高等数学1试题(附答案解析)

合集下载

高等数学一考试题及答案

高等数学一考试题及答案

高等数学一考试题及答案一、单项选择题(每题2分,共10题)1. 极限的定义中,当x趋近于a时,函数f(x)的极限为L,意味着:A. 对于任意的正数ε,存在正数δ,使得当0<|x-a|<δ时,|f(x)-L|<εB. 对于任意的正数ε,存在正数δ,使得当|x-a|<δ时,|f(x)-L|<εC. 对于任意的正数ε,存在正数δ,使得当x≠a时,|f(x)-L|<εD. 对于任意的正数ε,存在正数δ,使得当x>a时,|f(x)-L|<ε答案:B2. 以下哪个函数是偶函数?A. f(x) = x^2 + xB. f(x) = x^3 - xC. f(x) = cos(x)D. f(x) = sin(x)答案:C3. 积分∫(0 to 1) x^2 dx的值是:A. 1/3B. 1/2C. 2/3D. 3/2答案:A4. 微分方程dy/dx = 2x的通解是:A. y = x^2 + CB. y = 2x^2 + CC. y = x + CD. y = 2x + C答案:A5. 以下哪个级数是收敛的?A. 1 + 1/2 + 1/4 + 1/8 + ...B. 1 - 1/2 + 1/3 - 1/4 + ...C. 1 + 2 + 3 + 4 + ...D. 1/2 + 1/4 + 1/8 + 1/16 + ... 答案:D6. 函数f(x) = e^x的导数是:A. e^xB. e^(-x)C. -e^xD. -e^(-x)答案:A7. 以下哪个函数在x=0处有极值?A. f(x) = x^3B. f(x) = x^2C. f(x) = sin(x)D. f(x) = e^x答案:B8. 以下哪个选项是二阶导数?A. f'(x)B. f''(x)C. f'''(x)D. f(x)答案:B9. 以下哪个函数是周期函数?A. f(x) = x^2B. f(x) = e^xC. f(x) = sin(x)D. f(x) = ln(x)答案:C10. 以下哪个函数是单调递增的?A. f(x) = -x^2B. f(x) = x^3C. f(x) = e^(-x)D. f(x) = ln(x)答案:B二、填空题(每题3分,共5题)1. 函数f(x) = x^3在x=1处的导数是______。

高等数学第一章课后习题答案(带解析)

高等数学第一章课后习题答案(带解析)

