概率经典测试题含答案解析

合集下载

事件的概率试题及答案

事件的概率试题及答案

事件的概率试题及答案1. 单选题:如果一个骰子被公平地掷出,那么掷出偶数的概率是多少?A. 1/2B. 1/3C. 3/8D. 1/6答案:A2. 多选题:以下哪些事件是互斥的?A. 掷一枚硬币得到正面或反面B. 掷骰子得到1或得到6C. 掷骰子得到奇数或得到偶数D. 掷骰子得到3或得到5答案:B, D3. 判断题:如果一个事件的概率是0,那么这个事件不可能发生。

答案:正确4. 填空题:如果一个事件的概率是0.5,那么它的补事件的概率是______。

答案:0.55. 计算题:一个袋子里有5个红球和3个蓝球,随机抽取一个球,求抽到红球的概率。

答案:5/86. 简答题:解释什么是条件概率,并给出一个例子。

答案:条件概率是指在某个条件或事件已经发生的条件下,另一个事件发生的概率。

例如,如果已知一个班级里有50%的学生是女生,那么在随机挑选一个学生是女生的条件下,这个学生是左撇子的概率,就是条件概率。

7. 应用题:一个工厂生产两种类型的零件,A型和B型。

A型零件的合格率为90%,B型零件的合格率为80%。

如果从生产线上随机抽取一个零件,发现它是合格的,那么这个零件是A型的概率是多少?答案:设事件A为零件是A型,事件B为零件合格。

根据贝叶斯定理,P(A|B) = P(B|A) * P(A) / P(B)。

已知P(A) = 0.5,P(B|A) = 0.9,P(B) = P(B|A) * P(A) + P(B|A') * P(A') = 0.9 * 0.5 + 0.8 * 0.5 = 0.85。

所以P(A|B) = 0.9 * 0.5 / 0.85 ≈ 0.529。

8. 论述题:描述概率论在现实生活中的应用,并举例说明。

答案:概率论在现实生活中有广泛的应用,例如在风险评估、保险计算、医学研究、天气预报等领域。

例如,在医学研究中,研究人员可能会使用概率论来评估某种治疗方法对特定疾病的效果,通过分析治疗组和对照组的治愈率差异,来确定治疗方法的有效性。

中考概率题经典题及解析

中考概率题经典题及解析

中考概率题经典题及解析一、一个不透明的袋子中装有红、黄、蓝三种颜色的小球各2个,从中随机摸出3个小球,则摸出的小球中至少有1个是红球的概率是?A. 1/10B. 1/4C. 3/5D. 7/10(答案)D二、一副扑克牌去掉大小王后共有52张,从中任意抽出1张,则抽到的牌是黑色的概率为?A. 1/4B. 1/2C. 3/4D. 1(答案)B三、一个骰子有6个面,每个面上分别标有数字1到6,投掷这个骰子一次,则掷出的点数为偶数的概率是?A. 1/6B. 1/3C. 1/2D. 2/3(答案)C四、某校有学生800人,其中女生占45%,若从中随机选取一名学生,则选中男生的概率为?A. 0.45B. 0.55C. 0.6D. 0.9(答案)B五、一个转盘上有红、绿、蓝三个区域,面积比分别为2:3:5,转动转盘一次,指针停在绿色区域的概率为?A. 2/10B. 3/10C. 5/10D. 1/2(答案)B六、有5张卡片,正面分别写有数字1, 2, 3, 4, 5,将它们背面朝上放置在桌面上,任意抽出一张,则抽到的数字为奇数的概率为?A. 2/5B. 3/5C. 1/2D. 7/10(答案)A七、一个盒子里装有10个黑球和15个白球,每个球除颜色外都相同,从中任意摸出一个球,则摸到白球的概率是?A. 1/5B. 3/5C. 2/5D. 1/2(答案)B八、某班级有40名学生,其中22名是男生,从该班级中随机选取一名学生作为代表,则选取的代表是女生的概率为?A. 11/20B. 9/20C. 11/40D. 22/40(答案)A。

