(word完整版)高数一试题及答案,推荐文档
完整)高等数学考试题库(附答案)
完整)高等数学考试题库(附答案)高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分)。
1.下列各组函数中,是相同的函数的是()。
A)f(x)=ln(x^2)和g(x)=2lnxB)f(x)=|x|和g(x)=x^2C)f(x)=x和g(x)=x^2/xD)f(x)=2|x|和g(x)=1/x答案:A2.函数f(x)=ln(1+x)在x=0处连续,则a=()。
A)1B)0C)-1D)2答案:A3.曲线y=xlnx的平行于直线x-y+1=0的切线方程为()。
A)y=x-1B)y=-(x+1)C)y=(lnx-1)(x-1)D)y=x答案:C4.设函数f(x)=|x|,则函数在点x=0处()。
A)连续且可导B)连续且可微C)连续不可导D)不连续不可微答案:A5.点x=0是函数y=x的()。
A)驻点但非极值点B)拐点C)驻点且是拐点D)驻点且是极值点答案:A6.曲线y=4|x|/x的渐近线情况是()。
A)只有水平渐近线B)只有垂直渐近线C)既有水平渐近线又有垂直渐近线D)既无水平渐近线又无垂直渐近线答案:B7.∫f'(1/x^2)dx的结果是()。
A)f(1/x)+CB)-f(x)+CC)f(-1/x)+CD)-f(-x)+C答案:C8.∫ex+e^(-x)dx的结果是()。
A)arctan(e^x)+CB)arctan(e^(-x))+CC)ex-e^(-x)+CD)ln(ex+e^(-x))+C答案:D9.下列定积分为零的是()。
A)∫π/4^π/2 sinxdxB)∫0^π/2 xarcsinxdxC)∫-2^1 (4x+1)/(x^2+x+1)dxD)∫0^π (x^2+x)/(e^x+e^(-x))dx答案:A10.设f(x)为连续函数,则∫f'(2x)dx等于()。
A)f(1)-f(0)B)f(2)-f(0)C)f(1)-f(2)D)f(2)-f(1)答案:B二.填空题(每题4分,共20分)。
高等数学1试卷(附答案)
一、填空题(共6小题,每小题3分,共18分)1. 由曲线2cos r θ=所围成的图形的面积是π。
2. 设由方程22x y =所确定的隐函数为)(x y y =,则2y dy dx x=-。
3. 函数2sin y x =的带佩亚诺余项的四阶麦克劳林公式为2441()3x x o x -+。
4.11dx =⎰。
5. 函数x x y cos 2+=在区间⎥⎦⎤⎢⎣⎡20π,上的最大值为6π+。
6. 222222lim 12n nn n n n n n →∞⎛⎫+++ ⎪+++⎝⎭L =4π。
二、选择题(共7小题,每小题3分,共21分)1. 设21cos sin ,0()1,0x x x f x x x x ⎧+<⎪=⎨⎪+≥⎩,则0x =是()f x 的 D 。
A .可去间断点 B .跳跃间断点 C .振荡间断点 D .连续点2. 设()232x x f x =+-,则当0x →时,下列结论正确的是 B 。
A .是等价无穷小与x x f )(B .同阶但非等价无穷小与x x f )(C .高阶的无穷小是比x x f )(D .低阶的无穷小是比x x f )(暨南大学《高等数学I 》试卷A 考生姓名: 学号:3.1+∞=⎰C 。
A .不存在B .0C .2πD .π4. 设()f x 具有二阶连续导数,且(0)0f '=,0lim ()1x f x →''=-,则下列叙述正确的是 A 。
A .(0)f 是()f x 的极大值B .(0)f 是()f x 的极小值C .(0)f 不是()f x 的极值D .(0)f 是()f x 的最小值5.曲线2xy d t π-=⎰的全长为 D 。
A .1B .2C .3D .46. 当,a b 为何值时,点( 1, 3 )为曲线32y ax bx =+的拐点? A 。
A .32a =-,92b = B. 32a =,92b =- C .32a =-,92b =- D. 32a =,92b = 7. 曲线2xy x -=⋅的凸区间为 D 。
高等数学1教材试题及答案
高等数学1教材试题及答案一、选择题1. 下列函数中,是偶函数的是()A. y = x^3 - 2xB. y = x^2 + 1C. y = sin(x)D. y = cos(x)答案:D2. 函数f(x) = x^2 - 3x + 2的图像在x轴上的截点为()A. (1, 0)和(2, 0)B. (0, 1)和(0, 2)C. (-1, 0)和(2, 0)D. (1, 0)和(1, 2)答案:A3. 设函数f(x) = e^x,g(x) = ln(x),则f[g(1)]的值为()A. 0B. 1C. eD. -1答案:C二、填空题1. 设函数f(x) = sin^2(x) + cos^2(x),则f(π/4)的值为______。
答案:12. 设函数y = ln(1 + e^x),则其反函数为______。
答案:y = ln(e^x - 1)三、计算题1. 求函数f(x) = 3x^2 - 4x + 1的导数f'(x)。
解答:f'(x) = 6x - 42. 求函数f(x) = 2x^3 - 3x^2 + 4的定积分∫[0, 1] f(x)dx。
解答:∫[0, 1] f(x)dx = [x^4/2 - x^3 + 4x] |[0, 1]= (1/2 - 1 + 4) - (0/2 - 0 + 0)= 3.5四、应用题1. 一个圆的半径逐渐增长,当半径为r时,其面积为A。
求圆的面积A与半径r之间的函数关系。
解答:圆的面积公式为A = πr^2,其中π为常数。
所以,A与r之间的函数关系为A = πr^2。
2. 一座塔高380米,顶部和底部之间的水平距离为500米。
求参观塔顶时的斜率。
解答:设塔底部的位置为点A(0, 0),塔顶部的位置为点B(500, 380)。
斜率可以通过点A和点B的坐标计算。
斜率 = (y2 - y1) / (x2 - x1) = (380 - 0) / (500 - 0) = 38/50 = 0.76答案:0.76综上所述,我提供了一些高等数学1教材试题及答案。
高等数学考试题库(含答案解析)
范文范例参考《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题 3 分,共 30 分).1.下列各组函数中,是相同的函数的是().(A )f x ln x2和 g x2ln x( B)(C )f x x 和g x2x(D )f x| x | 和g x x2f x| x |g x1和xsin x 4 2x02.函数f x ln 1x在 x 0 处连续,则a() .a x0(A )0( B)1(D)2(C)143.曲线y x ln x 的平行于直线 x y 1 0 的切线方程为() .(A )y x 1( B)y( x 1)(C )y ln x 1x 1(D)y x 4.设函数f x| x |,则函数在点x0 处() .(A )连续且可导( B)连续且可微( C )连续不可导( D)不连续不可微5.点x0 是函数y x4的().(A )驻点但非极值点(B)拐点(C)驻点且是拐点(D)驻点且是极值点6.曲线y1) .的渐近线情况是(| x |(A )只有水平渐近线( B)只有垂直渐近线( C )既有水平渐近线又有垂直渐近线(D )既无水平渐近线又无垂直渐近线7.f11). x x2dx 的结果是((A )1C1C1C (D) f1f( B)f( C )f C x x x x8.dxxe e x的结果是().(A )arctane xC()arctan exC(C)xexC(D)xex)CB e ln( e9.下列定积分为零的是() .(A )4arctanx dx(B)4x arcsin x dx (C) 1e x e x1x2x sin x dx 1x212dx (D)44110 .设f x为连续函数,则1f 2x dx 等于() . 0(A )f 2f0(B)1f 11 f 0 (C)1f 2 f 0 (D) f 1 f 0 22二.填空题(每题 4 分,共 20 分)f x e 2x1x0在 x 0处连续,则 a1.设函数x.a x02.已知曲线 y f x在 x 2 处的切线的倾斜角为5,则 f2. 6x3. y的垂直渐近线有条.x 2 14.dx. x 1ln2 x5.2x4 sin x cosx dx.2WORD 格式整理范文范例参考三.计算(每小题 5 分,共 30分)1.求极限12 xx sin x① lim x② limx x e x2x x 012.求曲线y ln x y 所确定的隐函数的导数y x.3.求不定积分①dx②dx a0③ xe x dxx1x 3x2a2四.应用题(每题10 分,共 20 分)1.作出函数y x33x2的图像.2.求曲线y22x 和直线 y x 4 所围图形的面积.WORD 格式整理范文范例参考《高数》试卷 1 参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7. D 8.A 9.A 10. C二.填空题1. 22 .3 24. arctanln x c5.23.3三.计算题1① e 2② 12. y x16 xy 13. ① 1 ln |x 1| C ② ln | x 2a 2x | C③ e x x 1 C2x 3四.应用题1.略2.S 18《高数》试卷2(上)一. 选择题 ( 将答案代号填入括号内 ,每题 3 分,共 30 分 )1.下列各组函数中 ,是相同函数的是 ().(A)f xx 和 g xx 2(B)f xx 2 1 和 y x 1x 1(C)f xx 和 g xx(sin 2 x cos 2 x)(D)f xln x 2 和 g x2ln xsin 2 x 1x1 x12.设函数 fx2x 1,则 limf x().x 2x11x1(A) 0(B)1(C)2(D) 不存在3.设函数 y f x 在点 x 0 处可导,且 fx >0, 曲线则 yf x 在点 x 0 , f x 0处的切线的倾斜角为 {}.(A)0 (B)2(C)锐角(D)钝角4.曲线 y ln x 上某点的切线平行于直线 y 2x 3 ,则该点坐标是 ().(A)2,ln1(B)2, ln1(C)1,ln 2(D)1 , ln 222225.函数y x2e x及图象在1,2 内是().(A) 单调减少且是凸的(B)单调增加且是凸的(C) 单调减少且是凹的(D) 单调增加且是凹的6.以下结论正确的是 ().(A)若 x0为函数y f x的驻点 ,则x0必为函数y f x的极值点 .(B)函数 y f x 导数不存在的点,一定不是函数 y f x的极值点 .(C)若函数 y f x在 x0处取得极值,且f x0存在,则必有 f x0=0.(D)若函数 y f x在 x0处连续,则f x0一定存在 .WORD 格式整理范文范例参考17.设函数 y f x的一个原函数为x2e x,则f x=().1111(A) 2 x 1 e x(B)2x e x(C)2x 1 e x(D)2xe x8.若 f x dx F x c ,则 sin xf cosx dx().(A) F sin x c(B)F sin x c(C)F cos x c(D)F cos x c9.设 F x1f xdx =().为连续函数 , 则2(A) f1f0(B) 2f1f0(C)2 f 2f0 (D) 2 f1f0210. 定积分ba b 在几何上的表示(). dxa(A) 线段长b a(B)线段长 a b (C)矩形面积a b 1 (D)矩形面积b a1二.填空题 (每题 4 分,共 20 分)ln1x2x 0, 在x01.设 f x1cos x连续 ,则a =________.a x02.