,100, 110,010Gray码序列的后4个元素(23=8),分别为:011,111,101,001 是n=2时Gray码四个元素反向后加1,n=2时Gray码四个元素:00,10, 11,01即:011,111,101,001可以看出,Gray码可以用分治策略,递归实现,2n的Gray码可以用2n-1的Gray码构成。
算法描述:void Gray( type a[],int n){ char a[];if (n==1) { a[0]=’0’;a[1]=’1’;}if (n>1){ Gray(a[],n-1);int k=2n-1-1; //Gray码的个数,因为数组下标从0开始int i=k;for (int x=k;x>=0;x--){char y=a[x];a[x]=y+’0’;a[i+1]=y+’1’; i++;}}}3-7 给定由n个英文单词组成的一段文章,……答:设由n 个单词组成的一段文章可以表示为 A[1:n],它的“漂亮打印”方案记为B[1:n],构成该最优解的最小空格数(最优值)记为m[1][n](1)分析最优解的结构:A[1:n]的最优解B[1:n],必然在第k个单词处断开,那么A[1:k]是“漂亮打印”,并且A[k+1:n]也是“漂亮打印”。
算法设计与分析习题答案1-6章
习题11. 图论诞生于七桥问题。
出生于瑞士的伟大数学家欧拉(Leonhard Euler ,1707—1783)提出并解决了该问题。
七桥问题是这样描述的:一个人是否能在一次步行中穿越哥尼斯堡(现在叫加里宁格勒,在波罗的海南岸)城中全部的七座桥后回到起点,且每座桥只经过一次,图是这条河以及河上的两个岛和七座桥的草图。
请将该问题的数据模型抽象出来,并判断此问题是否有解。
七桥问题属于一笔画问题。
输入:一个起点输出:相同的点1, 一次步行2, 经过七座桥,且每次只经历过一次3, 回到起点该问题无解:能一笔画的图形只有两类:一类是所有的点都是偶点。
另一类是只有二个奇点的图形。
2.在欧几里德提出的欧几里德算法中(即最初的欧几里德算法)用的不是除法而是减法。
请用伪代码描述这个版本的欧几里德算法=m-n2.循环直到r=0m=nn=rr=m-n3 输出m3.设计算法求数组中相差最小的两个元素(称为最接近数)的差。
要求分别给出伪代码和C++描述。
编写程序,求n 至少为多大时,n 个“1”组成的整数能被2013整除。
#include<iostream>using namespace std;int main(){double value=0;图 七桥问题for(int n=1;n<=10000 ;++n){value=value*10+1;if(value%2013==0){cout<<"n至少为:"<<n<<endl;break;}}计算π值的问题能精确求解吗编写程序,求解满足给定精度要求的π值#include <iostream>using namespace std;int main (){double a,b;double arctan(double x);圣经上说:神6天创造天地万有,第7日安歇。
为什么是6天呢任何一个自然数的因数中都有1和它本身,所有小于它本身的因数称为这个数的真因数,如果一个自然数的真因数之和等于它本身,这个自然数称为完美数。
算法分析(第二版)清华大学出版社 部分习题的参考答案
5.中断、篡改、伪造6.公开密钥
7.链路、端到端8.管理信息库、管理信息结构、管理协议
9.公开密钥密码技术10.身份验证、加密、访问控制
二、选择题
1. C2. C3. D4. D5. D
6. C7. B8. D9. D10. C
网桥1转发表网桥2转发表网桥1网桥2站地址端口站地址端口mac11向端口2转发该帧将mac1端口1登记到转发表mac32mac31向端口1转发该帧将mac3端口2登记到转发表向端口2转发该帧将mac3端口1登记到转发表mac42从转发表中查到目的端口是1向端口1转发该帧将mac4端口2登记到转发表mac21将该帧丢弃同时将mac2端口1登记到转发表第5章一填空题1
MAC4
2
从转发表中查到目的端口是1向端口1转发该帧,将(MAC4,端口2)登记到转发表
MAC2
1
将该帧丢弃,同时将(MAC2,端口1)登记到转发表
第5章
一、填空题
1.ARP、IGMP2.128.11、3.11
3.路由、建立虚电路、路由算法4.泛射路由选择、固定路由选择和随机路由选择
5.IP数据报6.ARP
1.应用进程2.客户/服务器
6.字符代码、数字代码
7.www服务器、www浏览器8.ASCII传输模、二进制数字传输模式
9.A记录、CNAME记录、MX记录10.SMTP
二、选择题
1. D2. C3. B4. A5. B
6. C7. C8. B9. A
2.网络的拓扑结构表示网络传输介质和结点的连接形式,通常有总线型、环形、星形和树形。
3.OSI将整个网络通信的功能划分为七个层次,由低到高分别是物理层、链路层、网络层、传输层、会话层、表示层和应用层。
算法设计与分析常见习题及详解
算法设计与分析常见习题及详解⽆论在以后找⼯作还是⾯试中,都离不开算法设计与分析。
本博⽂总结了相关算法设计的题⽬,旨在帮助加深对贪⼼算法、动态规划、回溯等算法的理解。
1、计算下述算法执⾏的加法次数:输⼊:n =2^t //t 为整数输出:加法次数 k K =0while n >=1 do for j =1 to n do k := k +1 n = n /2return k解析:第⼀次循环执⾏n次加法,第⼆次循环执⾏1/2次加法,第三次循环执⾏1/次加法…因此,上述算法执⾏加法的次数为==2n-12、考虑下⾯每对函数 f(n) 和 g(n) ,如果它们的阶相等则使⽤Θ记号,否则使⽤ O 记号表⽰它们的关系解析:前导知识:,因为解析:,因为解析:,因为解析:解析:3、在表1.1中填⼊ true 或 false解析:利⽤上题的前导知识就可以得出。
2=21/4n +n +21n +41...+1n +n −n +21n −21n +41....−1f (n )=(n −2n )/2,g (n )=6n1<logn <n <nlogn <n <2n <32<n n !<n ng (n )=O (f (n ))f (n )=Θ(n ),g (n )=2Θ(n )f (n )=n +2,g (n )=n n 2f (n )=O (g (n ))f (n )=Θ(n ),g (n )=Θ(n )2f (n )=n +nlogn ,g (n )=n nf (n )=O (g (n ))f (n )=Θ(nlogn ),g (n )=Θ(n )23f (n )=2(log ),g (n )=n 2logn +1g (n )=O (f (n ))f (n )=log (n !),g (n )=n 1.05f (n )=O (g (n ))4、对于下⾯每个函数 f(n),⽤f(n) =Θ(g(n))的形式,其中g(n)要尽可能简洁,然后按阶递增序排列它们(最后⼀列)解析:最后⼀个⽤到了调和公式:按阶递增的顺序排列:、、、、、、、、、(n −2)!=Θ((n −2)!)5log (n +100)=10Θ(logn )2=2n Θ(4)n 0.001n +43n +31=Θ(n )4(lnn )=2Θ(ln n )2+3n logn =Θ()3n 3=n Θ(3)n log (n !)=Θ(nlogn )log (n )=n +1Θ(nlogn )1++21....+=n1Θ(logn )=∑k =1nk 1logn +O (1)1++21....+n 15log (n +100)10(lnn )2+3n logn log (n !)log (n )n +10.001n +43n +313n 22n (n −2)!5、求解递推⽅程前导知识:主定理前导知识:递归树:例⼦:递归树是⼀棵节点带权的⼆叉树,初始递归树只有⼀个结点,标记为权重W(n),然后不断进⾏迭代,最后直到树种不再含有权为函数的结点为⽌,然后将树根结点到树叶节点的全部权值加起来,即为算法的复杂度。
算法设计与分析课后部分习题答案
算法实现题3-7 数字三角形问题问题描述:给定一个由n行数字组成的数字三角形,如图所示。
试设计一个算法,计算出从三角形的顶至底的一条路径,使该路径经过的数字总和最大。
编程任务:对于给定的由n行数字组成的数字三角形,编程计算从三角形的顶至底的路径经过的数字和的最大值。
数据输入:有文件input.txt提供输入数据。
文件的第1行是数字三角形的行数n,1<=n<=100。
接下来的n行是数字三角形各行的数字。
