计量经济学复习要点 (2)

合集下载

计量经济学复习资料

计量经济学复习资料

计量经济学复习资料一、引言计量经济学是研究经济现象的数量关系和经济变量之间相互影响的学科。

它通过运用统计学和数学方法,以实证的方式分析经济模型和数据,以期为经济理论的验证和决策制定提供科学依据。

计量经济学作为经济学的重要分支,在经济学领域里起着举足轻重的作用。

本文将为大家提供一个关于计量经济学的复习资料,以便大家更好地复习和理解这门学科。

二、计量经济学基础1. 理论基础:回顾计量经济学的理论基础,包括经济学中的基本原理、假设和模型,以及计量经济学方法的发展演变过程。

2. 计量经济学的基本概念:介绍计量经济学中的一些基本概念,如变量、参数、模型、数据等,帮助读者建立对计量经济学基础概念的理解和认知。

三、计量经济模型1. 线性回归模型:介绍线性回归模型的基本原理和假设,包括最小二乘估计法、截距项、解释变量的选择和回归结果的解释等。

2. 多元线性回归模型:介绍多元线性回归模型的基本原理、假设和参数估计方法,包括多重共线性、异方差和自相关等问题的处理方法。

3. 非线性回归模型:介绍非线性回归模型,如对数线性模型、二项式模型和估计方法等。

4. 时间序列模型:介绍时间序列模型的基本原理、假设和参数估计方法,包括平稳性、季节性和趋势性等问题的处理方法。

四、计量经济学常用方法1. 模型诊断:介绍计量经济学中的模型诊断方法,包括残差分析、异方差检验和自相关检验等。

2. 假设检验:介绍计量经济学中的假设检验方法,包括参数显著性检验、模型拟合优度检验和模型比较等。

3. 预测方法:介绍计量经济学中的预测方法,包括时间序列分析、回归分析和面板数据分析等。

4. 因果推断:介绍计量经济学中的因果推断方法,包括工具变量法、自然实验和计量分析的注意事项等。

五、计量经济学在实际应用中的案例研究1. 劳动经济学:介绍计量经济学在劳动经济学领域的实际应用,包括劳动力市场分析、教育回报率和人力资本投资等。

2. 金融经济学:介绍计量经济学在金融经济学领域的实际应用,包括资本市场分析、投资组合选择和风险管理等。

计量经济学复习要点

计量经济学复习要点

计量经济学复习要点计量经济学复习要点参考教材:李⼦奈潘⽂卿《计量经济学》数据类型:截⾯、时间序列、⾯板第⼆章简单线性回归回归分析的基本概念,常⽤术语现代意义的回归是⼀个被解释变量对若⼲个解释变量依存关系的研究,回归的实质是由固定的解释变量去估计被解释变量的平均值。

简单线性回归模型是只有⼀个解释变量的线性回归模型。

回归中的四个重要概念1. 总体回归模型(Population Regression Model ,PRM)t t t u x y ++=10ββ--代表了总体变量间的真实关系。

2. 总体回归函数(Population Regression Function ,PRF )t t x y E 10)(ββ+=--代表了总体变量间的依存规律。

3. 样本回归函数(Sample Regression Function ,SRF )tt t e x y ++=10??ββ--代表了样本显⽰的变量关系。

4. 样本回归模型(Sample Regression Model ,SRM )tt x y 10ββ+=---代表了样本显⽰的变量依存规律。

总体回归模型与样本回归模型的主要区别是:①描述的对象不同。

总体回归模型描述总体中变量y 与x 的相互关系,⽽样本回归模型描述所关的样本中变量y 与x 的相互关系。

②建⽴模型的依据不同。

总体回归模型是依据总体全部观测资料建⽴的,样本回归模型是依据样本观测资料建⽴的。

③模型性质不同。

总体回归模型不是随机模型,⽽样本回归模型是⼀个随机模型,它随样本的改变⽽改变。

总体回归模型与样本回归模型的联系是:样本回归模型是总体回归模型的⼀个估计式,之所以建⽴样本回归模型,⽬的是⽤来估计总体回归模型。

线性回归的含义线性:被解释变量是关于参数的线性函数(可以不是解释变量的线性函数)线性回归模型的基本假设简单线性回归的基本假定:对模型和变量的假定、对随机扰动项u 的假定(零均值假定、同⽅差假定、⽆⾃相关假定、随机扰动与解释变量不相关假定、正态性假定)普通最⼩⼆乘法(原理、推导)最⼩⼆乘法估计参数的原则是以“残差平⽅和最⼩”。

计量经济学复习要点

计量经济学复习要点

计量经济学复习要点第一篇:计量经济学复习要点计量经济学复习要点第一章、概率论基础1.随机事件的概念P22.古典概行例题P5例1.1P2例1.2利用第一章的知识说明抽签的合理性如何利用第一章的知识估计一个池塘有多少鱼还有一个关于晚上紧急集合穿错鞋的题目,记不太清楚了3.期望与方差的概念,切比雪夫不等式,看例题1.4-例题1.8,不要求求出数4.变异系数的概念P175.大数定律和中心极限定律(具有独立同分布的随机变量序列的有限和近似地服从正态分布)的概念P24、P25第二章、矩阵代数1.矩阵的定义,加(page29)、减(page29)、乘(page30)、转置(page30)、逆(page31)知道怎么回事2.最小二乘法P39-P41(定义最小二乘解)3.第三节没有听,求听课学霸补充第三章、数据的分析方法和参数的统计推断1.数据的分析方法(算数平均、加权算数平均、几何平均、移动平均)(1)几种分析方法的定义(2)几中分析方法的不同(3)每种分析方法的具体作用(4)移动平均法中k的选择(5)指数平滑法的意义,α的选择,P552.t分布的概率密度函数3.矩估计法定义4.几大似然估计法P65,例题3.7例题3.85.贝叶斯估计和极大极小估计(应该是只看一下概念就可以了)6.假设检验(1)基本思想P75(2)双边假设检验(3)单边假设检验(4)参数检验P807.方差分析的思想、作用和模型第四章、一元线性回归(计算题)回归方程的求法,显著性检验,经济解释(各参数的解释),不显著的解释第六章、虚拟变量的回归模型1.虚拟变量的作用及模型2.应用虚拟变量改变回归直线的截距、斜率3.对稳定性的检验第二篇:2007计量经济学复习要点2007年计量经济学课程要点归纳1.十大经典假设的证明(关于两变量模型的性质检验)2.BLUE估计量的证明3.自相关检验方法(检验方法一定要记住)4.异方差检验方法(至少三种)5.孙老师讲过的附录要留意6.异方差与自相关的补救措施7.违反十大经典假设情况下的问题怎么解决(如多重共线性,异方差,自相关问题,虚拟变量的估计)注:以上重点均是提供参考,不做考试说明计量考察的重点是对计量模型的建立与估算,结果评价与补救思路的考察,没有大量的数学计算,请同学们放心!建议大家根据参考要点确定进度,并根据孙老师上课的重点决定自己的复习范围!希望同学们认真复习,考出好成绩!王琳第三篇:计量经济学复习笔记计量经济学复习笔记CH1导论1、计量经济学:以经济理论和经济数据的事实为依据,运用数学、统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。