第一章函数与极限第一节映射与函数一、填空题1.函数ln(2)y x =+的定义域为[1,)(2,1]+∞-- .2.设函数2(1)f x x x +=+,则=)(x f x x -2.3.设函数()f x 的定义域为[0,1],则(e )xf 的定义域为(,0]-∞.4.已知()sin f x x =,[]2()1f x x ϕ=-,则()x ϕ=2arcsin(1)x -,其定义域为5.设2,0,()e ,0,x x x f x x ⎧-≥=⎨<⎩()ln x x ϕ=,则复合函数[]()f x ϕ=2ln ,1,01x x x x ⎧-≥⎨<<⎩.6.设函数1,1,()0,1,x f x x ⎧≤⎪=⎨>⎪⎩则[]()f f x =1.7.函数(10)y x =-≤<二、单项选择题1.函数lnarcsin 23x xy x =+-的定义域为C .A.(,3)(3,2)-∞-- B.(0,3)C.[3,0)(2,3]- D.(,)-∞+∞2.设(1)f x -的定义域为[0,](0)a a >,则()f x 的定义域为B.A.[1,1]a +B.[1,1]a -- C.[1,1]a a -+ D.[1,1]a a -+3.函数11x y x -=+的反函数是D .A.11x y x -=+ B.11xy x-=+ C.11x y x +=- D.11x y x+=-4.设()f x 为奇函数,()x ϕ为偶函数,且[()]f x ϕ有意义,则[()]f x ϕ为B.A.奇函数B.偶函数C.非奇非偶函数D.以上均不正确三、解答题1.判断函数(ln y x =+的奇偶性,并求其反函数.解:因为()ln(ln(()f x x x f x -=-==-=-,所以()f x 是奇函数.由e yx =,e yx --=,得e e 2y y x --=,所以反函数为e e 2x xy --=2.设)(x f 满足c b a xcx bf x af ,,()1()(=-+均为常数,且)b a ≠,求)(x f .解:x cx bf x af =-+)1()()1(令t x =-1,则t x -=1,故t c t bf t af -=+-1)()1(.xcx bf x af -=+-∴1)()1(.(2)联立(1),(2)得到1(1)(22xbcx ac b a x f ---=.四、证明2()1xf x x =+在其定义域内有界.证明:,x R ∀∈取12M =,使得21()122x x f x M x x =≤==+,所以()f x 在其定义域R 内有界.第二节数列的极限一、单项选择题1.数列极限lim n n y A →∞=的几何意义是D .A.在点A 的某一邻域内部含有{}n y 中的无穷多个点B.在点A 的某一邻域外部含有{}n y 中的无穷多个点C.在点A 的任何一个邻域外部含有{}n y 中的无穷多个点D.在点A 的任何一个邻域外部至多含有{}n y 中的有限多个点nn n 632-∞→A.65-B.31 C.35 D.13.数列有界是数列收敛的C条件.A.充分B.充要C.必要D.两者没有关系二、利用数列极限的定义证明:1cos lim0n nn→∞+=.证明:对0ε∀>,要使1cos 1cos 20n n n n nε++-=≤<,只需2n ε>.0ε∀>,取2N ε⎡⎤=⎢⎥⎣⎦,则当n N >时,就有1cos 0n n ε+-<成立,所以1cos lim0n nn→∞+=.第三节函数的极限一、单项选择题1.=+→x x x 1lim2A.A.32 B.1C.21 D.2.若函数()f x 在某点0x 极限存在,则C.A.()f x 在点0x 的函数值必存在且等于该点极限值B.()f x 在点0x 的函数值必存在,但不一定等于该点极限值C.()f x 在点0x 的函数值可以不存在D.若()f x 在点0x 的函数值存在,必等于该点极限值∞→32x x A.1B.21 C.0D.不存在4.极限0limx x x→=D .A.1B.1- C.0D.不存在二、利用函数极限的定义证明:236lim 53x x x x →--=-.证明:0ε∀>,要使26533x x x x ε---=-<-,只需取δε=,则当03x δ<-<时,就有26533x x x x ε---=-<-成立,所以236lim 53x x x x →--=-.第四节无穷小与无穷大一、单项选择题1.下列命题正确的是C.A.无穷小量的倒数是无穷大量B.无穷小量是绝对值很小很小的数C.无穷小量是以零为极限的变量D.无界变量一定是无穷大量2.下列变量在给定的变化过程中为无穷小量的是C.A.1sin(0)x x→ B.1e (0)xx →C.2ln(1)(0)x x +→ D.21(1)1x x x -→-3.下列命题正确的是D.A.两个无穷小的商仍然是无穷小B.两个无穷大的商仍然是无穷大C.112--x x 是1→x 时的无穷小D.1-x 是1→x 时的无穷小4.(附加题)设数列{}n x 与{}n y 满足lim 0n n n x y →∞=,则下列命题正确的是B.A.若{}n x 发散,则{}n y 发散B.若1n x ⎧⎫⎨⎩⎭为无穷小,则{}n y 必为无穷小C.若{}n x 无界,则{}n y 必有界 D.若{}n x 有界,则{}n y 必为无穷小提示:已知n n x y 为无穷小,当1n x 为无穷小时,必有1()n n n ny x y x =⋅为无穷小;否A,例n x n =发散,21n y n=收敛;否C,例1(1),1(1)n n n n x n y n ⎡⎤⎡⎤=+-⋅=--⋅⎣⎦⎣⎦均无界;否D,例21n x n=有界,n y n =非无穷小.第五节极限运算法则一、填空题1.21lim2x x x x →+=++12. 2.121lim1x x x →+=-∞.3.22121lim1x x x x →-+=-0.4.212lim3n n n →∞+++=+ 12.5.若232lim43x x x kx →-+=-,则常数k =3-.提示:由已知,得23lim(2)0x x x k →-+=,3k ∴=-.6.设213lim 112x a x x x →⎛⎫-=⎪--⎝⎭,则常数a =2.提示:由已知,222113lim ,lim()012x x a x x a x x x →→--=∴--=-,从而2a =.7.e 1lim e 1n nn →∞-=+1.提示:11e 1e lim lim 11e 11en n n n n n→∞→∞--==++8.=-+++∞→)2324(lim 2x x x x 21.9.11021lim 21xx x-→-=+-1,1121lim 21xx x+→-=+1,所以11021lim21xx x →-+不存在.提示:11lim 20,lim 2x xx x -+→→==+∞10.已知21sin ,0()1,0x x x f x x x ⎧<⎪⎪=>⎪⎩,则0lim ()x f x →=0.二、计算题1.220()lim h x h x h→+-解:1.2222220000()22limlim lim lim(2)2h h h h x h x x xh h x xh h x h x h h h →→→→+-++-+===+=.2.231lim (2sin )x x x x x→∞-++解:因为2332111lim lim 011x x x x x x x x→∞→∞--==++,而2sin x +为有界函数,所以根据无穷小量与有界函数的乘积仍为无穷小量,知231lim (2sin )0x x x x x→∞-+=+.3.322232lim 6x x x x x x →-++--解:32222232(1)(2)(1)2lim lim lim 6(3)(2)35x x x x x x x x x x x x x x x x →-→-→-+++++===----+-.4.21lim1x x →-解:211lim1x x x →→=-1x →=14x →=.5.lim x →+∞解:lim x →+∞=limxlimlimx x ==1=-.6.求)1111(lim 31xx x ---→.解:原式32112lim x x x x --+=→)1)(1()2)(1(lim21x x x x x x ++-+-=→112lim21-=+++-=→x x x x .第六节极限存在准则两个重要极限一、填空题1.0sin lim x x x →=1;sin lim x xx→∞=0.提示:0sin lim1x x x →=;sin 1lim lim sin 0x x x x x x →∞→∞=⋅=.2.0sin limsin x x x x x →-=+0;sin lim sin x x xx x→∞-=+1.提示:00sin 1sin lim lim 0sin sin 1x x x x x x x x x x →→--==++;11sin sin lim lim 11sin 1sin x x xx x x x x xx→∞→∞-⋅-==++⋅.3.1lim 1kxx x →∞⎛⎫-= ⎪⎝⎭e k-(k 为正整数).提示:.()11lim 1lim 1e kxx k k x x x x ---→∞→∞⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭.4.10lim 12xx x →⎛⎫-= ⎪⎝⎭12e-.提示:11221200lim 1lim 1e22xxx x x x ---→→⎡⎤⎛⎫⎛⎫⎢⎥-=-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.二、计算题1.30tan sin limx x xx →-解:3200tan sin sin 1cos lim lim cos x x x x x x x x x x →→--=⋅2220002sin sinsin 1122lim lim lim 222x x x x x x x x x →→→⎛⎫ ⎪=⋅== ⎪ ⎪⎝⎭. 2.011limsin x x→解:000011limlim lim lim sin sin sin 2x x x x x x x x x →→→→-=⋅.3.0x →解:原式2220002sin 1sin cos 1cos 2lim 6lim 6lim 311cos sin 32x x x x x x x x x x x x x →→→---====-⋅.4.lim n →∞⎛⎫+解:<++<,又1,1n n n n ====,所以根据夹逼准则知,lim 1n →∞⎛⎫+++=⎪⎭.第七节无穷小的比较一、填空题1.当0x →时,sin 3x 是2x 的低阶无穷小;2sin x x +是x 的等价(或同阶)无穷小;1cos sin x x -+是2x 的低阶无穷小;cos 1x -是2arcsin x 的同阶无穷小;1(1)1nx +-是x n的等价(或同阶)无穷小;32x x -是22x x -的高阶无穷小.提示:222000sin 32sin 1cos sin lim,lim 2,lim,x x x xx x x xx xx →→→+-+=∞==∞13222000cos 11(1)1lim ,lim 1,lim 0arcsin 22nx x x x x x x x x x x n→→→-+--=-==-.2.已知0x →时,()12311ax+-与cos 1x -为等价无穷小,则常数a =32-.提示:12230021(1)1233lim lim 1,1cos 1322x x axax a a x x →→+-==-==---.二、计算题1.21tan 1limx x x →-解:2000tan 1tan 1122lim lim lim 2x x x x xx x x x →→→--===--.2.2220(sec 1)lim3sin x x x x →-解:22222222240002(sec 1)(1cos )1lim lim lim3sin 3cos 312x x x x x x x x x x x x →→→⎛⎫ ⎪--⎝⎭===⋅⋅.3.0tan 2tan lim3sin sin 2x x x x x→--解:000sin 2sin sin tan 2tan cos 2cos cos 2cos lim lim lim 13sin sin 23sin sin 2sin (32cos )x x x x x xx xx x x x x x x x x x →→→--⋅===---.4.20sin cos 1limsin 3x x x x x →+--解:200sin cos 11limlim sin 333x x x x x x x x →→+-==-.第八节函数的连续性与间断点一、填空题1.设2,0()sin ,0a bx x f x bx x x⎧+≤⎪=⎨>⎪⎩在0x =处连续,则常数,a b 应满足的关系为a b =.提示:()2(0)lim (0)x f a bxa f --→=+==,0sin (0)lim x bxf b x-+→==.2.设0()1,0ln(1),0x f x x bx x x <=-=⎨⎪+⎪->⎪⎩在0x =处连续,则常数a =22,b =1.提示:0(0)lim lim lim x x x axf x ----→→→===,(0)1f =-,00ln(1)(0)lim lim x x bx bxf b x x--+→→+=-=-=-.3.()sin xf x x=的可去间断点为0x =;221()32x f x x x -=-+的无穷间断点为2x =.4.若函数e ()(1)x af x x x -=-有无穷间断点0x =及可去间断点1x =,则常数a =e .提示:由已知,1e lim (1)x x a x x →--存在,所以1lim(e )0xx a →-=,从而e a =.二、单项选择题1.0x =是1()sin f x x x=的A .A.可去间断点B.跳跃间断点C.无穷间断点D.振荡间断点提示:01lim ()lim sin0x x f x x x→→==2.函数21,0(),012,12x x f x x x x x ⎧-<⎪=≤≤⎨⎪-<≤⎩D.A.在0,1x x ==处都间断B.在0,1x x ==处都连续C.在0x =处连续,1x =处间断D.在0x =处间断,1x =处连续提示:(0)1,(0)0(0)f f f -+=-==;(1)(1)1,(1)1f f f -+===.3.设函数42,0(),0x f x xk x ≠=⎨⎪=⎩在0x =处连续,则k =B .A.4B.14C.2D.12提示:021lim ()limlim ,(0)4x x x f x f k x →→→===.4.函数111122,0()221,0x x x x x f x x --⎧-⎪≠⎪=⎨+⎪=⎪⎩在0x =处B .A.左连续B.右连续C.左右均不连续D.连续提示:110lim 20,lim 2xxx x -+→→==+∞,从而(0)1(0),(0)1(0)f f f f -+=-≠==.三、讨论函数11e ,0()ln(1),10x x f x x x -⎧⎪>=⎨⎪+-<≤⎩在0x =处的连续性.解:111(0)lim ln(1)0(0),(0)lim ee x x xf x f f -+-+--→→=+====,所以()f x 在0x =处不连续,且0x =是第一类跳跃型间断点.四、若2,0()0e (sin cos ),x x a xf x x x x +≤⎧=⎨>+⎩在-∞(,)∞+内连续,求a .解:由于)(x f 在0=x 处连续,所以)0()0()0(f f f ==-+.(0)lim ()lim e (sin cos )1x x x f f x x x +++→→==+=,a a x x f f x x =+==--→→-)2(lim )(lim )0(0,a f =)0(.故1=a .五、设()f x 在(,)-∞+∞内有定义,且lim ()x f x a →∞=,1,0()0,0f x g x x x ⎧⎛⎫≠⎪ ⎪=⎝⎭⎨⎪=⎩.试讨论()g x 在0x =处的连续性.解:()0011lim ()lim lim 令x x t t x g x f f t a x →→→∞=⎛⎫== ⎪⎝⎭,(0)0g =,所以当0a =时,()g x 在0x =处连续,当0a ≠时,()g x 在0x =处间断.第九节连续函数的运算与初等函数的连续性一、填空题1.设,0()1,0a x x f x x x +≤⎧=>⎩在(,)-∞+∞内连续,则常数a =12.2.设22,1()1,1x bx x f x x a x ⎧++≠⎪=-⎨⎪=⎩在(,)-∞+∞处连续,则常数a =1,b =-3.提示:由题意知,1lim ()(1)x f x f a →==,则212lim1x x bx a x→++=-21lim(2)0x x bx →∴++=,则3b =-,进而1a =.3.211lim cos1x x x →-=-cos 2. 4.()2cot 2lim 1tan xx x→+=e .5.21lim 1xx x x →∞-⎛⎫= ⎪+⎝⎭4e-.提示:41122412lim lim 1e 11xx x xx x x x x -++--→∞→∞⎡⎤-⎛⎫⎛⎫⎢⎥=-= ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎣⎦.6.已知lim 82xx x a x a →∞+⎛⎫= ⎪-⎝⎭,则常数a =ln 2.提示:332233lim lim 1e 822x a x x axx a x aax a a x a x a →∞→∞--⎡⎤+⎛⎫⎛⎫⎢⎥=+== ⎪ ⎪⎢⎥--⎝⎭⎝⎭⎣⎦,所以3ln 8,ln 2a a ==.7.203sin (1)cos lim (1cos )x x x x x →++=+12.8.0x →=12.提示:原式limx→=0x →=22012limsin 222x x x x x →⋅==⋅.9.函数21()23f x x x =--的连续区间是(,1),(1,3),(3,)-∞--+∞.二、单项选择题1.当1→x 时,函数1211e 1x x x ---的极限等于D .A.2B.0C.∞D.不存在但不为∞2.设()f x 在2x =连续,(2)3f =,则2214lim ()24x f x x x →⎛⎫-=⎪--⎝⎭D .A.0B.2C.3D.34提示:22222142113lim ()lim ()lim ()(2)244244x x x x f x f x f x f x x x x →→→-⎛⎫-====⎪---+⎝⎭.三、讨论11()1exxf x -=-的连续性,若有间断点,指出其类型.解:()f x 为初等函数,故在其定义区间(,0),(0,1),(1,)-∞+∞内均连续,在其无定义点0,1x x ==间断.据011lim ()lim1ex x x xf x →→-==∞-,知0x =为第二类无穷间断点;据11111111lim ()lim 0,lim ()lim 11e1exx x x x x xxf x f x --++→→→→--====--,知1x =为第一类跳跃间断点.第十节闭区间上连续函数的性质一、单项选择题1.方程sin 2x x +=有实根的区间为A.A.π,32⎛⎫⎪⎝⎭B.π0,6⎛⎫ ⎪⎝⎭C.ππ,64⎛⎫⎪⎝⎭D.ππ,42⎛⎫⎪⎝⎭提示:令()sin 2f x x x =+-,分别在各个对应的闭区间上验证零点定理是否成立即可.2.方程(1)(2)(3)(1)(2)(4)(1)(3)(4)x x x x x x x x x ---+---+---(2)(3)(4)0x x x +---=有D 个实根.A.0B.1C.2D.3提示:令()(1)(2)(3)(1)(2)(4)(1)(3)(4)f x x x x x x x x x x =---+---+---(2)(3)(4)x x x +---,又(1)0,(2)0,(3)0,(4)0f f f f <><>,则由零点定理知,方程在(1,2),(2,3),(3,4)分别至少存在一个根;又()f x 是三次多项式,则方程至多有三个根,综上可知方程恰好有三个根.二、证明题1.证明方程e 2xx -=在区间(0,2)内至少有一实根.证明:令()e 2xf x x =--,则()f x 在[0,2]上连续,且2(0)10,(2)e 40f f =-<=->,根据零点定理,至少存在一点(0,2)ξ∈,使()0f ξ=,所以方程()0f x =,即e 2xx -=在区间(0,2)内至少有一实根.2.设()f x 在[,]a b 上连续,且(),()f a a f b b <>.证明至少存在一点(,)a b ξ∈,使()f ξξ=.证明:令()()F x f x x =-,则()F x 在[,]a b 上连续,且()()0F a f a a =-<,()()0F b f b b =->,根据零点定理,至少存在一点(,)a b ξ∈,使()0F ξ=,即()f ξξ=.3.附加题设()f x 在[,)a +∞上连续,lim ()0x f x →+∞=.证明()f x 在[,)a +∞上有界.证明:由lim ()0x f x →+∞=,对10,X a ε=>∃>,当x X >时,有()()01f x f x ε=-<=,即()f x 在(,)X +∞上有界;又()f x 在[,]a X 上连续,故()f x 在[,]a X 上有界,所以存在10,M >使[]1(),,f x M x a X ≤∀∈,取{}1max 1,M M =,则对[],x a ∀∈+∞()f x M <,即()f x 在[,)a +∞上有界.第一章自测题一、填空题(每小题3分,共18分)1.()03limsin tan ln 12x x x x →=-+14-.提示:()20003331lim lim lim 4sin tan tan (cos 1)222ln 12x x x xx x x x x x x x →→→-⋅===---+.2.2131lim2x x x →-=+-26-.提示:21lim26x x x x →→==-+-.3.已知212lim31x x ax bx →-++=+,其中b a ,为常数,则a =7,b =5.4.若()2sin 2e 1,0,0ax x x f x xa x ⎧+-≠⎪=⎨⎪=⎩在()+∞∞-,上连续,则a =-2.提示:由题意知,20sin 2e 1lim ax x x x →+-20sin 2e 1lim 22ax x x a a x x →⎛⎫-=+=+= ⎪⎝⎭,从而2a =-.5.曲线21()43x f x x x -=-+的水平渐近线是0y =,铅直渐近线是3x =.二、单项选择题(每小题3分,共18分)1.“对任意给定的()1,0∈ε,总存在整数N ,当N n ≥时,恒有ε2≤-a x n ”是数列{}n x 收敛于a 的C.A.充分条件但非必要条件B.必要条件但非充分条件C.充分必要条件D.既非充分也非必要条件2.设()2,02,0x x g x x x -≤⎧=⎨+>⎩,()2,0,0x x f x x x ⎧<=⎨-≥⎩则()g f x =⎡⎤⎣⎦D .A.22,02,0x x x x ⎧+<⎨-≥⎩ B.22,02,0x x x x ⎧-<⎨+≥⎩ C.22,02,0x x x x ⎧-<⎨-≥⎩ D.22,02,0x x x x ⎧+<⎨+≥⎩3.下列各式中正确的是D.A.01lim 1exx x +→⎛⎫-= ⎪⎝⎭B.01lim 1e xx x +→⎛⎫+= ⎪⎝⎭C.1lim 1e xx x →∞⎛⎫-=- ⎪⎝⎭D.11lim 1e xx x --→∞⎛⎫+= ⎪⎝⎭4.设0→x 时,tan e 1x-与n x 是等价无穷小,则正整数n =A.A.1B.2C.3D.4提示:由题意知,当0→x 时,tan e 1tan xx x - 从而n 取1.5.曲线221e 1ex x y --+=-D .A.没有渐近线B.仅有水平渐近线C.仅有铅直渐近线D.既有水平渐近线又有铅直渐近线6.下列函数在给定区间上无界的是C.A.1sin ,(0,1]x x x ∈ B.1sin ,(0,)x x x∈+∞C.11sin ,(0,1]x x x∈ D.1sin ,(0,)x x x∈+∞三、计算题(每小题7分,共49分)1.2x →解:2222(1)(2)(413)(1)(413)9limlim 4(2)42x x x x x x x →→→+-+===-.2.()21ln(1)lim cos x x x +→解:()()2211ln(1)ln(1)0limcos lim 1cos 1x x x x x x ++→→=+-222001cos 112limlim ln(1)2eeex x x x x x →→---+===.3.()1lim123nnnn →∞++解:()1312333,31233n n n nnnn<++<⋅∴<++<⋅Q1n =,()1lim 1233nnnn →∞∴++=.4.21sinlimx x x解:2111sinsin sinlim lim limlim 112x x x x x x x x x x→+∞→+∞→+∞→+∞=⋅⋅.5.设函数()()1,0≠>=a a a x f x ,求()()()21lim ln 12n f f f n n →∞⎡⎤⎣⎦ .解:()()()()()()22ln 1ln 2ln 1limln 12lim n n f f f n f f f n n n →∞→∞+++=⎡⎤⎣⎦L L ()()222ln 12ln ln limlim22n n n n a n aan n →∞→∞++++===L .6.1402e sin lim 1e xx x x x →⎛⎫+ ⎪+ ⎪ ⎪+⎝⎭解:1144002e sin 2e sin 2lim lim 1111e 1e x x x x x x x x x x --→→⎛⎫⎛⎫++ ⎪ +=-=-= ⎪ ⎪ ⎪++⎝⎭⎝⎭,11114444000e 2e 12e sin 2e sin sin lim lim lim 1e 1e e e 1x x x xx x x x x x x x x x x x x +++-→→→-⎛⎫⎛⎫+ ⎪⎛⎫⎛⎫ ⎪++⎝⎭ ⎪ ⎪ ⎪+=+=+ ⎪ ⎪ ⎪⎛⎫ ⎪ ⎪++ ⎪+⎝⎭⎝⎭ ⎪⎪⎝⎭⎝⎭301lim 1e xx +-→=+=,所以,原式1=.7.已知(lim 1x x →-∞=,求,.a b解:左边22(1)lim limlim x x x x a x b x →-∞→-∞⎡⎤--+⎢==,右边1=,故[]lim (1)1x a x b →-∞--=+,则1,2a b ==-.四、讨论函数,0()(0,0,1,1)0,0x xa b x f x a b a b x x ⎧-≠⎪=>>≠≠⎨⎪=⎩在0x =处的连续性,若不连续,指出该间断点的类型.(本题8分)解:当a b =时,()0f x ≡,此时()f x 在0x =处连续;当a b ≠时,000011lim ()lim lim lim ln (0)0x x x x x x x x a b a b af x f x x x b→→→→---==-=≠=,故()f x 在0x =处不连续,所以0x =为()f x 得第一类(可去)间断点.五、附加题设()f x 在[0,1]上连续,且(0)(1)f f =.证明:一定存在一点10,2ξ⎡⎤∈⎢⎣⎦,使得1()2f f ξξ⎛⎫=+ ⎪⎝⎭.(本题7分)证明:设1()()2F x f x f x ⎛⎫=-+⎪⎝⎭,显然()F x 在10,2⎡⎤⎢⎥⎣⎦上连续,而1(0)(0)2F f f ⎛⎫=-⎪⎝⎭,()()11110222F f f f f ⎛⎫⎛⎫⎛⎫=-=- ⎪ ⎪ ⎝⎭⎝⎭⎝⎭,211(0)(0)022F F f f ⎡⎤⎛⎫⎛⎫=--≤ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,若1(0)02F F ⎛⎫= ⎪⎝⎭,即(0)0F =或102F ⎛⎫= ⎪⎝⎭时,此时取0ξ=或12ξ=即可;若1(0)02F F ⎛⎫< ⎪⎝⎭时,由零点定理知:一定存在一点10,2ξ⎡⎤∈⎢⎣⎦,使()0Fξ=,即1()2f fξξ⎛⎫=+⎪⎝⎭.。