所有数字在0-99之间。
结果输出:程序运行结束时,将计算结果输出到文件output.txt中。
文件第1行中的数是计算出的最大值。
输入文件示例输出文件示例 input.txt output.txt 5 30 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5源程序:#include "stdio.h" voidmain(){ intn,triangle[100][100],i,j;//triangle数组用来存储金字塔数值,n表示行数 FILE *in,*out;//定义in,out两个文件指针变量in=fopen("input.txt","r");fscanf(in,"%d",&n);//将行数n读入到变量n中for(i=0;i<n;i++)//将各行数值读入到数组triangle中for(j=0;j<=i;j++)fscanf(in,"%d",&triangle[i][j]);for(int row=n-2;row>=0;row--)//从上往下递归计算for(int col=0;col<=row;col++)if(triangle[row+1][col]>triangle[row+1][col+1])triangle[row][col]+=triangle[row+1][col];elsetriangle[row][col]+=triangle[row+1][col+1];out=fopen("output.txt","w");fprintf(out,"%d",triangle[0][0]);//将最终结果输出到output.txt中 }算法实现题4-9 汽车加油问题问题描述:一辆汽车加满油后可行驶nkm。
算法设计与分析基础习题参考答案
习题5..证明等式gcd(m,n)=gcd(n,m mod n)对每一对正整数m,n都成立.Hint:根据除法的定义不难证明:如果d整除u和v, 那么d一定能整除u±v;如果d整除u,那么d也能够整除u的任何整数倍ku.对于任意一对正整数m,n,若d能整除m和n,那么d一定能整除n和r=m mod n=m-qn;显然,若d 能整除n和r,也一定能整除m=r+qn和n。
数对(m,n)和(n,r)具有相同的公约数的有限非空集,其中也包括了最大公约数。
故gcd(m,n)=gcd(n,r)6.对于第一个数小于第二个数的一对数字,欧几里得算法将会如何处理?该算法在处理这种输入的过程中,上述情况最多会发生几次?Hint:对于任何形如0<=m<n的一对数字,Euclid算法在第一次叠代时交换m和n, 即gcd(m,n)=gcd(n,m)并且这种交换处理只发生一次..对于所有1≤m,n≤10的输入, Euclid算法最少要做几次除法?(1次)b. 对于所有1≤m,n≤10的输入, Euclid算法最多要做几次除法?(5次)gcd(5,8)习题1.(农夫过河)P—农夫 W—狼 G—山羊 C—白菜2.(过桥问题)1,2,5,10---分别代表4个人, f—手电筒4. 对于任意实系数a,b,c, 某个算法能求方程ax^2+bx+c=0的实根,写出上述算法的伪代码(可以假设sqrt(x)是求平方根的函数)算法Quadratic(a,b,c)描述将十进制整数表达为二进制整数的标准算法a.用文字描述b.用伪代码描述解答:a.将十进制整数转换为二进制整数的算法输入:一个正整数n输出:正整数n相应的二进制数第一步:用n除以2,余数赋给Ki(i=0,1,2...),商赋给n第二步:如果n=0,则到第三步,否则重复第一步第三步:将Ki按照i从高到低的顺序输出b.伪代码算法 DectoBin(n).n]中i=1while n!=0 do {Bin[i]=n%2;n=(int)n/2;i++;}while i!=0 do{print Bin[i];i--;}9.考虑下面这个算法,它求的是数组中大小相差最小的两个元素的差.(算法略)对这个算法做尽可能多的改进.算法 MinDistance(A[0..n-1])n-1]a.应用该算法对列表”60,35,81,98,14,47”排序b.该算法稳定吗?c.该算法在位吗?解:a. 该算法对列表”60,35,81,98,14,47”排序的过程如下所示:b.该算法不稳定.比如对列表”2,2*”排序c.该算法不在位.额外空间for S and Count[]4.(古老的七桥问题)习题1.请分别描述一下应该如何实现下列对数组的操作,使得操作时间不依赖数组的长度.a.删除数组的第i个元素(1<=i<=n)b.删除有序数组的第i个元素(依然有序)hints:a. Replace the ith element with the last element and decrease the array size of 1b. Replace the ith element with a special symbol that cannot be a value of the array’s element., 0 for an array of positive numbers ) to mark the ith position is empty. (“lazy deletion”)习题1欧几里得算法的时间复杂度欧几里得算法, 又称辗转相除法, 用于求两个自然数的最大公约数. 算法的思想很简单, 基于下面的数论等式gcd(a, b) = gcd(b, a mod b)其中gcd(a, b)表示a和b的最大公约数, mod是模运算, 即求a除以b的余数. 算法如下:输入: 两个整数a, b输出: a和b的最大公约数function gcd(a, b:integer):integer;if b=0 return a;else return gcd(b, a mod b);end function欧几里得算法是最古老而经典的算法, 理解和掌握这一算法并不难, 但要分析它的时间复杂度却并不容易. 我们先不考虑模运算本身的时间复杂度(算术运算的时间复杂度在Knuth的TAOCP中有详细的讨论), 我们只考虑这样的问题: 欧几里得算法在最坏情况下所需的模运算次数和输入的a和b的大小有怎样的关系?我们不妨设a>b>=1(若a<b我们只需多做一次模运算, 若b=0或a=b模运算的次数分别为0和1), 构造数列{un}: u0=a, u1=b, uk=uk-2 mod uk-1(k>=2), 显然, 若算法需要n次模运算, 则有un=gcd(a, b), un+1=0. 我们比较数列{un}和菲波那契数列{Fn}, F0=1<=un, F1=1<=un-1, 又因为由uk mod uk+1=uk+2, 可得uk>=uk+1+uk+2, 由数学归纳法容易得到uk>=Fn-k, 于是得到a=u0>=Fn, b=u0>=Fn-1. 也就是说如果欧几里得算法需要做n次模运算, 则b必定不小于Fn-1. 换句话说, 若 b<Fn-1, 则算法所需模运算的次数必定小于n. 根据菲波那契数列的性质, 有Fn-1>n/sqrt(5), 即b>n/sqrt(5), 所以模运算的次数为O(lgb)---以b为底数 = O(lg(2)b)---以2为底数,输入规模也可以看作是b的bit位数。
2020年算法分析设计习题答案
第3章 动态规划
2. 石子合并问题 问题描述: 在一个圆形操场的四周摆放着n堆石子. 现在要将石子有次序地合并 成一堆. 规定每次只能选相邻的2堆石子合并成一堆, 并将新的一堆石子数记为 该次合并的得分. 试设计一个算法, 计算出将n堆石子合并成一堆的最小得分和 最大得分. 算法设计: 对于给定n堆石子, 计算合并成一堆的最小得分和最大得分. 数据输入: 由文件input.txt提供输入数据. 文件的第1行是正整数n, 1n100, 表 示有n堆石子. 第2行有n个数, 分别表示n堆石子的个数. 结果输出: 将计算结果输出到文件output.txt, 文件第1行是最小得分, 第2行是最 大得分.
第五章 回溯
运动员最佳配对问题
问题描述: 羽毛球队有男女运动员各n人. 给定2个nn矩阵P和Q. P[i][j]是男运 动员i与女运动员j配混合双打的男运动员竞赛优势; Q[i][j]是女运动员i与男运 动员j配混合双打的女运动员竞赛优势. 由于技术配合和心理状态等各种因素 影响, P[i][j]不一定等于Q[j][i]. 男运动员i和女运动员j配对的竞赛优势是 P[i][j]*Q[j][i]. 设计一个算法, 计算男女运动员最佳配对法, 使得各组男女双方 竞赛优势的总和达到最大.
8.