设 y sin 2x ,则 dy_________________ d sin x .3.函数 yx1的水平和垂直渐近线共有_______条 . x214.不定积分x ln xdx______________________.5.定积分1x2 sin x1___________. 11x2dx三.计算题 (每小题 5 分,共 30分 )1.求下列极限 :① lim12x 1② lim2arctanxx1x 0xx2.求由方程 y1xe y所确定的隐函数的导数y x.3.求下列不定积分 :① tan x sec3xdx②dx a0③x2e x dxx2a2四.应用题 (每题 10 分,共 20 分)1.作出函数 y1x3x 的图象.(要求列出表格)32.计算由两条抛物线:y2x, y x2所围成的图形的面积.WORD 格式整理范文范例参考《高数》试卷 2 参考答案一.选择题: CDCDB CADDD二填空题: 1. -2 2. 2sin x 3.3 4.1x2 ln x1x2c 5.242三. 计算题: 1.2②1 2.y e y① ex y23.① sec3 x c② ln x2a2x c③ x22x 2 e x c3四.应用题: 1.略 2.S 13《高数》试卷3(上)一、填空题 (每小题 3分,共 24分)1.函数 y1的定义域为 ________________________.9x22.设函数 f x sin 4x , x0则当 a =_________时, f x 在 x0处连续 .x,a,x03.函数 f (x)x2x21的无穷型间断点为 ________________. 3x24.设 f ( x) 可导,y f (e x ) ,则 y____________.5.limx21_________________. 2x2x5x6.1x3 sin 2 x dx =______________.1 x4x217.d x2e t dt_______________________.dx 08.y y y30 是_______阶微分方程.二、求下列极限 ( 每小题 5 分,共15分)xx 1x311.lim e;2.lim;3.lim12.x 0sin x x 3x9x2x 三、求下列导数或微分 (每小题 5分, 共15分)1.yx x,求 y (0) . 2.y e cos x ,求 dy . 2求dy.3.设 xy e x y ,dx四、求下列积分(每小题 5分, 共15分)1.12sin x dx . 2.x ln(1x)dx . x3.1e2x dx五、 (8 分 )求曲线xtcost在 t处的切线与法线方程 . y12WORD 格式整理范文范例参考六、 (8 分 )求由曲线 yx 21, 直线 y 0, x 0 和 x 1所围成的平面图形的面积 , 以及此图形绕 y 轴旋转所得旋转体的体积 .七、 (8 分 )求微分方程 y 6 y13 y 0 的通解 .八、 (7 分 )求微分方程 yy e x 满足初始条件 y 10的特解.x《高数》试卷 3 参考答案一. 1. x 32. a 43. x 24. e x f '(e x )5.16.07. 2 xe x 28. 二阶2二 .1.原式 = lim x1x 0x2. lim11 x 3 x3 63.原式 = lim[(11 11)2 x ] 2 e 2x2x三 .1.2.y'212)2, y '(0)(x2dysin xe cos x dx3.两边对 x 求写: yxy ' e x y (1 y ')e x yyxy yy 'e x yx xyx四.1.原式 = lim x2cos x Cx2212.原式 = lim(1)xx)2x)]x)d (lim(1 2x d [lim(12x= x22lim(1 x)1 1 x dx x lim(1 x) 1 ( x 11 ) dx22 x 2 21 x=x22lim(1 x) 1 [ xx lim(1 x)]C22 23.原式 =11 2 x2 x 1 1 20 e d (2 x) 1 e 0( e 1)222五.dysin tdy t1 且 t2 , y 1dxdx2切线: y1 x,即 y x 122法线: y1( x),即 y x 122六. S11 21320 ( x1)dx ( xx) 022V11)2dx12x21)dx(x2( x4( x 52 x 2 x) 10 285 315七.特征方程 : r 2 6r 13 0r 3 2iye 3 x (C 1 cos2 x C 2 sin 2 x)11dxxdx八. y e xdx C )( e e x1 xC ][ (x 1e)x由 y x 1 0,C0y x 1 e xx《高数》试卷4(上)WORD 格式整理范文范例参考一、选择题(每小题 3 分)1、函数 y ln(1 x) x 2 的定义域是() . A2,1B2,1C 2,1D2,12、极限 lim e x的值是() .xA 、B 、C 、D 、 不存在3、 limsin(x 1) ( ) .x 1 1 x 2 1 1A 、 1B 、 0C 、2D 、24、曲线 y x 3x 2 在点 (1,0) 处的切线方程是()A 、 y2( x1)B 、 y 4( x 1)C 、 y 4x 1D 、 y 3( x 1)5、下列各微分式正确的是( ) .A 、 xdx d (x 2 )B 、 cos 2xdx d(sin 2x)C 、 dx d (5 x)D 、 d (x 2 ) (dx) 26、设f (x)dx2 cosxC ,则f ( x) () .2A 、 sin xB 、22 ln x ) .7、dx (xxxxsinC 、 sinC D 、 2 sin222A 、2 1ln 2x CB 、 1( 2 ln x) 2Cx 2 22C 、 ln 2 ln xC1 ln xCD 、x 28、曲线 y x 2 , x 1 , y0 所围成的图形绕y 轴旋转所得旋转体体积 V() .1 x 4dx1ydyA 、B 、1(1y) dy1(1 x 4)dxC 、D 、1e xdx9、e x() .11 e2 e1 e1 2eA 、 ln2B 、 lnC 、 lnD 、 ln23210 、微分方程 yy y2e 2 x 的一个特解为() .A 、 y3 e 2x B 、 y3 e x C 、 y2 xe 2 x D 、 y2 e 2 x7777二、填空题(每小题4 分)1、设函数 y xe x ,则 y;2 、如果 lim3sin mx2 , 则 m .x 0 2x313cos xdx3、 x;14、微分方程 y 4 y 4 y0 的通解是.5、函数 f ( x) x 2 x在区间0,4上的最大值是,最小值是;三、计算题(每小题 5 分)1、求极限lim 1 x 1 x ; 2 、求y 1cot 2 x ln sin x 的导数;x 0x2 WORD 格式整理范文范例参考x314 、求不定积分dx;3、求函数y的微分;xx3111eln x dx ;dy x5、求定积分6、解方程1;e dx y 1 x2四、应用题(每小题10 分)1、求抛物线y x 2与y 2 x 2所围成的平面图形的面积.2、利用导数作出函数y 3x2x3的图象.参考答案一、 1、C;2、D;3、C ;4、B;5、C ;6、B;7、B;8、A ;9、A ;10、D;二、 1、(x2)e x; 2 、4;3、0; 4 、y(C1 C 2 x)e 2 x;5、8,0 9三、1、 1 ; 2 、cot 3 x ; 3 、 6 x2dx ; 4 、2 x 1 2 ln(1x 1) C ;5、2(21) ;6、y2 2 1 x2 C ;( x31) 2e四、1、8;32、图略《高数》试卷5(上)一、选择题(每小题 3 分)1、函数 y2x1的定义域是() . lg( x 1)A 、2,10,B、1,0( 0,)C 、(1,0)(0,)D、( 1,)2、下列各式中,极限存在的是() .A 、x B、lim arctan x C 、lim sin x D 、lim 2x l i mc o sx0x x x3、 lim (x) x() .x 1 xA 、e B、e2 C 、1 D 、1e4、曲线 y x ln x 的平行于直线x y 1 0 的切线方程是() .A 、y x B、y(ln x1)( x1)C 、y x1D、y(x1)5、已知 y xsin 3x,则 dy() .A 、( cos3x3sin 3x)dx B、(sin 3x3x cos3x)dxC 、(cos 3x sin 3x)dxD 、(sin 3x x cos3x)dx6、下列等式成立的是() .WORD 格式整理范文范例参考A 、x dx1x 1 CB 、 a x dx a x ln x C11C 、cosxdxsin x CD 、 tan xdxCx 217、计算e sin x sin xcos xdx 的结果中正确的是() .A 、 e sin x CB 、 e sin x cos x CC 、 e sin x sin x CD 、 e sin x (sin x 1) C8、曲线 yx 2 , x1 , y0 所围成的图形绕 x 轴旋转所得旋转体体积 V().1x 4dx1A 、B 、ydy1 (1 y) dy1 (1 x 4)dxC 、D 、a a 2x 2dx () . 9、设 a ﹥ 0 ,则A 、 a2B 、 a2C 、 1a2D 、 1a 224410 、方程()是一阶线性微分方程 .A 、 x 2ylnyB 、 y e x y 0xC 、 (1x 2 ) yy sin yD 、 xy dx ( y 2 6x)dy 0二、填空题(每小题 4 分)1、设 f ( x)e x 1, x, lim f ( x);,则有 lim f (x)ax b, xx 0 x 02、设 y xe x ,则 y;3、函数 f ( x)ln(1x 2 ) 在区间1,2 的最大值是,最小值是;14、 x 3cos xdx;15、微分方程y 3 y 2 y 0 的通解是.三、计算题(每小题 5 分)1、求极限 lim (11 x23 ) ; x 1x x 22、求y1 x2 arccosx 的导数;3、求函数 yx 的微分;1 x 24、求不定积分1dx ;x 2ln x5、求定积分eln x dx ;1e6、求方程x2y xy y 满足初始条件y( 1 ) 4 的特解.2WORD 格式整理范文范例参考四、应用题(每小题10 分)1、求由曲线y 2 x2和直线x y 0 所围成的平面图形的面积.2、利用导数作出函数y x 36x 29x 4的图象.参考答案( B 卷)一、 1、B;2、A;3、D;4、C ;5、B;6、C ;7、 D;8、 A;9、D;10、B.二、 1、 2 , b ; 2 、( x2)e x; 3 、ln 5 , 0 ;4、 0 ;5、C1e x C 2 e2x.三、1、1; 2 、arccos1; 3 、1dx;x x3 1 x2(1 x2 ) 1 x 24、2 2 ln x C ;1);2215、2(2 6 、y e x;e x四、 1、92、图略;2WORD 格式整理。
高等数学1试题(附答案解析)
WORD 文档 可编辑一、填空题(共6小题,每小题3分,共18分)1. 由曲线2cos r θ=所围成的图形的面积是π。
2. 设由方程22x y =所确定的隐函数为)(x y y =,则2y dy dx x=-。
3. 函数2sin y x =的带佩亚诺余项的四阶麦克劳林公式为2441()3x x o x -+。
4.11dx =⎰。
5. 函数x x y cos 2+=在区间⎥⎦⎤⎢⎣⎡20π,上的最大值为6π+。
6. 222222lim 12n nn n n n n n →∞⎛⎫+++⎪+++⎝⎭=4π。
二、选择题(共7小题,每小题3分,共21分)1. 设21cos sin ,0()1,0x x x f x x x x ⎧+<⎪=⎨⎪+≥⎩,则0x =是()f x 的 D 。