计量经济学重点知识整理

计量经济学重点知识整理

计量经济学重点知识整理1一般性定义计量经济学是以经济理论和经济数据的事实为依据,运用数学和统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。

研究的主体(出发点、归宿、核心):经济现象及数量变化规律研究的工具(手段):模型数学和统计方法必须明确:方法手段要服从研究对象的本质特征(与数学不同),方法是为经济问题服务2注意:计量经济研究的三个方面理论:即说明所研究对象经济行为的经济理论——计量经济研究的基础数据:对所研究对象经济行为观测所得到的信息——计量经济研究的原料或依据方法:模型的方法与估计、检验、分析的方法——计量经济研究的工具与手段三者缺一不可3计量经济学的学科类型●理论计量经济学研究经济计量的理论和方法●应用计量经济学:应用计量经济方法研究某些领域的具体经济问题4区别:●经济理论重在定性分析,并不对经济关系提供数量上的具体度量●计量经济学对经济关系要作出定量的估计,对经济理论提出经验的内容5计量经济学与经济统计学的关系联系:●经济统计侧重于对社会经济现象的描述性计量●经济统计提供的数据是计量经济学据以估计参数、验证经济理论的基本依据●经济现象不能作实验,只能被动地观测客观经济现象变动的既成事实,只能依赖于经济统计数据6计量经济学与数理统计学的关系联系:●数理统计学是计量经济学的方法论基础区别:●数理统计学是在标准假定条件下抽象地研究一般的随机变量的统计规律性;●计量经济学是从经济模型出发,研究模型参数的估计和推断,参数有特定的经济意义,标准假定条件经常不能满足,需要建立一些专门的经济计量方法3、计量经济学的特点:计量经济学的一个重要特点是:它自身并没有固定的经济理论,而是根据其它经济理论,应用计量经济方法将这些理论数量化。