(完整版)概率经典例题及解析、近年高考题50道带答案.doc

(完整版)概率经典例题及解析、近年高考题50道带答案.doc

【经典例题】【例 1】( 2012 湖北) 如图,在圆心角为直角的扇形 OAB 中,分别以 OA , OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是21 121 A .1- πB . 2 - πC . πD . π【答案】 A【解析】 令 OA=1,扇形 OAB 为对称图形, ACBD 围成面积为 S 1,围成 OC 为 S 2,作对称轴 OD ,则过 C 点. S 2 即为以 OA2 π 1 2 111 π -2 S2(2)-2×2×2=1为直径的半圆面积减去三角形OAC 的面积, S =8 .在扇形 OAD 中 2 为扇形面积减去三角S 2 S 1 1 21 S 2π -2 π -2π形 OAC 面积和 2 , 2 = 8 π×1 - 8 - 2 =16 , S 1+S 2= 4 ,扇形 OAB 面积 S= 4 ,选 A .【例 2】( 2013 湖北) 如图所示,将一个各面都涂了油漆的正方体,切割为 125 个同样大小的小正方体,经过搅拌后, 从中随机取一个小正方体,记它的涂漆面数为X ,则 X 的均值 E(X) = ( )1266 1687 A. 125B. 5C.125D. 5【答案】 B27 54 36 8 27【解析】 X 的取值为 0,1, 2,3 且 P(X = 0) =125,P(X = 1) =125,P(X = 2) = 125,P(X = 3) = 125,故 E(X) =0× 125+1× 54 36 8 6+2× +3× =,选B.125 125 125 5【例 3】( 2012 四川) 节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通 电后的 4 秒内任一时刻等可能发生,然后每串彩灯以 4 秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过 2 秒的概率是 ()1 1 3 7 A. 4B. 2C. 4D. 8【答案】 C【解析】 设第一串彩灯在通电后第 x 秒闪亮, 第二串彩灯在通电后第 y 秒闪亮,由题意 0≤ x ≤ 4,满足条件的关系式0≤y ≤4,根据几何概型可知, 事件全体的测度 ( 面积 ) 为 16 平方单位,而满足条件的事件测度( 阴影部分面积 ) 为 12 平方单位,123故概率为 16= 4.【例 4】( 2009 江苏) 现有 5 根竹竿,它们的长度(单位: m )分别为 2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2 根竹竿,则它们的长度恰好相差 0.3m 的概率为 .【答案】 0.2 【解析】 从 5 根竹竿中一次随机抽取 2 根的可能的事件总数为 10,它们的长度恰好相差 0.3m 的事件数为 2,分别是:2.5 和 2.8 , 2.6 和 2.9 ,所求概率为 0.2【例 5】( 2013 江苏) 现有某类病毒记作 X m Y n ,其中正整数 m , n(m ≤7, n ≤ 9)可以任意选取,则 m , n 都取到奇数的概率为 ________.20【答案】【解析】 基本事件共有 7×9= 63 种, m 可以取 1, 3, 5,7, n 可以取 1, 3,5, 7, 9. 所以 m ,n 都取到奇数共有 2020种,故所求概率为63.【例 6】( 2013 山东) 在区间 [- 3,3] 上随机取一个数 x ,使得 |x + 1|- |x - 2| ≥1成立的概率为 ________.【答案】13【解析】 当 x<- 1 时,不等式化为- x - 1+ x -2≥1,此时无解;当- 1≤x ≤2 时,不等式化为 x +1+ x -2≥1,解之得 x ≥1;当 x>2 时,不等式化为 x + 1- x +2≥1,此时恒成立, ∴|x + 1| - |x -2| ≥1的解集为 [ 1,+∞ ) . 在 [ -3, 3]上使不等式有解的区间为 [ 1,3] ,由几何概型的概率公式得 P = 3- 1 1 .3-(- 3) =3【例 7】( 2013 北京)下图是某市 3 月 1 日至 14 日的空气质量指数趋势图, 空气质量指数小于 100 表示空气质量优良, 空气质量指数大于 200 表示空气重度污染. 某人随机选择 3 月 1 日至 3 月 13 日中的某一天到达该市, 并停留 2 天.( 1)求此人到达当日空气重度污染的概率;( 2)设 X 是此人停留 期间空气质量优良的天数,求 X 的分布列与数学期望;( 3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明 )【答案】 132; 1213; 3 月 5 日【解析】 设 Ai 表示事件“此人于3 月 i 日到达该市” (i = 1, 2, , 13) .1(i ≠j) .根据题意, P(Ai) = ,且 Ai ∩Aj =13( 1)设 B 为事件“此人到达当日空气重度污染”,则B =A5∪A8.2所以 P(B) =P(A5∪A8)= P(A5) + P(A8) = .13( 2)由题意可知, X 的所有可能取值为 0,1, 2,且P(X= 1) =P(A3∪A6∪A7 ∪A11)4=P(A3) + P(A6) + P(A7) + P(A11) =13,P(X= 2) =P(A1∪A2∪A12∪A13)4=P(A1) + P(A2) + P(A12) + P(A13) =13,5P(X= 0) = 1- P(X= 1) - P(X= 2) =13.所以 X 的分布列为X 0 1 2P 5 4 4 13 13 135 4 4 12故 X 的期望 E(X) =0×+1×+2×= .13 13 13 13( 3)从 3 月 5 日开始连续三天的空气质量指数方差最大.【例 8】(2013 福建)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为2,中奖可以3 获得 2 分;方案乙的中奖率为2,中奖可以获得 3 分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中5奖与否互不影响,晚会结束后凭分数兑换奖品.( 1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求 X≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?【答案】1115;方案甲.2 2【解析】方法一:( 1)由已知得,小明中奖的概率为3,小红中奖的概率为5,且两人中奖与否互不影响.记“这2 人的累计得分X≤3”的事件为A,则事件 A 的对立事件为“ X=5”,2 2 411因为 P(X=5) =×=,所以P(A)=1-P(X=5)=,3 5 151511即这两人的累计得分X≤3的概率为15.( 2)设小明、小红都选择方案甲抽奖中奖次数为X1,都选择方案乙抽奖中奖次数为X2,则这两人选择方案甲抽奖累计得分的数学期望为E(2X1) ,选择方案乙抽奖累计得分的数学期望为E(3X2) .2 2由已知可得,X1~ B 2,3, X2~ B 2,5,2 42 4所以 E(X1) =2×3=3, E(X2) =2×5=5,812从而 E(2X1) = 2E(X1) =, E(3X2) = 3E(X2) =.3 5因为 E(2X1)>E(3X2) ,所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.方法二:( 1)由已知得,小明中奖的概率为2,小红中奖的概率为2,且两人中奖与否互不影响.35记“这两人的累计得分 X ≤3”的事件为 A ,则事件 A 包含有“ X =0”“ X =2”“ X =3”三个两两互斥的事件,2 2 1 2 2 22 22, 因为 P(X = 0) = 1-× 1- = ,P(X = 2) = × 1-= ,P(X =3) = 1- × = 15 355355 3 511所以 P(A) = P(X = 0) + P(X = 2) + P(X = 3) =15,11即这两人的累计得分 X ≤3的概率为 15.( 2)设小明、小红都选择方案甲所获得的累计得分为 X1,都选择方案乙所获得的累计得分为X2,则 X1, X2 的分布列如下:X1 0 2 4 X2 0 3 6 P14 4 P912 4 9 9 9 2525251448所以 E(X1) =0× 9+2× 9+4× 9= 3,E(X2) =0× 9 +3× 12+6× 4 = 12.25 25 25 5因为 E(X1)>E(X2) ,所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.【例 9】( 2013 浙江) 设袋子中装有 a 个红球, b 个黄球, c 个蓝球,且规定:取出一个红球得1 分,取出一个黄球得2 分,取出一个蓝球得3 分.( 1)当 a = 3, b = 2,c = 1 时,从该袋子中任取 (有放回,且每球取到的机会均等 )2 个球,记随机变量 ξ为取出此 2球所得分数之和,求 ξ的分布列;( 2)从该袋子中任取 (每球取到的机会均等 )1 个球,记随机变量 η为取出此球所得分数. 若 E η= 5,D η=5,求 a ∶ b ∶ c.3 9【答案】 3∶ 2∶ 1【解析】( 1)由题意得,ξ= 2, 3, 4, 5, 6.P(ξ= 2) = 3×3 1= ,6×6 4 P(ξ= 3) =2×3×2= 1,6×6 32×3×1+2×2 5 P(ξ= 4) = 6×6 = 18. P(ξ= 5) = 2×2×1 16×6= 9,P(ξ= 6) = 1×1 1,= 366×6 所以 ξ 的分布列为ξ 2 3 4 5 6 P1 1 5 1 1 4318936( 2)由题意知 η 的分布列为η 1 2 3Pa b ca +b +c a + b + ca +b +ca 2b3c5所以 E η= a + b + c + a +b + c + a +b + c = 3,5 a 5 b 5c5D η= 1- 32· a + b + c +2- 32· a + b + c +3- 32· a + b + c = 9, 2a - b - 4c = 0,解得 a = 3c , b = 2c , 化简得a + 4b -11c = 0,故 a ∶b ∶c =3∶2∶1.【例 10】( 2009 北京理) 某学生在上学路上要经过 4 个路口, 假设在各路口是否遇到红灯是相互独立的,遇到红灯的 概率都是 1,遇到红灯时停留的时间都是2min.3( 1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率; ( 2)求这名学生在上学路上因遇到红灯停留的总时间的分布列及期望 .【答案】4;327 8【解析】 本题主要考查随机事件、互斥事件、相互独立事件等概率知识、考查离散型随机变量的分布列和期望等基础 知识,考查运用概率与统计知识解决实际问题的能力.( 1)设这名学生在上学路上到第三个路口时首次遇到红灯为事件 A ,因为事件 A 等于事件“这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事件A 的概率为PA11111 4 .333 27( 2)由题意,可得可能取的值为 0,2, 4, 6,8(单位: min ) .事件“2k ”等价于事件“该学生在路上遇到k 次红灯”( k 0, 1, 2,3, 4),k 4 k∴ P2kC k412k 0,1,2,3,4,33∴即 的分布列是0 246 8P16 32 8818181278181∴ 的期望是 E16 32 88 1 82468.818127 81813【课堂练习】1.( 2013 广东) 已知离散型随机变量X 的分布列为X 1 2 3P3 3 151010则 X 的数学期望 E(X) = () 35A. 2B . 2 C. 2 D . 32.( 2013 陕西) 如图,在矩形区域 ABCD 的 A ,C 两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区 域 ADE 和扇形区域 CBF( 该矩形区域内无其他信号来源,基站工作正常 ).若在该矩形区域内随机地选一地点,则该地点无 信号的概率是 ( ).A .1- π π π D . π4 B . -1 B .2- 42 23.在棱长分别为 1, 2, 3 的长方体上随机选取两个相异顶点,若每个顶点被选的概率相同,则选到两个顶点的距离 大于 3的概率为 ()4 3 2 3A .7B . 7C . 7D . 144.( 2009 安徽理) 考察正方体 6 个面的中心,甲从这 6 个点中任意选两个点连成直线,乙也从这6 个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于12 34?BA .B .C .D .75757575?F?C?D? E? A5.( 2009 江西理) 为了庆祝六一儿童节,某食品厂制作了3 种不同的精美卡片,每袋食品随机装入一张卡片,集齐3种卡片可获奖,现购买该种食品5 袋,能获奖的概率为()3133 C .4850A .B .81D ..8181816.( 2009 辽宁文) ABCD 为长方形, AB = 2, BC =1,O 为 AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于 1 的概率为A .B . 1C .8D . 18447.( 2009 上海理) 若事件 E 与 F 相互独立,且 P EP F1 的值等于,则P EI F4A . 01 C .11B .4D .1628.( 2013 广州) 在区间 [1,5] 和[2, 4]上分别取一个数,记为a ,b ,则方程 x 2 y 22+b 2= 1 表示焦点在 x 轴上且离心率小a于 3的椭圆的概率为 ()2C .1711531A .2B . 3232D . 321, 2,3,9.已知数列 {a } 满足 a = a+ n - 1(n ≥2,n ∈ N),一颗质地均匀的正方体骰子,其六个面上的点数分别为nnn -14, 5, 6,将这颗骰子连续抛掷三次,得到的点数分别记为 a , b , c ,则满足集合 {a ,b , c} = {a 1, a 2, a 3}(1 ≤a i ≤6,i = 1, 2, 3)的概率是 ()1B . 1C . 1D . 1A .72 36 24 1210.( 2009 湖北文) 甲、乙、丙三人将参加某项测试,他们能达标的概率分别是0.8、 0.6、 0.5,则三人都达标的概率是,三人中至少有一人达标的概率是 。

《概率》数学测试题及答案

《概率》数学测试题及答案

《概率》数学测试题及答案《概率》数学测试题及答案1.从装有2个红球和2个白球的口袋中任取2个球,那么互斥而不对立的两个大事是()A.至少有一个白球和全是白球B.至少有一个白球和至少有一个红球C.恰有一个白球和恰有2个白球D.至少有一个白球和全是红球2.从甲,乙,丙三人中任选两名代表,甲被选中的的概率是()A.B.C.D.13.从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是偶数的概率是()A.B.C.D.4.在两个袋内,分别写着装有0,1,2,3,4,5六个数字的6张卡片,今从每个袋中各任取一张卡片,则两数之和等于5的概率为()A.B.C.D.5.袋中装有6个白球,5只黄球,4个红球,从中任取1球,抽到的不是白球的概率为()A.B.C.D.非以上答案6.以A={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母构成分数,则这种分数是可约分数的概率是()A.B.C.D.7.甲、乙两人进行围棋竞赛,竞赛实行五局三胜制,无论哪一方先胜三局则竞赛结束,假定甲每局竞赛获胜的概率均为,则甲以3∶1的比分获胜的概率为()A.B.C.D.8.袋中有5个球,3个新球,2个旧球,每次取一个,无放回抽取2次,则第2次抽到新球的概率是()A.B.C.D.9.某校高三年级进行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采纳抽签的方式确定他们的演讲挨次,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为()A.B.C.D.10.袋里装有大小相同的黑、白两色的手套,黑色手套15只,白色手套10只.现从中随机地取出两只手套,假如两只是同色手套则甲获胜,两只手套颜色不同则乙获胜. 试问:甲、乙获胜的机会是()A.一样多B.甲多C.乙多D.不确定的11.在5件不同的产品中有2件不合格的产品,现再另外取n件不同的合格品,并在这n+5件产品中随机地抽取4件,要求2件不合格产品都不被抽到的概率大于0.6,则n的最小值是.12.甲用一枚硬币掷2次,登记国徽面(记为正面)朝上的次数为n. ,请填写下表:正面对上次数n21概率P(n)13.在集合内任取1个元素,能使代数式的概率是.14.20名运动员中有两名种子选手,现将运动员平均分为两组,种子选手分在同一组的概率是.15.在大小相同的6个球中,4个红球,若从中任意选取2个,则所选的2个球至少有一个红球的概率是.16.从1,2,3,…,9这9个数字中任取2个数字:(1)2个数字都是奇数的概率为;(2)2个数字之和为偶数的概率为.17.有红,黄,白三种颜色,并各标有字母A,B,C,D,E的卡片15张,今随机一次取出4张,求4张卡片标号不同,颜色齐全的概率.18.从5双不同的鞋中任意取出4只,求下列大事的概率:(1)所取的`4只鞋中恰好有2只是成双的;(2)所取的4只鞋中至少有2只是成双的.19.在10枝铅笔中,有8枝正品和2枝次品,从中不放回地任取2枝,至少取到1枝次品的概率是多少?20.10根签中有3根彩签,若甲先抽一签,然后由乙再抽一签,求下列大事的概率:(1)甲中彩;(2)甲、乙都中彩;(3)乙中彩21.设一元二次方程,依据下列条件分别求解(1)若A=1,B,C是一枚骰子先后掷两次消失的点数,求方程有实数根的概率;(2)若B=-A,C=A-3,且方程有实数根,求方程至少有一个非负实数根的概率.参考答案:1.A;2.C;3.A;4.B;5.C;6.D;7.A;8.D;9.B; 10.A; 11. 14; 12. ;13. ; 14. ; 15. ; 16. ;;17. 解:基本领件总数为,而符合题意的取法数,;18. 解:基本领件总数是=210(1)恰有两只成双的取法是=120∶所取的4只鞋中恰好有2只是成双的概率为(2)大事“4只鞋中至少有2只是成双”包含的大事是“恰有2只成双”和“4只恰成两双”,恰有两只成双的取法是=120,四只恰成两双的取法是=10∶所取的4只鞋中至少有2只是成双的概率为19. (直接法):至少取到1枝次品包括:A=“第一次取到次品,其次次取到正品”;B=“第一次取到正品,其次次取到次品”;C=“第一、二次均取到次品”三种互斥大事,所以所求大事的概率为P(A)+P(B)+P(C)==.20. 解:设A={甲中彩} B={乙中彩} C={甲、乙都中彩} 则C=AB(1)P(A)=;(2)P(C)=P(AB)=(2)21. 解.(1)当A=1时变为方程有实数解得明显若时; 1种若时; 2种若时; 4种若时; 6种若时; 6种故有19种,方程有实数根的概率是.B=-A,C=A-3,且方程有实数根,得,得而方程有两个正数根的条件是:即,故方程有两个正数根的概率是而方程至少有一个非负实数根的对立大事是方程有两个正数根故所求的概率为.。