A .可去间断点 B .跳跃间断点 C .振荡间断点 D .连续点2. 设()232x x f x =+-,则当0x →时,下列结论正确的是 B 。
A .是等价无穷小与x x f )(B .同阶但非等价无穷小与x x f )(C .高阶的无穷小是比x x f )(D .低阶的无穷小是比x x f )(3.1+∞=⎰C 。
A .不存在B .0C .2πD .π4. 设()f x 具有二阶连续导数,且(0)0f '=,0lim ()1x f x →''=-,则下列叙述正确的是 A 。
A .(0)f 是()f x 的极大值B .(0)f 是()f x 的极小值C .(0)f 不是()f x 的极值D .(0)f 是()f x 的最小值5.曲线2xy d t π-=⎰的全长为 D 。
A .1B .2C .3D .46. 当,a b 为何值时,点( 1, 3 )为曲线32y ax bx =+的拐点? A 。
A .32a =-,92b = B. 32a =,92b =- C .32a =-,92b =- D. 32a =,92b = 7. 曲线2xy x -=⋅的凸区间为 D 。
高等数学(一)试题(附答案)
高等数学(一)试题(附答案)一、填空题(每小题1分,共10分)_________ 11.函数y=arcsin√1-x2+──────的定义域为_______________。
_________√1-x22.函数y=x+ex上点(0,1)处的切线方程是______________。
f(Xo+2h)-f(Xo-3h)3.设f(X)在Xo可导且f'(Xo)=A,则lim───────────────=___。
h→o h4.设曲线过(0,1),且其上任意点(X,Y)的切线斜率为2X,则该曲线的方程是___。
x5.∫─────dx=_____________。
1-x416.limXsin───=___________。
x→∞X7.设f(x,y)=sin(xy),则fx(x,y)=____________。
_______R √R2-x28.累次积分∫ dx∫f(X2+Y2)dy化为极坐标下的累次积分为_______。
0 0d3y3d2y9.微分方程─── +──(─── )2的阶数为____________。
dx3xdx2∞∞10.设级数∑an发散,则级数∑an_______________。
n=1 n=1000二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的○内,1~10每小题1分,11~20每小题2分,共30分)(一)每小题1分,共10分11.设函数f(x)=──,g(x)=1-x,则f[g(x)]=( )x111①1-──②1+──③────④xxx1-x12.x→0 时,xsin──+1是( )x①无穷大量②无穷小量③有界变量④无界变量3.下列说法正确的是( )①若f(X )在X=Xo连续,则f(X )在X=Xo可导②若f(X )在X=Xo不可导,则f(X )在X=Xo不连续③若f(X )在X=Xo不可微,则f(X )在X=Xo极限不存在④若f(X )在X=Xo不连续,则f(X )在X=Xo不可导4.若在区间(a,b)内恒有f'(x)〈0,f"(x)〉0,则在(a,b)内曲线弧y=f(x)为( ) ①上升的凸弧②下降的凸弧③上升的凹弧④下降的凹弧5.设F'(x) =G'(x),则( )①F(X)+G(X) 为常数②F(X)-G(X) 为常数③F(X)-G(X) =0dd④──∫F(x)dx=──∫G(x)dxdxdx16.∫ │x│dx=( )-1①0②1③2④37.方程2x+3y=1在空间表示的图形是( )①平行于xoy面的平面②平行于oz轴的平面③过oz轴的平面④直线x8.设f(x,y)=x3+y3+x2ytg── ,则f(tx,ty)=( )1①tf(x,y)②t2f(x,y)③t3f(x,y)④──f(x,y)t2an+1∞9.设an≥0,且lim───── =p,则级数∑an( )n→∞an=1①在p〉1时收敛,p〈1时发散②在p≥1时收敛,p〈1时发散③在p≤1时收敛,p〉1时发散④在p〈1时收敛,p〉1时发散10.方程y'+3xy=6x2y是( )①一阶线性非齐次微分方程②齐次微分方程③可分离变量的微分方程④二阶微分方程(二)每小题2分,共20分11.下列函数中为偶函数的是( )①y=ex②y=x3+1③y=x3cosx④y=ln│x│12.设f(x)在(a,b)可导,a〈x1〈x2〈b,则至少有一点ζ∈(a,b)使( )①f(b)-f(a)=f'(ζ)(b-a)②f(b)-f(a)=f'(ζ)(x2-x1)③f(x2)-f(x1)=f'(ζ)(b-a)④f(x2)-f(x1)=f'(ζ)(x2-x1)13.设f(X)在X=Xo 的左右导数存在且相等是f(X)在X=Xo 可导的( )①充分必要的条件②必要非充分的条件③必要且充分的条件④既非必要又非充分的条件d14.设2f(x)cosx=──[f(x)]2,则f(0)=1,则f(x)=( )dx①cosx②2-cosx③1+sinx④1-sinx15.过点(1,2)且切线斜率为4x3的曲线方程为y=( )①x4②x4+c③x4+1④x4-11x16.lim─── ∫ 3tgt2dt=( )x→0x301①0②1③──④∞3xy17.limxysin─────=( )x→0x2+y2y→0①0②1③∞④sin118.对微分方程y"=f(y,y'),降阶的方法是( )①设y'=p,则y"=p'dp②设y'=p,则y"=───dydp③设y'=p,则y"=p───dy1dp④设y'=p,则y"=─────pdy∞∞19.设幂级数∑ anxn在xo(xo≠0)收敛,则∑ anxn在│x│〈│xo│ ( ) n=o n=o①绝对收敛②条件收敛③发散④收敛性与an有关sinx20.设D域由y=x,y=x2所围成,则∫∫ ─────dσ=( )D x1 1 sinx①∫ dx∫ ───── dy0 x x1 √ysinx②∫ dy∫─────dx0 y x__1 √x sinx③∫ dx∫─────dy0 x x__1 √xsinx④∫ dy∫─────dx0 x x三、计算题(每小题5分,共45分)___________/x-11.设y=/──────求y' 。
《高等数学(一)》练习题参考答案
《高等数学(一)》练习题一参考答案一、是非题1——5对 错 对 错 错 2——6对 对 对 对 错 11——15错 对 对 错 对 16——20 错 对 错 错 错 21——25错 对 错 对 错 26——30 对 对 对 错 错二、选择题1——5 A B B B D 6——10 C A B A B 11——15 B D D D A 16——20 B B A B B 21——25 D B D B B 三、填空题1、2x; 2、充分; 3、1; 4、0; 5、2y x =-622x e --; 7、必要; 8、12-; 9、)1(21+=x y ; 10、0,1,2y x ==-11、1; 12、21dx x+; 13、2; 14、32y x =-; 15、充分性条件.16、22xxe; 17、dx ; 18、x = 19、1(1)2y x =-; 20、216x x+.21、6e -; 22、1y =; 23、11e --; 24、23; 25、cos 2x dx .三、解答题1、00021limlimlim.4x x x x→→→===2、因为函数()f x 在点0x =连续,故其左右极限都应存在且相等,即由20lim ()lim (1)2xx x f x e--→→=+=,sin 22sin 22lim ()lim lim 2x x x x x f x ax axa+++→→→===,推得 221a a=⇒=. 3、 /////2312()1,()(1)2f x f x f xx=+=-⇒=-.4、因为(2)3f '=,而由定义可知2()(2)(2)lim2x f x f f x →-'=-,故所求极限2()(2)lim32x f x f x →-=-。
5、由243lim ()21x x ax b x →+∞+++=-,而2224343()(1)lim ()lim11(4)()3lim21x x x x x ax b x ax b x x a x b a x b x →+∞→+∞→+∞++++-++=--++--+==-存在,于是必有40,2a b a +=-=,可解得常数,a b 的值分别为-4,-2。
高等数学1(上册)试题答案及复习要点汇总(完整版)
承诺:我将严格遵守考场纪律,知道考试违纪、作弊的严重性,还知道请他人代考或代他人考者将被开除学籍和因作弊受到记过及以上处分将不授予学士学位,愿承担由此引起的一切后果。
21 D. 21 C. 12 B. 21 A.)A (4 sin 1cos cos 22----+=⎩⎨⎧+=+=点处的法线斜率为上在对应曲线、πt t y t t x大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值;(B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。
4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x +(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5.=+→xx x sin 2)31(lim . 6. ,)(cos 的一个原函数是已知x f x x =⋅⎰x x x x f d cos )(则 .7.lim (cos cos cos )→∞-+++=22221n n n n n n ππππ .8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V . 六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且0)(0=⎰πx d x f ,0cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. 6e . 6.c x x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)c o s ()()x ye y xy xy y +''+++= cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=- 10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11. 解:10330()xf x dx xe dx ---=+⎰⎰⎰3()xxd e --=-+⎰⎰00232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰ 令3214e π=--12. 解:由(0)0f =,知(0)0g =。
大一高数试卷试题含解答.docx
大一高数试题及解答大一高数试题及答案一、填空题(每小题1分,共10分)________121.函数y=arcsin√1-x+──────的定义域为_________√1-x2_______________。
2.函数y=x+ex上点(0,1)处的切线方程是 ______________。
f( Xo+2 h)-f( Xo-3 h)3.设f( X)在 Xo 可导且f ' (Xo)=A,则lim───────────────h→o h=_____________ 。
4.设曲线过(0,1),且其上任意点(X,Y)的切线斜率为2X,则该曲线的方程是____________。
x5.∫─────dx=_____________。