若m[i,j]>t, 则m[i,j]=t; s[i,j]=k;
第3章 动态规划
再讨论圆周上的石子合并问题, 子结构[i:j]稍作修改 • 定义m[i][len]为合并第i堆到第i+len-1堆石子能得到的最少分数 • 当i+len-1>n时, 指跨过第n堆到第(i+len-1)%n堆,
仅sum函数需要修改
第2章 分治
2-8 设n个不同的整数排好序后存于T[1:n]中. 若存在一个下标i, 1 i n, 使得T[i]=i. 设计一个有效算法找到这个下标. 要求算 法在最坏情况下的计算时间O(log n).
(陈慧南 第3版)算法设计与分析——第5章课后习题答案
(3) 分析算法的时间复杂度 上述算法的时间复杂度为 n 2
(2) 编写 C 程序实现这一算法;
#include<iostream> #include<cstdio> #include<cmath> #include<algorithm> using namespace std; #define N 1000 struct point { double x; double y; }p1[N],pxSmall[N],pxLarge[N]; double Distance (point a , point b); double min (double a , double b); bool Compare_Y (point a , point b); bool Compare_X (point a , point b); double minDistance (int l, int r); int main() { int n ; double D ; cin>>n;
int main() { int n, x, *a; cin >> n; a = new int[n]; for (int i = 0; i < n; i++) cin >> a[i]; cin >> x; if (Triple_search(a, 0, n - 1, x) == -1) cout << "NotFound!" << endl; else cout << Triple_search(a, 0, n - 1, x) << endl; delete []a; return 0; } int Triple_search(int a[], int l, int r, int x) { if (l <= r) { int m1 = l + (r-l)/3; int m2 = l + (r-l)*2/3; if (a[m2]<x) return Triple_search(a, m2 + 1, r, x); else if (a[m1] < x && a[m2] > x) return Triple_search(a, m1 + 1, m2 - 1, x); else if (a[m1] > x) return Triple_search(a, l, m1 - 1, x); else if (a[m1] == x) return m1; else if (a[m2] == x) return m2; } return -1; }
算法分析与设计(习题答案)
算法分析与设计教程习题解答第1章 算法引论1. 解:算法是一组有穷的规则,它规定了解决某一特定类型问题的一系列计算方法。
频率计数是指计算机执行程序中的某一条语句的执行次数。
多项式时间算法是指可用多项式函数对某算法进行计算时间限界的算法。
指数时间算法是指某算法的计算时间只能使用指数函数限界的算法。
2. 解:算法分析的目的是使算法设计者知道为完成一项任务所设计的算法的优劣,进而促使人们想方设法地设计出一些效率更高效的算法,以便达到少花钱、多办事、办好事的经济效果。
3. 解:事前分析是指求出某个算法的一个时间限界函数(它是一些有关参数的函数);事后测试指收集计算机对于某个算法的执行时间和占用空间的统计资料。
4. 解:评价一个算法应从事前分析和事后测试这两个阶段进行,事前分析主要应从时间复杂度和空间复杂度这两个维度进行分析;事后测试主要应对所评价的算法作时空性能分布图。
5. 解:①n=11; ②n=12; ③n=982; ④n=39。
第2章 递归算法与分治算法1. 解:递归算法是将归纳法的思想应用于算法设计之中,递归算法充分地利用了计算机系统内部机能,自动实现调用过程中对于相关且必要的信息的保存与恢复;分治算法是把一个问题划分为一个或多个子问题,每个子问题与原问题具有完全相同的解决思路,进而可以按照递归的思路进行求解。
2. 解:通过分治算法的一般设计步骤进行说明。
3. 解:int fibonacci(int n) {if(n<=1) return 1;return fibonacci(n-1)+fibonacci(n-2); }4. 解:void hanoi(int n,int a,int b,int c) {if(n>0) {hanoi(n-1,a,c,b); move(a,b);hanoi(n-1,c,b,a); } } 5. 解:①22*2)(−−=n n f n② )log *()(n n n f O =6. 解:算法略。
算法设计与分析考试题目及答案
算法设计与分析考试题目及答案Revised at 16:25 am on June 10, 2021I hope tomorrow will definitely be better算法分析与设计期末复习题一、 选择题1.应用Johnson 法则的流水作业调度采用的算法是DA. 贪心算法B. 分支限界法C.分治法D. 动态规划算法塔问题如下图所示;现要求将塔座A 上的的所有圆盘移到塔座B 上,并仍按同样顺序叠置;移动圆盘时遵守Hanoi 塔问题的移动规则;由此设计出解Hanoi 塔问题的递归算法正确的为:B3. 动态规划算法的基本要素为C A. 最优子结构性质与贪心选择性质 B .重叠子问题性质与贪心选择性质 C .最优子结构性质与重叠子问题性质 D. 预排序与递归调用4. 算法分析中,记号O 表示B , 记号Ω表示A , 记号Θ表示D ; A.渐进下界 B.渐进上界 C.非紧上界 D.紧渐进界 E.非紧下界5. 以下关于渐进记号的性质是正确的有:A A.f (n)(g(n)),g(n)(h(n))f (n)(h(n))=Θ=Θ⇒=Θ B. f (n)O(g(n)),g(n)O(h(n))h(n)O(f (n))==⇒= C. Ofn+Ogn = Omin{fn,gn} D. f (n)O(g(n))g(n)O(f (n))=⇔=Hanoi 塔A. void hanoiint n, int A, int C, int B { if n > 0 {hanoin-1,A,C, B; moven,a,b;hanoin-1, C, B, A; } B. void hanoiint n, int A, int B, int C { if n > 0 {hanoin-1, A, C, B; moven,a,b; hanoin-1, C, B, A; }C. void hanoiint n, int C, int B, int A { if n > 0 { hanoin-1, A, C, B; moven,a,b; hanoin-1, C, B, A; }D. void hanoiint n, int C, int A, int B { if n > 0 {hanoin-1, A, C, B; moven,a,b;hanoin-1, C, B, A; }6.能采用贪心算法求最优解的问题,一般具有的重要性质为:AA. 最优子结构性质与贪心选择性质B.重叠子问题性质与贪心选择性质C.最优子结构性质与重叠子问题性质D. 预排序与递归调用7. 回溯法在问题的解空间树中,按D策略,从根结点出发搜索解空间树;广度优先 B. 活结点优先 C.扩展结点优先 D. 深度优先8. 分支限界法在问题的解空间树中,按A策略,从根结点出发搜索解空间树;A.广度优先 B. 活结点优先 C.扩展结点优先 D. 深度优先9. 程序块A是回溯法中遍历排列树的算法框架程序;A.B.C.D.10.xk的个数;11. 常见的两种分支限界法为DA. 广度优先分支限界法与深度优先分支限界法;B. 队列式FIFO分支限界法与堆栈式分支限界法;C. 排列树法与子集树法;D. 队列式FIFO分支限界法与优先队列式分支限界法;12. k带图灵机的空间复杂性Sn是指BA.k带图灵机处理所有长度为n的输入时,在某条带上所使用过的最大方格数;B.k带图灵机处理所有长度为n的输入时,在k条带上所使用过的方格数的总和;C.k带图灵机处理所有长度为n的输入时,在k条带上所使用过的平均方格数;D.k带图灵机处理所有长度为n的输入时,在某条带上所使用过的最小方格数;13. N P类语言在图灵机下的定义为DA.NP={L|L是一个能在非多项式时间内被一台NDTM所接受的语言};B.NP={L|L是一个能在多项式时间内被一台NDTM所接受的语言};C.NP={L|L是一个能在多项式时间内被一台DTM所接受的语言};D.NP={L|L是一个能在多项式时间内被一台NDTM所接受的语言};14. 