概率试题及答案

概率试题及答案

概率试题及答案在数学学科中,概率是一个非常重要的概念。

它与我们日常生活息息相关,也被广泛运用于各个领域,如统计学、金融学、工程学等。

本文将介绍几道常见的概率试题,并给出详细的答案解析。

1. 一枚骰子投掷,求出现奇数的概率。

解析:一枚骰子共有6个面,每个面的数字分别为1、2、3、4、5、6。

其中3个是奇数,分别是1、3、5。

因此,出现奇数的概率为3/6,或简化为1/2。

2. 从扑克牌中抽取一张牌,求抽到红心的概率。

解析:一副扑克牌共有52张牌。

其中有26张红心牌。

所以,抽到红心的概率为26/52,或简化为1/2。

3. 一批产品中,有10%的次品。

从中抽取3件产品,求至少有1件次品的概率。

解析:要求至少有1件次品,可以反过来思考即至多没有次品的情况。

没有次品的概率为90%*90%*90% = 0.729,那么至少有1件次品的概率为1-0.729 = 0.271。

4. 一箱中有5个红球、3个蓝球、2个绿球,现从中无放回地抽取2个球,求抽出两个都是红球的概率。

解析:首先计算总抽取可能数,即从10个球中抽取任意2个球的组合数。

组合数的计算公式为C(10,2) = 10!/(2!(10-2)!) = 45。

其次计算取出两个红球的可能数,为从5个红球中抽取2个红球的组合数,即C(5,2) = 5!/(2!(5-2)!) = 10。

因此,抽出两个都是红球的概率为10/45,或简化为2/9。

5. 在一个班级中,有25名男生和15名女生。

从中任选4名学生组成一个小组,求该小组恰好有2名男生和2名女生的概率。

解析:首先计算总抽取可能数,即从40名学生中抽取任意4名学生的组合数。

组合数的计算公式为C(40,4) = 40!/(4!(40-4)!) = 91,390。

其次计算抽取2名男生和2名女生的可能数。

男生的选择组合数为C(25,2) = 25!/(2!(25-2)!) = 300,女生的选择组合数为C(15,2) =15!/(2!(15-2)!) = 105。

概率测试题及答案

概率测试题及答案

概率测试题及答案一、选择题1. 一个骰子掷出6点的概率是:A. 1/3B. 1/6C. 1/2D. 1答案:B2. 抛一枚硬币,正面朝上和反面朝上的概率相等,这个概率是:A. 1/2B. 1/3C. 1/4D. 2/3答案:A3. 如果一个事件的发生不影响另一个事件的发生,这两个事件被称为:A. 互斥事件B. 独立事件C. 必然事件D. 不可能事件答案:B二、填空题1. 概率的基本性质是:概率的值介于________和1之间。

答案:02. 如果事件A和事件B是互斥的,那么P(A∪B) = P(A) + P(B) -P(A∩B),其中P(A∩B) = ________。

答案:0三、简答题1. 什么是条件概率?请给出条件概率的公式。

答案:条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。

条件概率的公式为P(A|B) = P(A∩B) / P(B),其中P(B)≠ 0。

四、计算题1. 一个袋子里有5个红球和3个蓝球,随机抽取一个球,求抽到红球的概率。

答案:抽到红球的概率为P(红球) = 5/(5+3) = 5/8。

2. 有3个独立事件A、B、C,它们各自发生的概率分别为P(A) = 0.3,P(B) = 0.4,P(C) = 0.5。

求事件A和事件B同时发生的概率。

答案:事件A和事件B同时发生的概率为P(A∩B) = P(A) × P(B) = 0.3 × 0.4 = 0.12。

五、论述题1. 论述什么是大数定律,并给出一个实际生活中的例子。

答案:大数定律是概率论中的一个概念,它指出随着试验次数的增加,事件发生的相对频率趋近于其概率。

例如,在抛硬币的实验中,随着抛硬币次数的增加,正面朝上的频率会趋近于1/2,即硬币正面朝上的概率。

概率初步试题及答案

概率初步试题及答案

概率初步试题及答案一、选择题(每题4分,共20分)1. 某事件的概率为0.5,那么它的对立事件的概率是()。

A. 0.5B. 0C. 1D. 0.3答案:C2. 抛掷一枚硬币,正面朝上的概率是()。

A. 0.5B. 0.25C. 0.75D. 1答案:A3. 随机变量X服从二项分布B(n,p),其中n=10,p=0.3,那么P(X=3)是()。

A. 0.3B. 0.03C. 0.09D. 0.33答案:C4. 某次考试,甲、乙、丙三人的成绩独立,甲通过的概率为0.7,乙通过的概率为0.6,丙通过的概率为0.5,那么三人都通过的概率是()。

A. 0.21B. 0.35C. 0.105D. 0.05答案:C5. 已知随机变量X服从正态分布N(μ,σ^2),其中μ=0,σ^2=1,那么P(-1<X<1)是()。

A. 0.6826B. 0.95C. 0.8413D. 0.9772答案:C二、填空题(每题5分,共20分)1. 概率的取值范围是()。

答案:[0,1]2. 随机变量X服从泊松分布,其参数λ=4,则P(X=2)=()。

答案:0.33. 某次实验中,事件A和事件B是互斥的,且P(A)=0.4,P(B)=0.3,则P(A∪B)=()。

答案:0.44. 已知随机变量X服从均匀分布U(0,3),则E(X)=()。

答案:1.5三、计算题(每题10分,共20分)1. 已知随机变量X服从二项分布B(5,0.2),求P(X≥3)。

答案:P(X≥3)=P(X=3)+P(X=4)+P(X=5)=C_5^3*0.2^3*0.8^2+C_5^4*0.2^4*0.8+0.2^5=0.0512+0.0128+0.00032=0.064322. 已知随机变量X服从正态分布N(2,4),求P(1<X<3)。

答案:P(1<X<3)=Φ((3-2)/2)-Φ((1-2)/2)=Φ(0.5)-Φ(-0.5)=0.6915-0.3585=0.333四、解答题(共40分)1. 某班有50名学生,其中有20名女生,30名男生。

概率基础测试题及答案解析

概率基础测试题及答案解析

概率基础测试题及答案解析一、选择题(每题3分,共30分)1. 随机变量X服从标准正态分布,那么P(X>0)等于多少?A. 0.5B. 0.6826C. 0.8413D. 0.5000答案:A解析:标准正态分布的均值为0,标准差为1,对称轴为X=0,因此P(X>0)等于0.5。

2. 已知随机变量X服从二项分布B(n, p),其中n=10,p=0.3,那么E(X)等于多少?A. 1.5B. 3C. 2.7D. 0.3答案:B解析:二项分布的期望值E(X)=np,所以E(X)=10*0.3=3。

3. 一组数据的平均数是5,方差是4,那么这组数据的中位数是多少?A. 4B. 5C. 6D. 无法确定答案:B解析:平均数是所有数据的总和除以数据的个数,而中位数是将数据按大小顺序排列后位于中间的数。

在没有具体数据的情况下,无法确定中位数,但根据平均数的定义,可以推断中位数为5。

4. 已知随机变量X和Y相互独立,且P(X=1)=0.5,P(Y=1)=0.3,那么P(X=1且Y=1)等于多少?A. 0.15B. 0.5C. 0.3D. 0.6答案:A解析:由于X和Y相互独立,所以P(X=1且Y=1)=P(X=1)*P(Y=1)=0.5*0.3=0.15。

5. 一组数据的样本容量为100,样本均值为50,样本方差为25,那么这组数据的标准差是多少?A. 5B. 10C. 20D. 25答案:A解析:标准差是方差的平方根,所以标准差=√25=5。

6. 已知随机变量X服从泊松分布,其参数λ=4,那么P(X=3)等于多少?A. 0.182B. 0.273C. 0.409D. 0.546答案:B解析:泊松分布的概率质量函数为P(X=k)=e^(-λ)λ^k/k!,代入λ=4和k=3,计算得到P(X=3)=e^(-4)4^3/3!=0.273。