自考高等数学一试题及答案解析

自考高等数学一试题及答案解析

自考高等数学一试题及答案解析一、选择题(每题2分,共20分)1. 下列函数中,哪一个不是周期函数?A. y = sin(x)B. y = cos(x)C. y = e^xD. y = tan(x)答案:C解析:周期函数是指函数在某一固定区间内重复其图形的函数。

选项A、B、D中的函数都是周期函数,分别具有2π、2π和π的周期。

而选项C中的函数y = e^x是指数函数,它不是周期函数。

2. 以下哪个选项是微分方程dy/dx = x^2的解?A. y = x^3 + CB. y = x^3 - CC. y = x^2 + CD. y = sin(x)答案:A解析:解微分方程dy/dx = x^2,可以通过对等式两边同时积分来求解。

积分后得到y = (1/3)x^3 + C,其中C是积分常数。

因此,选项A是正确的。

3-20. (类似上述格式,共10个选择题,每个选择题都有四个选项)二、填空题(每题3分,共30分)1. 极限lim (x->0) [sin(x)/x] 的值为 _______ 。

答案:1解析:根据洛必达法则,当x趋近于0时,sin(x)/x的极限可以通过分子分母同时求导来求解,即lim (x->0) [cos(x)/1],结果为1。

2. 定积分∫[0,1] x^2 dx 的值为 _______ 。

答案:1/3解析:根据定积分的计算公式,∫[0,1] x^2 dx = (1/3)x^3|[0,1] = (1/3)(1)^3 - (1/3)(0)^3 = 1/3。

3-10. (类似上述格式,共8个填空题)三、解答题(共50分)1. 求函数f(x) = 2x^3 - 5x^2 + 3x - 4的极值点,并说明其性质。

答案:首先对函数f(x)求导得到f'(x) = 6x^2 - 10x + 3。

令f'(x) = 0,解得x = 1/2 或 x = 3。

通过分析f'(x)的符号变化,可以确定x = 1/2处为f(x)的极大值点,x = 3处为f(x)的极小值点。

高等数学1教材试题及答案

高等数学1教材试题及答案

高等数学1教材试题及答案一、选择题1. 下列函数中,是偶函数的是()A. y = x^3 - 2xB. y = x^2 + 1C. y = sin(x)D. y = cos(x)答案:D2. 函数f(x) = x^2 - 3x + 2的图像在x轴上的截点为()A. (1, 0)和(2, 0)B. (0, 1)和(0, 2)C. (-1, 0)和(2, 0)D. (1, 0)和(1, 2)答案:A3. 设函数f(x) = e^x,g(x) = ln(x),则f[g(1)]的值为()A. 0B. 1C. eD. -1答案:C二、填空题1. 设函数f(x) = sin^2(x) + cos^2(x),则f(π/4)的值为______。

答案:12. 设函数y = ln(1 + e^x),则其反函数为______。

答案:y = ln(e^x - 1)三、计算题1. 求函数f(x) = 3x^2 - 4x + 1的导数f'(x)。

解答:f'(x) = 6x - 42. 求函数f(x) = 2x^3 - 3x^2 + 4的定积分∫[0, 1] f(x)dx。

解答:∫[0, 1] f(x)dx = [x^4/2 - x^3 + 4x] |[0, 1]= (1/2 - 1 + 4) - (0/2 - 0 + 0)= 3.5四、应用题1. 一个圆的半径逐渐增长,当半径为r时,其面积为A。

求圆的面积A与半径r之间的函数关系。

解答:圆的面积公式为A = πr^2,其中π为常数。

所以,A与r之间的函数关系为A = πr^2。

2. 一座塔高380米,顶部和底部之间的水平距离为500米。

求参观塔顶时的斜率。

解答:设塔底部的位置为点A(0, 0),塔顶部的位置为点B(500, 380)。

斜率可以通过点A和点B的坐标计算。

斜率 = (y2 - y1) / (x2 - x1) = (380 - 0) / (500 - 0) = 38/50 = 0.76答案:0.76综上所述,我提供了一些高等数学1教材试题及答案。

高等数学考试题库(含答案解析)

高等数学考试题库(含答案解析)