1-x416.limXsin───=___________。
x→∞X7.设f(x,y)=sin(xy),则fx(x,y)= ____________。
_______R22√R-x8.累次积分∫dx∫f(X2+Y2)dy化为极坐标下的累次积分为____________。
00d3y3d2y9.微分方程───+──(─── )2的阶数为 ____________。
dx3xdx2∞∞10.设级数∑an 发散,则级数∑an _______________。
n=1n=1000二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的()内,1~10每小题1分,11~20每小题2分,共30分)(一)每小题1分,共10分11.设函数f(x)=──,g(x)=1-x,则f[g(x)]=()x111①1-──②1+──③ ────④xxx1-x12.x→ 0 时,xsin──+1是()x①无穷大量②无穷小量③有界变量④无界变量3.下列说法正确的是()①若f( X )在 X =Xo连续,则f(X)在X=Xo 可导②若f( X )在 X =Xo不可导,则f( X )在 X=Xo 不连续③若f( X )在 X =Xo不可微,则f( X )在 X=Xo 极限不存在④若f( X )在 X =Xo不连续,则f( X )在 X=Xo 不可导4.若在区间(a,b)内恒有f' (x)〈0,f " (x)〉0,则在(a,b)内曲线弧y=f(x)为()①上升的凸弧②下降的凸弧③上升的凹弧④下降的凹弧5.设F '(x)=G'(x),则()①F(X) +G (X)②F(X) -G (X)③F(X) -G (X)为常数为常数=0d④ ──∫F(x)dxd=──∫G(x)dxdxdx16.∫ │x│dx=()-1① 0② 1③ 2④ 37.方程2x+3y=1在空间表示的图形是()①平行于xoy面的平面②平行于oz轴的平面③过oz轴的平面④直线x8.设f(x,y)=x3+y3+x2ytg──,则f(tx,ty)=()y①tf(x,y)②t2f(x,y)1③t3f(x,y)④──f(x,y)t2an+1∞9.设a n≥0,且lim─────=p,则级数∑an()n→∞an=1①在p〉1时收敛,p〈1时发散②在p≥1时收敛,p〈1时发散③在p≤1时收敛,p〉1时发散④在p〈1时收敛,p〉1时发散210.方程y'+3xy=6xy是①一阶线性非齐次微分方程②齐次微分方程③可分离变量的微分方程④二阶微分方程(二)每小题2分,共20分11.下列函数中为偶函数的是()①y=e③y=xx3②y=x3+1④y=ln│x│12.设f(x)在(a,b)可导,a〈x〈1 x〈2 b,则至少有一点ζ∈(a,b)使()①f(b)-f(a)=f ' (ζ)(b-a)②f(b)-f(a)=f ' (ζ)(x2-x 1)③f(x 2)-f(x 1)=f'(ζ)(b-a)④f(x 2)-f(x 1)=f'(ζ)(x2-x 1)13.设f( X)在 X =Xo 的左右导数存在且相等是f( X)在 X =Xo 可导的()①充分必要的条件②必要非充分的条件③必要且充分的条件④既非必要又非充分的条件d14.设2f(x)cosx=──[f(x)]2,则f(0)=1,则f(x)=()dx①cosx②2-cosx③1+sinx④1-sinx15.过点(1,2)且切线斜率为4x3的曲线方程为y=()①x 4 4②x 4+c41x16.lim─── ∫ 3tgt2dt=()x→0x301① 0② 1③ ──④ ∞3xy17.limxysin─────=()x→0x 2+y 2y→0③∞① 0②1④sin118.对微分方程y"=f(y,y'),降阶的方法是()①设y ' =p,则y"=p'dp②设y ' =p,则y"=───dydp③设y ' =p,则y"=p───dy1dp④设y ' =p,则y" =─────pdy∞∞n19.设幂级数∑ anx在x(oxo≠0)n收敛,则∑ anx在│x│〈│xo│()n=on=o①绝对收敛②条件收敛③发散④收敛性与an 有关sinx20.设D域由y=x,y=x2 所围成,则∫∫ ─────dσ=()Dx11sinx① ∫ dx∫ ───── dy0xx__1√ysinx② ∫ dy∫─────dx0yx__1√xsinx③ ∫ dx∫─────dy0xx__1√xsinx④ ∫ dy∫─────dx0xx三、计算题(每小题5分,共45分)___________y'1.设。
高等数学1试题及答案Word版
三、解答题(每题 7分,共49分)
得分
评阅人
解
得分
评阅人
解
得分
评阅人
解 两边取对数得
得分
评阅人
解
得分
评阅人
解
得分
评阅人
解
得分பைடு நூலகம்
评阅人
解
四、综合题(每题 9分,共18分)
得分
评阅人
解
得分
评阅人
解
得分
评阅人
五、证明题(8分)
证 证
(注:可编辑下载,若有不当之处,请指正,谢谢!)
湖南大学2012—2013学年第一学期考试卷卷
承诺:我将严格遵守考场纪律,知道考试违纪、作弊的严重性,还知道请他人代考或代他人考者将被开除学籍和因作弊受到记过及以上处分将不授予学士学位,愿承担由此引起的一切后果。
专业班级学号学生签名:
试卷编号:(A)卷
《高等数学(A)Ⅰ》课程 (通信工程12级) 课程类别:必
闭卷(√)考试时间:2012.12.15
题号
一
二
三
四
五
总分
1
2
3
4
5
6
7
1
2
分值
10
15
7
7
7
7
7
7
7
9
9
8
阅卷人
(全名)
发
考生注意事项:1、本试卷共6页,总分100分,考试时间120分钟。
2、考试结束后,考生不得将试卷、答题纸和草稿纸带出考场。
得分
评阅人
年
一、填空题(每题2分,共10分)
得分
评阅人
高等数学第一学期试题(附参考答案)
《高 等 数 学》课程试题一、填空题 .(每小题3分,共24分) 1. 设=+=)]([,1)(2x f f xx x f 则2. =→xx x 5sin 3sin lim 03. 设⎩⎨⎧≥+<=0,0,)(x x a x e x f x 在0=x 连续,则常数=a4. 曲线x y ln 2=上点(1, 0)处的切线方程为5.设参数方程⎩⎨⎧==ty t x sin 2,则=dxdy 6. 函数x x f 2arctan )(=,则=dy7. ⎰=)(cos x xd 8. ⎰-201dx x =二、选择题 .(每小题3分,共24分)1.设函数⎩⎨⎧<<-≥-+=10,11,42)(22x x x x x x f ,则)(lim 1x f x →等于( )A .-3B .-1C . 0D .不存在 2. 当)1ln(0x ,,x +→两个无穷小比较时是比x ( )A. 高阶的无穷小量B. 等价的无穷小量C. 非等价的同阶无穷小量D. 低阶的无穷小量3.设)(x f 的一个原函数为)1ln(+x x ,则下列等式成立的是( ) A .C x x dx x f ++=⎰)1ln()( B.C x x dx x f +'+=⎰]1ln([)(班级:姓名:学号:试题共页加白纸张密封线C.⎰+=+C x f dxx x )()1ln( D.C x f dx x x +='+⎰)(])1ln([ 4. 设函数)(x f y =在0x x =处可导,则必有( )A .0=∆y B. 0lim=∆→y xx C. dy y =∆ D. 0=dy 5.设)12)(1()(+-='x x x f ,则在)1,21(内,曲线)(x f 是( )A .单调增加且是凹的B .单调增加且是凸的C .单调减少且是凹的D .单调减少且是凸的 6.设)0(),1ln(≠+=a ax y ,则二阶导数y ''=( ) A .22)1(ax a+ B.2)1(ax a + C. 22)1(ax a+-D. 2)1(ax a+-7.积分=⎰-dx x1121( )A .是发散的 B. 2 C. -2 D . 0 8.设函数⎰-=Φ2)(xtdttex ,则其导数=Φ')(x ( )A .x xe - B. xxe--;C.232xex -D.232xex --三、求极限.(每小题5分,共10分) (1)3)21(lim +∞→+x x x(2)xx x x sin cos 1lim+-→四、求下列导数或微分. (每小题6分,共12分) (1)求由方程1ln =+y ye x确定的隐函数)(x f y =的导数dxdy ;(2)求函数xe y sin =在01.0,0=∆=x x 处的微分dy五、求下列积分.(每小题6分,共18分) (1) ⎰+dxeexx 21(2)⎰212ln exdx x(3)⎰20sin πdx x六、设x:,0求证(5分)>1>ex x+七、欲做一个长方体的带盖箱子,其体积为723m,而底面的长与宽成2:1的关系。
高数(一)试题(1)参考答案
高等数学(一)(第一章和第二章练习题)参考答案 一、单项选择题(本大题共5小题,每小题2分,共10分) 1.设f (1-cos x )=sin 2x, 则f (x )=( A ) A.x 2+2x B.x 2-2x C.-x 2+2x D.-x 2-2x解:设:1cos x t -= c o s1x t ∴=+ ()()()21c o s 1c o s 1c o s 1c o s f x x x x -=-=+- ()()2112ft t t t t ∴=++=+ ()22f x x x =+ 2.设x 22)x (,x )x (f =ϕ=,则=ϕ)]x ([f ( D ) A.2x 2B.x2xC.x 2xD.22x解:()2f t t = ()()22[()]222xx xf x f ϕ===3.函数y=31x1ln -的定义域是( D ) A .),0()0,(+∞⋃-∞ B .),1()0,(+∞⋃-∞ C .(0,1] D .(0,1)解:110x -> 10x x-> 01x ∴<< ()0,1x ∴∈ 4.设f(x)=⎩⎨⎧>≤0x ,x 0x ,x ,则f(x)在点x=0处( D )A .无定义B .无极限C .不连续D .连续解:()00f = ()0lim lim 0x x f x x --→→== ()0lim lim 0x x f x ++→→==()0l i m 0x f x →∴= ()()0l i m 0x fx f →= 0x ∴=处连续5.函数2x x y -=的定义域是( D ) A.[)+∞,1B.(]0,∞-C.(][)+∞∞-,10,D.[0,1]解:20x x -≥ ()10x x ∴-≥ []0,1x ∴∈ 6.∑∞==1n n)23ln (( ) A.23ln 3ln - B. 3ln 23ln - C. 3ln 21-D. 3ln 2)3(ln n-解:此为等比级数,1ln 32a =ln 32q =11l n 3l n 3l n 32()212ln 312n n a q ∞====---∑ 7.设函数=-=)x 2(f 1x x)x 1(f ,则( A )A.x211- B.x 12- C.x2)1x (2- D.x)1x (2- 解:设1t x= 1x t ∴= ()11111t f t t t∴==-- ()1212f x x ∴=-8.已知f(x)=ax+b,且f(-1)=2,f(1)=-2,则f(x)=( ) A.x+3 B.x-3 C.2xD.-2x解:()()12;12f a b f a b -=-+==+=- 2;0a b ∴=-= ()2f x x∴=- 9.lim()1xx x x →∞=+( B ) A.eB.e -1C.∞D.1解:111lim()lim 111xxx x x e x e x -→∞→∞⎛⎫ ⎪=== ⎪+ ⎪+⎝⎭ 10.函数)1x )(2x (3x y -+-=的连续区间是( D )A.),1()2,(+∞---∞B.),1()1,(+∞---∞C.),1()1,2()2,(+∞-----∞D.