7. 已知随机变量X服从均匀分布U(0,1),那么P(0.5<X<0.6)等于多少?A. 0.1B. 0.05C. 0.15D. 0.2答案:B解析:均匀分布的概率等于区间长度,所以P(0.5<X<0.6)=0.6-0.5=0.1,但因为题目中区间长度为0.1,所以答案为0.05。

概率与事件综合经典题(含详解答案)

概率与事件综合经典题(含详解答案)

概率与事件综合经典题(含详解答案)问题一:投色子小明和小王玩一个游戏,游戏规则为两个人轮流投掷一个均匀的六面色子,投到点数为6的人获胜。

若小明先投,请问小明获胜的概率是多少?解析:设小明获胜的概率为p,则小王获胜的概率为1-p。

若小明投到6,则小明获胜;若小明投到1、2、3、4、5,则轮到小王投掷。

所以小明获胜的概率为:p = 1/6 + (1-p) * 1/6 + (1-p)^2 * 1/6 + (1-p)^3 * 1/6 + ... ...化简得到:p = 1/7,即小明获胜的概率为1/7。

问题二:选球有10个编号为1到10的球,从中不放回地抽取3个,求编号之和为偶数的概率。

解析:球的编号之和为偶数有两种情况:1. 选出的三个球编号均为偶数。

2. 选出的三个球编号中有两个是奇数,一个是偶数。

情况1的概率为:C(5,3)/C(10,3) = 5/42。

情况2的概率为:C(5,2) * C(5,1)/C(10,3) = 10/42。

所以编号之和为偶数的概率为:5/42 + 10/42 = 5/21。

问题三:小球分组有10个编号为1到10的球,其中2个是红球,3个是黄球,5个是白球。

现从中任意抽取5个球,求其中恰好有3个白球的概率。

解析:从10个球中任意选出5个的组合数为:C(10,5) = 252。

从5个白球中任选出3个,从5个非白球中任选出2个的组合数为:C(5,3) * C(5,2) = 100。

所以恰好有3个白球的概率为:100/252 = 25/63。

概率经典测试题附答案解析

概率经典测试题附答案解析
【答案】A
【解析】
【分析】
根据题意,用黑色方砖的面积除以正方形地砖的面积即可.
【详解】
停在黑色方砖上的概率为: ,
故选:A.
【点睛】
本题主要考查了简单概率的求取,熟练掌握相关方法是解题关键.
4.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数2的差不大于1的概率是()
A. B. C. D.
D、∵ >0,∴ 是不可能事件,故D不符合题意;
故选:B.
【点睛】
本题考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
12.在2015-2016CBA常规赛季中,易建联罚球投篮的命中率大约是82.3%,下列说法错误的是( )
【点睛】
此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.
3.将一个小球在如图所示的地砖上自由滚动,最终停在黑色方砖上的概率为( )
A. B. C. D.
C、∵易建联罚球投篮的命中率大约是82.3%,
∴易建联罚球投篮1次,命中的可能性较大,故本选项正确;
D、易建联罚球投篮1次,不命中的可能性较小,故本选项正确.
故选:A.
【点睛】
本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.
13.国家医保局相关负责人3月25日表示,2019年底前我国将实现生育保险基金并入职工基本医疗保险基金,统一征缴,就是通常所说的“五险变四险”.传统的五险包括:养老保险、失业保险、医疗保险、工伤保险、生育保险.某单位从这五险中随机抽取两种,为员工提高保险比例,则正好抽中养老保险和医疗保险的概率是( )