范文范例参考《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题 3 分,共 30 分).1.下列各组函数中,是相同的函数的是().(A )f x ln x2和 g x2ln x( B)(C )f x x 和g x2x(D )f x| x | 和g x x2f x| x |g x1和xsin x 4 2x02.函数f x ln 1x在 x 0 处连续,则a() .a x0(A )0( B)1(D)2(C)143.曲线y x ln x 的平行于直线 x y 1 0 的切线方程为() .(A )y x 1( B)y( x 1)(C )y ln x 1x 1(D)y x 4.设函数f x| x |,则函数在点x0 处() .(A )连续且可导( B)连续且可微( C )连续不可导( D)不连续不可微5.点x0 是函数y x4的().(A )驻点但非极值点(B)拐点(C)驻点且是拐点(D)驻点且是极值点6.曲线y1) .的渐近线情况是(| x |(A )只有水平渐近线( B)只有垂直渐近线( C )既有水平渐近线又有垂直渐近线(D )既无水平渐近线又无垂直渐近线7.f11). x x2dx 的结果是((A )1C1C1C (D) f1f( B)f( C )f C x x x x8.dxxe e x的结果是().(A )arctane xC()arctan exC(C)xexC(D)xex)CB e ln( e9.下列定积分为零的是() .(A )4arctanx dx(B)4x arcsin x dx (C) 1e x e x1x2x sin x dx 1x212dx (D)44110 .设f x为连续函数,则1f 2x dx 等于() . 0(A )f 2f0(B)1f 11 f 0 (C)1f 2 f 0 (D) f 1 f 0 22二.填空题(每题 4 分,共 20 分)f x e 2x1x0在 x 0处连续,则 a1.设函数x.a x02.已知曲线 y f x在 x 2 处的切线的倾斜角为5,则 f2. 6x3. y的垂直渐近线有条.x 2 14.dx. x 1ln2 x5.2x4 sin x cosx dx.2WORD 格式整理范文范例参考三.计算(每小题 5 分,共 30分)1.求极限12 xx sin x① lim x② limx x e x2x x 012.求曲线y ln x y 所确定的隐函数的导数y x.3.求不定积分①dx②dx a0③ xe x dxx1x 3x2a2四.应用题(每题10 分,共 20 分)1.作出函数y x33x2的图像.2.求曲线y22x 和直线 y x 4 所围图形的面积.WORD 格式整理范文范例参考《高数》试卷 1 参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7. D 8.A 9.A 10. C二.填空题1. 22 .3 24. arctanln x c5.23.3三.计算题1① e 2② 12. y x16 xy 13. ① 1 ln |x 1| C ② ln | x 2a 2x | C③ e x x 1 C2x 3四.应用题1.略2.S 18《高数》试卷2(上)一. 选择题 ( 将答案代号填入括号内 ,每题 3 分,共 30 分 )1.下列各组函数中 ,是相同函数的是 ().(A)f xx 和 g xx 2(B)f xx 2 1 和 y x 1x 1(C)f xx 和 g xx(sin 2 x cos 2 x)(D)f xln x 2 和 g x2ln xsin 2 x 1x1 x12.设函数 fx2x 1,则 limf x().x 2x11x1(A) 0(B)1(C)2(D) 不存在3.设函数 y f x 在点 x 0 处可导,且 fx >0, 曲线则 yf x 在点 x 0 , f x 0处的切线的倾斜角为 {}.(A)0 (B)2(C)锐角(D)钝角4.曲线 y ln x 上某点的切线平行于直线 y 2x 3 ,则该点坐标是 ().(A)2,ln1(B)2, ln1(C)1,ln 2(D)1 , ln 222225.函数y x2e x及图象在1,2 内是().(A) 单调减少且是凸的(B)单调增加且是凸的(C) 单调减少且是凹的(D) 单调增加且是凹的6.以下结论正确的是 ().(A)若 x0为函数y f x的驻点 ,则x0必为函数y f x的极值点 .(B)函数 y f x 导数不存在的点,一定不是函数 y f x的极值点 .(C)若函数 y f x在 x0处取得极值,且f x0存在,则必有 f x0=0.(D)若函数 y f x在 x0处连续,则f x0一定存在 .WORD 格式整理范文范例参考17.设函数 y f x的一个原函数为x2e x,则f x=().1111(A) 2 x 1 e x(B)2x e x(C)2x 1 e x(D)2xe x8.若 f x dx F x c ,则 sin xf cosx dx().(A) F sin x c(B)F sin x c(C)F cos x c(D)F cos x c9.设 F x1f xdx =().为连续函数 , 则2(A) f1f0(B) 2f1f0(C)2 f 2f0 (D) 2 f1f0210. 定积分ba b 在几何上的表示(). dxa(A) 线段长b a(B)线段长 a b (C)矩形面积a b 1 (D)矩形面积b a1二.填空题 (每题 4 分,共 20 分)ln1x2x 0, 在x01.设 f x1cos x连续 ,则a =________.a x02.设 y sin 2x ,则 dy_________________ d sin x .3.函数 yx1的水平和垂直渐近线共有_______条 . x214.不定积分x ln xdx______________________.5.定积分1x2 sin x1___________. 11x2dx三.计算题 (每小题 5 分,共 30分 )1.求下列极限 :① lim12x 1② lim2arctanxx1x 0xx2.求由方程 y1xe y所确定的隐函数的导数y x.3.求下列不定积分 :① tan x sec3xdx②dx a0③x2e x dxx2a2四.应用题 (每题 10 分,共 20 分)1.作出函数 y1x3x 的图象.(要求列出表格)32.计算由两条抛物线:y2x, y x2所围成的图形的面积.WORD 格式整理范文范例参考《高数》试卷 2 参考答案一.选择题: CDCDB CADDD二填空题: 1. -2 2. 2sin x 3.3 4.1x2 ln x1x2c 5.242三. 计算题: 1.2②1 2.y e y① ex y23.① sec3 x c② ln x2a2x c③ x22x 2 e x c3四.应用题: 1.略 2.S 13《高数》试卷3(上)一、填空题 (每小题 3分,共 24分)1.函数 y1的定义域为 ________________________.9x22.设函数 f x sin 4x , x0则当 a =_________时, f x 在 x0处连续 .x,a,x03.函数 f (x)x2x21的无穷型间断点为 ________________. 3x24.设 f ( x) 可导,y f (e x ) ,则 y____________.5.limx21_________________. 2x2x5x6.1x3 sin 2 x dx =______________.1 x4x217.d x2e t dt_______________________.dx 08.y y y30 是_______阶微分方程.二、求下列极限 ( 每小题 5 分,共15分)xx 1x311.lim e;2.lim;3.lim12.x 0sin x x 3x9x2x 三、求下列导数或微分 (每小题 5分, 共15分)1.yx x,求 y (0) . 2.y e cos x ,求 dy . 2求dy.3.设 xy e x y ,dx四、求下列积分(每小题 5分, 共15分)1.12sin x dx . 2.x ln(1x)dx . x3.1e2x dx五、 (8 分 )求曲线xtcost在 t处的切线与法线方程 . y12WORD 格式整理范文范例参考六、 (8 分 )求由曲线 yx 21, 直线 y 0, x 0 和 x 1所围成的平面图形的面积 , 以及此图形绕 y 轴旋转所得旋转体的体积 .七、 (8 分 )求微分方程 y 6 y13 y 0 的通解 .八、 (7 分 )求微分方程 yy e x 满足初始条件 y 10的特解.x《高数》试卷 3 参考答案一. 1. x 32. a 43. x 24. e x f '(e x )5.16.07. 2 xe x 28. 二阶2二 .1.原式 = lim x1x 0x2. lim11 x 3 x3 63.原式 = lim[(11 11)2 x ] 2 e 2x2x三 .1.2.y'212)2, y '(0)(x2dysin xe cos x dx3.两边对 x 求写: yxy ' e x y (1 y ')e x yyxy yy 'e x yx xyx四.1.原式 = lim x2cos x Cx2212.原式 = lim(1)xx)2x)]x)d (lim(1 2x d [lim(12x= x22lim(1 x)1 1 x dx x lim(1 x) 1 ( x 11 ) dx22 x 2 21 x=x22lim(1 x) 1 [ xx lim(1 x)]C22 23.原式 =11 2 x2 x 1 1 20 e d (2 x) 1 e 0( e 1)222五.dysin tdy t1 且 t2 , y 1dxdx2切线: y1 x,即 y x 122法线: y1( x),即 y x 122六. S11 21320 ( x1)dx ( xx) 022V11)2dx12x21)dx(x2( x4( x 52 x 2 x) 10 285 315七.特征方程 : r 2 6r 13 0r 3 2iye 3 x (C 1 cos2 x C 2 sin 2 x)11dxxdx八. y e xdx C )( e e x1 xC ][ (x 1e)x由 y x 1 0,C0y x 1 e xx《高数》试卷4(上)WORD 格式整理范文范例参考一、选择题(每小题 3 分)1、函数 y ln(1 x) x 2 的定义域是() . A2,1B2,1C 2,1D2,12、极限 lim e x的值是() .xA 、B 、C 、D 、 不存在3、 limsin(x 1) ( ) .x 1 1 x 2 1 1A 、 1B 、 0C 、2D 、24、曲线 y x 3x 2 在点 (1,0) 处的切线方程是()A 、 y2( x1)B 、 y 4( x 1)C 、 y 4x 1D 、 y 3( x 1)5、下列各微分式正确的是( ) .A 、 xdx d (x 2 )B 、 cos 2xdx d(sin 2x)C 、 dx d (5 x)D 、 d (x 2 ) (dx) 26、设f (x)dx2 cosxC ,则f ( x) () .2A 、 sin xB 、22 ln x ) .7、dx (xxxxsinC 、 sinC D 、 2 sin222A 、2 1ln 2x CB 、 1( 2 ln x) 2Cx 2 22C 、 ln 2 ln xC1 ln xCD 、x 28、曲线 y x 2 , x 1 , y0 所围成的图形绕y 轴旋转所得旋转体体积 V() .1 x 4dx1ydyA 、B 、1(1y) dy1(1 x 4)dxC 、D 、1e xdx9、e x() .11 e2 e1 e1 2eA 、 ln2B 、 lnC 、 lnD 、 ln23210 、微分方程 yy y2e 2 x 的一个特解为() .A 、 y3 e 2x B 、 y3 e x C 、 y2 xe 2 x D 、 y2 e 2 x7777二、填空题(每小题4 分)1、设函数 y xe x ,则 y;2 、如果 lim3sin mx2 , 则 m .x 0 2x313cos xdx3、 x;14、微分方程 y 4 y 4 y0 的通解是.5、函数 f ( x) x 2 x在区间0,4上的最大值是,最小值是;三、计算题(每小题 5 分)1、求极限lim 1 x 1 x ; 2 、求y 1cot 2 x ln sin x 的导数;x 0x2 WORD 格式整理范文范例参考x314 、求不定积分dx;3、求函数y的微分;xx3111eln x dx ;dy x5、求定积分6、解方程1;e dx y 1 x2四、应用题(每小题10 分)1、求抛物线y x 2与y 2 x 2所围成的平面图形的面积.2、利用导数作出函数y 3x2x3的图象.参考答案一、 1、C;2、D;3、C ;4、B;5、C ;6、B;7、B;8、A ;9、A ;10、D;二、 1、(x2)e x; 2 、4;3、0; 4 、y(C1 C 2 x)e 2 x;5、8,0 9三、1、 1 ; 2 、cot 3 x ; 3 、 6 x2dx ; 4 、2 x 1 2 ln(1x 1) C ;5、2(21) ;6、y2 2 1 x2 C ;( x31) 2e四、1、8;32、图略《高数》试卷5(上)一、选择题(每小题 3 分)1、函数 y2x1的定义域是() . lg( x 1)A 、2,10,B、1,0( 0,)C 、(1,0)(0,)D、( 1,)2、下列各式中,极限存在的是() .A 、x B、lim arctan x C 、lim sin x D 、lim 2x l i mc o sx0x x x3、 lim (x) x() .x 1 xA 、e B、e2 C 、1 D 、1e4、曲线 y x ln x 的平行于直线x y 1 0 的切线方程是() .A 、y x B、y(ln x1)( x1)C 、y x1D、y(x1)5、已知 y xsin 3x,则 dy() .A 、( cos3x3sin 3x)dx B、(sin 3x3x cos3x)dxC 、(cos 3x sin 3x)dxD 、(sin 3x x cos3x)dx6、下列等式成立的是() .WORD 格式整理范文范例参考A 、x dx1x 1 CB 、 a x dx a x ln x C11C 、cosxdxsin x CD 、 tan xdxCx 217、计算e sin x sin xcos xdx 的结果中正确的是() .A 、 e sin x CB 、 e sin x cos x CC 、 e sin x sin x CD 、 e sin x (sin x 1) C8、曲线 yx 2 , x1 , y0 所围成的图形绕 x 轴旋转所得旋转体体积 V().1x 4dx1A 、B 、ydy1 (1 y) dy1 (1 x 4)dxC 、D 、a a 2x 2dx () . 9、设 a ﹥ 0 ,则A 、 a2B 、 a2C 、 1a2D 、 1a 224410 、方程()是一阶线性微分方程 .A 、 x 2ylnyB 、 y e x y 0xC 、 (1x 2 ) yy sin yD 、 xy dx ( y 2 6x)dy 0二、填空题(每小题 4 分)1、设 f ( x)e x 1, x, lim f ( x);,则有 lim f (x)ax b, xx 0 x 02、设 y xe x ,则 y;3、函数 f ( x)ln(1x 2 ) 在区间1,2 的最大值是,最小值是;14、 x 3cos xdx;15、微分方程y 3 y 2 y 0 的通解是.三、计算题(每小题 5 分)1、求极限 lim (11 x23 ) ; x 1x x 22、求y1 x2 arccosx 的导数;3、求函数 yx 的微分;1 x 24、求不定积分1dx ;x 2ln x5、求定积分eln x dx ;1e6、求方程x2y xy y 满足初始条件y( 1 ) 4 的特解.2WORD 格式整理范文范例参考四、应用题(每小题10 分)1、求由曲线y 2 x2和直线x y 0 所围成的平面图形的面积.2、利用导数作出函数y x 36x 29x 4的图象.参考答案( B 卷)一、 1、B;2、A;3、D;4、C ;5、B;6、C ;7、 D;8、 A;9、D;10、B.二、 1、 2 , b ; 2 、( x2)e x; 3 、ln 5 , 0 ;4、 0 ;5、C1e x C 2 e2x.三、1、1; 2 、arccos1; 3 、1dx;x x3 1 x2(1 x2 ) 1 x 24、2 2 ln x C ;1);2215、2(2 6 、y e x;e x四、 1、92、图略;2WORD 格式整理。

高等数学1试题(附答案解析)

高等数学1试题(附答案解析)

WORD 文档 可编辑一、填空题(共6小题,每小题3分,共18分)1. 由曲线2cos r θ=所围成的图形的面积是π。

2. 设由方程22x y =所确定的隐函数为)(x y y =,则2y dy dx x=-。

3. 函数2sin y x =的带佩亚诺余项的四阶麦克劳林公式为2441()3x x o x -+。

4.11dx =⎰。

5. 函数x x y cos 2+=在区间⎥⎦⎤⎢⎣⎡20π,上的最大值为6π+。

6. 222222lim 12n nn n n n n n →∞⎛⎫+++⎪+++⎝⎭=4π。

二、选择题(共7小题,每小题3分,共21分)1. 设21cos sin ,0()1,0x x x f x x x x ⎧+<⎪=⎨⎪+≥⎩,则0x =是()f x 的 D 。

A .可去间断点 B .跳跃间断点 C .振荡间断点 D .连续点2. 设()232x x f x =+-,则当0x →时,下列结论正确的是 B 。

A .是等价无穷小与x x f )(B .同阶但非等价无穷小与x x f )(C .高阶的无穷小是比x x f )(D .低阶的无穷小是比x x f )(3.1+∞=⎰C 。

A .不存在B .0C .2πD .π4. 设()f x 具有二阶连续导数,且(0)0f '=,0lim ()1x f x →''=-,则下列叙述正确的是 A 。

A .(0)f 是()f x 的极大值B .(0)f 是()f x 的极小值C .(0)f 不是()f x 的极值D .(0)f 是()f x 的最小值5.曲线2xy d t π-=⎰的全长为 D 。

A .1B .2C .3D .46. 当,a b 为何值时,点( 1, 3 )为曲线32y ax bx =+的拐点? A 。

A .32a =-,92b = B. 32a =,92b =- C .32a =-,92b =- D. 32a =,92b = 7. 曲线2xy x -=⋅的凸区间为 D 。

《高等数学(一)》练习题参考答案

《高等数学(一)》练习题参考答案

《高等数学(一)》练习题一参考答案一、是非题1——5对 错 对 错 错 2——6对 对 对 对 错 11——15错 对 对 错 对 16——20 错 对 错 错 错 21——25错 对 错 对 错 26——30 对 对 对 错 错二、选择题1——5 A B B B D 6——10 C A B A B 11——15 B D D D A 16——20 B B A B B 21——25 D B D B B 三、填空题1、2x; 2、充分; 3、1; 4、0; 5、2y x =-622x e --; 7、必要; 8、12-; 9、)1(21+=x y ; 10、0,1,2y x ==-11、1; 12、21dx x+; 13、2; 14、32y x =-; 15、充分性条件.16、22xxe; 17、dx ; 18、x = 19、1(1)2y x =-; 20、216x x+.21、6e -; 22、1y =; 23、11e --; 24、23; 25、cos 2x dx .三、解答题1、00021limlimlim.4x x x x→→→===2、因为函数()f x 在点0x =连续,故其左右极限都应存在且相等,即由20lim ()lim (1)2xx x f x e--→→=+=,sin 22sin 22lim ()lim lim 2x x x x x f x ax axa+++→→→===,推得 221a a=⇒=. 3、 /////2312()1,()(1)2f x f x f xx=+=-⇒=-.4、因为(2)3f '=,而由定义可知2()(2)(2)lim2x f x f f x →-'=-,故所求极限2()(2)lim32x f x f x →-=-。