[)+∞,3解:()()30210x x x -≥⎧⎪⎨+-≠⎪⎩3x ∴≥ [)3,x ∴∈+∞11.设函数⎩⎨⎧-=-≠++=1x a 1x )1x ln()1x ()x (f 2 , , 在x=-1连续,则a=( D )A.1B.-1C.2D.0解:1x =- 处连续, ()()11lim x f f x →-∴-=()()()()()211112122ln 11lim 1ln 1limlim2lim 101111x x x x x x a x x x x x →-→-→-→-⋅++∴=++===-+=-++12.设f(x+1)=x 2-3x+2,则f(x)=( B ) A.x 2-6x+5 B.x 2-5x+6 C.x 2-5x+2 D.x 2-x 解:设1x t += 1x t =- ()()()22131256f t t t t t =---+=-+ ()256f x x x =-+13.已知f(x)的定义域是[0,3a],则f(x+a)+f(x-a)的定义域是( ) A .[a,3a] B .[a,2a] C .[-a,4a]D .[0,2a]解:0303x a a x a a ≤+≤⎧⎨≤-≤⎩ 324a x aa x a-≤≤⎧∴⎨≤≤⎩ 2a x a ≤≤ [],2x a a ∴∈14.=→xsin x 1sinx lim20x ( D )A .1B .∞C .不存在D .0解:0,sin x x x →∴ 原式= 2001sin1limlim sin 0x x x x x x x→→==15.函数y=ln(22x 1x 1--+)的定义域是( C ) A .|x|≤1 B .|x|<1 C .0<|x|≤1D .0<|x|<1解:2010x >-≥⎪⎩ 011x x ≠⎧∴⎨-≤≤⎩ 01x ∴<≤16.0x lim →x 2sin2x1=( A )A .0B .1C .-1D .不存在解:0x lim →x 2sin 2x 1=017.函数y=1-cosx 的值域是( C ) A.[-1,1] B.[0,1] C.[0,2]D.(-∞,+∞)解:cos 1,110x y ==-=;()cos 1,112x y =-=--= 02y ≤≤ []0,2y ∴∈ 18.设2a 0π<<,则=→x x sin lim a x ( D )A.0B.1C.不存在D.aasin 解:=→x x sin lima x sin aa19.下列各式中,正确的是( D )A.e )x 11(lim x 0x =++→B.e )x 1(lim x 10x =-→ C.e )x11(lim x x -=-∞→D.1x x e )x11(lim -∞→=-解:()1111lim(1)lim 1x x x x e x x -⋅--→∞→∞⎛⎫-=-= ⎪⎝⎭20.设函数f(x-1)=x 2-x,则f(x)=( B ) A .x(x-1) B .x(x+1) C .(x-1)2-(x-1) D .(x+1)(x-2)解:设1x t -= 1x t =+ ()()()()22111f t t t tt t t ∴=+-+=+=+()()1fx x x =+21.设f(x)=ln4,则0x lim →∆=∆-∆+x)x (f )x x (f ( C )A .4B .41C .0D .∞解:0x lim→∆=∆-∆+x )x (f )x x (f 0ln 4ln 4lim0x x∆→-=∆ 22.设函数f (x )的定义域为[0,4],则函数f (x 2)的定义域为( D ) A.[0,2] B.[0,16] C.[-16,16]D.[-2,2]解:204x ≤≤ 24x ≤ 22x -≤≤ []2,2x ∴∈-23.xx x 1lim→=( C )A.0B.1C.-1D.不存在解:11limlim 1x x x xx x→→== 24.设f(t)=t 2+1,则f(t 2+1)=( D ) A.t 2+1 B.t 4+2 C.t 4+t 2+1 D. t 4+2t 2+2解:()21f x x =+ ()()2224211122ft t t t ∴+=++=++25.数列0,31,42,53,64,…的极限是( ) A.0 B.n2n - C.1 D.不存在解:11n n x n -=+ 111l i m l i m l i m1111n n n n n n x n n→∞→∞→∞--∴===++ 26.设1)1(3-=-x x f ,则f (x )=( B )A .x x x 2223++B .x x x 3323++C .12223+++x x xD .13323+++x x x解;设1x t -= 1x t =+ ()()3321133f x t t t t ∴=+-=++()3233f x x x x ∴=++ 27.下列极限存在的是( D ) A .11lim-→xx eB .xx e 1lim → C .x x sin lim ∞→D .221limx x x -∞→解:2221limlim 1111x x x x x →∞→∞==--- 28.下列区间中,函数f (x)= ln (5x+1)为有界的区间是( C )A.(-1,51)B.(-51,5)C.(0,51)D.(51,+∞)解:()0,ln1x f x ==;()1,ln 25x f x ==; ()ln1ln 2f x ≤≤ 29.设函数g (x)在x = a 连续而f (x) = (x-a)g(x),则'f (a) =( D ) A.0 B.g '(a) C.f (a)D.g (a)解:()()()()()()()()f x x a g x x a g x g x x a g x ''''=-+-=+- ()()()()()f ag a a a g a g a''=+-= 30.设⎪⎩⎪⎨⎧=≠-+=0,00,11)(x x xx x f ,则x =0是f (x )的( A ) A .可去间断点 B .跳跃间断点 C .无穷间断点 D .连续点解:()00f =()000111lim 2x x x x f x →→→→====()()0l i m 0x fx f →≠ 但极限存在,此为可去间断点31.函数f(x)=arcsin(2x-1)的定义域是( D ) A.(-1,1) B.[-1,1] C.[-1,0] D.[0,1]解:1211x -≤-≤ 022x ∴≤≤ 01x ≤≤ []0,1x ∴∈ 32.设函数y =f (x )的定义域为(1,2),则f (ax )(a <0)的定义域是( B )A.(a a 2,1)B.(a a 1,2) C.(a ,2a)D.(a a,2]解:12ax << 0a < 12x a a ∴>> 21,x a a ⎛⎫∴∈ ⎪⎝⎭33.函数f (x )=2211⎪⎭⎫⎝⎛--x 的定义域为( B )A .[]1,1-B .[]3,1-C .(-1,1)D .(-1,3)解:21102x -⎛⎫-≥ ⎪⎝⎭ 2112x -⎛⎫∴≤ ⎪⎝⎭1112x --≤≤ 212x -≤-≤ 13x -≤≤ []1,3x ∴∈-34.设函数f (x )=⎪⎩⎪⎨⎧≥+-<02302sin 2 x k x x x x x在x =0点连续,则k =( C )A .0B .1C .2D .3解:()0f k = ()00sin 2lim lim2x x xf x x→→== 0x = 处连续()()00lim x f f x →∴= 2k ∴=35.函数f (x )=21sin 2x x++是( C )A.奇函数B.偶函数C.有界函数D.周期函数解:1sin 1x -≤≤ 12s i n 3x ∴≤+≤ 22212s i n 303111x x x x +∴≤≤≤≤+++ 36.函数f (x )=ln x - ln(x -1)的定义域是( C ) A .(-1,+∞) B .(0,+∞) C .(1,+∞) D .(0,1)解:010x x >⎧⎨->⎩ 1x ∴> ()1,x ∈+∞37.极限=→xxx 62tan lim0( B )A .0B .31C .21D .3解:0,tan 22x x x → 00tan 221limlim 663x x x x x x →→==二、填空题(本大题共10小题,每小题3分,共30分) 1.已知f (x +1)=x 2,则f (x )=________.解;设1x t += 1x t =- ()()21f t t ∴=- ()()21f x x ∴=-2.无穷级数 +++++n 31313112的和等于________.解:此为等比级数,111,3a q ==1211113113331213n a q +++++===-- 3.设函数f(x)的定义域是[-2,2],则函数f(x+1)+f(x-1)的定义域是___________. 解:212212x x -≤-≤⎧⎨-≤+≤⎩ 1331x x -≤≤⎧∴⎨-≤≤⎩11x -≤≤ []1,1x ∴∈-4.=-++∞→]x ln )2x [ln(x lim x ___________.解:22lim [ln(2)ln ]lim ln lim ln 1x x x x x x x x x x x →+∞→+∞→+∞+⎛⎫⎛⎫+-==+⎪ ⎪⎝⎭⎝⎭22222lim ln 1lim ln 1ln 2xxx x e x x ⋅→+∞→+∞⎛⎫⎛⎫=+=+== ⎪ ⎪⎝⎭⎝⎭5.函数y=x ln ln 的定义域是 . 解:0ln 0x x >⎧⎨>⎩1x x >⎧⎨>⎩ 1x ∴> ()1,x ∴∈+∞ 6.nn 999.0lim ⋅⋅⋅∞→= . 解:1lim0.999lim 1110n n n n→∞→∞⎛⎫⋅⋅⋅=-= ⎪⎝⎭7.=∞→x21sinx 3lim x . 解:1110,0,sin 222x x x x →∴→∴ 113l i m 3s i n l i m 3222x x xx x x →∞→∞=⋅= 8.设⎩⎨⎧<-≥+=0x ,1x 0x ,1x )x (f ,则f (-1)= ___________.解:()1112f -=--=-9.=-+∞→)n 1n (n lim n ___________.解:n n =1l i l2n n n→∞====10.2x2xlim2x--→= ___________.解:()()()2222lim2x x xx xx→→→--==-2l i22x→=11.设函数1x2y+=,其反函数的定义域是________________.解:反函数的定义域是原函数的值域;而原函数的值域为0y≥其反函数的定义域是()0,+∞12.=--+∞→)nnn3n(limn________________.解:nn→∞=4l i l211 n n nn n+-=====+13.在一个极限过程中,变量u的极限为A的充分必要条件是u=A+α,其中α是极限过程中的________________.解:无穷小14.若f(x+1)=x+cosx则f(1)=__________.解:设11x+=0x=()10c o s01f=+=15..__________1n5n)n1(lim233x=++-∞→解:()()33333323233331111(1)lim lim lim151515111n n nnn nnn nn nn nn n n→∞→∞→∞⎛⎫--⎪--⎝⎭====-++++++16.函数y=1+ln(x+2)的反函数是______.解:()1ln 2y x -=+ 12y x e -+= 12y x e-∴=- 反函数是12x y e -=-17. =∞→xxarctan limn _______.解:arctan 1limlim arctan 0x x x x xx →∞→∞=⋅=18.函数y=arcsin(x-3)的定义域为___________。
(完整word版)高数一试题及答案(word文档良心出品)