概率经典测试题附答案

概率经典测试题附答案

概率经典测试题附答案一、选择题1.一个不透明的袋子中装有白球4个,黑球若干个,这些球除颜色外其余完全一样.如果随机从袋中摸出一个球是白球的概率为13,那么袋中有多少个黑球()A.4个B.12个C.8个D.不确定【答案】C【解析】【分析】首先设黑球的个数为x个,根据题意得:4143=x+,解此分式方程即可求得答案.【详解】设黑球的个数为x个,根据题意得:41 43=x+,解得:x=8,经检验:x=8是原分式方程的解;∴黑球的个数为8.故选:C.【点睛】此题考查概率公式的应用.解题关键在于掌握概率=所求情况数与总情况数之比.2.岐山县各学校开展了第二课堂的活动,在某校国学诗词组、篮球足球组、陶艺茶艺组三个活动组织中,若小斌和小宇两名同学每人随机选择其中一个活动参加,则小斌和小宇选到同一活动的概率是()A.12B.13C.16D.19【答案】B【解析】【分析】先画树状图(国学诗词组、篮球足球组、陶艺茶艺组分别用A、B、C表示)展示所有9种等可能的结果数,再找出小斌和小宇两名同学的结果数,然后根据概率公式计算即可.【详解】画树状图为:(国学诗词组、篮球足球组、陶艺茶艺组分别用A. B. C表示)共有9种等可能的结果数,其中小斌和小宇两名同学选到同一课程的结果数为3,所以小斌和小宇两名同学选到同一课程的概率=31 93 =,【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适用于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.3.下列事件是必然事件的是()A.某彩票中奖率是1%,买100张一定会中奖cm cm cm的三根木条能组成一个三角形B.长度分别是3,5,6C.打开电视机,正在播放动画片D.2018年世界杯德国队一定能夺得冠军【答案】B【解析】【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.【详解】A、某彩票中奖率是1%,买100张一定会中奖,属于随机事件,不符合题意;B、由于6-5<3<5+6,所以长度分别是3cm,5cm,6cm的三根木条能组成一个三角形,属于必然事件,符合题意;C、打开电视机,正在播放动画片,属于随机事件,不符合题意;D、2018年世界杯德国队可能夺得冠军,属于随机事件,不符合题意.故选:B.【点睛】此题考查必然事件、不可能事件、随机事件的概念,理解概念是解题关键.4.某小组做“频率具有稳定性”的试验时,绘出某一结果出现的频率折线图如图所示,则符合这一结果的试验可能是()A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,掷出的点数是5C.任意写一个整数,它能被2整除D.从一个装有2个红球和1个白球的袋子中任取一球(这些球除颜色外完全相同),取到的是白球【答案】D【分析】根据频率折线图可知频率在0.33附近,进而得出答案.【详解】A、抛一枚硬市、出現正面朝上的概率为0.5、不符合这一结果,故此选项错误;B、掷一个正六面体的骰子、掷出的点数是5的可能性为16,故此选项错误;C、任意写一个能被2整除的整数的可能性为12,故此选项错误;D、从一个装有2个红球1个白球的袋子中任取一球,取到白球的概率是13,符合题意,故选:D.【点睛】此题考查频率的折线图,利用频率估计事件的概率,正确理解频率折线图是解题的关键.5.下列事件中,是必然事件的是( )A.任意掷一枚质地均匀的骰子,掷出的点数是奇数B.操场上小明抛出的篮球会下落C.车辆随机到达一个路口,刚好遇到红灯D.明天气温高达30C︒,一定能见到明媚的阳光【答案】B【解析】【分析】根据必然事件的概念作出判断即可解答.【详解】解:A、抛任意掷一枚质地均匀的骰子,掷出的点数是奇数是随机事件,故A错误;B、操场上小明抛出的篮球会下落是必然事件,故B正确;C、车辆随机到达一个路口,刚好遇到红灯是随机事件,故C错误;D、明天气温高达30C︒,一定能见到明媚的阳光是随机事件,故D错误;故选:B.【点睛】本题考查了必然事件的定义,必然事件指在一定条件下一定发生的事件,熟练掌握是解题的关键.6.(2018•六安模拟)下列成语所描述的是必然事件的是()A.揠苗助长 B.瓮中捉鳖 C.水中捞月 D.大海捞针【答案】B【解析】A,是不可能事件,故选项错误;B,是必然事件,选项正确;C,是不可能事件,故选项错误;D,是随机事件,故选项错误.故选B.7.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A.19B.16C.13D.23【答案】C【解析】分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.详解:将三个小区分别记为A、B、C,列表如下:由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为31 = 93.故选:C.点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.8.一个不透明的口袋中装有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于6的概率为()A.16B.15C.14D.13【答案】A【解析】【分析】画树状图得出所有的情况,根据概率的求法计算概率即可.【详解】画树状图得:∵共有12种等可能的结果,两次摸出的小球标号之和等于6的有2种情况,∴两次摸出的小球标号之和等于6的概率21. 126故选A.【点睛】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.9.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.12B.13C.49D.59【答案】C【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】∵总面积为3×3=9,其中阴影部分面积为4×12×1×2=4,∴飞镖落在阴影部分的概率是4 9 .故答案选:C.【点睛】本题考查了几何概率的求法,解题的关键是根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.10.正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD内投一粒米,则米粒落在阴影部分的概率为()A .22π- B .24π- C .28π- D .216π-【答案】A 【解析】 【分析】求得阴影部分的面积后除以正方形的面积即可求得概率. 【详解】解:如图,连接PA 、PB 、OP , 则S 半圆O =2122ππ⨯=,S △ABP =12×2×1=1, 由题意得:图中阴影部分的面积=4(S 半圆O ﹣S △ABP ) =4(2π﹣1)=2π﹣4, ∴米粒落在阴影部分的概率为24242ππ--=, 故选A .【点睛】本题考查了几何概率的知识,解题的关键是求得阴影部分的面积.11.下列事件是必然发生事件的是( ) A .打开电视机,正在转播足球比赛 B .小麦的亩产量一定为1000公斤C .在只装有5个红球的袋中摸出1球,是红球D .农历十五的晚上一定能看到圆月 【答案】C 【解析】试题分析:必然事件就是一定发生的事件,即发生的概率是1的事件.A.打开电视机,正在转播足球比赛是随机事件;B.小麦的亩产量一定为1000公斤是随机事件;C.在只装有5个红球的袋中摸出1球,是红球是必然事件;D.农历十五的晚上一定能看到圆月是随机事件.故选C.考点: 随机事件.12.在2015-2016CBA常规赛季中,易建联罚球投篮的命中率大约是82.3%,下列说法错误的是()A.易建联罚球投篮2次,一定全部命中B.易建联罚球投篮2次,不一定全部命中C.易建联罚球投篮1次,命中的可能性较大D.易建联罚球投篮1次,不命中的可能性较小【答案】A【解析】【分析】根据概率的意义对各选项分析判断后利用排除法求解.【详解】解:A、易建联罚球投篮2次,不一定全部命中,故本选项错误;B、易建联罚球投篮2次,不一定全部命中,故本选项正确;C、∵易建联罚球投篮的命中率大约是82.3%,∴易建联罚球投篮1次,命中的可能性较大,故本选项正确;D、易建联罚球投篮1次,不命中的可能性较小,故本选项正确.故选:A.【点睛】本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.13.如图,管中放置着三根同样的绳子AA1、BB1、CC1小明和小张两人分别站在管的左右两边,各随机选该边的一根绳子,若每边每根绳子被选中的机会相等,则两人选到同根绳子的概率为()A.12B.13C.16D.19【答案】B 【解析】【分析】画出树状图,得出所有结果和两人选到同根绳子的结果,即可得出答案.【详解】如图所示:共有9种等可能的结果数,两人选到同根绳子的结果有3个,∴两人选到同根绳子的概率为19=13,故选B.【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.14.在四张质地、大小相同的卡片上,分别画有如图所示的四个图形,在看不到图形的情况下从中任意抽出一张卡片,则抽出的卡片上的图形是中心对称图形的概率为()A.1 B.34C.12D.14【答案】B【解析】【分析】从四个图形中找到中心对称图形的个数,然后利用概率公式求解即可.【详解】∵四个图形中,是中心对称图形的有平行四边形、矩形及圆三个,∴P(中心对称图形)=34,故选B.【点睛】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.15.下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形;②经过有交通信号灯的路口,遇到红灯是必然事件;③若甲组数据的方差是0.3,乙组数据的方差是0.1,则甲数据比乙组数据稳定;④圆内接正六边形的边长等于这个圆的半径,其中正确说法的个数是( ) A .1个 B .2个 C .3个 D .4个 【答案】A 【解析】 【分析】根据平行四边形的判定去判断①;根据必然事件的定义去判断②;根据方差的意义去判断③;根据圆内接正多边形的相关角度去计算④. 【详解】一组对边平行,另一组对边相等的四边形也有可能是等腰梯形,①错误;必然事件是一定会发生的事件,遇到红灯是随机事件,②错误;方差越大越不稳定,越小越稳定,乙比甲更稳定,③错误;正六边形的边所对的圆心角是60︒ ,所以构成等边三角形,④结论正确.所以正确1个,答案选A . 【点睛】本题涉及的知识点较多,要熟悉平行四边形的常见判定;随机事件、必然事件、不可能事件等的区分;掌握方差的意义;会计算圆内接正多边形相关.16.已知一个口袋中装有六个完全相同的小球,小球上分别标有1,2,5,7,8,13六个数,搅匀后一次从中摸出一个小球,将小球上的数记为m ,则使得一次函数y =(﹣m+1)x+11﹣m 经过一、二、四象限且关于x 的分式方程8x x π-=3x+88xx -的解为整数的概率是( ) A .12B .13C .14D .23【答案】B 【解析】 【分析】求出使得一次函数y=(-m+1)x+11-m 经过一、二、四象限且关于x 的分式方程8xx π-=3x+88xx -的解为整数的数,然后直接利用概率公式求解即可求得答案. 【详解】解:∵一次函数y =(﹣m+1)x+11﹣m 经过一、二、四象限,﹣m+1<0,11﹣m >0, ∴1<m <11,∴符合条件的有:2,5,7,8, 把分式方程m 8x x -=3x+88xx -去分母,整理得:3x 2﹣16x ﹣mx =0, 解得:x =0,或x =163π+,∵x ≠8,∴163π+≠8, ∴m ≠8,∵分式方程8mx x -=3x+88xx -的解为整数, ∴m =2,5,∴使得一次函数y =(﹣m+1)x+11﹣m 经过一、二、四象限且关于x 的分式方程8mxx -=3x+88xx -的解为整数的整数有2,5, ∴使得一次函数y =(﹣m+1)x+11﹣m 经过一、二、四象限且关于x 的分式方程8mxx -=3x+88x x -的解为整数的概率为26=13;故选:B . 【点睛】本题考查了概率公式的应用、一次函数的图象与系数的关系以及分式方程的解,熟练掌握是解题的关键.17.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( )个. A .20 B .16C .12D .15【答案】C 【解析】 【分析】由摸到红球的频率稳定在25%附近,可以得出口袋中得到红色球的概率,进而求出白球个数即可得到答案. 【详解】解:设白球个数为x 个,∵摸到红球的频率稳定在25%左右, ∴口袋中得到红色球的概率为25%, ∴4144x =+, 解得:12x =,经检验,12x =是原方程的解 故白球的个数为12个. 故选C【点睛】本题主要考查了随机概率,利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键,应掌握概率与频率的关系,从而更好的解题.18.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是()A.12B.14C.16D.116【答案】B【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案.【详解】画树状图如下:由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,所以佳佳和琪琪恰好从同一个入口进入该公园的概率为41= 164,故选B.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.19.下列事件中,属于必然事件的是()A.三角形的外心到三边的距离相等B.某射击运动员射击一次,命中靶心C.任意画一个三角形,其内角和是 180°D.抛一枚硬币,落地后正面朝上【答案】C【解析】分析:必然事件就是一定发生的事件,依据定义即可作出判断.详解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C、三角形的内角和是180°,是必然事件,故本选项符合题意;D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选C.点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.20.如图,在菱形ABCD中,AC与BD相交于点O.将菱形沿EF折叠,使点C与点O重合.若在菱形ABCD内任取一点,则此点取自阴影部分的概率为()A.23B.35C.34D.58【答案】C【解析】【分析】根据菱形的表示出菱形ABCD的面积,由折叠可知EF是△BCD的中位线,从而可表示出菱形CEOF的面积,然后根据概率公式计算即可.【详解】菱形ABCD的面积=12AC BD⋅,∵将菱形沿EF折叠,使点C与点O重合,∴EF是△BCD的中位线,∴EF=12BD ,∴菱形CEOF的面积=1128OC EF AC BD⋅=⋅,∴阴影部分的面积=113288AC BD AC BD AC BD ⋅-⋅=⋅,∴此点取自阴影部分的概率为: 33 814 2AC BDAC BD⋅=⋅.故选C..【点睛】本题考查了几何概率的计算方法:用整个几何图形的面积n表示所有等可能的结果数,用某个事件所占有的面积m表示这个事件发生的结果数,然后利用概率的概念计算出这个事件的概率为:m Pn .。