记号O的定义正确的是A;A.Ogn = { fn | 存在正常数c和n0使得对所有n≥n0有:0≤ fn ≤cgn };B.Ogn = { fn | 存在正常数c和n0使得对所有n≥n0有:0≤ cgn ≤fn };>0使得对所有n≥n0C.Ogn = { fn | 对于任何正常数c>0,存在正数和n有:0 ≤fn<cgn };>0使得对所有n≥n0D.Ogn = { fn | 对于任何正常数c>0,存在正数和n有:0 ≤cgn < fn };15. 记号Ω的定义正确的是B;A.Ogn = { fn | 存在正常数c和n0使得对所有n≥n0有:0≤ fn ≤cgn };B.Ogn = { fn | 存在正常数c和n0使得对所有n≥n0有:0≤ cgn ≤fn };>0使得对所有n≥n0有:C.gn = { fn | 对于任何正常数c>0,存在正数和n0 ≤fn<cgn };D.gn = { fn | 对于任何正常数c>0,存在正数和n0 >0使得对所有n≥n0有:0 ≤cgn < fn };二、 填空题1. 下面程序段的所需要的计算时间为 2O(n ) ;2.3.4. 5.6. 用回溯法解题的一个显着特征是在搜索过程中动态产生问题的解空间;在任何时刻,算法只保存从根结点到当前扩展结点的路径;如果解空间树 中从根结点到叶结点的最长路径的长度为hn,则回溯法所需的计算空间通常为Ohn ;7. 回溯法的算法框架按照问题的解空间一般分为子集树算法框架与排列树算法框架;8. 用回溯法解0/1背包问题时,该问题的解空间结构为子集树结构; 9.用回溯法解批处理作业调度问题时,该问题的解空间结构为排列树结构; 10.用回溯法解0/1背包问题时,计算结点的上界的函数如下所示,请在空格中填入合适的内容:11. n m12. 用回溯法解图的m着色问题时,使用下面的函数OK检查当前扩展结点的每一个儿子所相应的颜色的可用性,则需耗时渐进时间上限Omn;13.;设分分解为k个子问题以及用merge将k个子问题的解合并为原问题的解需用fn个单位时间;用Tn表示该分治法解规模为|P|=n的问题所需的计算时间,则有:(1)1 ()(/)()1O nT nkT n m f n n=⎧=⎨+>⎩通过迭代法求得Tn的显式表达式为:log1log()(/)nmk j jmjT n n k f n m-==+∑试证明Tn的显式表达式的正确性;2. 举反例证明0/1背包问题若使用的算法是按照p i/w i的非递减次序考虑选择的物品,即只要正在被考虑的物品装得进就装入背包,则此方法不一定能得到最优解此题说明0/1背包问题与背包问题的不同;证明:举例如:p={7,4,4},w={3,2,2},c=4时,由于7/3最大,若按题目要求的方法,只能取第一个,收益是7;而此实例的最大的收益应该是8,取第2,3 个;3. 求证:Ofn+Ogn = Omax{fn,gn} ;证明:对于任意f1n∈ Ofn ,存在正常数c1和自然数n1,使得对所有n≥n1,有f1n≤ c1fn ;类似地,对于任意g1n ∈ Ogn ,存在正常数c2和自然数n2,使得对所有n≥n2,有g1n ≤c2gn ;令c3=max{c1, c2}, n3 =max{n1, n2},hn= max{fn,gn} ;则对所有的 n ≥ n3,有f1n +g1n ≤ c1fn + c2gn≤c3fn + c3gn= c3fn + gn≤ c32 max{fn,gn} = 2c3hn = Omax{fn,gn} .4. 求证最优装载问题具有贪心选择性质;最优装载问题:有一批集装箱要装上一艘载重量为c 的轮船;其中集装箱i 的重量为Wi;最优装载问题要求确定在装载体积不受限制的情况下,将尽可能多的集装箱装上轮船; 设集装箱已依其重量从小到大排序,x 1,x 2,…,x n 是最优装载问题的一个最优解;又设1min{|1}i i nk i x ≤≤== ;如果给定的最优装载问题有解,则有1k n ≤≤;证明: 四、 解答题1. 机器调度问题;问题描述:现在有n 件任务和无限多台的机器,任务可以在机器上得到处理;每件任务的开始时间为s i ,完成时间为f i ,s i <f i ;s i ,f i 为处理任务i 的时间范围;两个任务i,j 重叠指两个任务的时间范围区间有重叠,而并非指i,j 的起点或终点重合;例如:区间1,4与区间2,4重叠,而与4,7不重叠;一个可行的任务分配是指在分配中没有两件重叠的任务分配给同一台机器;因此,在可行的分配中每台机器在任何时刻最多只处理一个任务;最优分配是指使用的机器最少的可行分配方案;问题实例:若任务占用的时间范围是{1,4,2,5,4,5,2,6,4,7},则按时完成所有任务最少需要几台机器提示:使用贪心算法画出工作在对应的机器上的分配情况;2. 已知非齐次递归方程:f (n)bf (n 1)g(n)f (0)c =-+⎧⎨=⎩ ,其中,b 、c 是常数,gn 是n 的某一个函数;则fn 的非递归表达式为:nnn i i 1f (n)cb b g(i)-==+∑;现有Hanoi 塔问题的递归方程为:h(n)2h(n 1)1h(1)1=-+⎧⎨=⎩ ,求hn 的非递归表达式;解:利用给出的关系式,此时有:b=2, c=1, gn=1, 从n 递推到1,有: 3. 单源最短路径的求解;问题的描述:给定带权有向图如下图所示G =V,E,其中每条边的权是非负实数;另外,还给定V 中的一个顶点,称为源;现在要计算从源到所有其它各顶点的最短路长度;这里路的长度是指路上各边权之和;这个问题通常称为单源最短路径问题;解法:现采用Dijkstra 算法计算从源顶点1到其它顶点间最短路径;请将此过程填入下表中;4. 请写出用回溯法解装载问题的函数; 装载问题:有一批共n 个集装箱要装上2艘载重量分别为c1和c2的轮船,其中集装箱i 的重量为wi,且121ni i w c c =≤+∑;装载问题要求确定是否有一个合理的装载方案可将这n 个集装箱装上这2艘轮船;如果有,找出一种装载方案;解:void backtrack int i{用分支限界法解装载问题时,对算法进行了一些改进,下面的程序段给出了改进部分;试说明斜线部分完成什么功能,以及这样做的原因,即采用这样的方式,算法在执行上有什么不同;初始时将;也就是说,重量仅在搜索进入左子树是增加,因此,可以在算法每一次进入左子树时更新bestw 的值;43 2 110030maxint10 - {1} 初始 dist5 dist4 dist3 dist2 u S 迭代7. 最长公共子序列问题:给定2个序列X={x 1,x2,…,xm }和Y={y 1,y2,…,yn },找出X 和Y 的最长公共子序列;由最长公共子序列问题的最优子结构性质建立子问题最优值的递归关系;用cij 记录序列Xi 和Yj 的最长公共子序列的长度;其中, Xi={x1,x2,…,xi};Y j={y1,y2,…,yj};当i=0或j=0时,空序列是Xi 和Yj 的最长公共子序列;故此时Cij=0;其它情况下,由最优子结构性质可建立递归关系如下:00,0[][][1][1]1,0;max{[][1],[1][]},0;i j i ji j c i j c i j i j x y c i j c i j i j x y ⎧==⎪=--+>=⎨⎪-->≠⎩在程序中,bij 记录Cij 的值是由哪一个子问题的解得到的;8.1.2.3.4.5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含___________;6.动态规划算法的基本思想是将待求解问题分解成若干____________,先求解___________,然后从这些____________的解得到原问题的解;7.以深度优先方式系统搜索问题解的算法称为_____________;背包问题的回溯算法所需的计算时间为_____________,用动态规划算法所需的计算时间为____________;9.动态规划算法的两个基本要素是___________和___________;10.二分搜索算法是利用_______________实现的算法;二、综合题50分1.写出设计动态规划算法的主要步骤;2.流水作业调度问题的johnson算法的思想;3.若n=4,在机器M1和M2上加工作业i所需的时间分别为ai 和bi,且a 1,a2,a3,a4=4,5,12,10,b1,b2,b3,b4=8,2,15,9求4个作业的最优调度方案,并计算最优值;4.使用回溯法解0/1背包问题:n=3,C=9,V={6,10,3},W={3,4,4},其解空间有长度为3的0-1向量组成,要求用一棵完全二叉树表示其解空间从根出发,左1右0,并画出其解空间树,计算其最优值及最优解;5.