《 高等数学(一) 》复习资料一、选择题1. 若23lim53x x x kx →-+=-,则k =( ) A. 3- B.4- C.5- D.6-2. 若21lim21x x kx →-=-,则k =( ) A. 1 B.2 C.3 D.43. 曲线3sin 1x y e x =-+在点(0,2)处的切线方程为( ) A.22y x =+ B.22y x =-+ C.23y x =+ D.23y x =-+4. 曲线3sin 1x y e x =-+在点(0,2)处的法线方程为( ) A.122y x =+ B.122y x =-+ C.132y x =+ D.132y x =-+5. 211limsin x x x→-=( ) A.0 B.3 C.4 D.56.设函数0()(1)(2)xf x t t dt =+-⎰,则(3)f '=( )A 1B 2C 3D 47. 求函数43242y x x =-+的拐点有( )个。
A 1 B 2 C 4 D 08. 当x →∞时,下列函数中有极限的是( )。
A. sin xB. 1x eC. 211x x +- D. arctan x9.已知'(3)=2f ,0(3)(3)lim2h f h f h→--=( ) 。
A. 32 B. 32- C. 1 D. -110. 设42()=35f x x x -+,则(0)f 为()f x 在区间[2,2]-上的( )。
A. 极小值B. 极大值C. 最小值D. 最大值11. 设函数()f x 在[1,2]上可导,且'()0,(1)0,(2)0,f x f f <><则()f x 在(1,2)内( )A.至少有两个零点B. 有且只有一个零点C. 没有零点D. 零点个数不能确定 12.[()'()]f x xf x dx +=⎰( ).A.()f x C +B. '()f x C +C. ()xf x C +D. 2()f x C +13. 已知22(ln )y f x =,则y '=( C )A.2222(ln )(ln )f x f x x 'B. 24(ln )f x x 'C. 224(ln )(ln )f x f x x' D. 222(ln )()f x f x x '14. ()d f x ⎰=( B)A.'()f x C +B.()f xC.()f x 'D.()f x C +15.2ln xdx x =⎰( D )A.2ln x x C +B.ln xC x+ C.2ln x C + D.()2ln x C + 16. 211limln x x x→-=( ) A.2 B.3 C.4 D.517. 设函数0()(1)(2)xf x t t dt =-+⎰,则(2)f '-=( )A 1B 0C 2-D 2 18. 曲线3y x =的拐点坐标是( )A.(0,0)B.( 1,1)C.(2,2)D.(3,3)19. 已知(ln )y f x =,则y '=( A )A.(ln )f x x ' B.(ln )f x ' C.(ln )f x D.(ln )f x x20. ()d df x =⎰( A)A.()df xB.()f xC.()df x 'D.()f x C +21. ln xdx =⎰( A )A.ln x x x C -+B.ln x x C -+C.ln x x -D.ln x二、求积分(每题8分,共80分)1.求cos ⎰.2. 求dx x⎰. 3. 求arctan xdx ⎰.4. 求⎰5. 求2356x dx x x +-+⎰.6. 求定积分8⎰7. 计算20cos x xdx π⎰.8. 求2128dx x x +-⎰.9. 求11. 求2212x xe dx -⎰12. 求3x⎰13. 求21ln exdx x⎰14.求⎰三、解答题1. 若(1lim 36x x →∞=,求a2.讨论函数321()2333f x x x x =-+-的单调性并求其单调区间3. 求函数22()2x x f x x --=-的间断点并确定其类型4. 设2sin ,.xy xy x e y '+=求5.求y =6. 求由方程cos sin x a ty b t =⎧⎨=⎩ 确定的导数x y '.7. 函数1,0()1,0tan ,0xe xf x x x x ⎧<⎪⎪==⎨⎪>⎪⎩在0x =处是否连续?8. 函数1,0()1,0tan ,0xe xf x x x x ⎧<⎪⎪==⎨⎪>⎪⎩在0x =处是否可导?9. 求抛物线2y x =与直线y x =所围成图形D 的面积A .10. 计算由抛物线22y x =与直线4y x =-围成的图形D 的面积A .11. 设y 是由方程sin yy y xe =+确定的函数,求y '12.求证: ln 1,1x x x <->13. 设y 是由方程1yy xe =+确定的函数,求y '14. 讨论函数32()29123f x x x x =-+-的单调性并求其单调区间15.求证: 21,x e x >-16. 求函数3(1)()x x f x x x -=-的间断点并确定其类型五、解方程1. 求方程0)(22=-+dy xy x dx y 的通解.2.求方程20yy y '''+=的通解.3. 求方程22y y y x '''-+=的一个特解. 4. 求方程3595xy y y xe -'''-+=的通解.高数一复习资料参考答案一、选择题 1-5: DABAA 6-10:DBCDD 11-15: BCCBD 16-21:ABAAAA二、求积分1.求cos ⎰.解:322cos (sin )sin 3x x C C ==+=⎰2. 求.解:13(43ln )(ln )x d x x =+⎰⎰131(43ln )(43ln )3x d x =+⋅+⎰ 431(43ln )4x C =++. 3. 求arctan xdx ⎰.解:设arctan u x =,dv dx =,即v x =,则arctan arctan (arctan )xdx x x xd x =-⎰⎰2arctan 1xx x dx x =-+⎰ 21arctan ln(1)2x x x C =-++.4. 求⎰解:32222e 33e 3e 3e 23e 6e t t t t t t x t t dt t dt t tdt t t dt ===-⋅=-⎰⎰⎰⎰⎰223e 6e 6e 3e 6e 6e t t t t t t t t dt t t C =-+=-++⎰2)C=+.5. 求2356xdxx x+-+⎰.解:由上述可知23565623xx x x x+-=+-+--,所以2356()5623xdx dxx x x x+-=+-+--⎰⎰115623dx dxx x=-+--⎰⎰5ln26ln3x x C=--+-+.6.求定积分8⎰解t=,即3x t=,则23dx t dt=,且当0x=时,0t=;当8x=时,2t=,于是28222000313ln(1)3ln312t dtt t tt⎡⎤==-++=⎢⎥+⎣⎦⎰⎰.7. 计算2cosx xdxπ⎰.解:令2u x=,cosdv xdx=,则2du xdx=,sinv x=,于是2220000cos sin(sin)2sin2sinx xdx x d x x x x xdx x xdxπππππ==-=-⎰⎰⎰⎰.再用分部积分公式,得2000cos2cos2(cos)cosx xdx xd x x x xdxππππ⎡⎤==-⎢⎥⎣⎦⎰⎰⎰002(cos)sin2x x xπππ⎡⎤=-=-⎣⎦.8. 求2128dxx x+-⎰.解:221113(1)(1)ln28(1)963(1)xdx d x Cx x x x-+=+=++-+-++⎰⎰12ln64xCx-=++.9.求解:令u=32x u=-,23dx u du=,从而有22311311u udu duu u-+==++⎰⎰213(1)3(ln1)12uu du u u Cu=-+=-++++⎰11. 求2212xxe dx-⎰解:2222222411112x x xxe dx e dx e e e-----===-⎰⎰12.求3x⎰解:333223(3)(3)3x x x C=--=--+⎰13. 求21lne x dxx⎰解:22111ln111ln(ln)ln ln333ee exdx xd x x ex====⎰⎰14.求⎰解:3322222121(3)(3)(3)233x x C x C=--=-⋅-+=--+⎰三、解答题1.若(1lim36xx→∞=,求a解:因为223x=,所以9a=否则极限不存在。
大一上高等数学(I )试题及答案
高等数学(I )一.填空题(每小题5分,共30分)1. 已知0)(2sin lim 30=+>-x x xf x x , 则20)(2lim xx f x +>-= 。
2. 曲线x y ln =上曲率最大的点为__________________。
3. 极限]cos 1[cos lim x x x -+∞>-的结果是_________。
4. 极限 20arcsin lim ln(1)x x x x x →-+=_____________。
5. 曲线)0()1ln(>+=x xe x y 的斜渐近线为( )。
6. 当1→x 时,已知1-x x 和k x a )1(-是等价无穷小,则a =_____,.___=k二、计算题(每小题5分,共20分) 1. x x x x e sin 1023lim ⎪⎪⎭⎫ ⎝⎛+->-2.dx e x x 32⎰ 3.dx x ⎰+cos 2114. 22(tan 1)x e x dx +⎰三.(6分)已知曲线)(x y y =的参数方程⎩⎨⎧++==)41ln(2arctan 2t t y t x ,求22dx y d dx dy ,。
四.(8分)设xx x f )1ln()(ln +=,求⎰dx x f )(五.(10分)设)(x f 31+=x ,把)(x f 展开成带Peano 型余项的n 阶麦克劳林公式,并求).0()50(f六(12分).已知)(x f 是周期为5的连续函数,它在0=x 的某邻域内满足关系式)sin 1(x f +-)(8)sin 1(3x x x f α+=-,其中)(x α是当0→x 时比x 高阶的无穷小,且)(x f 在1=x 处可导,求曲线)(x f y =在点))6(,6(f 处的切线方程。
七.(14分)设函数)(x f 在],[b a 上具有连续导函数)(x f ',且0)()(==b f a f , 证明:2)(4)(a b M dx x f b a -≤⎰,其中|)(|],[x f Max M b a x '=∈。
高等数学1(上册)试题答案及复习要点汇总(完整版)
承诺:我将严格遵守考场纪律,知道考试违纪、作弊的严重性,还知道请他人代考或代他人考者将被开除学籍和因作弊受到记过及以上处分将不授予学士学位,愿承担由此引起的一切后果。
大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值;(B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。