4、计量经济学为什么是一门单独的学科计量经济学是经济理论、数理经济、经济统计与数理统计的混合物。

1、经济理论所作的陈述或假说大多数是定性性质的,计量经济学对大多数经济理论赋予经验内容。

计量经济学复习资料

计量经济学复习资料

计量经济学复习资料1、费里希(R.Frish)是经济计量学的主要开拓者和奠基人。

2、经济计量学与数理经济学和树立统计学的区别的关键之点是“经济变量关系的随机性特征”。

3、经济计量学识以数理经济学和树立统计学为理论基础和方法论基础的交叉科学。

它以客观经济系统中具有随机性特征的经济关系为研究对象,用数学模型方法描述具体的经济变量关系,为经济计量分析工作提供专门的指导理论和分析方法。

4、时序数据即时间序列数据。

时间序列数据是同一统计指标按时间顺序记录的数据列。

5、横截面数据是在同一时间,不同统计单位的相同统计指标组成的数据列。

6、对于一个独立的经济模型来说,变量可以分为内生变量和外生变量。

内生变量被认为是具有一定概率分布的随机变量,它们的数值是由模型自身决定的;外生变量被认为是非随机变量,它们的数值是在模型之外决定的。

7、对于模型中的一个方程来说,等号左边的变量称为被解释变量,等号右边被称为解释变量。

在模型中一个方程的被解释变量可以是其它方程的解释变量。

被解释变量一定是模型的内生变量,而解释变量既包括外生变量,也包括一部分内生变量。

8、滞后变量与前定变量。

有时模型的设计者还使用内生变量的前期值作解释变量,在计量经济学中将这样的变量程为滞后变量。

滞后变量显然在求解模型之前是已知量,因此通常将外生变量与滞后变量合称为前定变量。

9、控制变量与政策变量。

由于控制论的思想不断渗入经济计量学,使某些经济计量模型具有政策控制的特点,因此在经济计量模型中又出现了控制变量、政策变量等名词。

政策变量或控制变量一般在模型中表现为外生变量,但有时也表现为内生变量。

10、经济参数分为:外生参数和内生参数。

外生参数一般是指依据经济法规人为确定的参数,如折旧率、税率、利息率等。

内生参数是依据样本观测值,运用统计方法估计得到的参数。

如何选择估计参数的方法和改进估计参数的方法,这是理论经济计量学的基本任务。

11、用数学模型描述经济系统应当遵循以下两条基本原则:第一、以理论分析作先导;第二模型规模大小要适度。

计量经济学复习资料二

计量经济学复习资料二

计量经济学复习资料二一、填空题1、联立方程组计量经济学模型中,把()和()统称为前定变量。

2、如果一个定性变量有3种不同的类型,则在设置虚拟变量时,应该设置()个虚拟变量。

3、从是否可以识别的角度划分,联立方程组计量经济学模型可以分为()、()和()三种模型。

4、在单方程计量经济学模型中,把只包括()变量的当期和若干滞后期的模型称为分布滞后模型。

5、D.W统计量只能检验()阶的序列相关问题。

6、经济变量产生滞后效应的原因有()、()和()。

7、在单方程多元线性回归模型中,解释变量违背相互独立的假设所产生的问题是()。

8、在满足古典假定基础上,根据高斯—马尔可夫定理,普通最小二乘法得到的参数估计量具有__________、__________、__________统计性质。

9、一般来说,异方差性在截面数据中比在时间序列数据中更常出现,但在()的情况下,时间序列数据也常存在异方差。

10、二、判断题1、在包含有随机解释变量的单方程回归模型中,不能用杜宾-沃森统计量检验是否存在自相关问题。

( )2、对经典计量经济学模型,不满足古典假定的模型是不能估计的。

()3、计量经济学模型应用中的结构分析是对经济现象中变量之间相互关系的研究。

()4、对于不同的样本点,一个计量经济学模型中的随机误差项的方差不再是常数,而是互不相同,这时,该模型就出现了序列相关问题。

()5、对于不同的样本点,一个计量经济学模型中的随机误差项之间不再是完全互相独立,而是存在某种相关性,则称该模型存在异方差问题。

()6、在单方程计量经济学模型中,解释变量也称自变量,是用来解释作为研究对象的变量(即因变量)为什么变动和如何变动的变量。

()7、对计量经济学模型进行异方差检验的检验思路是检验随机误差项的方差与解释变量观测值之间的相关性。

()8、在一个多元线性回归模型中,如果各个解释变量之间存在完全线性相关,则该模型的参数不能被估计出来。

( )9、对存在异方差的计量经济学模型进行修正后,就可以完全消除异方差对模型的影响。

计量经济学复习笔记

计量经济学复习笔记

第一章统计概念1.什么是计量经济学计量经济学是对经济的测度,利用经济理论、数学、统计推断等工具对经济现象进行分析的一门社会科学。

2.计量经济学的方法论(计量经济分析步骤)(1)建立理论假说。

(2)收集数据。

(3)假定数学模型。

(4)设立统计或计量模型。

(5)估计经济模型参数(6)核查模型的适用性:模型设定检验。

(7)检验源自模型的假定(8)利用模型进行预测4.数据类型(1)时间序列数据:按时间跨度获得的数据。

特征是一般变量如 Y t、X t下标为t。

(2)截面数据:同一时点上的一个或多个变量的数据集合。

如:各地区2002年人口普查数据。

(3)合并数据:既包括时间序列数据有包括截面数据。

例:20年间10个国家的失业数据。

20年失业数据是时间序列,10个国家又是截面数据。

(4)面板数据:同一个横截面的单位的跨期调查数据。

例:对相同的家庭数量在几个时间间隔内进行的财务状况调查。

5.理解回归关系回归关系是一种统计上的相关关系,并不意味着自变量和因变量之间存在着因果关系。

第二章线性回归的基本思想1.回归分析的含义: 回归分析是反映的自变量和因变量之间的统计关系,回归分析是在自变量给定条件下的因变量的变化,是一种条件回归分析E(Y i|X i)=B1+B2X i2.随机误差项的性质(为什么要引入随机误差项)(1)随机误差项代表着未纳入模型变量对因变量的影响(2)即使模型包括了影响因变量的所有因素,模型也有不可避免的随机性。

(3)μ还代表着度量误差(4)模型设定应该尽可能简单,只要不遗漏重要变量,把因变量的次要影响因素归于随机项 μ 。

(奥卡姆剃刀原则)3.参数估计方法———普通最小二乘法的基本思想 选择参数使得残差平方和最小——Min ∑e i 2=Min ∑(Y i −Yi ̌)2=Min ∑(Y i −b 1−b 2X i )^24.根据Ols 法得出参数 b 1 b 2 称为最小二乘估计量,最小二乘估计量的性质: (1)Ols 方法获得样本回归直线过样本均值点(X ,Y ) (2)残差的均值总为0,(3)残差项与解释变量的乘积求和为0,即残差项与解释变量不相关。

计量经济学复习笔记(二):一元线性回归(下)

计量经济学复习笔记(二):一元线性回归(下)

计量经济学复习笔记(⼆):⼀元线性回归(下)回顾上⽂,我们通过OLS推导出了⼀元线性回归的两个参数估计,得到了以下重要结论:ˆβ1=∑x i y i∑x2i,ˆβ0=¯Y−ˆβ1¯X.注意总体回归模型是Y=β0+β1X+µ,同时我们还假定了µ∼N(0,σ2),这使得整个模型都具有正态性。

这种正态性意味着许多,我们能⽤数理统计的知识得到点估计的优良性质,完成区间估计、假设检验等,本⽂就来详细讨论上述内容。

1、BLUE我们选择OLS估计量作为⼀元线性回归的参数估计量,最主要的原因就是它是最⼩⽅差线性⽆偏估计(Best Linear Unbiased Estimator),这意味着它们是:线性的。

⽆偏的。

最⼩⽅差的。

不过,光给你这三个词,你可能会对定义有所困扰——⽐如,关于什么线性?⼜关于什么是⽆偏的?我们接下来就对OLS估计量的BLUE性详细讨论,包括简单证明。

原本我认为,证明在后⾯再给出会更合适,引⼊也更顺畅,但是我们接下来要讨论的许多,都有赖于OLS估计量的BLUE性,因此我还是决定将这部分内容放在这⾥。

⾸先是线性性,它指的是关于观测值Y i线性,这有什么意义呢?注意到,在之前的讨论中,我们总讨论在给定X的取值状况下的其他信息,如µ的条件期望、⽅差协⽅差等,因此我们往往会在这部分的讨论中将X视为常数(⽽不是随机变量)看待,这会带来⼀些好处。

⽽因为µ∼N(0,σ2)且µi是从µ中抽取的简单随机样本,且µi与X i⽆关,所以由正态分布的性质,有Y i|X i∼N(β0+β1X i,σ2).实际上,由于参数真值β1,β1是常数,所以每⼀个Y i在给定了X i的⽔平下,都独⽴地由µi完全决定,⽽µi序列不相关(在正态分布的情况下独⽴),所以Y i之间也相互独⽴。

这样,如果有⼀个统计量是Y i的线性组合,那么由正态分布的可加性,这个统计量就⾃然服从正态分布,从⽽我们可以很⽅便地对其进⾏参数估计、假设检验等。

计量经济学复习笔记(注释)

计量经济学复习笔记(注释)

计量经济学复习笔记CH1导论1、计量经济学:以经济理论和经济数据的事实为依据,运用数学、统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。

研究主体是经济现象及其发展变化的规律。

2、运用计量分析研究步骤:模型设定——确定变量和数学关系式估计参数——分析变量间具体的数量关系模型检验——检验所得结论的可靠性模型应用——做经济分析和经济预测3、模型变量:解释变量:表示被解释变量变动原因的变量,也称自变量,回归元。