概率基础测试题附解析

概率基础测试题附解析

概率基础测试题附解析一、选择题1.袋中装有除颜色外其他完全相同的4个小球,其中3个红色,一个白色,从袋中任意地摸出两个球,这两个球颜色相同的概率是( )A.12B.13C.23D.16【答案】A【解析】【分析】用树形图法确定所有情况和所需情况,然后用概率公式解答即可.【详解】解:画树状图如下:则总共有12种情况,其中有6种情况是两个球颜色相同的,故其概率为61 122.故答案为A.【点睛】本题考查画树形图和概率公式,其中根据题意画出树形图是解答本题的关键.2.将一个小球在如图所示的地砖上自由滚动,最终停在黑色方砖上的概率为( )A.59B.49C.12D.13【答案】A【解析】【分析】根据题意,用黑色方砖的面积除以正方形地砖的面积即可.【详解】停在黑色方砖上的概率为:59,故选:A.【点睛】本题主要考查了简单概率的求取,熟练掌握相关方法是解题关键.3.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )A.15B.25C.35D.45【答案】C【解析】【分析】【详解】解:根据题意,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,因此可知使与图中阴影部分构成轴对称图形的概率为3 355÷=故选C4.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是()A.15B.25C.35D.45【答案】B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是2 5 .故选B.考点:概率.5.疫情防控,我们一直在坚守.某居委会组织两个检查组,分别对“居民体温”和“居民安全出行”的情况进行抽查.若这两个检查组在辖区内的某三个校区中各自随机抽取一个小区进行检查,则他们恰好抽到同一个小区的概率是()A.13B.49C.19D.23【答案】A【解析】【分析】将三个小区分别记为A、B、C,列举出所有等情况数和他们恰好抽到同一个小区的情况数,然后根据概率公式即可得出答案.【详解】将三个小区分别记为A、B、C,根据题意列表如下:A B CA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9种等可能结果,其中他们恰好抽到同一个小区的有3种情况,所以他们恰好抽到同一个小区的概率为31 = 93.故选:A.【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.6.欧阳修在《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆其口,徐以构酌油之,自钱孔入,而钱不湿”,可见卖油的技艺之高超.如图,若铜钱半径为,中间有边长为的正方形小孔,随机向铜钱上滴一滴油(油滴大小忽略不计),则油恰好落入孔中的概率是()A.B.C.D.【答案】D【解析】【分析】用中间正方形小孔的面积除以圆的总面积即可得.【详解】∵铜钱的面积为4π,而中间正方形小孔的面积为1,∴随机向铜钱上滴一滴油(油滴大小忽略不计),则油恰好落入孔中的概率是,故选:D.【点睛】考查几何概率,求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.7.根据规定,我市将垃圾分为了四类:可回收物、易腐垃圾、有害垃圾和其他垃圾四大类. 现有投放这四类垃圾的垃圾桶各1个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,投放正确的概率是()A.16B.18C.112D.116【答案】C【解析】【分析】设投放可回收物、易腐垃圾、有害垃圾和其他垃圾的垃圾桶分别为:A,B,C,D,设可回收物、易腐垃圾分别为:a,b,画出树状图,根据概率公式,即可求解.【详解】设投放可回收物、易腐垃圾、有害垃圾和其他垃圾的垃圾桶分别为:A,B,C,D,设可回收物、易腐垃圾分别为:a,b,∵将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶一共有12种可能,投放正确的只有一种可能,∴投放正确的概率是:1 12.故选C.【点睛】本题主要考查画树状图求简单事件的概率,根据题意,画出树状图,是解题的关键.8.某小组做“频率具有稳定性”的试验时,绘出某一结果出现的频率折线图如图所示,则符合这一结果的试验可能是()A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,掷出的点数是5C.任意写一个整数,它能被2整除D.从一个装有2个红球和1个白球的袋子中任取一球(这些球除颜色外完全相同),取到的是白球【答案】D【解析】【分析】根据频率折线图可知频率在0.33附近,进而得出答案.【详解】A、抛一枚硬市、出現正面朝上的概率为0.5、不符合这一结果,故此选项错误;B、掷一个正六面体的骰子、掷出的点数是5的可能性为16,故此选项错误;C、任意写一个能被2整除的整数的可能性为12,故此选项错误;D、从一个装有2个红球1个白球的袋子中任取一球,取到白球的概率是13,符合题意,故选:D.【点睛】此题考查频率的折线图,利用频率估计事件的概率,正确理解频率折线图是解题的关键.9.如图,在4×3长方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是()A.16B.112C.13D.14【答案】D 【解析】【分析】【详解】解:∵在4×3正方形网格中,任选取一个白色的小正方形并涂黑,共有8种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有2种情况,如图所示:∴使图中黑色部分的图形构成一个轴对称图形的概率是:21 84故选D.10.下列事件中,是必然事件的是( )A.购买一张彩票,中奖B.射击运动员射击一次,命中靶心C.经过有交通信号灯的路口,遇到红灯D.任意画一个三角形,其内角和是180°【答案】D【解析】【分析】先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.【详解】A.购买一张彩票中奖,属于随机事件,不合题意;B.射击运动员射击一次,命中靶心,属于随机事件,不合题意;C.经过有交通信号灯的路口,遇到红灯,属于随机事件,不合题意;D.任意画一个三角形,其内角和是180°,属于必然事件,符合题意;故选D.【点睛】本题主要考查了必然事件,事先能肯定它一定会发生的事件称为必然事件.11.下列事件是必然发生事件的是()A.打开电视机,正在转播足球比赛B.小麦的亩产量一定为1000公斤C.在只装有5个红球的袋中摸出1球,是红球D.农历十五的晚上一定能看到圆月【答案】C【解析】试题分析:必然事件就是一定发生的事件,即发生的概率是1的事件.A.打开电视机,正在转播足球比赛是随机事件;B.小麦的亩产量一定为1000公斤是随机事件;C.在只装有5个红球的袋中摸出1球,是红球是必然事件;D.农历十五的晚上一定能看到圆月是随机事件.故选C.考点: 随机事件.12.如图,AB是半圆O的直径,点C、D是半圆O的三等分点,弦2CD=.现将一飞镖掷向该图,则飞镖落在阴影区域的概率为()A.19B.29C.23D.13【答案】D【解析】【分析】连接OC、OD、BD,根据点C,D是半圆O的三等分点,推导出OC∥BD且△BOD是等边三角形,阴影部分面积转化为扇形BOD的面积,分别计算出扇形BOD的面积和半圆的面积,然后根据概率公式即可得出答案.【详解】解:如图,连接OC、OD、BD,∵点C、D是半圆O的三等分点,∴»»»==AC CD DB,∴∠AOC=∠COD=∠DOB=60°,∵OC=OD ,∴△COD 是等边三角形, ∴OC=OD=CD , ∵2CD =,∴2OC OD CD ===, ∵OB=OD ,∴△BOD 是等边三角形,则∠ODB =60°, ∴∠ODB =∠COD =60°, ∴OC ∥BD , ∴=V V BCD BOD S S ,∴S 阴影=S 扇形OBD 226060223603603πππ⋅⨯===OD , S 半圆O 222222πππ⋅⨯===OD ,飞镖落在阴影区域的概率21233ππ=÷=, 故选:D . 【点睛】本题主要考查扇形面积的计算和几何概率问题:概率=相应的面积与总面积之比,解题的关键是把求不规则图形的面积转化为求规则图形的面积.13.如图,由四个直角边分别是6和8的全等直角三角形拼成的“赵爽弦图”,随机往大正方形区域内投针一次,则针扎在小正方形GHEF 部分的概率是( )A .34B .14C .124D .125【答案】D 【解析】 【分析】求出AB,HG的边长,进而得到正方形GHEF 的面积和四个小直角三角形的面积,求出比值即可. 【详解】解:∵AH=6,BH=8, 勾股定理得AB=10,∴HG=8-6=2,S△AHB=24,∴S正方形GHEF =4,四个直角三角形的面积=96, ∴针扎在小正方形GHEF 部分的概率是1004=125故选D. 【点睛】本题考查了几何概型的实际应用,属于简单题,将概率问题转换成求图形的面积问题是解题关键.14.国家医保局相关负责人3月25日表示,2019年底前我国将实现生育保险基金并入职工基本医疗保险基金,统一征缴,就是通常所说的“五险变四险”.传统的五险包括:养老保险、失业保险、医疗保险、工伤保险、生育保险.某单位从这五险中随机抽取两种,为员工提高保险比例,则正好抽中养老保险和医疗保险的概率是( ) A .15B .110C .25D .225【答案】B 【解析】 【分析】根据题意先画出树状图得出所有等可能情况数和正好抽中养老保险和医疗保险的情况数,然后根据概率公式即可得出答案. 【详解】用字母A 、B 、C 、D 、E 分别表示五险:养老保险、失业保险、医疗保险、工伤保险、生育保险,画树状图如下:共有20种等可能的情形,其中正好抽中养老保险和医疗保险的有2种情形, 所以,正好抽中养老保险和医疗保险的概率P=212010. 故选B. 【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.15.如图,转盘中8个扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,估计下列4个事件发生的可能性大小,其中事件发生的可能性最大的是( )A.指针落在标有5的区域内B.指针落在标有10的区域内C.指针落在标有偶数或奇数的区域内D.指针落在标有奇数的区域内【答案】C【解析】【分析】根据可能性等于所求情况数与总情况数之比分别求出每种情况的可能性,再按发生的可能性从小到大的顺序排列即可,从而确定正确的选项即可.【详解】解:A、指针落在标有5的区域内的概率是18;B、指针落在标有10的区域内的概率是0;C、指针落在标有偶数或奇数的区域内的概率是1;D、指针落在标有奇数的区域内的概率是12;故选:C.【点睛】此题考查了可能性大小,用到的知识点是可能性等于所求情况数与总情况数之比,关键是求出每种情况的可能性.16.有三张正面分别写有数字﹣2,1,3的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后把这张放回去,再从三张卡片中随机抽一张,以其正面的数字作为b的值,则点(a,b)在第一象限的概率为()A.16B.13C.12D.49【答案】D【解析】【分析】根据题意画出树状图,然后确定出总发生的可能数和符合条件的可能数,再用概率公式求解即可.【详解】根据题意,画出树状图如下:一共有6种情况,在第二象限的点有(-1,1)(-1,2)共2个,以,P=21 = 63.故选:B.【点睛】本题考查了列表法与树状图法,第一象限点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.17.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有()个.A.20 B.16 C.12 D.15【答案】C【解析】【分析】由摸到红球的频率稳定在25%附近,可以得出口袋中得到红色球的概率,进而求出白球个数即可得到答案.【详解】解:设白球个数为x个,∵摸到红球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴41 44x=+,解得:12x=,经检验,12x=是原方程的解故白球的个数为12个.故选C【点睛】本题主要考查了随机概率,利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键,应掌握概率与频率的关系,从而更好的解题.18.下列事件中,是必然事件的是()A.任意画一个三角形,其内角和是180°B .经过有交通信号灯的路口,遇到红灯C .掷一次骰子,向上一面的点数是6D .射击运动员射击一次,命中靶心【答案】A【解析】【分析】根据必然事件、不可能事件、随机事件的概念对各个选项进行判断即可.【详解】A .任意画一个三角形,其内角和是180°是必然事件;B .经过有交通信号灯的路口,遇到红灯是随机事件;C .掷一次骰子,向上一面的点数是6是随机事件;D .射击运动员射击一次,命中靶心是随机事件;故选:A .【点睛】考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.19.如图,ABC ∆是一块绿化带,将阴影部分修建为花圃.已知15AB =,9AC =,12BC =,阴影部分是ABC ∆的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( ).A .16 B .6π C .8π D .5π 【答案】B【解析】【分析】由AB=5,BC=4,AC=3,得到AB 2=BC 2+AC 2,根据勾股定理的逆定理得到△ABC 为直角三角形,于是得到△ABC 的内切圆半径=4+3-52=1,求得直角三角形的面积和圆的面积,即可得到结论.【详解】解:∵AB=5,BC=4,AC=3,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径=4+3-52=1, ∴S △ABC =12AC•BC=12×4×3=6, S 圆=π,∴小鸟落在花圃上的概率=6π , 故选B .【点睛】本题考查几何概率,直角三角形内切圆的半径等于两直角边的和与斜边差的一半及勾股定理的逆定理,解题关键是熟练掌握公式.20.从﹣4,﹣3,﹣2,﹣1,0,1,3,4,5这九个数中,随机抽取一个数,记为a ,则数a 使关于x 的不等式组()1242122123x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩至少有四个整数解,且关于x 的分式方程233a x x x ++--=1有非负整数解的概率是( ) A .29 B .13 C .49 D .59【答案】C【解析】【分析】先解出不等式组,找出满足条件的a 的值,然后解分式方程,找出满足非负整数解的a 的值,然后利用同时满足不等式和分式方程的a 的个数除以总数即可求出概率.【详解】解不等式组得:7x a x ≤⎧⎨>-⎩, 由不等式组至少有四个整数解,得到a≥﹣3,∴a 的值可能为:﹣3,﹣2,﹣1,0,1,3,4,5,分式方程去分母得:﹣a ﹣x+2=x ﹣3,解得:x =52a - , ∵分式方程有非负整数解,∴a =5、3、1、﹣3,则这9个数中所有满足条件的a 的值有4个,∴P=4 9故选:C.【点睛】本题主要考查解一元一次不等式组,分式方程的非负整数解,随机事件的概率,掌握概率公式是解题的关键.。