设S={X1,X2,···,Xn}是严格递增的有序集,利用二叉树的结点来存储S中的元素,在表示S的二叉搜索树中搜索一个元素X,返回的结果有两种情形,1在二叉搜索树的内结点中找到X=Xi ,其概率为bi;2在二叉搜索树的叶结点中确定X∈Xi ,Xi+1,其概率为ai;在表示S的二叉搜索树T中,设存储元素Xi的结点深度为C i ;叶结点Xi,Xi+1的结点深度为di,则二叉搜索树T的平均路长p为多少假设二叉搜索树Tij={Xi ,Xi+1,···,Xj}最优值为mij,Wij= ai-1+bi+···+bj+aj,则mij1<=i<=j<=n递归关系表达式为什么6.描述0-1背包问题;三、简答题30分1.流水作业调度中,已知有n个作业,机器M1和M2上加工作业i所需的时间分别为ai 和bi,请写出流水作业调度问题的johnson法则中对ai和bi的排序算法;函数名可写为sorts,n2.最优二叉搜索树问题的动态规划算法设函数名binarysearchtree答案:一、填空1.确定性有穷性可行性 0个或多个输入一个或多个输出2.时间复杂性空间复杂性时间复杂度高低3. 该问题具有最优子结构性质4.{BABCD}或{CABCD}或{CADCD}5.一个最优解6.子问题子问题子问题7.回溯法8. on2n omin{nc,2n}9.最优子结构重叠子问题10.动态规划法二、综合题1.①问题具有最优子结构性质;②构造最优值的递归关系表达式;③最优值的算法描述;④构造最优解;2. ①令N1={i|ai<bi},N2={i|ai>=bi};②将N1中作业按ai的非减序排序得到N1’,将N2中作业按bi的非增序排序得到N2’;③N1’中作业接N2’中作业就构成了满足Johnson法则的最优调度;3.步骤为:N1={1,3},N2={2,4};N 1’={1,3}, N2’={4,2};最优值为:384.解空间为{0,0,0,0,1,0,0,0,1,1,0,0,0,1,1,1,0,1, 1,1,0,1,1,1}; 解空间树为:该问题的最优值为:16 最优解为:1,1,0 5.二叉树T 的平均路长P=∑=+ni 1Ci)(1*bi +∑=nj 0dj *aj{mij=0 i>j6.已知一个背包的容量为C,有n 件物品,物品i 的重量为W i ,价值为V i ,求应如何选择装入背包中的物品,使得装入背包中物品的总价值最大; 三、简答题 1.void sortflowjope s,int n {int i,k,j,l;fori=1;i<=n-1;i++ag=0 k++; ifk>n break;ag==0ifsk.a>sj.a k=j; swapsi.index,sk.index; swapsi.tag,sk.tag;} }l=i;<sj.b k=j;swapsi.index,sk.index; ag,sk.tag; }mij=Wij+min{mik+mk+1j} 1<=i<=j<=n,mii-1=0}2.void binarysearchtreeint a,int b,int n,int m,int s,int w{int i,j,k,t,l;fori=1;i<=n+1;i++{wii-1=ai-1;mii-1=0;}forl=0;l<=n-1;l++Init-single-sourceG,s2. S=Φ3. Q=VGQ<> Φdo u=minQS=S∪{u}for each vertex 3do 4四、算法理解题本题10分根据优先队列式分支限界法,求下图中从v1点到v9点的单源最短路径,请画出求得最优解的解空间树;要求中间被舍弃的结点用×标记,获得中间解的结点用单圆圈○框起,最优解用双圆圈◎框起;五、算法理解题本题5分设有n=2k个运动员要进行循环赛,现设计一个满足以下要求的比赛日程表:①每个选手必须与其他n-1名选手比赛各一次;②每个选手一天至多只能赛一次;③循环赛要在最短时间内完成;1如果n=2k,循环赛最少需要进行几天;2当n=23=8时,请画出循环赛日程表;六、算法设计题本题15分分别用贪心算法、动态规划法、回溯法设计0-1背包问题;要求:说明所使用的算法策略;写出算法实现的主要步骤;分析算法的时间;七、算法设计题本题10分通过键盘输入一个高精度的正整数nn的有效位数≤240,去掉其中任意s个数字后,剩下的数字按原左右次序将组成一个新的正整数;编程对给定的n 和s,寻找一种方案,使得剩下的数字组成的新数最小;样例输入178543S=4样例输出13一、填空题本题15分,每小题1分1.规则一系列运算2. 随机存取机RAMRandom Access Machine;随机存取存储程序机RASPRandom Access Stored Program Machine;图灵机Turing Machine3. 算法效率4. 时间、空间、时间复杂度、空间复杂度5.2n6.最好局部最优选择7. 贪心选择最优子结构二、简答题本题25分,每小题5分1、分治法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相独立且与原问题相同;对这k个子问题分别求解;如果子问题的规模仍然不够小,则再划分为k个子问题,如此递归的进行下去,直到问题规模足够小,很容易求出其解为止;将求出的小规模的问题的解合并为一个更大规模的问题的解,自底向上逐步求出原来问题的解;2、“最优化原理”用数学化的语言来描述:假设为了解决某一优化问题,需要依次作出n个决策D1,D2,…,Dn,如若这个决策序列是最优的,对于任何一个整数k,1 < k < n,不论前面k个决策是怎样的,以后的最优决策只取决于由前面决策所确定的当前状态,即以后的决策Dk+1,Dk+2,…,Dn也是最优的;3、某个问题的最优解包含着其子问题的最优解;这种性质称为最优子结构性质;4、回溯法的基本思想是在一棵含有问题全部可能解的状态空间树上进行深度优先搜索,解为叶子结点;搜索过程中,每到达一个结点时,则判断该结点为根的子树是否含有问题的解,如果可以确定该子树中不含有问题的解,则放弃对该子树的搜索,退回到上层父结点,继续下一步深度优先搜索过程;在回溯法中,并不是先构造出整棵状态空间树,再进行搜索,而是在搜索过程,逐步构造出状态空间树,即边搜索,边构造;5、PPolynomial问题:也即是多项式复杂程度的问题;NP就是Non-deterministicPolynomial的问题,也即是多项式复杂程度的非确定性问题;NPCNP Complete问题,这种问题只有把解域里面的所有可能都穷举了之后才能得出答案,这样的问题是NP里面最难的问题,这种问题就是NPC问题;三、算法填空本题20分,每小题5分1、n后问题回溯算法1 Mj&&Li+j&&Ri-j+N2 Mj=Li+j=Ri-j+N=1;3 tryi+1,M,L,R,A4 Aij=05 Mj=Li+j=Ri-j+N=0 2、数塔问题; 1c<=r2trc+=tr+1c 3trc+=tr+1c+1 3、Hanoi 算法 1movea,c2Hanoin-1, a, c , b 3Movea,c 4、1pv=NIL 2pv=u3 v ∈adju 4Relaxu,v,w四、算法理解题本题10分五、18天2分;2当n=23=8时,循环赛日程表3分;六、算法设计题本题15分 1贪心算法 Onlogn ➢ 首先计算每种物品单位重量的价值Vi/Wi,然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包;若将这种物品全部装入背包后,背包内的物品总重量未超过C,则选择单位重量价值次高的物品并尽可能多地装入背包;依此策略一直地进行下去,直到背包装满为止; ➢ 具体算法可描述如下:void Knapsackint n,float M,float v,float w,float x {Sortn,v,w; int i;for i=1;i<=n;i++ xi=0; float c=M;for i=1;i<=n;i++ {if wi>c break; xi=1; c-=wi; }if i<=n xi=c/wi; }2动态规划法 Oncmi,j 是背包容量为j,可选择物品为i,i+1,…,n 时0-1背包问题的最优值;由0-1背包问题的最优子结构性质,可以建立计算mi,j 的递归式如下;void KnapSackint v,int w,int c,int n,int m11 {int jMax=minwn-1,c;for j=0;j<=jMax;j++ /mn,j=0 0=<j<wn/ mnj=0;1 2 3 4 5 6 7 82 1 43 6 5 8 73 4 1 2 7 8 5 64 3 2 1 8 7 6 55 6 7 8 1 2 3 4 6 5 8 7 2 1 4 37 8 5 6 3 4 1 28 7 6 5 4 3 2 1for j=wn;j<=c;j++ /mn,j=vn j>=wn/mnj=vn;for i=n-1;i>1;i--{ int jMax=minwi-1,c;for j=0;j<=jMax;j++ /mi,j=mi+1,j 0=<j<wi/mij=mi+1j;for j=wi;j<=c;j++/mn,j=vn j>=wn/mij=maxmi+1j,mi+1j-wi+vi;}m1c=m2c;ifc>=w1m1c=maxm1c,m2c-w1+v1;}3回溯法 O2ncw:当前重量 cp:当前价值 bestp:当前最优值voidbacktrack int i//回溯法 i初值1{ifi>n //到达叶结点{ bestp=cp; return; }ifcw+wi<=c //搜索左子树{cw+=wi;cp+=pi;backtracki+1;cw-=wi;cp-=pi;}ifBoundi+1>bestp//搜索右子树backtracki+1;}七、算法设计题本题10分为了尽可能地逼近目标,我们选取的贪心策略为:每一步总是选择一个使剩下的数最小的数字删去,即按高位到低位的顺序搜索,若各位数字递增,则删除最后一个数字,否则删除第一个递减区间的首字符;然后回到串首,按上述规则再删除下一个数字;重复以上过程s次,剩下的数字串便是问题的解了;具体算法如下:输入s, n;while s > 0{ i=1; //从串首开始找while i < lengthn && ni<ni+1{i++;}deleten,i,1; //删除字符串n的第i个字符s--;}while lengthn>1&& n1=‘0’deleten,1,1; //删去串首可能产生的无用零输出n;。