被解释变量:表示分析研究的对象,变动结果的变量,也成应变量。

内生变量:其数值由模型所决定的变量,是模型求解的结果。

外生变量:其数值由模型意外决定的变量。

外生变量数值的变化能够影响内生变量的变化,而内生变量却不能反过来影响外生变量。

前定内生变量:过去时期的、滞后的或更大范围的内生变量,不受本模型研究范围的内生变量的影响,但能够影响我们所研究的本期的内生变量。

前定变量:前定内生变量和外生变量的总称。

数据:时间序列数据:按照时间先后排列的统计数据。

截面数据:发生在同一时间截面上的调查数据。

面板数据:虚拟变量数据:表征政策,条件等,一般取0或1.4、估计评价统计性质的标准无偏:E(^β)=β 随机变量,变量的函数?有效:最小方差性一致:N趋近无穷时,β估计越来越接近真实值5、检验经济意义检验:所估计的模型与经济理论是否相等统计推断检验:检验参数估计值是否抽样的偶然结果,是否显著计量经济检验:是否符合计量经济方法的基本假定预测检验:将模型预测的结果与经济运行的实际对比CH2 CH3 线性回归模型模型(假设)——估计参数——检验——拟合优度——预测1、模型(线性)(1)关于参数的线性 模型就变量而言是线性的;模型就参数而言是线性的。

Y i =β1+β2lnX i +u i线性影响 随机影响Y i =E (Y i |X i )+u i E (Y i |X i )=f(X i )=β1+β2lnX i引入随机扰动项,(3)古典假设A 零均值假定 E (u i |X i )=0B 同方差假定 Var(u i |X i )=E(u i 2)=σ2C 无自相关假定 Cov(u i ,u j )=0D 随机扰动项与解释变量不相关假定 Cov(u i ,X i )=0E 正态性假定u i ~N(0,σ2)F 无多重共线性假定Rank(X)=k2、估计在古典假设下,经典框架,可以使用OLS方法:OLS 寻找min ∑e i2 ^β1ols = (Y 均值)-^β2(X 均值)^β2ols = ∑x i y i /∑x i 23、性质OLS 回归线性质(数值性质)(1)回归线通过样本均值 (X 均值,Y 均值)(2)估计值^Y i 的均值等于实际值Y i 的均值(3)剩余项e i 的均值为0(4)被解释变量估计值^Y i 与剩余项e i 不相关 Cov(^Y i ,e i )=0(5)解释变量X i 与剩余项e i 不相关 Cov(e i ,X i )=0在古典假设下,OLS 的统计性质是BLUE 统计 最佳线性无偏估计4、检验(1)Z 检验Ho:β2=0 原假设 验证β2是否显著不为0标准化: Z=(^β2-β2)/SE (^β2)~N (0,1) 在方差已知,样本充分大用Z 检验拒绝域在两侧,跟临界值判断,是否β2显著不为0(2)t 检验——回归系数的假设性检验方差未知,用方差估计量代替 ^σ2=∑e i 2/(n-k) 重点记忆t =(^β2-β2)/^SE (^β2)~t (n-2)拒绝域:|t|>=t 2/a (n-2)拒绝,认为对应解释变量对被解释变量有显著影响。

计量经济学复习要点144156

计量经济学复习要点144156

计量经济学复习要点第1章 绪论数据类型:截面、时间序列、面板用数据度量因果效应,其他条件不变的概念 习题:C1、C2第2章 简单线性回归回归分析的基本概念,常用术语现代意义的回归是一个被解释变量对若干个解释变量依存关系的研究,回归的实质是由固定的解释变量去估计被解释变量的平均值。

简单线性回归模型是只有一个解释变量的线性回归模型。

回归中的四个重要概念1. 总体回归模型(Population Regression Model ,PRM)t t t u x y ++=10ββ--代表了总体变量间的真实关系。

2. 总体回归函数(Population Regression Function ,PRF )t t x y E 10)(ββ+=--代表了总体变量间的依存规律。

3. 样本回归函数(Sample Regression Function ,SRF )tt t e x y ++=10ˆˆββ--代表了样本显示的变量关系。

4. 样本回归模型(Sample Regression Model ,SRM )tt x y 10ˆˆˆββ+=---代表了样本显示的变量依存规律。

总体回归模型与样本回归模型的主要区别是:①描述的对象不同。

总体回归模型描述总体中变量y 与x 的相互关系,而样本回归模型描述所关的样本中变量y 与x 的相互关系。

②建立模型的依据不同。

总体回归模型是依据总体全部观测资料建立的,样本回归模型是依据样本观测资料建立的。

③模型性质不同。

总体回归模型不是随机模型,而样本回归模型是一个随机模型,它随样本的改变而改变。

总体回归模型与样本回归模型的联系是:样本回归模型是总体回归模型的一个估计式,之所以建立样本回归模型,目的是用来估计总体回归模型。

线性回归的含义线性:被解释变量是关于参数的线性函数(可以不是解释变量的线性函数) 线性回归模型的基本假设简单线性回归的基本假定:对模型和变量的假定、对随机扰动项u 的假定(零均值假定、同方差假定、无自相关假定、随机扰动与解释变量不相关假定、正态性假定) 普通最小二乘法(原理、推导)最小二乘法估计参数的原则是以“残差平方和最小”。

计量经济学复习资料2

计量经济学复习资料2

n
n
Q (Yi Yˆi )2 (Yi (ˆ0 ˆ1 X i ))2
1
1
xi2
(X i X )2
X
2 i
1 n
Xi 2
xi yi
(X i X )(Yi Y )
X
iYi
1 n
X i Yi
上述参数估计量可以写成:
ˆ1
xi yi
x
2 i
ˆ 0 Y ˆ1 X
在其他条件不变的前提下,我们估计午餐项目对学生成绩有正影响,即其他条件不变,若一 个学生太贫穷而不能保证正常的伙食,就可以有资格享受学校午餐项目的资助,他的成绩应 该会提高。 用 Lnchprg 表示有资格接受午餐计划的学生百分比。那么,一个简单的回归模型就是 Math10=b0+b1Lnchprg+u 其中,u 包含了影响学校整体成绩的学校和学生特征。Meap93.RAW 包含了密歇根的 408 所 高中 1992-1993 学年的数据,利用这些数据,我们得到 Math10hat=32.14-0.319Lnchprg n=408 R2=0.171 解释斜率 若有资格接受午餐项目的学生增加 10 个百分点,则通过数学考试的学生会减少 3.2 个百分 点。 可能吗?哪里错了? 事实上,u 包含着既影响学生成绩又与午餐项目资格高度相关的因素,比如在校贫困学生的 比率。像学校质量和资源这样的变量也被包含在 u 中,它们都可能与 Lnchprg 相关。
Cov(i , j ) E(i j ) 0
假设 3,解释变量与随机项不相关
Cov( X ji , i ) 0 j 1,2, k
假设 4,随机项满足正态分布
i ~ N (0, 2 )
一、
§3.2 多元线性回归模型的估计 普通最小二乘估计