4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x+(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5.=+→xx x sin 2)31(l i m . 6. ,)(cos 的一个原函数是已知x f x x =⋅⎰x x x x f d cos )(则 .7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ .8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x Ax ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V . 六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且)(0=⎰πx d x f ,0cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. 6e . 6.c x x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)cos()()0x ye y xy xy y +''+++=cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=- 10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11. 解:133()xf x dx xe dx ---=+⎰⎰⎰3()xxd e --=-+⎰⎰00232cos (1sin )x xxe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰令3214e π=--12. 解:由(0)0f =,知(0)0g =。
(完整word版)高等数学考试题库(附答案)
《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xeC -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim xx x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dxx x ++⎰ ②()220dx a x a >-⎰ ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题 1.2- 2. 3. 2 4.arctanln x c + 5.2 三.计算题 1①2e ②162.11xy x y '=+- 3. ①11ln ||23x C x +++②ln ||x C + ③()1x e x C --++四.应用题1.略 2.18S =《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭(B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在.7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ). (A) ()121x x e -(B) 12x x e - (C) ()121x x e + (D) 12xxe8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '. 3.求下列不定积分:①3tan sec x xdx ⎰②()220dx a x a>+⎰③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc +②)ln x c + ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1.函数y =的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x t d e dt dx -=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin x x e x →-;2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120x e dx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积.七、(8分)求微分方程6130y y y '''++=的通解. 八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x+-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy t t t y dx dx ππ=====且切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)x r r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y ee edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、214、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d =6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ). A 、2sin x B 、 2sin x - C 、 C x +2sin D 、2sin 2x-7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C xx++-2ln 1 8、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ).A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim 0; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e - ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ). A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a x x lnC 、⎰+=C x xdx sin cosD 、⎰++=C x xdx 211tan7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ).A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、设 a ﹥0,则=-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0 D 、241a π 10、方程( )是一阶线性微分方程. A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxe C e C 221+.三、1、31 ; 2、1arccos 12---x xx ; 3、dx x x 221)1(1-- ;4、C x ++ln 22 ;5、)12(2e- ; 6、x e x y 122-= ;四、1、 29; 2、图略。
(完整word版)高等数学试题及答案(word文档良心出品)
《高等数学》一.选择题1. 当0→x 时,)1ln(x y +=与下列那个函数不是等价的 ( )A)、x y = B)、x y sin = C)、x y cos 1-= D)、1-=x e y2. 函数f(x)在点x 0极限存在是函数在该点连续的( )A )、必要条件B )、充分条件C )、充要条件D )、无关条件3. 下列各组函数中,)(x f 和)(x g 不是同一函数的原函数的有( ).A)、()()()2221,21)(x x x x e e x g e e x f ---=-=B)、(())()ln ,ln f x x g x x ==-C)、()()x x g x x f --=-=1arcsin 23,12arcsin )( D)、()2tan,sec csc )(xx g x x x f =+= 4. 下列各式正确的是( )A )、2l n 2x xx dx C =+⎰ B )、s i n c o s t d t t C =-+⎰C )、2a r c t a n 1dxdx x x =+⎰ D )、211()dx C x x-=-+⎰ 5. 下列等式不正确的是( ).A )、()()x f dx x f dx d b a =⎥⎦⎤⎢⎣⎡⎰ B )、()()()[]()x b x b f dt x f dx d x b a '=⎥⎦⎤⎢⎣⎡⎰ C )、()()x f dx x f dx d x a =⎥⎦⎤⎢⎣⎡⎰ D )、()()x F dt t F dx d x a '=⎥⎦⎤⎢⎣⎡'⎰ 6. 0ln(1)limxx t dt x→+=⎰( )A )、0B )、1C )、2D )、47. 设bx x f sin )(=,则=''⎰dx x f x )(( )A )、C bx bx b x +-sin cos B )、C bx bx b x+-cos cos C )、C bx bx bx +-sin cos D )、C bx b bx bx +-cos sin8. 10()()bx xa e f e dx f t dt =⎰⎰,则( )A )、1,0==b aB )、e b a ==,0C )、10,1==b aD )、e b a ==,19. 23(sin )x x dx ππ-=⎰( )A )、0B )、π2C )、1D )、22π10. =++⎰-dx x x x )1(ln 2112( )A )、0B )、π2C )、1D )、22π11. 若1)1(+=x xxf ,则dx x f ⎰10)(为( )A )、0B )、1C )、2ln 1-D )、2ln12. 设)(x f 在区间[]b a ,上连续,⎰≤≤=xa b x a dt t f x F )()()(,则)(x F 是)(x f 的( ).A )、不定积分B )、一个原函数C )、全体原函数D )、在[]b a ,上的定积分13. 设1sin 2y x x =-,则dxdy=( ) A )、11c o s2y - B )、11c o s2x - C )、22c o sy- D )、22c o sx-14. )1ln(1lim 20x e x xx +-+→=( )A 21-B 2C 1D -115. 函数x x y +=在区间]4,0[上的最小值为( )A 4;B 0 ;C 1;D 3二.填空题1. =+++∞→2)12(lim xx x x ______.2. 2-=⎰3. 若⎰+=C e dx e x f xx 11)(,则⎰=dx x f )(4. =+⎰dt t dx d x 26215. 曲线3y x =在 处有拐点 三.判断题 1. xxy +-=11ln是奇函数. ( ) 2. 设()f x 在开区间(),a b 上连续,则()f x 在(),a b 上存在最大值、最小值.( ) 3. 若函数()f x 在0x 处极限存在,则()f x 在0x 处连续. ( ) 4. 0sin 2xdx π=⎰. ( )5. 罗尔中值定理中的条件是充分的,但非必要条件.( )四.解答题1. 求.cos 12tan lim20xxx -→ 2. 求nxmxx sin sin limπ→,其中n m ,为自然数.3. 证明方程01423=+-x x 在(0,1)内至少有一个实根.4. 求cos(23)x dx -⎰.5. 求⎰+dx xx 321.6. 设21sin ,0()1,0x x f x x x x ⎧<⎪=⎨⎪+≥⎩,求()f x '7.求定积分4⎰8. 设)(x f 在[]1,0上具有二阶连续导数,若2)(=πf ,⎰=''+π5sin )]()([xdx x f x f ,求)0(f ..9. 求由直线0,1,0===y x x 和曲线x e y =所围成的平面图形绕x 轴一周旋转而成的旋转体体积《高等数学》答案一.选择题1. C2. A3. D4. B5. A6. A7. C8. D9. A 10. A 11. D 12. B 13. D14. A15. B 二.