算法分析与设计第二版习题答案-第三章到第五章
int bool=1;
int min;
int j;
int i;
int k;
int flag;
for(i=0;i<count;i++)
{
if(buf[i]=='(')
push(buf[i],i);
if(buf[i]==')')
{
flag=pop();
算法设计与分析(第二版)习题答案 主编:吕国英
算法设计与分析(第二版)习题答案(第三章)
第三章:
1.#include<stdlib.h>#include<stdio.h>int main(int argc,char **argv){int n;int i,j,k;int *buf;printf("请输入n的数值:");
;}for(i=0;i<N;i++){ for(j=0;j<N;j++) printf("]",buf[i][j]); printf("\n");}return
0;}6.#include<stdio.h>#include<stdlib.h>typedef struct s_node s_list;typedef s_list *link;struct s_node{char ch;int flag;link next;};link top;void push(char ch,int flag){link newnode;newnode=(link)malloc(sizeof(s_list));newnode->ch=ch;newnode- >flag=flag;newnode-
算法设计与分析习题答案1-6章
习题11. 图论诞生于七桥问题。
出生于瑞士的伟大数学家欧拉(LeonhardEuler ,1707—1783)提出并解决了该问题。
七桥问题是这样描述的:一个人是否能在一次步行中穿越哥尼斯堡(现在叫加里宁格勒,在波罗的海南岸)城中全部的七座桥后回到起点,且每座桥只经过一次,图是这条河以及河上的两个岛和七座桥的草图。
请将该问题的数据模型抽象出来,并判断此问题是否有解。
七桥问题属于一笔画问题。
输入:一个起点输出:相同的点1, 一次步行2, 经过七座桥,且每次只经历过一次3, 回到起点该问题无解:能一笔画的图形只有两类:一类是所有的点都是偶点。
另一类是只有二个奇点的图形。
图 七桥问题南2.在欧几里德提出的欧几里德算法中(即最初的欧几里德算法)用的不是除法而是减法。
请用伪代码描述这个版本的欧几里德算法=m-n2.循环直到r=0m=nn=rr=m-n3 输出m3.设计算法求数组中相差最小的两个元素(称为最接近数)的差。
要求分别给出伪代码和C++描述。
编写程序,求n至少为多大时,n个“1”组成的整数能被2013整除。
#include<iostream>using namespace std;int main(){double value=0;for(int n=1;n<=10000 ;++n){value=value*10+1;if(value%2013==0){cout<<"n至少为:"<<n<<endl;break;}}计算π值的问题能精确求解吗编写程序,求解满足给定精度要求的π值#include <iostream>using namespace std;int main (){double a,b;double arctan(double x);圣经上说:神6天创造天地万有,第7日安歇。
为什么是6天呢任何一个自然数的因数中都有1和它本身,所有小于它本身的因数称为这个数的真因数,如果一个自然数的真因数之和等于它本身,这个自然数称为完美数。
算法分析与设计作业及参考答案
算法分析与设计作业及参考答案作业题目1、请分析冒泡排序算法的时间复杂度和空间复杂度,并举例说明其在什么情况下性能较好,什么情况下性能较差。
2、设计一个算法,用于在一个已排序的整数数组中查找特定元素。
要求算法的时间复杂度为 O(log n)。
3、比较贪心算法和动态规划算法的异同,并举例说明它们在实际问题中的应用。
参考答案一、冒泡排序算法的分析冒泡排序(Bubble Sort)是一种简单的排序算法。
它重复地走访要排序的数列,一次比较两个数据元素,如果顺序不对则进行交换,并一直重复这样的走访操作,直到没有要交换的数据元素为止。
1、时间复杂度最坏情况:数组完全逆序,需要进行 n(n 1) / 2 次比较和交换操作,时间复杂度为 O(n^2)。
最好情况:数组已经有序,不需要进行交换操作,只需要进行 n 1 次比较,时间复杂度为 O(n)。
平均情况:时间复杂度也为 O(n^2)。
2、空间复杂度冒泡排序只在交换元素时使用了临时变量,空间复杂度为 O(1),是一个原地排序算法。
3、性能分析性能较好的情况:当数组规模较小且接近有序时,冒泡排序的性能相对较好。
因为在这种情况下,比较和交换的次数相对较少。
性能较差的情况:当数组规模较大且无序程度较高时,冒泡排序的性能会非常差。
因为需要进行大量的比较和交换操作,时间消耗很大。
例如,对于数组 2, 1, 3, 5, 4,冒泡排序需要经过多次比较和交换才能将其排序为 1, 2, 3, 4, 5。
而对于已经有序的数组 1, 2, 3, 4, 5,冒泡排序只需要进行较少的比较操作就能确定数组已经有序。
二、在已排序数组中查找特定元素的算法设计对于在已排序的整数数组中查找特定元素,我们可以使用二分查找(Binary Search)算法。
二分查找的基本思想是:将数组从中间分成两部分,比较目标元素与中间元素的大小,如果目标元素小于中间元素,则在左半部分继续查找;如果目标元素大于中间元素,则在右半部分继续查找;如果目标元素等于中间元素,则查找成功。
算法分析与设计考试复习题及参考答案jing
一、填空题1、算法的复杂性是算法效率2、的度量,是评价算法优劣的重要依据。
1、设n为正整数,利用大“O(·)”记号,将下列程序段的执行时间表示为n的函数,则下面程序段的时间复杂度为O(n)2、。
i=1; k=0;while(i<n) { k=k+10*i;i++; }3、计算机的资源最重要的是时间和空间资源。
因而,算法的复杂性有时间复杂度和空间复杂度之分。
3、f(n)= 6×2n+n2,f(n)的渐进性态f(n)= O( 2n4、 )5、递归是指函数直接或者间接通过一些语句调用自身。
4、分治法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相独立6、且与原问题相同。
二、选择题(本题20分,每小题2分)1、分支限界法与回溯法都是在问题的解空间树T上搜索问题的解,二者( B )。
A.求解目标不同,搜索方式相同B.求解目标不同,搜索方式也不同C.求解目标相同,搜索方式不同D.求解目标相同,搜索方式也相同2、回溯法在解空间树T上的搜索方式是( A)。
A.深度优先B.广度优先C.最小耗费优先D.活结点优先3、在对问题的解空间树进行搜索的方法中,一个活结点最多有一次机会成为活结点的是( B )。
A.回溯法B.分支限界法C.回溯法和分支限界法D.回溯法求解子集树问题4、以下关于判定问题难易处理的叙述中正确的是( C )。
A.可以由多项式时间算法求解的问题是难处理的B.需要超过多项式时间算法求解的问题是易处理的C.可以由多项式时间算法求解的问题是易处理的D.需要超过多项式时间算法求解的问题是不能处理的5、设f(N),g(N)是定义在正数集上的正函数,如果存在正的常数C和自然数N0,使得当N≥N0时有f(N)≤Cg(N),则称函数f(N)当N充分大时有上界g(N),记作f(N)=O(g(N)),即f(N)的阶( A )g(N)的阶。
A.不高于B.不低于C.等价于D.逼近6、对于含有n个元素的子集树问题,最坏情况下其解空间的叶结点数目为( B )。
算法设计与分析课后习题