计量经济学复习知识要点

计量经济学复习知识要点

第一章导论第一节计量经济学的涵义和性质计量经济学是以一定的经济理论和实际统计资料为依据,运用数学、统计学方法和计算机技师,通过建立计量经济模型,定量分析经济变量之间的随机因果关系。

计量经济学是经济学的一个重要分支,以揭示经济活动中客观存在的数量关系的理论与方法为主要内容,其核心是建立计量经济学模型。

第二节计量经济学的内容体系及与其他学科的关系一、计量经济学与经济学、统计学、数理统计学学科间的关系计量经济学是经济理论、统计学和数学的综合。

经济学着重经济现象的定性研究,而计量经济学着重于定量方面的研究。

统计学是关于如何惧、整理和分析数据的科学,而计量经济学则利用经济统计所提供的数据来估计经济变量之间的数量关系并加以验证。

数量统计各种数据的惧、整理与分析提供切实可靠的数学方法,是计量经济学建立计量经济模型的主要工具,但它与经济理论、经济统计学结合而形成的计量经济学则仅限于经济领域。

计量经济模型建立的过程,是综合应用理论、统计和数学方法的过程。

因此计量经济学是经济理论、统计学和数学三者的统一。

二、计量经济学的内容体系1、按范围分为广义计量经济学和狭义计量经济学。

2、按研究内容分为理论计量经济学和应用计量经济学。

理论计量经济学的核心内容是参数估计和模型检验。

应用计量经济学的核心内容是模型设定和模型应用。

第三节基本概念(4、5、7、8了解即可)1.经济变量:经济变量是用来描述经济因素数量水平的指标。

2.解释变量:解释变量也称自变量,是用来解释作为研究对象的变量(即因变量)为什么变动、如何变动的变量。

它对因变量的变动作出解释,表现为议程所描述的因果关系中的“因”。

3.被解释变量:被解释变量也称因变量或应变量,是作为研究对象的变量。

它的变动是由解释变量作出解释的,表现为议程所描述的因果关系的果。

4.内生变量:内生变量是由模型系统内部因素所决定的变量,表现为具有一定概率颁的随机变量,其数值受模型中其他变量的影响,是模型求解的结果。

计量经济学复习要点

计量经济学复习要点

计量经济学复习要求(2011专升本)一、基本概念: 1、名词:3)內生变量:内生变量是具有一定概率分布的随机变量,它的数值是由模型本身决定的。

4)外生变量:是指非随机变量,它的取值是在模型之外决定的,是求解模型时的已知数。

5)滞后变量:是指内生变量和外生变量的时间滞后量(前期量)。

6)前定变量:外生变量与滞后内生变量统称为前定变量。

7)虚拟变量:虚拟变量又称虚设变量、名义变量或哑变量,用以反映质的属性的一个人工变量,是量化了的质变量,通常取值为0或1。

8)工具变量:某一个变量与模型中随机解释变量高度相关,但却不与随机误差项相关,那么就可以用此变量与模型中相应回归系数的一个一致估计量,这个变量就称为工具变量 9)相关系数:相关系数是用以反映变量之间相关关系密切程度的统计指标。

相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。

定义;若随机变量X 与Y 的EX ,EY ,及DX ,DY 存在,称为X 与Y 的相关系数10)协方差:E[(X-E(X))(Y-E(Y))]称为随机变量X 和Y 的协方差,记作COV(X ,Y),即COV(X ,Y)=E[(X-E(X))(Y-E(Y))]。

定义:Cov(X,Y) =E( X - EX)(Y-EY)=E(XY) - (EX)(EY) 当Y=X ,Cov(X,X) =E(X 2) - (EX)2 = D(X)11)回归方程: 解:X 与Y 相关关系,设Y= a+ bX+ε其中:X 是可控变量,Y 和ε是随机变量, ε~N(0,σ2),a 、b 未知,当X 取值:x 1, x 2,… x n 时,对Y 观察,得到一组样本: (x 1, y 1),(x 2, y 2), …,(x n , y n ), 满足:y i = a+ bx i +εiεI ~ N(0,σ2), εi .εj 相互独立 E(y i )= a+ bx i +0ˆˆˆY a bX=+12)异方差性:13)序列相关性:14)多重共线性:2、概念:1)数据类型:时间序列数据、横截面数据、合并数据2)计量经济研究的步骤:a. 建立理论模型(模型设定),包括模型的总体设计和个体设计;(1)确定模型中的变量(2)确定模型的函数形式(3)确定统计指标并搜集整理数据b. 估计模型的参数c. 模型的检验d. 模型的应用可进一步概括成:3)回归系数的经济意义:自变量每增加一个单位,因变量增加的平均值。

计量经济学复习资料(重要)

计量经济学复习资料(重要)

一、回归分析的基本方法和原理1、计量经济学的建模分析步骤和要点 (1) 确定模型所包含的变量 (2) 确定模型的数学模式(3) 拟定理论模型中待估参数的理论期望值 二、二、回归分析的含义?回归分析的含义? 回归分析基本概念回归分析基本概念• 变量间的相互关系变量间的相互关系(1)函数关系)函数关系 (2)相关关系)相关关系• 相关分析与回归分析相关分析与回归分析相关分析:主要研究随机变量间的相关形式及相关程度。

相关分析:主要研究随机变量间的相关形式及相关程度。

回归分析:研究存在因果关系的变量间的依存关系。

回归分析:研究存在因果关系的变量间的依存关系。

回归分析是研究一个变量关于另一个(些)变量的依赖关系的计算方法和理论。

其目的在于通过后者的已知或设定值,去估计和(或)预测前者的(总体)均值前一个变量称为被解释变量或因变量,后一个变量成为解释变量或自变量。

三、总体回归函数三、总体回归函数• 在给定解释变量X 的条件下,被解释变量Y 的期望轨迹,称为总体回归线,或总体回归曲线。

其相应的函数则称为总体回归函数回归曲线。

其相应的函数则称为总体回归函数 • 函数一般式:函数一般式: E(Y/X)=f (X )• 总体回归函数表明被解释变量Y 的平均状态随解释变量X 变化的规律。

变化的规律。

• 线性总体回归函数:线性总体回归函数: E(Y/X)=β0+β1x • 总体回归函数引入随机干扰项,总体回归函数引入随机干扰项,则变成计量经济学模型,则变成计量经济学模型,则变成计量经济学模型,也称为总体回归模型。