5、由243lim ()21x x ax b x →+∞+++=-,而2224343()(1)lim ()lim11(4)()3lim21x x x x x ax b x ax b x x a x b a x b x →+∞→+∞→+∞++++-++=--++--+==-存在,于是必有40,2a b a +=-=,可解得常数,a b 的值分别为-4,-2。

自考高数1试题及答案

自考高数1试题及答案

自考高数1试题及答案自考高等数学(一)试题及答案一、选择题(每题3分,共30分)1. 下列函数中,不是周期函数的是()。

A. y = sin(x)B. y = cos(x)C. y = e^xD. y = tan(x)答案:C2. 函数f(x) = 2x^3 - 3x^2 + 5在x = 1处的导数是()。

A. -1B. 3C. 5D. 7答案:D3. 定积分∫₀¹ x² dx的值是()。

A. 1/3B. 1/2C. 2/3D. 3/2答案:A4. 二阶常系数线性微分方程y'' - 5y' + 6y = 0的特征方程是()。

A. r² - 5r + 6 = 0B. r² + 5r + 6 = 0C. r² - 6r + 5 = 0D. r² + 6r + 5 = 0答案:A5. 利用洛必达法则计算极限lim (x->0) [sin(x)/x]的正确步骤是()。

A. 直接代入x=0B. 计算分子的导数C. 计算分母的导数D. 计算分子和分母的导数答案:D6. 方程y² = x在点(4,2)处的切线斜率是()。

A. -1B. 0C. 1D. 2答案:C7. 函数f(x) = ln(x)的值域是()。

A. (-∞, 0)B. (0, +∞)C. (-∞, +∞)D. [0, +∞)答案:C8. 利用定积分的几何意义,圆x² + y² = 4与直线y = x所围成的图形的面积是()。

A. 2πB. πC. 1/2πD. 4/3π答案:B9. 微分方程dy/dx + 2y = 8e²x的解是()。

A. y = 4e²x + Ce⁻²xB. y = 2e²x + Ce⁻xC. y = 8e²x + Ce⁻xD. y = Ce²x + 8e⁻²x答案:A10. 函数f(x) = x³在区间[-1, 2]上的最大值是()。

高数一试题与答案解析

高数一试题与答案解析

高数一试题(卷)与答案解析(总14页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《 高等数学(一) 》复习资料一、选择题1. 若23lim 53x x x k x →-+=-,则k =( ) A. 3- B.4- C.5- D.6-2. 若21lim 21x x k x →-=-,则k =( ) A. 1 B.2 C.3 D.43. 曲线3sin 1x y e x =-+在点(0,2)处的切线方程为( )A.22y x =+B.22y x =-+C.23y x =+D.23y x =-+4. 曲线3sin 1x y e x =-+在点(0,2)处的法线方程为( ) A.122y x =+ B.122y x =-+ C.132y x =+ D.132y x =-+ 5. 211lim sin x x x →-=( ) A.0 B.3 C.4 D.56.设函数0()(1)(2)xf x t t dt =+-⎰,则(3)f '=( ) A 1 B 2 C 3 D 47. 求函数43242y x x =-+的拐点有( )个。

A 1B 2C 4D 08. 当x →∞时,下列函数中有极限的是( )。

A. sin xB.1x e C. 211x x +- D. arctan x 9.已知'(3)=2f ,0(3)(3)lim 2h f h f h→--=( ) 。

A. 32 B. 32- C. 1 D. -1 10. 设42()=35f x x x -+,则(0)f 为()f x 在区间[2,2]-上的( )。

A. 极小值B. 极大值C. 最小值D. 最大值11. 设函数()f x 在[1,2]上可导,且'()0,(1)0,(2)0,f x f f <><则()f x 在(1,2)内( )A.至少有两个零点B. 有且只有一个零点C. 没有零点D. 零点个数不能确定12. [()'()]f x xf x dx +=⎰( ).A.()f x C +B. '()f x C +C. ()xf x C +D. 2()f x C +13. 已知22(ln )y f x =,则y '=( C ) 2222(ln )(ln )f x f x x '. 24(ln )f x x ' C. 224(ln )(ln )f x f x x ' D. 222(ln )()f x f x x ' 14. ()d f x ⎰=( B)A.'()f x C +B.()f xC.()f x 'D.()f x C + 15. 2ln x dx x=⎰( D ) A.2ln x x C + B.ln x C x + C.2ln x C + D.()2ln x C + 16. 211lim ln x x x→-=( ) A.2 B.3 C.4 D.517. 设函数0()(1)(2)xf x t t dt =-+⎰,则(2)f '-=( ) A 1 B 0 C 2- D 218. 曲线3y x =的拐点坐标是( )A.(0,0)B.( 1,1)C.(2,2)D.(3,3)19. 已知(ln )y f x =,则y '=( A ) A.(ln )f x x ' B.(ln )f x ' C.(ln )f x D.(ln )f x x20. ()d df x =⎰( A)A.()df xB.()f xC.()df x 'D.()f x C +21. ln xdx =⎰( A )A.ln x x x C -+B.ln x x C -+C.ln x x - D.ln x二、求积分(每题8分,共80分)1.求cos ⎰.2. 求.3. 求arctan xdx ⎰.4. 求⎰5. 求2356x dx x x +-+⎰.6. 求定积分80⎰7. 计算20cos x xdx π⎰.8. 求2128dx x x +-⎰.9. 求11. 求2212x xe dx -⎰12. 求3x ⎰13. 求21ln e xdx x ⎰14.求⎰三、解答题1.若(1lim 36x x →∞=,求a 2.讨论函数321()2333f x x x x =-+-的单调性并求其单调区间3. 求函数22()2x x f x x --=-的间断点并确定其类型 4. 设2sin ,.xy xy x e y '+=求5.求y =的导数. 6. 求由方程cos sin x a t y b t =⎧⎨=⎩确定的导数x y '. 7. 函数1,0()1,0tan ,0x e x f x x x x ⎧<⎪⎪==⎨⎪>⎪⎩在0x =处是否连续?8. 函数1,0()1,0tan ,0x e x f x x x x ⎧<⎪⎪==⎨⎪>⎪⎩在0x =处是否可导?9. 求抛物线2y x =与直线y x =所围成图形D 的面积A .10. 计算由抛物线22y x =与直线4y x =-围成的图形D 的面积A .11. 设y 是由方程sin y y y xe =+确定的函数,求y '12.求证: ln 1,1x x x <->13. 设y 是由方程1y y xe =+确定的函数,求y '14. 讨论函数32()29123f x x x x =-+-的单调性并求其单调区间15.求证: 21,x e x >-16. 求函数3(1)()x x f x x x -=-的间断点并确定其类型五、解方程1. 求方程0)(22=-+dy xy x dx y 的通解.2.求方程20yy y '''+=的通解.3. 求方程22y y y x '''-+=的一个特解.4. 求方程3595x y y y xe -'''-+=的通解.高数一复习资料参考答案一、选择题1-5: DABAA6-10:DBCDD11-15: BCCBD16-21:ABAAAA二、求积分1.求cos ⎰.解:322cos (sin )sin 3x x C C ==+=⎰2. 求dx x⎰.解:13(43ln )(ln )x d x x=+⎰⎰131(43ln )(43ln )3x d x =+⋅+⎰ 431(43ln )4x C =++. 3. 求arctan xdx ⎰.解:设arctan u x =,dv dx =,即v x =,则arctan arctan (arctan )xdx x x xd x =-⎰⎰2arctan 1x x x dx x =-+⎰21arctan ln(1)2x x x C =-++. 4.求⎰解:32222e 33e 3e 3e 23e 6e t t t t t t x t t dt t dt t tdt t t dt ===-⋅=-⎰⎰⎰⎰⎰223e 6e 6e 3e 6e 6e t t t t t t t t dt t t C =-+=-++⎰2)C =+.5. 求2356x dx x x +-+⎰. 解:由上述可知23565623x x x x x +-=+-+--,所以 2356()5623x dx dx x x x x +-=+-+--⎰⎰115623dx dx x x =-+--⎰⎰5ln 26ln 3x x C =--+-+.6.求定积分80⎰t =,即3x t =,则23dx t dt =,且当0x =时,0t =;当8x =时,2t =,于是28222000313ln(1)3ln312t dt t t t t ⎡⎤==-++=⎢⎥+⎣⎦⎰⎰.7. 计算20cos x xdx π⎰. 解:令2u x =,cos dv xdx =,则2du xdx =,sin v x =,于是 22200000cos sin (sin )2sin 2sin x xdx x d x x x x xdx x xdx πππππ==-=-⎰⎰⎰⎰. 再用分部积分公式,得20000cos 2cos 2(cos )cos x xdx xd x x x xdx ππππ⎡⎤==-⎢⎥⎣⎦⎰⎰⎰ 002(cos )sin 2x x x πππ⎡⎤=-=-⎣⎦.8. 求2128dx x x +-⎰. 解:221113(1)(1)ln 28(1)963(1)x dx d x C x x x x -+=+=++-+-++⎰⎰ 12ln 64x C x-=++. 9. 求解:令u =32x u =-,23dx u du =,从而有22311311u u du du u u -+==++⎰⎰ 213(1)3(ln 1)12u u du u u C u =-+=-++++⎰ 11. 求2212x xe dx -⎰ 解:2222222411112x x x xe dx e dx e e e -----===-⎰⎰12. 求3x ⎰解:333223(3)(3)3xx x C =--=--+⎰13. 求21ln ex dx x⎰ 解:22111ln 111ln (ln )ln ln 333e e e x dx xd x x e x ====⎰⎰ 14.求⎰解:3322222121(3)(3)(3)233x x C x C =--=-⋅-+=--+⎰三、解答题1.若(1lim 36x x →∞=,求a解:因为223x =,所以9a =否则极限不存在。

高等数学考试题库(附答案解析)

高等数学考试题库(附答案解析)

《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xe C -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim xx x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dxx x ++⎰ ②()220dx a x a >-⎰ ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题 1.2- 2.- 3. 2 4.arctanln x c + 5.2 三.计算题 1①2e ②162.11xy x y '=+- 3. ①11ln ||23x C x +++②ln ||x C + ③()1x e x C --++四.应用题1.略 2.18S =《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }.(A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫ ⎪⎝⎭ (B) 12,ln 2⎛⎫- ⎪⎝⎭ (C) 1,ln 22⎛⎫ ⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在.7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ). (A) ()121x x e - (B)12x x e - (C) ()121x x e + (D) 12xxe8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '.3.求下列不定积分: ①3tan sec x xdx ⎰ ②()220dx a x a>+⎰③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc +②)ln x c + ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1.函数y =的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x td e dt dx -=⎰8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin xx e x →-; 2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2. ln(1)x x dx +⎰.3.120xedx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 七、(8分)求微分方程6130y y y '''++=的通解. 八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==--四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x +-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy tt t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)xr r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y e e edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、214、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx =C 、)5(x d dx --=D 、22)()(dx x d =6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ). A 、2sin x B 、 2sin x- C 、 C x +2sin D 、2sin 2x -7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C xx++-2ln 1 8、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e - ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→B 、x x arctan lim ∞→C 、x x sin lim ∞→D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a x x ln C 、⎰+=C x xdx sin cos D 、⎰++=C xxdx 211tan 7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、设 a ﹥0,则=-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0D 、241a π 10、方程( )是一阶线性微分方程. A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxeC e C 221+.三、1、31 ; 2、1arccos 12---x xx ; 3、dx x x 221)1(1-- ;4、C x ++ln 22 ;5、)12(2e- ; 6、x e x y 122-= ;四、1、 29; 2、图略。

高等数学第一学期试题(附参考答案)

高等数学第一学期试题(附参考答案)