概率试题及答案

概率试题及答案

概率试题及答案### 概率试题及答案题目1:一个袋子里有5个红球和3个蓝球,随机从袋子里取出一个球,然后放回。

再取出一个球。

求两次取出的球都是红球的概率。

解答:首先,我们定义事件A为第一次取出红球,事件B为第二次取出红球。

- 事件A发生的概率P(A)为红球数除以总球数,即P(A) = 5/8。

- 由于取出的球放回,事件B发生的概率与事件A相同,即P(B) =5/8。

我们需要计算的是两次事件都发生的概率,即P(A∩B)。

由于这两个事件是独立的,我们可以使用乘法法则计算:\[ P(A∩B) = P(A) \times P(B) = \frac{5}{8} \times \frac{5}{8} = \frac{25}{64} \]题目2:一个班级有30名学生,其中有15名男生和15名女生。

随机选取5名学生参加一个活动,求至少有2名男生的概率。

解答:我们可以使用组合来解决这个问题。

首先计算总的选取方式,然后计算没有男生或只有1名男生的选取方式。

- 总的选取方式是从30名学生中选取5名,即C(30, 5)。

- 没有男生的方式是从15名女生中选取5名,即C(15, 5)。

- 只有1名男生的方式是从15名男生中选取1名,从15名女生中选取4名,即C(15, 1) * C(15, 4)。

至少有2名男生的概率是1减去没有男生或只有1名男生的概率:\[ P(\text{至少2名男生}) = 1 - \frac{C(15, 5) + C(15, 1)\times C(15, 4)}{C(30, 5)} \]题目3:一个工厂有3条生产线,每条生产线每天生产1000个产品。

每条生产线每天出现次品的概率是0.01。

求至少有一条生产线出现次品的概率。

解答:我们可以使用对立事件的概念来解决这个问题。

首先计算所有生产线都没有次品的概率,然后用1减去这个概率。

- 每条生产线没有次品的概率是1 - 0.01 = 0.99。

- 所有生产线都没有次品的概率是0.99^3。

九年级概率试题及答案

九年级概率试题及答案

九年级概率试题及答案一、选择题1. 一个袋子里有5个红球和3个蓝球,随机取出一个球,再放回,再取一个球。

求两次都取到红球的概率。

答案:第一次取到红球的概率为5/8,由于放回了,第二次取球的概率仍然是5/8,两次都取到红球的概率为(5/8) * (5/8) = 25/64。

2. 一副扑克牌中,除去大小王,共有52张牌。

从中任选一张牌,求抽到黑桃A的概率。

答案:一副扑克牌中有4张A,所以抽到任意一张A的概率为4/52,即1/13。

3. 一个骰子投掷两次,求两次点数之和为7的概率。

答案:一个骰子有6个面,投掷两次共有6*6=36种可能的结果。

点数和为7的组合有(1,6)、(2,5)、(3,4)、(4,3)、(5,2)、(6,1)共6种。

所以概率为6/36 = 1/6。

4. 一个班级有30名学生,其中10名是男生。

随机选出一名学生,求选中男生的概率。

答案:班级中男生的数量是10,总人数是30,所以选中男生的概率为10/30 = 1/3。

5. 一批产品中有10%的次品。

从中任选5件产品,求恰好有3件次品的概率。

答案:这属于二项分布问题。

设X为选中的次品数量,X服从B(5,0.1)分布。

根据二项分布的概率公式,P(X=3) = C(5, 3) * (0.1)^3* (0.9)^2 ≈ 0.0386。

二、填空题1. 一个袋子里有4个白球和6个黑球,随机取出两个球,求两个球颜色不同的概率。

答案:两个球颜色不同,即一个白球和一个黑球。

第一个球是白色的概率为4/10,取出后第二个球是黑色的概率为6/9,所以两个球颜色不同的概率为(4/10) * (6/9) = 24/90 = 4/15。

2. 一个不透明的箱子里有20个球,其中有5个红球,其余为白球。

随机取出三个球,求至少有一个红球的概率。

答案:首先求没有红球的概率,即取出的三个球都是白球的概率为(15/20) * (14/19) * (13/18)。

所以至少有一个红球的概率为1 - (15/20) * (14/19) * (13/18) ≈ 0.7917。

小学六年级数学概率题单选题100道及答案解析

小学六年级数学概率题单选题100道及答案解析

小学六年级数学概率题单选题100道及答案解析1. 一个盒子里有5 个红球,3 个白球,2 个黑球,随机摸出一个球,摸到红球的概率是()A. 1/2B. 1/3C. 5/10D. 5/20答案:C解析:总共有5 + 3 + 2 = 10 个球,红球有5 个,摸到红球的概率= 5÷10 = 5/10 。

2. 抛一枚硬币,正面朝上的概率是()A. 0B. 1C. 1/2D. 2答案:C解析:抛硬币只有正反两面,所以正面朝上的概率是1÷2 = 1/2 。

3. 从1 - 10 这10 个数字中随机抽取一个数字,抽到奇数的概率是()A. 1/2B. 1/10C. 5/10D. 9/10答案:C解析:1 - 10 中奇数有1、3、5、7、9,共 5 个,抽到奇数的概率= 5÷10 = 5/10 。

4. 一个袋子里装有3 个黄球和7 个蓝球,从中任意摸出一个球,摸到黄球的概率是()A. 3/7B. 3/10C. 7/10D. 7/3答案:B解析:球的总数为3 + 7 = 10 个,黄球有3 个,摸到黄球的概率= 3÷10 = 3/10 。

5. 掷一个骰子,点数大于4 的概率是()A. 1/2B. 1/3C. 2/3D. 2/6答案:D解析:骰子的点数有1、2、3、4、5、6,大于4 的有5、6 两种,概率为2÷6 = 2/6 。

6. 抽奖箱里有100 张奖券,其中有5 张一等奖,随机抽取一张,抽到一等奖的概率是()A. 1/100B. 5/100C. 95/100D. 5答案:B解析:一等奖有5 张,总奖券数100 张,抽到一等奖的概率= 5÷100 = 5/100 。

7. 一副扑克牌(除去大小王),从中任意抽取一张,抽到红桃的概率是()A. 1/4B. 1/13C. 13/52D. 1/52答案:A解析:一副牌除去大小王还有52 张,红桃有13 张,抽到红桃的概率= 13÷52 = 1/4 。

高考概率经典解答题及答案

高考概率经典解答题及答案

高考概率经典解答题及答案下面是一些经典的高考概率题目及其答案:1. 问题:在一副扑克牌中,从中任意抽取一张牌,求抽到红桃的概率是多少?问题:在一副扑克牌中,从中任意抽取一张牌,求抽到红桃的概率是多少?答案:扑克牌中一共有52张牌,其中红桃有13张。

因此抽到红桃的概率为13/52,即1/4。

:扑克牌中一共有52张牌,其中红桃有13张。

因此抽到红桃的概率为13/52,即1/4。

2. 问题:有一个包含5只黑球和7只白球的箱子,从中不放回地随机抽取两个球,求抽到一黑一白的概率是多少?问题:有一个包含5只黑球和7只白球的箱子,从中不放回地随机抽取两个球,求抽到一黑一白的概率是多少?答案:抽取第一个球时,有5/12的概率抽到黑球,7/12的概率抽到白球。

抽取第二个球时,则有4/11的概率抽到与第一个球不同颜色的球。

:抽取第一个球时,有5/12的概率抽到黑球,7/12的概率抽到白球。

抽取第二个球时,则有4/11的概率抽到与第一个球不同颜色的球。

因此,抽到一黑一白的概率为(5/12) * (7/11) + (7/12) * (5/11) = 35/66。

3. 问题:有标准的六面骰子,投掷两次,求两次投掷的点数之和为7的概率是多少?问题:有标准的六面骰子,投掷两次,求两次投掷的点数之和为7的概率是多少?答案:投掷两次骰子,每次投掷的点数都有6种可能结果。

共有36种不同的点数组合。

:投掷两次骰子,每次投掷的点数都有6种可能结果。

共有36种不同的点数组合。

其中,和为7的组合有(1,6)、(2,5)、(3,4)、(4,3)、(5,2)和(6,1)这6种组合。

因此,两次投掷的点数之和为7的概率为6/36,即1/6。

以上是一些经典的高考概率题目及其答案,希望对您有帮助。

概率基础测试题及答案解析

概率基础测试题及答案解析
故选C
4.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )
A. B. C. D.
【答案】C
【解析】
【分析】
画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.
【详解】
解:画树状图得:
∵共有12种等可能的结果,两次都摸到白球的有2种情况,
所以小斌和小宇两名同学选到同一课程的概率= ,
故选B.
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适用于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
6.一个布袋里放有红色、黄色、黑色三种球,它们除颜色外其余都相同,红球、黄球、黑球的个数之比为5:3:1,则从布袋里任意摸出一个球是黄球的概率是( )
概率基础测试题及答案解析
一、选择题
1.抛掷一枚质地均匀的硬币,若抛掷95次都是正面朝上,则抛掷第100次正面朝上的概率是()
A.小于 B.等于 C.大于 D.无法确定
【答案】B
【解析】
【分析】
根据概率的意义分析即可.
【详解】
解:∵抛掷一枚质地均匀的硬币是随机事件,正面朝上的概率是
∴抛掷第100次正面朝上的概率是
【点睛】
本题涉及的知识点较多,要熟悉平行四边形的常见判定;随机事件、必然事件、不可能事件等的区分;掌握方差的意义;会计算圆内接正多边形相关.
14.抛掷一枚质地均匀的硬币,前2次都正面朝上,第3次正面朝上的概率()
A.大于 B.等于 C.小于 D.无法确定
【答案】B