也称为总体回归模型。

也称为总体回归模型。

即:即:• Y=β0+β1x +μ 四、样本回归函数四、样本回归函数• 由于总体回归函数未知,通过从抽样,得到总体的样本,再以样本的信息来估计总体回归函数。

体回归函数。

• 以样本的资料反映总体的情况,所形成的散点连线,称为样本回归线,其函数形式则称为样本回归函数则称为样本回归函数样本回归函数的随机形式:样本回归函数的随机形式:也称样本回归函数也称样本回归函数 e 的含义的含义• e 为随机干扰项μ的估计值,称为残差项。

计量经济学复习知识点重点难点

计量经济学复习知识点重点难点

计量经济学知识点第一章导论1、计量经济学的研究步骤:模型设定、估计参数、模型检验、模型应用。

2、计量经济学是统计学、经济学和数学的结合。

3、计量经济学作为经济学的一门独立学科被正式确立的标志:1930年12月国际计量经济学会的成立。

4、计量经济学是经济学的一个分支学科。

第二章简单线性回归模型1、在总体回归函数中引进随机扰动项的原因:①作为未知影响因素的代表;②作为无法取得数据的已知因素的代表;③作为众多细小影响因素的综合代表;④模型的设定误差;⑤变量的观测误差;⑥经济现象的内在随机性。

2、简单线性回归模型的基本假定:①零均值假定;②同方差假定;③随机扰动项和解释变量不相关假定;④无自相关假定;⑤正态性假定。

3、OLS回归线的性质:①样本回归线通过样本均值;②估计值的均值等于实际值的均值;③剩余项ei的均值为零;④被解释变量的估计值与剩余项不相关;⑤解释变量与剩余项不相关。

4、参数估计量的评价标准:无偏性、有效性、一致性。

5、OLS估计量的统计特征:线性特性、无偏性、有效性。

6、可决系数R²的特点:①可决系数是非负的统计量;②可决系数的取值范围为[0,1];③可决系数是样本观测值的函数,可决系数是随抽样而变动的随机变量。

第三章多元线性回归模型1、多元线性回归模型的古典假定:①零均值假定;②同方差和无自相关假定;③随机扰动项和解释变量不相关假定;④无多重共线性假定;⑤正态性假定。

2、估计多元线性回归模型参数的方法:最小二乘估计、极大似然估计、矩估计、广义矩估计。

3、参数最小二乘估计的性质:线性性质、无偏性、有效性。

4、可决系数必定非负,但是根据公式计算的修正的可决系数可能为负值,这时规定为0。

5、可决系数只是对模型拟合优度的度量,可决系数越大,只是说明列入模型中的解释变量对被解释变量的联合影响程度越大,并非说明模型中各个解释变量对被解释变量的影响程度也大。

6、当R²=0时,F=0;当R²越大时,F值也越大;当R²=1时,F→∞。

计量经济学复习概要2

计量经济学复习概要2

(说为参考,发现错误,纯属正常,意料之中的事情,嘿嘿……) 1、最小二乘法对随机误差项u 做了哪些假定?说明这些假定条件的意义:(1)E (i u )=0,i =1,2,……表示在Xi 已知的条件下,随机误差项i u 可以取不同的值,有些大于零,有些小于零,如果考虑所有可能的值,他们的期望值或平均值等于零。

(2)i ar u V () =2[()]i i E u E u - =E (2i u )=2u σ,i =1,2,……表示每个Xi 对应的随机误差项i u 具有相同的常数方差,称为同方差性。

(3)i j ov u u C (,) =[()]i i E u E u -[j j u u E -()]=i j u u E ()=0,i j ≠,i ,j=1,2,……表示任意两个i X 和j X 所对应的随机误差项i j u u ,,称为随机误差项u 无序列相关。

(4)i i ov u C (,X )=E[i u -E (i u )][ i X -E (i X )]= E (i i u X )=0,表示解释变量X 是确定的变量,与随机相u 不相关,此假定保证解释变量X 是非随机变量。

(5)服从正态分布,由(1)(2)知,i u N (0,σu^2)。

【P9】2、阐述对样本回归模型拟合优度的检验及对回归系数估计值显著性检验的步骤:(1)总离差平方和的分解、样本可决系数、样本相关系数(2)随机变量u 的方差、回归系数估计值的显著性检验——t 检验:提出原假设H0:β=0,备择假设1H =1β≠0,计算t=11S ββ,给出显著水平α,查自由度v=n-2的t 分布表,得临界值/2t α(n-2)。

做出判断:如果t </2t α(n-2),拒绝H0t >/2t α(n-2),拒绝0H ,接受1H :1β0≠,表明X 对Y 有显著影响。

对常数项0β∧的显著性检验于此类似。

如果接受0H :0β=0,则常数项0β不应该出现在模型中。

计量复习要点2(分析题)

计量复习要点2(分析题)

Mean of dependent var S.D. of dependent var Sum of squared resid F – statistics
完成以下问题: (至少保留三位小数) 1.写出需求量对消费者平均收入、商品价格的线性回归估计方程。 2.解释偏回归系数的统计意义和经济意义。 3.对该模型做经济意义检验。 4.计算调整的可决系数。 5.在 5%的显著水平下对方程整体显著性进行检验(F0.05(2,7)=4.74)。 6.在 5%的显著水平下检验偏回归系数(斜率)的显著性(t0.025(7)=2.365)。
(2)对模型进行统计学检验(拟合优度检验、变量显著性检验及方程显著 性检验) ;显著水平为 0.05,临界值为 F0.05(1,21)= 4.32, t0.025 (21) =2.08; 注:前两题的结果要进行统计意义与经济意义解释。 (3)对模型运用 DW 检验法进行序列相关检验,显著水平为 0.05,临界值
Prob. 0.0000 0.0138 0.0000 6.243029 0.356017 -1.660563 -1.513526 99.81632 0.000000
1.写出机电行业销售额对汽车产量和建筑业产值的双对数线性回归估计方 程。 2.对双对数模型进行经济检验和统计检验。 3.比较表 1 和表 2,你将选择哪个模型?为什么? 4.如果有两种可供选择的措施以提高机电行业销售额,措施 a 提高汽车产 量,措施 b 增大建筑业产值,你认为哪个措施效果更明显?为什么? 解:1.估计方程(SRF) :
Dependent Variable: LNY Variable Coefficient C 3.734902 LNX1 0.387929 LNX2 0.568470 R-squared 0.934467 Adjusted R-squared 0.925105 S.E. of regression 0.097431 Sum squared resid 0.132899 Log likelihood 17.11479 Durbin-Watson stat 1.839701