《高 等 数 学》课程试题一、填空题 .(每小题3分,共24分) 1. 设=+=)]([,1)(2x f f xx x f 则2. =→xx x 5sin 3sin lim 03. 设⎩⎨⎧≥+<=0,0,)(x x a x e x f x 在0=x 连续,则常数=a4. 曲线x y ln 2=上点(1, 0)处的切线方程为5.设参数方程⎩⎨⎧==ty t x sin 2,则=dxdy 6. 函数x x f 2arctan )(=,则=dy7. ⎰=)(cos x xd 8. ⎰-201dx x =二、选择题 .(每小题3分,共24分)1.设函数⎩⎨⎧<<-≥-+=10,11,42)(22x x x x x x f ,则)(lim 1x f x →等于( )A .-3B .-1C . 0D .不存在 2. 当)1ln(0x ,,x +→两个无穷小比较时是比x ( )A. 高阶的无穷小量B. 等价的无穷小量C. 非等价的同阶无穷小量D. 低阶的无穷小量3.设)(x f 的一个原函数为)1ln(+x x ,则下列等式成立的是( ) A .C x x dx x f ++=⎰)1ln()( B.C x x dx x f +'+=⎰]1ln([)(班级:姓名:学号:试题共页加白纸张密封线C.⎰+=+C x f dxx x )()1ln( D.C x f dx x x +='+⎰)(])1ln([ 4. 设函数)(x f y =在0x x =处可导,则必有( )A .0=∆y B. 0lim=∆→y xx C. dy y =∆ D. 0=dy 5.设)12)(1()(+-='x x x f ,则在)1,21(内,曲线)(x f 是( )A .单调增加且是凹的B .单调增加且是凸的C .单调减少且是凹的D .单调减少且是凸的 6.设)0(),1ln(≠+=a ax y ,则二阶导数y ''=( ) A .22)1(ax a+ B.2)1(ax a + C. 22)1(ax a+-D. 2)1(ax a+-7.积分=⎰-dx x1121( )A .是发散的 B. 2 C. -2 D . 0 8.设函数⎰-=Φ2)(xtdttex ,则其导数=Φ')(x ( )A .x xe - B. xxe--;C.232xex -D.232xex --三、求极限.(每小题5分,共10分) (1)3)21(lim +∞→+x x x(2)xx x x sin cos 1lim+-→四、求下列导数或微分. (每小题6分,共12分) (1)求由方程1ln =+y ye x确定的隐函数)(x f y =的导数dxdy ;(2)求函数xe y sin =在01.0,0=∆=x x 处的微分dy五、求下列积分.(每小题6分,共18分) (1) ⎰+dxeexx 21(2)⎰212ln exdx x(3)⎰20sin πdx x六、设x:,0求证(5分)>1>ex x+七、欲做一个长方体的带盖箱子,其体积为723m,而底面的长与宽成2:1的关系。

大学高等数学第一册考试试题答案详解

大学高等数学第一册考试试题答案详解

大学高等数学第一册考试试题答案详解【大学高等数学第一册考试试题答案详解】一、选择题:1. 答:B解析:首先应用导数求解微分方程,得到特解y=e^x。

再将y=e^x 代入$x^2y''+xy'-y=0$式中,可以得到等式左边为0,故选项B正确。

2. 答:D解析:根据导数的定义得出,当x=1时,函数f(x)的导数为0,由此可推知f(x)在x=1处取极值。

又根据极值点的判定条件,当导数变号时,极值达到。

从而得出答案为选项D。

3. 答:C解析:由公式算得h(t)=1−0.2t,比较上下限得到兴趣区间为(0,5],同时根据积分的定义算得兴趣总量为1.2。

4. 答:A解析:利用二重积分计算可以得出此立体体积为选项A中的数字。

5. 答:D解析:根据函数与其导函数的关系,对f(-3)进行积分,可以得到选项D的答案。

二、填空题:1. 答:$-1/4$解析:利用分部积分法计算,并带入上下限,得到此结果。

2. 答:2解析:根据积分的性质计算得到积分结果为2。

3. 答:27解析:由多重积分公式计算得积分结果为27。

4. 答:0.5解析:利用积分求解二次方程得出结果为0.5。

5. 答:$\arcsin(2/3)+C$解析:通过求导验证可得到该结果。

三、解答题:1. 答:解释二重积分与定积分的关系。

解析:二重积分是定积分的推广,用于计算平面区域上的面积,其中积分的上下限分别为该区域的y轴边界函数和x轴边界函数。

定积分则是对一个区间上的函数进行求和,其中积分的上下限为该区间的起点和终点。

2. 答:证明洛必达法则在极限存在的条件下成立。

解析:洛必达法则用于解决极限存在但无法直接求解的情况。

在证明洛必达法则成立时,可以通过应用导数定义以及泰勒级数展开等方法进行推导,最终得到洛必达法则的条件以及成立的证明过程。

四、应用题:1. 答:$\frac{1}{6}\pi^3$解析:根据旋转体体积的计算公式,可以得到此结果。

高数(一)试题(1)参考答案

高数(一)试题(1)参考答案

高等数学(一)(第一章和第二章练习题)参考答案 一、单项选择题(本大题共5小题,每小题2分,共10分) 1.设f (1-cos x )=sin 2x, 则f (x )=( A ) A.x 2+2x B.x 2-2x C.-x 2+2x D.-x 2-2x解:设:1cos x t -= c o s1x t ∴=+ ()()()21c o s 1c o s 1c o s 1c o s f x x x x -=-=+- ()()2112ft t t t t ∴=++=+ ()22f x x x =+ 2.设x 22)x (,x )x (f =ϕ=,则=ϕ)]x ([f ( D ) A.2x 2B.x2xC.x 2xD.22x解:()2f t t = ()()22[()]222xx xf x f ϕ===3.函数y=31x1ln -的定义域是( D ) A .),0()0,(+∞⋃-∞ B .),1()0,(+∞⋃-∞ C .(0,1] D .(0,1)解:110x -> 10x x-> 01x ∴<< ()0,1x ∴∈ 4.设f(x)=⎩⎨⎧>≤0x ,x 0x ,x ,则f(x)在点x=0处( D )A .无定义B .无极限C .不连续D .连续解:()00f = ()0lim lim 0x x f x x --→→== ()0lim lim 0x x f x ++→→==()0l i m 0x f x →∴= ()()0l i m 0x fx f →= 0x ∴=处连续5.函数2x x y -=的定义域是( D ) A.[)+∞,1B.(]0,∞-C.(][)+∞∞-,10,D.[0,1]解:20x x -≥ ()10x x ∴-≥ []0,1x ∴∈ 6.∑∞==1n n)23ln (( ) A.23ln 3ln - B. 3ln 23ln - C. 3ln 21-D. 3ln 2)3(ln n-解:此为等比级数,1ln 32a =ln 32q =11l n 3l n 3l n 32()212ln 312n n a q ∞====---∑ 7.设函数=-=)x 2(f 1x x)x 1(f ,则( A )A.x211- B.x 12- C.x2)1x (2- D.x)1x (2- 解:设1t x= 1x t ∴= ()11111t f t t t∴==-- ()1212f x x ∴=-8.已知f(x)=ax+b,且f(-1)=2,f(1)=-2,则f(x)=( ) A.x+3 B.x-3 C.2xD.-2x解:()()12;12f a b f a b -=-+==+=- 2;0a b ∴=-= ()2f x x∴=- 9.lim()1xx x x →∞=+( B ) A.eB.e -1C.∞D.1解:111lim()lim 111xxx x x e x e x -→∞→∞⎛⎫ ⎪=== ⎪+ ⎪+⎝⎭ 10.函数)1x )(2x (3x y -+-=的连续区间是( D )A.),1()2,(+∞---∞B.),1()1,(+∞---∞C.),1()1,2()2,(+∞-----∞D.[)+∞,3解:()()30210x x x -≥⎧⎪⎨+-≠⎪⎩3x ∴≥ [)3,x ∴∈+∞11.设函数⎩⎨⎧-=-≠++=1x a 1x )1x ln()1x ()x (f 2 , , 在x=-1连续,则a=( D )A.1B.-1C.2D.0解:1x =- 处连续, ()()11lim x f f x →-∴-=()()()()()211112122ln 11lim 1ln 1limlim2lim 101111x x x x x x a x x x x x →-→-→-→-⋅++∴=++===-+=-++12.设f(x+1)=x 2-3x+2,则f(x)=( B ) A.x 2-6x+5 B.x 2-5x+6 C.x 2-5x+2 D.x 2-x 解:设1x t += 1x t =- ()()()22131256f t t t t t =---+=-+ ()256f x x x =-+13.已知f(x)的定义域是[0,3a],则f(x+a)+f(x-a)的定义域是( ) A .[a,3a] B .[a,2a] C .[-a,4a]D .[0,2a]解:0303x a a x a a ≤+≤⎧⎨≤-≤⎩ 324a x aa x a-≤≤⎧∴⎨≤≤⎩ 2a x a ≤≤ [],2x a a ∴∈14.=→xsin x 1sinx lim20x ( D )A .1B .∞C .不存在D .0解:0,sin x x x →∴ 原式= 2001sin1limlim sin 0x x x x x x x→→==15.函数y=ln(22x 1x 1--+)的定义域是( C ) A .|x|≤1 B .|x|<1 C .0<|x|≤1D .0<|x|<1解:2010x >-≥⎪⎩ 011x x ≠⎧∴⎨-≤≤⎩ 01x ∴<≤16.0x lim →x 2sin2x1=( A )A .0B .1C .-1D .不存在解:0x lim →x 2sin 2x 1=017.函数y=1-cosx 的值域是( C ) A.[-1,1] B.[0,1] C.[0,2]D.(-∞,+∞)解:cos 1,110x y ==-=;()cos 1,112x y =-=--= 02y ≤≤ []0,2y ∴∈ 18.设2a 0π<<,则=→x x sin lim a x ( D )A.0B.1C.不存在D.aasin 解:=→x x sin lima x sin aa19.下列各式中,正确的是( D )A.e )x 11(lim x 0x =++→B.e )x 1(lim x 10x =-→ C.e )x11(lim x x -=-∞→D.1x x e )x11(lim -∞→=-解:()1111lim(1)lim 1x x x x e x x -⋅--→∞→∞⎛⎫-=-= ⎪⎝⎭20.设函数f(x-1)=x 2-x,则f(x)=( B ) A .x(x-1) B .x(x+1) C .(x-1)2-(x-1) D .(x+1)(x-2)解:设1x t -= 1x t =+ ()()()()22111f t t t tt t t ∴=+-+=+=+()()1fx x x =+21.设f(x)=ln4,则0x lim →∆=∆-∆+x)x (f )x x (f ( C )A .4B .41C .0D .∞解:0x lim→∆=∆-∆+x )x (f )x x (f 0ln 4ln 4lim0x x∆→-=∆ 22.设函数f (x )的定义域为[0,4],则函数f (x 2)的定义域为( D ) A.[0,2] B.[0,16] C.[-16,16]D.[-2,2]解:204x ≤≤ 24x ≤ 22x -≤≤ []2,2x ∴∈-23.xx x 1lim→=( C )A.0B.1C.-1D.不存在解:11limlim 1x x x xx x→→== 24.设f(t)=t 2+1,则f(t 2+1)=( D ) A.t 2+1 B.t 4+2 C.t 4+t 2+1 D. t 4+2t 2+2解:()21f x x =+ ()()2224211122ft t t t ∴+=++=++25.数列0,31,42,53,64,…的极限是( ) A.0 B.n2n - C.1 D.不存在解:11n n x n -=+ 111l i m l i m l i m1111n n n n n n x n n→∞→∞→∞--∴===++ 26.设1)1(3-=-x x f ,则f (x )=( B )A .x x x 2223++B .x x x 3323++C .12223+++x x xD .13323+++x x x解;设1x t -= 1x t =+ ()()3321133f x t t t t ∴=+-=++()3233f x x x x ∴=++ 27.下列极限存在的是( D ) A .11lim-→xx eB .xx e 1lim → C .x x sin lim ∞→D .221limx x x -∞→解:2221limlim 1111x x x x x →∞→∞==--- 28.下列区间中,函数f (x)= ln (5x+1)为有界的区间是( C )A.(-1,51)B.(-51,5)C.(0,51)D.(51,+∞)解:()0,ln1x f x ==;()1,ln 25x f x ==; ()ln1ln 2f x ≤≤ 29.设函数g (x)在x = a 连续而f (x) = (x-a)g(x),则'f (a) =( D ) A.0 B.g '(a) C.f (a)D.g (a)解:()()()()()()()()f x x a g x x a g x g x x a g x ''''=-+-=+- ()()()()()f ag a a a g a g a''=+-= 30.设⎪⎩⎪⎨⎧=≠-+=0,00,11)(x x xx x f ,则x =0是f (x )的( A ) A .可去间断点 B .跳跃间断点 C .无穷间断点 D .连续点解:()00f =()000111lim 2x x x x f x →→→→====()()0l i m 0x fx f →≠ 但极限存在,此为可去间断点31.函数f(x)=arcsin(2x-1)的定义域是( D ) A.(-1,1) B.[-1,1] C.[-1,0] D.[0,1]解:1211x -≤-≤ 022x ∴≤≤ 01x ≤≤ []0,1x ∴∈ 32.设函数y =f (x )的定义域为(1,2),则f (ax )(a <0)的定义域是( B )A.(a a 2,1)B.(a a 1,2) C.(a ,2a)D.(a a,2]解:12ax << 0a < 12x a a ∴>> 21,x a a ⎛⎫∴∈ ⎪⎝⎭33.函数f (x )=2211⎪⎭⎫⎝⎛--x 的定义域为( B )A .[]1,1-B .[]3,1-C .(-1,1)D .(-1,3)解:21102x -⎛⎫-≥ ⎪⎝⎭ 2112x -⎛⎫∴≤ ⎪⎝⎭1112x --≤≤ 212x -≤-≤ 13x -≤≤ []1,3x ∴∈-34.设函数f (x )=⎪⎩⎪⎨⎧≥+-<02302sin 2 x k x x x x x在x =0点连续,则k =( C )A .0B .1C .2D .3解:()0f k = ()00sin 2lim lim2x x xf x x→→== 0x = 处连续()()00lim x f f x →∴= 2k ∴=35.函数f (x )=21sin 2x x++是( C )A.奇函数B.偶函数C.有界函数D.周期函数解:1sin 1x -≤≤ 12s i n 3x ∴≤+≤ 22212s i n 303111x x x x +∴≤≤≤≤+++ 36.函数f (x )=ln x - ln(x -1)的定义域是( C ) A .(-1,+∞) B .(0,+∞) C .(1,+∞) D .(0,1)解:010x x >⎧⎨->⎩ 1x ∴> ()1,x ∈+∞37.极限=→xxx 62tan lim0( B )A .0B .31C .21D .3解:0,tan 22x x x → 00tan 221limlim 663x x x x x x →→==二、填空题(本大题共10小题,每小题3分,共30分) 1.已知f (x +1)=x 2,则f (x )=________.解;设1x t += 1x t =- ()()21f t t ∴=- ()()21f x x ∴=-2.无穷级数 +++++n 31313112的和等于________.解:此为等比级数,111,3a q ==1211113113331213n a q +++++===-- 3.设函数f(x)的定义域是[-2,2],则函数f(x+1)+f(x-1)的定义域是___________. 解:212212x x -≤-≤⎧⎨-≤+≤⎩ 1331x x -≤≤⎧∴⎨-≤≤⎩11x -≤≤ []1,1x ∴∈-4.=-++∞→]x ln )2x [ln(x lim x ___________.解:22lim [ln(2)ln ]lim ln lim ln 1x x x x x x x x x x x →+∞→+∞→+∞+⎛⎫⎛⎫+-==+⎪ ⎪⎝⎭⎝⎭22222lim ln 1lim ln 1ln 2xxx x e x x ⋅→+∞→+∞⎛⎫⎛⎫=+=+== ⎪ ⎪⎝⎭⎝⎭5.函数y=x ln ln 的定义域是 . 解:0ln 0x x >⎧⎨>⎩1x x >⎧⎨>⎩ 1x ∴> ()1,x ∴∈+∞ 6.nn 999.0lim ⋅⋅⋅∞→= . 解:1lim0.999lim 1110n n n n→∞→∞⎛⎫⋅⋅⋅=-= ⎪⎝⎭7.=∞→x21sinx 3lim x . 解:1110,0,sin 222x x x x →∴→∴ 113l i m 3s i n l i m 3222x x xx x x →∞→∞=⋅= 8.设⎩⎨⎧<-≥+=0x ,1x 0x ,1x )x (f ,则f (-1)= ___________.解:()1112f -=--=-9.=-+∞→)n 1n (n lim n ___________.解:n n =1l i l2n n n→∞====10.2x2xlim2x--→= ___________.解:()()()2222lim2x x xx xx→→→--==-2l i22x→=11.设函数1x2y+=,其反函数的定义域是________________.解:反函数的定义域是原函数的值域;而原函数的值域为0y≥其反函数的定义域是()0,+∞12.=--+∞→)nnn3n(limn________________.解:nn→∞=4l i l211 n n nn n+-=====+13.在一个极限过程中,变量u的极限为A的充分必要条件是u=A+α,其中α是极限过程中的________________.解:无穷小14.若f(x+1)=x+cosx则f(1)=__________.解:设11x+=0x=()10c o s01f=+=15..__________1n5n)n1(lim233x=++-∞→解:()()33333323233331111(1)lim lim lim151515111n n nnn nnn nn nn nn n n→∞→∞→∞⎛⎫--⎪--⎝⎭====-++++++16.函数y=1+ln(x+2)的反函数是______.解:()1ln 2y x -=+ 12y x e -+= 12y x e-∴=- 反函数是12x y e -=-17. =∞→xxarctan limn _______.解:arctan 1limlim arctan 0x x x x xx →∞→∞=⋅=18.函数y=arcsin(x-3)的定义域为___________。