算法设计与分析课后习题(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章1. 算法分析题算法分析题1-1 求下列函数的渐进表达式(1). 3n^2 + 10n < 3n^2 + 10n^2 = 13n^2 = O(n^2)(2). n^2 / 10 + 2^n当n>5是,n^2 < 2 ^n所以,当n >= 1时,n^2/10 < 2 ^n故: n^2/10 + 2^n < 2 ^n + 2^n = 2*2^n = O(2^n)(3). 21 + 1/n < 21 + 1 = 22 = O(1)(4). log(n^3)=3log(n)=O(log(n))(5). 10log(3^n) = (10log3)n = O(n)算法分析题1-6(1)因为:f(n)=log(n^2) = 2log(n); g(n) = log(n) + 5所以:f(n)=Θ(log(n)+5) =Θ(g(n))(2)因为:log(n) < √n ; f(n) = 2log(n); g(n)= √n所以:f(n) = O(g(n))(3)因为:log(n) < n; f(n) = n; g(n) = log(n^2) = 2log(n)所以;f(n) = Ω(g(n))(4)因为:f(n) = nlogn +n; g(n) = logn所以:f(n) =Ω(g(n))(5)因为: f(n) = 10; g(n) = log(10)所以:f(n) =Θ(g(n))(6)因为: f(n)=log^2(n); g(n) = log(n)所以: f(n) ==Ω(g(n))(7)因为: f(n) = 2^n < 100*2^n; g(n)=100n^2; 2^n > n ^2所以: f(n) = Ω(g(n))(8)因为:f(n) = 2^n; g(n) = 3 ^n; 2 ^n < 3 ^n所以: f(n) = O(g(n))习题1-9 证明:如果一个算法在平均情况下的计算时间复杂性为Θ(f(n)),该算法在最坏情况下所需的计算时间为Ω(f(n)).分析与解答:因此,Tmax(N) = Ω(Tavg(N)) = Ω(Θ(f(n)))=Ω(f(n)).第二章算法分析题2-3 设a[0:n-1]是已经排好序的数组。
算法设计与分析-课后习题集答案
第一章3. 最大公约数为1。
快1414倍。
程序1-2的while 循环体做了10次,程序1-3的while 循环体做了14141次(14142-2循环)8.(1)画线语句的执行次数为log n ⎡⎤⎢⎥。
(log )n O 。
(2)画线语句的执行次数为111(1)(21)16jnii j k n n n ===++=∑∑∑。
3()n O 。
(3)画线语句的执行次数为。
O 。
(4)当n 为奇数时画线语句的执行次数为(1)(1)4n n +-, 当n 为偶数时画线语句的执行次数为 (2)4n n +。
2()n O 。
10.(1) 当 1n ≥ 时,225825n n n -+≤,所以,可选 5c =,01n =。
对于0n n ≥,22()5825f n n n n =-+≤,所以,22582()-+=O n n n 。
(2) 当 8n ≥ 时,2222582524n n n n n -+≥-+≥,所以,可选 4c =,08n =。
对于0n n ≥,22()5824f n n n n =-+≥,所以,22582()-+=Ωn n n 。
(3) 由(1)、(2)可知,取14c =,25c =,08n =,当0n n ≥时,有22212582c n n n c n ≤-+≤,所以22582()-+=Θn n n 。
11. (1) 当3n ≥时,3log log n n n <<,所以()20log 21f n n n n =+<,3()log 2g n n n n =+>。
可选212c =,03n =。
对于0n n ≥,()()f n cg n ≤,即()(())f n g n =O 。
(2) 当 4n ≥ 时,2log log n n n <<,所以 22()/log f n n n n =<,22()log g n n n n =≥。
可选 1c =,04n =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.最大子段和问题:给定整数序列 n a a a ,,,21 ,求该序列形如 jik k a 的子段和的最大值:ji k k n j i a 1max ,0max1) 已知一个简单算法如下:int Maxsum(int n,int a,int& best i,int& bestj){ int sum = 0;for (int i=1;i<=n;i++){ int suma = 0;for (int j=i;j<=n;j++){ suma + = a[j]; if (suma > sum){ sum = suma; besti = i; bestj = j; } }}return sum;}试分析该算法的时间复杂性。
2) 试用分治算法解最大子段和问题,并分析算法的时间复杂性。
3) 试说明最大子段和问题具有最优子结构性质,并设计一个动态规划算法解最大子段和问题。
分析算法的时间复杂度。
(提示:令1()max,1,2,,jki j nk ib j a j n L )解:1)分析按照第一章,列出步数统计表,计算可得)(2n O2)分治算法:将所给的序列a[1:n]分为两段a [1:n/2]、a[n/2+1:n],分别求出这两段的最大子段和,则a[1:n]的最大子段和有三种可能: ①a[1:n]的最大子段和与a[1:n/2]的最大子段和相同; ②a[1:n]的最大子段和与a[n/2+1:n]的最大子段和相同; ③a[1:n]的最大子段和为两部分的字段和组成,即j n jil n i ja a a a a122;intMaxSubSum ( int *a, int left , int right){int sum =0;if( left==right)sum = a[left] > 0? a[ left]:0 ;else{int center = ( left + right) /2;int leftsum =MaxSubSum ( a, left , center) ;int rightsum =MaxSubSum ( a, center +1, right) ;int s_1 =0;int left_sum =0;for ( int i = center ; i >= left; i--){left_sum + = a [ i ];if( left_sum > s1)s1 = left_sum;}int s2 =0;int right_sum =0;for ( int i = center +1; i <= right ; i++){right_sum + = a[ i];if( right_sum > s2)s2 = right_sum;}sum = s1 + s2;if ( sum < leftsum)sum = leftsum;if ( sum < rightsum)sum = rightsum;}return sum;}int MaxSum2 (int n){int a;returnMaxSubSum ( a, 1, n) ;} 该算法所需的计算时间T(n)满足典型的分治算法递归分式T(n)=2T(n/2)+O(n),分治算法的时间复杂度为O(nlogn)3)设}{max )(1 j ik k ji a j b ,则最大子段和为).(max max max max max 11111j b a a nj jik k ji n j j ik k nj n i},,,,max {)(11211j j j j j j j a a a a a a a a a j b最大子段和实际就是)}(,),2(),1(max{n b b b .要说明最大子段和具有最优子结构性质,只要找到其前后步骤的迭代关系即可。
},)1(max {},}{max max {},}{max {}{max )(1111111j j j j j ik k j i j j i j j i k k ji k k j i a a j b a a a a a a a j b若0)1( j b , j a j b j b )1()(;若0)1( j b ,j a j b )(。
因此,计算)(j b 的动态规划的公式为:.1},,)1(max {)(n j a a j b j b j jintMaxSum (int* a ,int n ) {int sum = 0, b = 0,j=0; for( int i=1;i<=n;i++) { if( b >0)b = b + a [i];elseb = a [i];end{if} if( b > sum)sum = b;j=i ; end{if}}return sum; }自行推导,答案:时间复杂度为O (n )。
2.动态规划算法的时间复杂度为O (n )(双机调度问题)用两台处理机A 和B 处理n 个作业。
设第i 个作业交给机器A 处理时所需要的时间是i a ,若由机器B 来处理,则所需要的时间是i b 。