计量经济学复习重点

计量经济学复习重点

计量经济学复习重点第一章1. 计量经济学的性质计量经济学是以经济理论和经济数据的事实为依据,运用数学和统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。

研究的主体(出发点、归宿、核心):经济现象及数量变化规律研究的工具(手段):模型数学和统计方法方法手段要服从研究对象的本质特征(与数学不同),方法是为经济问题服务计量经济研究的三个方面理论:即说明所研究对象经济行为的经济理论(计量经济研究的基础)数据:对所研究对象经济行为观测所得到的信息(计量经济研究的原料或依据)方法:模型的方法与估计、检验、分析的方法(计量经济研究的工具与手段2. 计量经济学与相关学科的联系与区别联系:●计量经济学研究的主体—经济现象和经济系的数量规律●计量经济学必须以经济学提供的理论原则和经济运行规律为依据●经济计量分析的结果:对经济理论确定的原则加以验证、充实、完善区别:●经济理论重在定性分析,并不对经济关系提供数量上的具体度量●计量经济学对经济关系要作出定量的估计,对经济理论提出经验的内容3. 学习计量经济学的必要性4. 计量经济学研究的基本思路和步骤模型设定(选择变量和数学关系式)、估计参数(确定变量间的数量关系)、模型检验(检验所得结论的可靠性)、模型应用(作经济分析和经济预测)5。

模型的设定、参数估计、模型检验的要求模型设定要求●要有科学的理论依据●选择适当的数学形式(单一方程、联立方程线性形式、非线性形式)●模型要兼顾真实性和实用性●包含随机误差项●方程中的变量要具有可观测性参数估计要求参数的估计值:所估计参数的具体数值参数的估计式:估计参数数值的公式6. 模型中的变量及其类型从变量的因果关系区分:被解释变量(应变量)—-要分析研究的变量解释变量(自变量)—说明应变量变动主要原因的变量(非主要原因归入随机误差项)从变量的性质区分内生变量—其数值由模型所决定的变量,是模型求解的结果外生变量—其数值由模型以外决定的变量(相关概念:前定内生变量、前定变量) 注意:外生变量数值的变化能够影响内生变量的变化,内生变量却不能反过来影响外生变量7. 计量经济研究中数据的类型时间数列数据(同一空间、不同时间)、截面数据(同一时间、不同空间)、混合数据(面板数据 Panel Data)、虚拟变量数据8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计量经济学复习要点参考教材:伍德里奇 《计量经济学导论》 第1章 绪论数据类型:截面、时间序列、面板用数据度量因果效应,其他条件不变的概念 习题:C1、C2第2章 简单线性回归回归分析的基本概念,常用术语现代意义的回归是一个被解释变量对若干个解释变量依存关系的研究,回归的实质是由固定的解释变量去估计被解释变量的平均值。

简单线性回归模型是只有一个解释变量的线性回归模型。

回归中的四个重要概念1. 总体回归模型(Population Regression Model ,PRM)t t t u x y ++=10ββ--代表了总体变量间的真实关系。

2. 总体回归函数(Population Regression Function ,PRF )t t x y E 10)(ββ+=--代表了总体变量间的依存规律。

3. 样本回归函数(Sample Regression Function ,SRF )tt t e x y ++=10ˆˆββ--代表了样本显示的变量关系。

4. 样本回归模型(Sample Regression Model ,SRM )tt x y 10ˆˆˆββ+=---代表了样本显示的变量依存规律。

总体回归模型与样本回归模型的主要区别是:①描述的对象不同。

总体回归模型描述总体中变量y 与x 的相互关系,而样本回归模型描述所关的样本中变量y 与x 的相互关系。

②建立模型的依据不同。

总体回归模型是依据总体全部观测资料建立的,样本回归模型是依据样本观测资料建立的。

③模型性质不同。

总体回归模型不是随机模型,而样本回归模型是一个随机模型,它随样本的改变而改变。

总体回归模型与样本回归模型的联系是:样本回归模型是总体回归模型的一个估计式,之所以建立样本回归模型,目的是用来估计总体回归模型。

线性回归的含义线性:被解释变量是关于参数的线性函数(可以不是解释变量的线性函数) 线性回归模型的基本假设简单线性回归的基本假定:对模型和变量的假定、对随机扰动项u 的假定(零均值假定、同方差假定、无自相关假定、随机扰动与解释变量不相关假定、正态性假定)普通最小二乘法(原理、推导)最小二乘法估计参数的原则是以“残差平方和最小”。

Min21ˆ()niii Y Y =-∑01ˆˆ(,)ββ: 1121()()ˆ()nii i n ii XX Y Y X X ==--β=-∑∑ ,01ˆˆY X β=-βOLS 的代数性质拟合优度R 2离差平方和的分解:TSS=ESS+RSS“拟合优度”是模型对样本数据的拟合程度。

检验方法是构造一个可以表征拟合程度的指标——判定系数又称决定系数。

(1)21SSE SST SSR SSRR SST SST SST-===-,表示回归平方和与总离差平方和之比;反映了样本回归线对样本观测值拟合优劣程度的一种描述; (2) 2[0,1]R ∈;(3) 回归模型中所包含的解释变量越多,2R 越大!改变度量单位对OLS 统计量的影响函数形式(对数、半对数模型系数的解释)(1)01ˆˆˆi iY X =β+β:X 变化一个单位Y 的变化 (2)01ˆˆˆln ln i i Y X =β+β: X 变化1%,Y 变化1ˆβ%,表示弹性。

(3)01ˆˆˆln i i Y X =β+β:X 变化一个单位,Y 变化百分之1001ˆβ (4)01ˆˆˆln i i Y X =β+β:X 变化1%,Y 变化1ˆβ%。

OLS 无偏性,无偏性的证明OLS 估计量的抽样方差 误差方差的估计 OLS 估计量的性质(1)线性:是指参数估计值0β和1β分别为观测值t y 的线性组合。

(2)无偏性:是指0β和1β的期望值分别是总体参数0β和1β。

(3)最优性(最小方差性):是指最小二乘估计量0β和1β在在各种线性无偏估计中,具有最小方差。

高斯-马尔可夫定理 OLS 参数估计量的概率分布OLS 随机误差项μ的方差σ2的估计简单回归的高斯马尔科夫假定 对零条件均值的理解习题:4、5、6;C2、C3、C4第3章 多元回归分析:估计1、变量系数的解释(剔除、控制其他因素的影响)01122ˆˆˆˆi i i Y X X =β+β+β 对斜率系数1ˆβ的解释:在控制其他解释变量(X2)不变的条件下,X1变化一个单位对Y 的影响;或者,在剔除了其他解释变量的影响之后,X1的变化对Y 的单独影响! 2、多元线性回归模型中对随机扰动项u 的假定,除了零均值假定、同方差假定、无自相关假定、随机扰动与解释变量不相关假定、正态性假定以外,还要求满足无多重共线性假定。