填空题 1. 21e 2. 2π 3. C x+1 4. 412x x + 5. (0,0) 三.判断题 1. T 2. F 3. F 4. T 5. T 四.解答题 1. 82. 令,π-=x t nmn nt m mt nx mx n m t x -→→-=++=)1()sin()sin(lim sin sin lim 0πππ3. 根据零点存在定理.4.1cos(23)cos(23)(23)31sin(23)3x dx x d x x C-=---=--+⎰⎰5. 令t x =6,则dt t dx t x 566,==原式⎰⎰⎰++-=+=+=dt )t111t (6dt t 1t 6dt t t t 62435 C t 1ln t 2t 62+⎪⎭⎫⎝⎛++-= C x x x +++⋅-⋅=6631ln 6636. 222sin 2cos ,0()1,00x x x x f x x x ⎧-+<⎪⎪⎪'=>⎨⎪=⎪⎪⎩不存在,7. 42ln3-8. 解:⎰⎰⎰''--=-=ππππ0sin )()0()()cos ()(sin )(xdx x f f f x d x f xdx x f所以3)0(=f9. V=())1(2121)2(212102102102210-====⎰⎰⎰e e x d e dx e dx exx xxπππππ 《高等数学》试题2一.选择题1. 当0→x 时,下列函数不是无穷小量的是 ( )A )、x y =B )、0=yC )、)1ln(+=x yD )、x e y =2. 设12)(-=x x f ,则当0→x 时,)(x f 是x 的( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《 高等数学(一) 》复习资料一、选择题1. 若23lim53x x x kx →-+=-,则k =( ) A. 3- B.4- C.5- D.6-2. 若21lim21x x kx →-=-,则k =( ) A. 1 B.2 C.3 D.43. 曲线3sin 1x y e x =-+在点(0,2)处的切线方程为( ) A.22y x =+ B.22y x =-+ C.23y x =+ D.23y x =-+4. 曲线3sin 1x y e x =-+在点(0,2)处的法线方程为( ) A.122y x =+ B.122y x =-+ C.132y x =+ D.132y x =-+5. 211limsin x x x→-=( ) A.0 B.3 C.4 D.56.设函数0()(1)(2)xf x t t dt =+-⎰,则(3)f '=( )A 1B 2C 3D 47. 求函数43242y x x =-+的拐点有( )个。
A 1 B 2 C 4 D 08. 当x →∞时,下列函数中有极限的是( )。
A. sin xB. 1x eC. 211x x +- D. arctan x9.已知'(3)=2f ,0(3)(3)lim2h f h f h→--=( ) 。
A. 32 B. 32- C. 1 D. -110. 设42()=35f x x x -+,则(0)f 为()f x 在区间[2,2]-上的( )。
A. 极小值B. 极大值C. 最小值D. 最大值11. 设函数()f x 在[1,2]上可导,且'()0,(1)0,(2)0,f x f f <><则()f x 在(1,2)内( )A.至少有两个零点B. 有且只有一个零点C. 没有零点D. 零点个数不能确定 12.[()'()]f x xf x dx +=⎰( ).A.()f x C +B. '()f x C +C. ()xf x C +D. 2()f x C +13. 已知22(ln )y f x =,则y '=( C )A.2222(ln )(ln )f x f x x 'B. 24(ln )f x x 'C. 224(ln )(ln )f x f x x' D. 222(ln )()f x f x x '14. ()d f x ⎰=( B)A.'()f x C +B.()f xC.()f x 'D.()f x C +15.2ln xdx x =⎰( D )A.2ln x x C +B.ln xC x+ C.2ln x C + D.()2ln x C + 16. 211limln x x x→-=( ) A.2 B.3 C.4 D.517. 设函数0()(1)(2)xf x t t dt =-+⎰,则(2)f '-=( )A 1B 0C 2-D 2 18. 曲线3y x =的拐点坐标是( )A.(0,0)B.( 1,1)C.(2,2)D.(3,3)19. 已知(ln )y f x =,则y '=( A )A.(ln )f x x ' B.(ln )f x ' C.(ln )f x D.(ln )f x x20. ()d df x =⎰( A)A.()df xB.()f xC.()df x 'D.()f x C +21. ln xdx =⎰( A )A.ln x x x C -+B.ln x x C -+C.ln x x -D.ln x二、求积分(每题8分,共80分)1.求cos ⎰.2. 求dx x⎰. 3. 求arctan xdx ⎰.4. 求⎰5. 求2356x dx x x +-+⎰.6. 求定积分8⎰7. 计算20cos x xdx π⎰.8. 求2128dx x x +-⎰.9. 求11. 求2212x xe dx -⎰12. 求3x⎰13. 求21ln exdx x⎰14.求⎰三、解答题1. 若(1lim 36x x →∞=,求a2.讨论函数321()2333f x x x x =-+-的单调性并求其单调区间3. 求函数22()2x x f x x --=-的间断点并确定其类型4. 设2sin ,.xy xy x e y '+=求5.求y =6. 求由方程cos sin x a ty b t =⎧⎨=⎩ 确定的导数x y '.7. 函数1,0()1,0tan ,0xe xf x x x x ⎧<⎪⎪==⎨⎪>⎪⎩在0x =处是否连续?8. 函数1,0()1,0tan ,0xe xf x x x x ⎧<⎪⎪==⎨⎪>⎪⎩在0x =处是否可导?9. 求抛物线2y x =与直线y x =所围成图形D 的面积A .10. 计算由抛物线22y x =与直线4y x =-围成的图形D 的面积A .11. 设y 是由方程sin yy y xe =+确定的函数,求y '12.求证: ln 1,1x x x <->13. 设y 是由方程1yy xe =+确定的函数,求y '14. 讨论函数32()29123f x x x x =-+-的单调性并求其单调区间15.求证: 21,x e x >-16. 求函数3(1)()x x f x x x -=-的间断点并确定其类型五、解方程1. 求方程0)(22=-+dy xy x dx y 的通解.2.求方程20yy y '''+=的通解.3. 求方程22y y y x '''-+=的一个特解. 4. 求方程3595xy y y xe -'''-+=的通解.高数一复习资料参考答案一、选择题 1-5: DABAA 6-10:DBCDD 11-15: BCCBD 16-21:ABAAAA二、求积分1.求cos ⎰.解:322cos (sin )sin 3x x C C ==+=⎰2. 求.解:13(43ln )(ln )x d x x =+⎰⎰131(43ln )(43ln )3x d x =+⋅+⎰ 431(43ln )4x C =++. 3. 求arctan xdx ⎰.解:设arctan u x =,dv dx =,即v x =,则arctan arctan (arctan )xdx x x xd x =-⎰⎰2arctan 1xx x dx x =-+⎰ 21arctan ln(1)2x x x C =-++.4. 求⎰解:32222e 33e 3e 3e 23e 6e t t t t t t x t t dt t dt t tdt t t dt ===-⋅=-⎰⎰⎰⎰⎰223e 6e 6e 3e 6e 6e t t t t t t t t dt t t C =-+=-++⎰2)C=+.5. 求2356xdxx x+-+⎰.解:由上述可知23565623xx x x x+-=+-+--,所以2356()5623xdx dxx x x x+-=+-+--⎰⎰115623dx dxx x=-+--⎰⎰5ln26ln3x x C=--+-+.6.求定积分8⎰解t=,即3x t=,则23dx t dt=,且当0x=时,0t=;当8x=时,2t=,于是28222000313ln(1)3ln312t dtt t tt⎡⎤==-++=⎢⎥+⎣⎦⎰⎰.7. 计算2cosx xdxπ⎰.解:令2u x=,cosdv xdx=,则2du xdx=,sinv x=,于是2220000cos sin(sin)2sin2sinx xdx x d x x x x xdx x xdxπππππ==-=-⎰⎰⎰⎰.再用分部积分公式,得2000cos2cos2(cos)cosx xdx xd x x x xdxππππ⎡⎤==-⎢⎥⎣⎦⎰⎰⎰002(cos)sin2x x xπππ⎡⎤=-=-⎣⎦.8. 求2128dxx x+-⎰.解:221113(1)(1)ln28(1)963(1)xdx d x Cx x x x-+=+=++-+-++⎰⎰12ln64xCx-=++.9.求解:令u=32x u=-,23dx u du=,从而有22311311u udu duu u-+==++⎰⎰213(1)3(ln1)12uu du u u Cu=-+=-++++⎰11. 求2212xxe dx-⎰解:2222222411112x x xxe dx e dx e e e-----===-⎰⎰12.求3x⎰解:333223(3)(3)3x x x C=--=--+⎰13. 求21lne x dxx⎰解:22111ln111ln(ln)ln ln333ee exdx xd x x ex====⎰⎰14.求⎰解:3322222121(3)(3)(3)233x x C x C=--=-⋅-+=--+⎰三、解答题1.若(1lim36xx→∞=,求a解:因为223x=,所以9a=否则极限不存在。
2.讨论函数321()2333f x x x x=-+-的单调性并求其单调区间解:2'()43f x x x=-+由2'()430f x x x =-+=得121,3x x ==所以()f x 在区间(,1)-∞上单调增,在区间(1,3)上单调减,在区间(3,)+∞上单调增。
3. 求函数22()2x x f x x --=-的间断点并确定其类型解:函数无定义的点为2x =,是唯一的间断点。
因2lim ()3x f x →=知2x =是可去间断点。
4. 设2sin ,.xy xy x e y '+=求解:22cos ()xy y xy y x e y y ''+⋅+=+,故 ()cos (2)xy xy y e y xy x y e --'=-5.求y =解:对原式两边取对数得:1ln 3ln(1)ln(2)5ln(3),2y x x x =+++-+于是3115,1223y y x x x '=+⋅-+++ 故3115].1223y x x x '=+⋅-+++6. 求由方程cos sin x a ty b t =⎧⎨=⎩确定的导数x y '.解: 22()cos .()sin x y t b t b x y x t a t a y''===-'- 7. 函数1,0()1,0tan ,0xe xf x x x x ⎧<⎪⎪==⎨⎪>⎪⎩在0x =处是否连续?解:100lim()lim0xx xf x e--→→==00lim()lim tan0x xf x x++→→==故在0x=处不连续。