现在要求每个作业只能由一台机器处理,每台机器都不能同时处理两个作业。
设计一个动态规划算法,使得这两台机器处理完这n 个作业的时间最短(从任何一台机器开工到最后一台机器停工的总的时间)。
以下面的例子说明你的算法:)4,3,11,4,8,3(),,,,,(),2,5,10,7,5,2(),,,,,(,6654321654321 b b b b b b a a a a a a n解:(思路一)删除(思路二)在完成前k 个作业时,设机器A 工作了x 时间,则机器B 最小的工作时间是x 的一个函数。
设F[k][x]表示完成前k 个作业时,机器B 最小的工作时间,则)}](1[,)](1[m in{)]([k k a x k F b x k F x k F其中k b x k F )](1[对应第k 个作业由机器B 来处理(完成k-1个作业时机器A 工作时间仍是x ,则B 在k-1阶段用时为)](1[x k F );而)](1[k a x k F 对应第k 个作业由机器A 处理(完成k-1个作业,机器A 工作时间是x-a[k],而B 完成k 阶段与完成k-1阶段用时相同为)](1[k a x k F )。
则完成前k 个作业所需的时间为)}]([,max{x k F x 1)当处理第一个作业时,a[1]=2,b[1]=3;机器A 所花费时间的所有可能值围:0 x a[0]. x<0时,设F[0][x]= ∞,则max(x, ∞)= ∞; 0 x<2时,F[1][x]=3,则Max(0,3)=3, x 2时, F[1][x]= 0,则Max(2,0)=2;2)处理第二个作业时:x 的取值围是:0 <= x <= (a[0] + a[1]), 当x<0时,记F[2][x] = ∞;以此类推下去(思路三)假定n 个作业的集合为 n S n ,,2,1 。
设J 为n S 的子集,若安排J 中的作业在机器A 上处理,其余作业在机器B 上处理,此时所用时间为J S j j Jj j b a J T \,max )(, 则双机处理作业问题相当于确定n S 的子集J ,使得安排是最省时的。
即转化为求J 使得)}({min J T nS J 。
若记 1,,2,11 n S n ,则有如下递推关系:J S j j n J j j S J J S j j J j j n S J I S j j I j j S I b b a b a a b a n n n \\\,max min ,,max min min ,max min 11--(思路四)此问题等价于求(x 1,……x n ),使得它是下面的问题最优解。
min max{x 1a 1+……x n a n ,(1-x 1)b 1+……+(1-x n )b n } x i =0或1,i=1~n基于动态规划算法的思想,对每个任务i ,依次计算集合S (i)。
其中每个集合中元素都是一个3元组(F 1,F 2,x )。
这个3元组的每个分量定义为 F 1:处理机A 的完成时间 F 2:处理机B 的完成时间 x :任务分配变量。
当x i =1时表示将任务i 分配给处理机A ,当x i =0时表示分配给处理机B 。
初始时,S (0)={(0,0,0)}令F=按处理时间少的原则来分配任务的方案所需的完成时间。
例如,当(a 1,a 2,a 3,a 4,a 5,a 6)=(2,5,7,10,5,2),(b 1,b 2,b 3,b 4,b 5,b 6)=(3,8,4,11,3,4)时,按处理时间少的原则分配任务的方案为(x 1,x 2,x 3,x 4,x 5,x 6)=(1,1,0,1,0,1) 因此,F=max{2+5+10+2,7+5}=19。
然后,依次考虑任务i ,i=1~n 。
在分配任务i 时,只有2种情形,x i =1或x i =0。
此时,令S(i)={S(i-1)+(a i,0,2i)}U{S(i-1)+(0,b i,0)}在做上述集合并集的计算时,遵循下面的原则:①当(a,b,c),(d,e,f)ЄS(i)且a=d,b<=e时,仅保留(a,b,c);②仅当max{a,b}<=F时,(a,b,c)ЄS(i)最后在S(n)中找出使max{F1,F2}达到最小的元素,相应的x即为所求的最优解,其最优值为max{F1,F2}。
当(a1,a2,a3,a4,a5,a6)=(2,5,7,10,5,2),(b1,b2,b3,b4,b5,b6)=(3,8,4,11,3,4)时, 按处理时间少的原则分配任务的方案为(x1,x2,x3,x4,x5,x6)=(1,1,0,1,0,1)因此,F=max{2+5+10+2,7+5}=19。
S(0)={(0,0,0)};S(1)={(2,0,2),(0,3,0)}S(2)={(7,0,6),(5,3,4),(2,8,2),(0,11,0)}S(3)={(14,0,14),(12,3,12),(9,8,10), (7,4,6), (5,7,4),(2,12,2),(0,15,0)}S(4)={(19,8,26), (17,4,22),(15,7,20),(12,12,18),(14,11,14),(9,19,10),(7,15,6),(5,18,4)}S(5)={ (19,11,46), (12,15,38), (19,11,26), (17,7,22), (15,10,20),(12,15,18),(14,14,14),(7,18,6)}S(6)={ (14,15,102),(19,7,86),(17,10,84),(14,15,82), (9,18,70),(12,19,38), (15,14,20),(12,19,18)} max(F1,F2)最小的元组为(14,15,102), (14,15,82), (15,14,20)所以,完成所有作业最短时间是15,安排有三种:(1,1,0,0,1,1),(1,0,0,1,0,1),(0,1,0,1,0,0)(思路五)C++ 源代码如下:#include<iostream>using namespace std;const int MAXS = 70;const int MAXN = 10;bool p[MAXS][MAXS][MAXS];int a[MAXS],b[MAXS];int schduleDyn(int * a,int * b,int n,int mn){ int i,j,k;//===========数组初始化===================for(i = 0; i <= mn; i++)for(j = 0; j <= mn; j++){ p[i][j][0] = true;for(k = 1 ; k <= n; k++)p[i][j][k] = false;}//===========动态递归=============for(k = 1; k <= n; k ++)for(i = 0; i <= mn; i++)for(j = 0; j <= mn; j++){ if( (i - a[k-1]) >= 0)p[i][j][k] = p[i - a[k-1]][j][k-1];if( (j - b[k-1]) >= 0)p[i][j][k] = (p[i][j][k] | p[i][j-b[k-1]][k-1]);}//================求结果=====================int rs = mn;int temp = 0;for(i = 0; i <= mn; i++)for(j = 0; j <= mn ; j++){if(p[i][j][n]){ temp = i > j ? i : j;if(temp < rs)rs = temp;}}return rs;}void main(){int i,n,m = 0,mn = 0;//=============初始化========================cin >> n;for(i = 0; i < n; i++){ cin >> a[i];if(a[i] > m)m = a[i];}for(i = 0; i < n; i++){cin >> b[i];if(b[i] > m)m = b[i];}mn = m * n;//=========动态规划求解=================cout << schduleDyn(a,b,n,mn) << endl;system("pause");}对于例子: n = 6 ;(a1,….,a6) = (2 5 7 10 5 2),(b,1…,b6) = (3 8 4 11 3 4); 由于求解过程比较繁锁,这里只说个大概算法执行过程,首先,用p[i][j][k],记录下对于第k 个作业,能否在对于a机器是i时间以,对于b机器是j时间以完成,如果能,则把p[i][j][k]设为true.经过了设置后,求对于n个作业的所有可能的值为p[i][j][n],对min(max(i,j)),结果为15.即为所得到的结果.3.考虑下面特殊的整数线性规划问题ni x b xa x c i ni iini ii 1},2,1,0{,max 11试设计一个解此问题的动态规划算法,并分析算法的时间复杂度。