3、多元线性回归模型参数的最小二乘估计式;参数估计式的分布性质及期望、方差和标准误差;在基本假定满足的条件下,多元线性回归模型最小二乘估计式是最佳线性无偏估计式。

最小二乘法 (OLS) 公式:Y ' X X)' (X ˆ-1=β估计的回归模型:的方差协方差矩阵:残差的方差 :ˆˆY =X β+u βˆ2ˆˆ'u u n k -s =2ˆvar(σ-1(X'X)β)=2^22()i Var x σβ=∑2^22ie n σ=-∑估计的方差协方差矩阵是:拟合优度 遗漏变量偏误多重共线性多重共线性的概念多重共线性的后果 多重共线性的检验 多重共线性的处理习题:1、2、6、7、8、10;C2、C5、C6第4章 多元回归分析:推断经典线性模型假定 正态抽样分布变量显著性检验,t 检验 检验β值的其他假设 P 值实际显著性与统计显著性 检验参数的一个线性组合假设 多个线性约束的检验:F 检验理解排除性约束 报告回归结果习题:1、2、3、4、6、7、10、11;C3、C5、C8第6章 多元回归分析:专题测度单位对OLS 统计量的影响 进一步理解对数模型 二次式的模型2ˆvar(s -1(X'X)β)=交互项的模型 拟合优度修正可决系数的作用和方法。

22222()111()(1)()iiii en k e n R Y Y n n k Y Y --=-=-----∑∑∑∑ 习题:1、3、4、7;C2、C3、C5、C9、C12第7章 虚拟变量虚拟变量的定义如何引入虚拟变量:如果一个变量分成N 组,引入该变量的虚拟变量形式是只能放入N-1个虚拟变量虚拟变量系数的解释虚拟变量系数的解释:不同组均值的差(基准组或对照组与处理组) 以下几种模型形式表达的不同含义;1)tt t t u D X Y +++=210βββ:截距项不同; 2)tt t t t u X D X Y +++=210βββ:斜率不同;3)tt t t t t u X D D X Y ++++=3210ββββ:截距项与斜率都不同;其中D 是二值虚拟变量,X 是连续的变量。

虚拟变量陷阱 虚拟变量的交互作用习题:2、4、9;C2、C3、C6、C7、C11第8章 异方差异方差的后果 异方差稳健标准误 BP 检验异方差的检验(White 检验) 加权最小二乘法习题:1、2、3、4;C1、C2、C8、C9Eviews 回归结果界面解释表英文名称中文名称常用计算公式常用相互关系和判断准则Variable 变量 Coefficient 系数Sta.Error 标准差一般是绝对值越小越好 t-statisticT 检验统计量/()t se ββ=绝对值大于2时可粗略判断系数通过t 检验ProbT 统计量的P 值P 值小于给定显著水平时系数通过t 检验R -squared 2R 2/1/R ESS TSS RSS TSS ==- Ajusted R -squared 2R2/(1)1/(1)RSS n k R TSS n --=--2211(1)1n R R n k -=----S.E. of regression扰动项标准差2i e RSSn kn kσ==--∑Sum squared resid 残差平方和 2i RSS e =∑Log likelihood 似然函数对数值Durbin-Watson stat DW 统计量2(1)d ρ≈-Mean dependent var应变量样本均值iYY n=∑S.D. dependent var应变量样本标准差()2111iTSSY Y n n -=--∑Akaike info criterionAIC 准则一般是越小越好Schwarz criterion SC 准则一般是越小越好F-statistic F 统计量 //(1)ESS k F RSS n k =--22/(1)/(1)R kF R n k =---Prob(F-statistic)F 统计量的P 值P 值小于给定显著水平时模型通过F 检验计量经济学复习题第1章习题:C1、C2第2章习题:4、5、6;C2、C3、C4第3章习题:1、2、6、7、8、10;C2、C5、C6 第4章习题:1、2、3、4、6、7、10、11;C3、C5、C8 第6章习题:1、3、4、7;C2、C3、C5、C9、C12 第7章习题:2、4、9;C2、C3、C6、C7、C11 第8章习题:1、2、3、4;C1、C2、C8、C91、判断下列表达式是否正确010*******, 1,2,,ˆˆˆ, 1,2,,(), 1,2,,(), 1,2,,ˆˆ(), 1,2,,i i i i i i i i i i i i i i y x i ny x i n E y x x i nE y x x i n E y x x i nββββββμββββ=+==+==++==+==+=0101010101, 1,2,,ˆˆˆ, 1,2,,ˆˆ, 1,2,,ˆˆˆ, 1,2,,ˆˆˆˆ, 1,2,,i i i i i i i i i iiii ii y x i n y x i n y x i n y x i n y x i nββμββμββμββμββμ=++==++==++==++==++=2、给定一元线性回归模型:t t t X Y μββ++=10 n t ,,2,1 =(1)叙述模型的基本假定;(2)写出参数0β和1β的最小二乘估计公式; (3)说明满足基本假定的最小二乘估计量的统计性质; (4)写出随机扰动项方差的无偏估计公式。

3、对于多元线性计量经济学模型:t kt k t t t X X X Y μββββ+++++= 33221 n t ,,, 21=(1)该模型的矩阵形式及各矩阵的含义; (2)对应的样本线性回归模型的矩阵形式; (3)模型的最小二乘参数估计量。

4、根据美国1961年第一季度至1977年第二季度的数据,我们得到了如下的咖啡需求函数的回归方程:D D D P I P t t t t t t tT Q 321'0097.0157.00961.00089.0ln 1483.0ln 5115.0ln 1647.02789.1ˆln ----++-= (-2.14) (1.23) (0.55) (-3.36) (-3.74) (-6.03) (-0.37)80.02=R其中,Q=人均咖啡消费量(单位:磅);P=咖啡的价格(以1967年价格为不变价格);I=人均可支配收入(单位:千元,以1967年价格为不变价格);P '=茶的价格(1/4磅,以1967年价格为不变价格);T=时间趋势变量(1961年第一季度为1,…,1977年第二季度为66);D 1=1:第一季度;D 2=1:第二季度;D 3=1:第三季度。

相关文档
最新文档