大一高数试题和答案与解析

大一高数试题和答案与解析

大一高数试题及答案一、填空题(每小题1分,共10分)________ 11.函数y=arcsin√1-x2+────── 的定义域为_________√1-x2_______________。

2.函数y=x+ex上点(0,1)处的切线方程是______________。

f(Xo+2h)-f(Xo-3h)3.设f(X)在Xo可导且f'(Xo)=A,则lim───────────────h→o h= _____________。

4.设曲线过(0,1),且其上任意点(X,Y)的切线斜率为2X,则该曲线的方程是____________。

x5.∫─────dx=_____________。

1-x416.limXsin───=___________。

x→∞ X7.设f(x,y)=sin(xy),则fx(x,y)=____________。

_______R √R2-x28.累次积分∫ dx∫ f(X2+Y2)dy化为极坐标下的累次积分为____________。

0 0d3y3d2y9.微分方程─── +──(─── )2的阶数为____________。

dx3xdx2∞ ∞10.设级数∑ an发散,则级数∑ an _______________。

n=1 n=1000二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的(),1~10每小题1分,11~20每小题2分,共30分)(一)每小题1分,共10分11.设函数f(x)=── ,g(x)=1-x,则f[g(x)]=()x111①1-── ②1+── ③ ──── ④xxx1-x12.x→0 时,xsin──+1是()x①无穷大量②无穷小量③有界变量④无界变量3.下列说法正确的是()①若f( X )在 X=Xo连续,则f( X )在X=Xo可导②若f( X )在 X=Xo不可导,则f( X )在X=Xo不连续③若f( X )在 X=Xo不可微,则f( X )在X=Xo极限不存在④若f( X )在 X=Xo不连续,则f( X )在X=Xo不可导4.若在区间(a,b)恒有f'(x)〈0,f"(x)〉0,则在(a,b)曲线弧y=f(x)为()①上升的凸弧②下降的凸弧③上升的凹弧④下降的凹弧5.设F'(x) =G'(x),则()① F(X)+G(X) 为常数② F(X)-G(X) 为常数③ F(X)-G(X) =0dd④ ──∫F(x)dx=──∫G(x)dxdxdx16.∫ │x│dx=()-1① 0② 1③ 2④ 37.方程2x+3y=1在空间表示的图形是()①平行于xoy面的平面②平行于oz轴的平面③过oz轴的平面④直线x8.设f(x,y)=x3+y3+x2ytg── ,则f(tx,ty)=()y①tf(x,y)②t2f(x,y)1③t3f(x,y)④ ──f(x,y)t2an+1∞9.设an≥0,且lim───── =p,则级数∑an()n→∞ a n=1①在p〉1时收敛,p〈1时发散②在p≥1时收敛,p〈1时发散③在p≤1时收敛,p〉1时发散④在p〈1时收敛,p〉1时发散10.方程y'+3xy=6x2y是()①一阶线性非齐次微分方程②齐次微分方程③可分离变量的微分方程④二阶微分方程(二)每小题2分,共20分11.下列函数中为偶函数的是()①y=ex②y=x3+1③y=x3cosx④y=ln│x│12.设f(x)在(a,b)可导,a〈x1〈x2〈b,则至少有一点ζ∈(a,b)使()①f(b)-f(a)=f'(ζ)(b-a)②f(b)-f(a)=f'(ζ)(x2-x1)③f(x2)-f(x1)=f'(ζ)(b-a)④f(x2)-f(x1)=f'(ζ)(x2-x1)13.设f(X)在 X=Xo 的左右导数存在且相等是f(X)在 X=Xo 可导的()①充分必要的条件②必要非充分的条件③必要且充分的条件④既非必要又非充分的条件d14.设2f(x)cosx=──[f(x)]2,则f(0)=1,则f(x)=()dx①cosx②2-cosx③1+sinx④1-sinx15.过点(1,2)且切线斜率为4x3的曲线方程为y=()①x4②x4+c③x4+1④x4-11 x16.lim─── ∫ 3tgt2dt=()x→0 x3 01① 0②1③ ── ④ ∞3xy17.limxysin───── =()x→0 x2+y2y→0① 0② 1③ ∞ ④ sin118.对微分方程y"=f(y,y'),降阶的方法是()① 设y'=p,则y"=p'dp② 设y'=p,则y"=───dydp③ 设y'=p,则y"=p───dy1dp④ 设y'=p,则y"=── ───pdy∞ ∞19.设幂级数∑ anxn在xo(xo≠0)收敛,则∑ anxn在│x│〈│xo│()n=o n=o①绝对收敛②条件收敛③发散④收敛性与an有关sinx20.设D域由y=x,y=x2所围成,则∫∫ ─────dσ=()D x1 1 sinx① ∫ dx∫ ───── dy0 x x__1 √y sinx② ∫ dy∫ ─────dx0 y x__1 √x sinx③ ∫ dx∫ ─────dy0 x x__1 √x sinx④ ∫ dy∫ ─────dx0 x x三、计算题(每小题5分,共45分)___________/x-11.设y=/────── 求y' 。

大一上高等数学(I )试题及答案

大一上高等数学(I )试题及答案

高等数学(I )一.填空题(每小题5分,共30分)1. 已知0)(2sin lim 30=+>-x x xf x x , 则20)(2lim xx f x +>-= 。

2. 曲线x y ln =上曲率最大的点为__________________。

3. 极限]cos 1[cos lim x x x -+∞>-的结果是_________。

4. 极限 20arcsin lim ln(1)x x x x x →-+=_____________。

5. 曲线)0()1ln(>+=x xe x y 的斜渐近线为( )。

6. 当1→x 时,已知1-x x 和k x a )1(-是等价无穷小,则a =_____,.___=k二、计算题(每小题5分,共20分) 1. x x x x e sin 1023lim ⎪⎪⎭⎫ ⎝⎛+->-2.dx e x x 32⎰ 3.dx x ⎰+cos 2114. 22(tan 1)x e x dx +⎰三.(6分)已知曲线)(x y y =的参数方程⎩⎨⎧++==)41ln(2arctan 2t t y t x ,求22dx y d dx dy ,。

四.(8分)设xx x f )1ln()(ln +=,求⎰dx x f )(五.(10分)设)(x f 31+=x ,把)(x f 展开成带Peano 型余项的n 阶麦克劳林公式,并求).0()50(f六(12分).已知)(x f 是周期为5的连续函数,它在0=x 的某邻域内满足关系式)sin 1(x f +-)(8)sin 1(3x x x f α+=-,其中)(x α是当0→x 时比x 高阶的无穷小,且)(x f 在1=x 处可导,求曲线)(x f y =在点))6(,6(f 处的切线方程。

七.(14分)设函数)(x f 在],[b a 上具有连续导函数)(x f ',且0)()(==b f a f , 证明:2)(4)(a b M dx x f b a -≤⎰,其中|)(|],[x f Max M b a x '=∈。

大学高等数学第一册考试试题+答案详解

大学高等数学第一册考试试题+答案详解

一、选择题(本大题共5小题,每题3分,共15分)分)1.设+¥=®)(lim 0x f x x ,+¥=®)(lim 0x g x x,Ax h x x=®)(lim 0,则下列命题不正确的是,则下列命题不正确的是( B ) A. +¥=+®)]()([lim 0x g x f x x ; B. ¥=®)]()([lim 0x h x f x x ; C. +¥=+®)]()([lim 0x h x f x x ; D. +¥=®)]()([lim 0x g x f x x . 2. 若¥®n lim5)31(++nn = ( C ) A. 5e ; B. 4e ; C. 3e; D. 2e . 3. 设0lim®x x f x f cos 1)0()(--=-5,则在点x=0处 ( D ) A. f(x)的导数存在的导数存在,且)0('f ¹0; B. f(x)的导数不存在; C. f(x)取极小值取极小值; D. f(x)取极大值. 4. 设x e -是f(x)的一个原函数,则òdx x xf )(= ( A ) A. x e -(x+1)+c; B; xe -(1-x)+c; C. x e -(x -1)+c; D. -xe -(x+1)+c. 5. 0lim®x òòxt xtdtte dt e 0202322)(= ( D ) A. 0 ; B. 21; C. 1 ; D. 2. 二、填空题(本大题共7小题,每题3分,共21分)分)1. 若+¥®x lim (11223-+x x +a x+b )=0,则 a = -2, , b = 0 . 2. 设f(x)在x=a 处可导,则0lim ®h hh a f h a f )3()3(--+= 6)('a f . 3. 设y=5ln )1ln(2+++x x ,则dy = dx x 211+ . 4. 不定积分dx x ò2sin 2= c x x +-)sin (21 . 5. 广义积分ò¥+-0sin tdt e t = 21 . 6. ò-++11431sin dx x x x x = 0 . 7. 用定积分的定义计算:¥®n limå=+n i ni n n 12sin 1p = p 2.. 三、计算题(本大题共7小题,每题7分,共49分)分) 1. 设函数设函数f(x)= îíì>-£+0)1(012x x b x ax 在点x=0可导,求a 与b 的值的值 . 1. 解:f(x)在x=0可导Þ f(x)在x=0连续Þ-®0lim x f(x)=f(0)= +®0lim x f(x)=b Þb=1, 又)0('=f =-®0limx x f x f )0()(-=-®0lim x x ax 11-+=a )0('+f =+®0lim x x f x f )0()(-=+®0lim x xx 1)1(2--=-2(因b=1), 由已知有)0('=f =)0('+f ,故a=-2 . 2. 求12+=x x y 的n 阶导数阶导数 . 2.解:11)()1(!)1(+-+--=n n n x n y3. 求由方程xy -e y=0所确定的隐函数y=f(x)的一阶和二阶导数dx dy ,22dx y d . 3.解:dx dy =y y e x -, 22dx y d =232()()y yy e x y y e e x --- 4. 求0lim ®x 2sin cos 32cos 2xx x e x -. 4.原式=0lim ®x 232cos 112x x e x -+-=0lim ®x 2312x e x -+0lim ®x 232cos 1x x -=31+32=1 5. 求òdx xex5. 5解:原式=ò)5(525x d e x =c e x+5526. 求ò+dx x 32)1(1 6.解:令x=tant 原式=…………..= ..= 21xx +c +7. 求òexdx x 1ln . 7.解:原式=òex xd 12)2(ln =…..=)1(412+e四、应用题(四、应用题(55分)分) 摆线的一拱: )20(,)cos 1()sin (p ££îíì-=-=t t y t t xx 与直线y=0围成一平面图形, (1)求此平面图形的面积; (2)求此平面图形绕x 轴旋转而成的旋转体的体积. 解:(1) S=òp 20ydx =ò--p20')]sin )[(cos 1(dt t t t =… =3p , (2) V x=p òp22dx y=ò--p20'2)]sin [()cos 1(dt t t t =…… =25p五、证明题(本大题共2小题,每题5分,共10分)分)(1) 利用函数图形的凹凸性证明不等式:)(22y x e e e yx yx ¹>++. (1) 证:令,0)(",)(>=t f e x f t图形凹,由定义得证图形凹,由定义得证(2) 设函数f(x)在[0,1]上二阶可导,且f(0)=f(1)=0,证明:至少存在一点x Î(0,1),使得使得)("x f =xx -1)(2'f成立成立 . (2) 证:结论变为证:结论变为)("x f (1-x )-2)('x f =0即(x 换为x) [)('x f (1-x)-f(x)](1-x)-f(x)]’’=0, 设)('x F =)('x f (1-x)-f(x),则可令F(x)=f(x)(1-x) F(x)在[0,1]上满足罗尔定理的条件,必存在一点1x Î(0,1), 使得F '(1x )=0,即)('1x f (1-1x )-f(1x )=0.又 )('x F 在[1x ,1]上满足罗尔定理的条件,必存在一点x Î(1x ,1) Ì(0,1),使得"F (x )=0,即)("x f (1-x )-2)('x f =0,得证. 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学1试题(附答案解析)work Information Technology Company.2020YEAR一、填空题(共6小题,每小题3分,共18分)1. 由曲线2cos r θ=所围成的图形的面积是π。

2. 设由方程22x y =所确定的隐函数为)(x y y =,则2y dy dx x=-。

3. 函数2sin y x =的带佩亚诺余项的四阶麦克劳林公式为2441()3x x o x -+。

4.11dx =⎰。

5. 函数x x y cos 2+=在区间⎥⎦⎤⎢⎣⎡20π,上的最大值为6π+。

6. 222222lim 12n nn n n n n n →∞⎛⎫+++⎪+++⎝⎭=4π。

二、选择题(共7小题,每小题3分,共21分)1. 设21cos sin ,0()1,0x x x f x x x x ⎧+<⎪=⎨⎪+≥⎩,则0x =是()f x 的 D 。

A .可去间断点 B .跳跃间断点 C .振荡间断点 D .连续点2. 设()232x x f x =+-,则当0x →时,下列结论正确的是 B 。

A .是等价无穷小与x x f )(B .同阶但非等价无穷小与x x f )(C .高阶的无穷小是比x x f )(D .低阶的无穷小是比x x f )( 3.+∞ C 。

A .不存在B .0C .2πD .π4. 设()f x 具有二阶连续导数,且(0)0f '=,0lim ()1x f x →''=-,则下列叙述正确的是 A 。

A .(0)f 是()f x 的极大值B .(0)f 是()f x 的极小值C .(0)f 不是()f x 的极值D .(0)f 是()f x 的最小值5.曲线2xy d t π-=⎰的全长为 D 。

A .1B .2C .3D .46. 当,a b 为何值时,点( 1, 3 )为曲线32y ax bx =+的拐点 A 。

A .32a =-,92b = B. 32a =,92b =- C .32a =-,92b =- D. 32a =,92b = 7. 曲线2xy x -=⋅的凸区间为 D 。

A.2(,)ln 2-∞- B.2(,)ln 2-+∞ C.2(,)ln 2+∞ D.2(,)ln 2-∞三、计算题(共7小题,其中第1~5题每小题6分,第6~7题每小题8分,共46分)1. 21lim cos x x x →∞⎛⎫ ⎪⎝⎭解:()21cos lim ,1t t t xt →==原式令)00(cos ln lim2型tt t e →=(3分)tt t t e cos 2sin lim⋅-→=12e-=(6分)2. 222,arctan )1ln()(dx yd tt y t x x y y 求确定所由参数方程设函数⎩⎨⎧-=+==。

解:)]1[ln()arctan (2t d t t d dx dy +-=2212111t t t ++-=2t =, (3分)22dx y d dx dx dy d ⎪⎭⎫ ⎝⎛=dtdx dt t d 1)2(⋅=212121t t +⋅=tt 412+=. (6分)3. 2(1)xx xe dx e +⎰. 解:=原式1()1x x d e -+⎰ (2分) =111x x x dx e e -+++⎰ =11()11x x x x x de e e e -+-++⎰ =ln 11xx x x e C e e -++++ (6分)4.求⎰(0)t t =≥,则22x t dx tdt ==, (2分)2422200002201222(1)1112[ln 1]2ln32t t tdt dt t dt t t t t t t ===-++++=-++=⎰⎰⎰⎰ (6分)5. 设曲线()n f x x =在(1, 1) 处的切线与x 轴的交点为(,0)n x ,求n n n x )(lim ∞→。

解:11(1)n x f nx n -='==,所以()f x 在点(1,1)处的切线方程为:(1)1y n x =-+ …….. (*)(2)分由题意知切线(*)与x 轴的交点为(,0)n x ,即n x x n n n 111)1(0-=⇒+-= (5)分从而可得:n n n n n nx )11(lim )(lim -=∞→∞→=1-e . (6)分6. 设连续函数)(x f 满足x x f x f 2sin )()(=-+,求积分222()sin I f x x dx ππ-=⎰.解:方程两端同乘2sin x 并从2π-积分到2π,得: 222222222444()sin ()sin sin 2sin 2(*)f x xdx f x xdxxdx xdx I πππππππ---+-===⎰⎰⎰⎰ )3(分222()sin f x xdx t xππ--=-⎰又令222222()sin ()()()sin f t t dt f t tdt ππππ----=⎰⎰(5分)由(*)得:22241()sin 22I f x xdx I ππ-==⨯⎰13122422π=⨯⨯⨯⨯316π=. (8)分7. 设()f x 连续,1()()F x f t x dt =⎰,且0()lim x f x A x→=(A 为常数),求()dF x x 。

解:由A xx f x =→)(lim0 知:(0)0f =。

u t x =令,⎩⎨⎧→→xu t 0:10:则,x du dt xdt du =⇒= ⎰⎰⇒=xxdu u f dt tx f x F 01)()()(于是)0()(1≠=⎰x du u f x x可见:⎪⎩⎪⎨⎧=≠=⎰0,00,)(1)(0x x du u f x x F x(4)分时当0≠x ,22)()()(1)(1)(xdu u f x xf x f x du u f xx F xx ⎰⎰-=+-='; )6(分 时当0=x ,0()(0)(0)lim x F x F F x∆→∆-'=∆2001()0lim ()lim()()1lim ,22x x x x x f u du xxf u dux f x A x ∆∆→∆∆→∆→-∆=∆=∆∆==∆⎰⎰所以:02()(),0(),02x xf x f u dux x F x Ax ⎧-⎪≠⎪'=⎨⎪=⎪⎩⎰. )8(分四、应用题(共1小题,每小题9分,共9分)设直线y a x =)10(<<a 与抛物线2x y =所围成的图形为1D ,它们与直线1=x 所围成的图形为2D ,若1D 、2D 同时绕x 轴旋转一周得到一旋转体,试确定a 的值,使该旋转体的体积最小.解:∵ ⎩⎨⎧≤≤≤≤ax y x ax 20:1D , ⎩⎨⎧≤≤≤≤21:x y ax x a 2D []⎰-=a dx x ax 0222)()(π1V ()⎰-=adx x x a 0422π []⎰-=1222)()(adx ax x π2V ()⎰-=1224adx x a x π∴ ()()⎰⎰-+-=+=12240422aadx x a x dx x x a a ππ21)(V V V132505323553aax a x x x a ⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=ππ 5315425πππ+-=a a ……………..(5)分由daa )(dV a a 32344ππ-=,令0a da=dV ()得:321=a . ………….(7)分 又由2a a da 2d V ()3162161260333233a a πππππ⎛⎫=-=⋅-=> ⎪⎝⎭ 可见: 当321=a 时, 该旋转体的体积最小. ………………..(9)分五、证明题(共1小题,每小题6分,共6分)设函数)(x f 在[]b a ,上连续,在()b a ,内可导,且()0f x '≠,试证存在),(,b a ∈ηξ,使得()()b af e e e f b aηξη-'-=⋅'-证明:设()x g x e =,则()()()()()()f b f a f g b g a g ηη'-='-,即()()()b af b f a f e e eηη'-=-. ………………..(3分)又因为存在(,)a b ξ∈,使得()()()(),f b f a b a f ξ'-=- ……………………..(4分)所以()()()b ab a f fe e eηξη''-=-,即结论成立. ………………..(6分)。

相关文档
最新文档