概率经典测试题及答案解析

概率经典测试题及答案解析

概率经典测试题及答案解析一、选择题1.一个不透明的袋子中装有白球4个,黑球若干个,这些球除颜色外其余完全一样.如果随机从袋中摸出一个球是白球的概率为13,那么袋中有多少个黑球()A.4个B.12个C.8个D.不确定【答案】C【解析】【分析】首先设黑球的个数为x个,根据题意得:4143=x+,解此分式方程即可求得答案.【详解】设黑球的个数为x个,根据题意得:41 43=x+,解得:x=8,经检验:x=8是原分式方程的解;∴黑球的个数为8.故选:C.【点睛】此题考查概率公式的应用.解题关键在于掌握概率=所求情况数与总情况数之比.2.太原是我国生活垃圾分类的46个试点城市之一,垃圾分类的强制实施也即将提上日程根据规定,我市将垃圾分为了四类可回收垃圾、餐厨垃圾有害垃圾和其他垃圾现有投放这四类垃圾的垃圾桶各1个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,投放正确的概率是()A.16B.18C.112D.116【答案】C【解析】【分析】根据题意,由列表法得到投放的所有结果,然后正确的只有1种,即可求出概率.【详解】解:由列表法,得:∴共有12种等可能的结果数,其中将两包垃圾随机投放到其中的两个垃圾箱中,能实现对应投放的结果为1种,∴投放正确的概率为:112 P=;故选择:C.【点睛】本题考查了列表法与树状图法求概率,解题的关键是正确求出所有等可能的结果数.3.岐山县各学校开展了第二课堂的活动,在某校国学诗词组、篮球足球组、陶艺茶艺组三个活动组织中,若小斌和小宇两名同学每人随机选择其中一个活动参加,则小斌和小宇选到同一活动的概率是()A.12B.13C.16D.19【答案】B【解析】【分析】先画树状图(国学诗词组、篮球足球组、陶艺茶艺组分别用A、B、C表示)展示所有9种等可能的结果数,再找出小斌和小宇两名同学的结果数,然后根据概率公式计算即可.【详解】画树状图为:(国学诗词组、篮球足球组、陶艺茶艺组分别用A. B. C表示)共有9种等可能的结果数,其中小斌和小宇两名同学选到同一课程的结果数为3,所以小斌和小宇两名同学选到同一课程的概率=31 93 =,故选B.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适用于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.4.袋中有8个红球和若干个黑球,小强从袋中任意摸出一球,记下颜色后又放回袋中,摇匀后又摸出一球,再记下颜色,做了50次,共有16次摸出红球,据此估计袋中有黑球()个.A.15 B.17 C.16 D.18【答案】B【解析】【分析】根据共摸球50次,其中16次摸到红球,则摸到红球与摸到黑球的次数之比为8: 17,由此可估计口袋中红球和黑球个数之比为8: 17;即可计算出黑球数.【详解】∵共摸了50次,其中16次摸到红球,∴有34次摸到黑球,∴摸到红球与摸到黑球的次数之比为8: 17,∴口袋中红球和黑球个数之比为8: 17,∴黑球的个数8÷817= 17(个),故答案选B.【点睛】本题主要考查的是通过样本去估计总体,只需将样本"成比例地放大”为总体是解本题的关键.5.一个布袋里放有红色、黄色、黑色三种球,它们除颜色外其余都相同,红球、黄球、黑球的个数之比为5:3:1,则从布袋里任意摸出一个球是黄球的概率是()A.59B.13C.19D.38【答案】B【解析】分析:用黄球所占的份数除以所有份数的和即可求得是黄球的概率.详解:∵红球、黄球、黑球的个数之比为5:3:1,∴从布袋里任意摸出一个球是黄球的概率是31=5+3+13.故选:B.点睛:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.6.下列事件中,是必然事件的是( )A.任意掷一枚质地均匀的骰子,掷出的点数是奇数B.操场上小明抛出的篮球会下落C.车辆随机到达一个路口,刚好遇到红灯D.明天气温高达30C ,一定能见到明媚的阳光【答案】B【解析】【分析】根据必然事件的概念作出判断即可解答.【详解】解:A 、抛任意掷一枚质地均匀的骰子,掷出的点数是奇数是随机事件,故A 错误; B 、操场上小明抛出的篮球会下落是必然事件,故B 正确;C 、车辆随机到达一个路口,刚好遇到红灯是随机事件,故C 错误;D 、明天气温高达30C ︒,一定能见到明媚的阳光是随机事件,故D 错误;故选:B .【点睛】本题考查了必然事件的定义,必然事件指在一定条件下一定发生的事件,熟练掌握是解题的关键.7.从﹣4,﹣3,﹣2,﹣1,0,1,3,4,5这九个数中,随机抽取一个数,记为a ,则数a 使关于x 的不等式组()1242122123x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩至少有四个整数解,且关于x 的分式方程233a x x x ++--=1有非负整数解的概率是( ) A .29 B .13 C .49 D .59【答案】C【解析】【分析】先解出不等式组,找出满足条件的a 的值,然后解分式方程,找出满足非负整数解的a 的值,然后利用同时满足不等式和分式方程的a 的个数除以总数即可求出概率.【详解】解不等式组得:7x a x ≤⎧⎨>-⎩ , 由不等式组至少有四个整数解,得到a≥﹣3,∴a 的值可能为:﹣3,﹣2,﹣1,0,1,3,4,5,分式方程去分母得:﹣a ﹣x+2=x ﹣3,解得:x =52a - , ∵分式方程有非负整数解,∴a =5、3、1、﹣3,则这9个数中所有满足条件的a 的值有4个,∴P =49故选:C .【点睛】本题主要考查解一元一次不等式组,分式方程的非负整数解,随机事件的概率,掌握概率公式是解题的关键.8.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是()A.23B.12C.13D.14【答案】C【解析】【分析】【详解】用数组(X,Y)中的X表示征征选择的社团,Y表示舟舟选择的社团.A,B,C分别表示航模、彩绘、泥塑三个社团,于是可得到(A,A),(A,B),(A,C),(B,A),(B,B),(B,C),(C,A),(C,B),(C,C),共9中不同的选择结果,而征征和舟舟选到同一社团的只有(A,A),(B,B),(C,C)三种,所以,所求概率为3193,故选C.考点:简单事件的概率.9.如图,在4×3长方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是()A.16B.112C.13D.14【答案】D【解析】【分析】【详解】解:∵在4×3正方形网格中,任选取一个白色的小正方形并涂黑,共有8种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有2种情况,如图所示:∴使图中黑色部分的图形构成一个轴对称图形的概率是:2184= 故选D .10.正方形ABCD 的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD 内投一粒米,则米粒落在阴影部分的概率为( )A .22π- B .24π- C .28π- D .216π-【答案】A【解析】【分析】 求得阴影部分的面积后除以正方形的面积即可求得概率.【详解】解:如图,连接PA 、PB 、OP ,则S 半圆O =2122ππ⨯=,S △ABP =12×2×1=1, 由题意得:图中阴影部分的面积=4(S 半圆O ﹣S △ABP )=4(2π﹣1)=2π﹣4, ∴米粒落在阴影部分的概率为24242ππ--=, 故选A .【点睛】本题考查了几何概率的知识,解题的关键是求得阴影部分的面积.11.下列事件中,属于不可能事件的是()A.某个数的绝对值大于0 B.某个数的相反数等于它本身C.任意一个五边形的外角和等于540° D.长分别为3,4,6的三条线段能围成一个三角形【答案】C【解析】【分析】直接利用随机事件以及确定事件的定义分析得出答案.【详解】A、某个数的绝对值大于0,是随机事件,故此选项错误;B、某个数的相反数等于它本身,是随机事件,故此选项错误;C、任意一个五边形的外角和等于540°,是不可能事件,故此选项正确;D、长分别为3,4,6的三条线段能围成一个三角形,是必然事件,故此选项错误.故答案选C.【点睛】本题考查的知识点是随机事件以及确定事件,解题的关键是熟练的掌握随机事件以及确定事件.12.布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出第二个球,两次都摸出白球的概率是()A.49B.29C.23D.13【答案】A【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得两次都摸到白球的情况,再利用概率公式求解即可求得答案.【详解】解:画树状图得:则共有9种等可能的结果,两次都摸到白球的有4种情况,∴两次都摸到白球的概率为49.故选A.【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.13.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色下列说法正确的是()A.两个转盘转出蓝色的概率一样大B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了C.先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率不同D.游戏者配成紫色的概率为1 6【答案】D 【解析】A、A盘转出蓝色的概率为12、B盘转出蓝色的概率为13,此选项错误;B、如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性不变,此选项错误;C、由于A、B两个转盘是相互独立的,先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率相同,此选项错误;D、画树状图如下:由于共有6种等可能结果,而出现红色和蓝色的只有1种, 所以游戏者配成紫色的概率为16, 故选D .14.下列问题中是必然事件的有( )个(1)太阳从西边落山;(2)经过有信号灯的十字路口,遇见红灯;(3)221a b +=-(其中a 、b 都是实数);(4)水往低处流.A .1B .2C .3D .4【答案】B【解析】【分析】先分析(1)(2)(3)(4)中有那个必然事件,再数出必要事件的个数,即可得到答案.【详解】(1)太阳从西边落山,东边升起,故为必然事件;(2)经过有信号灯的十字路口,遇见红灯绿灯都有可能,故为随机事件;(3)220a b +≥(其中a 、b 都是实数),故221a b +=-为不可能事件;(4)水往低处流是必然事件;因此,(1)(4)为必然事件,故答案为A.【点睛】本题的主要关键是理解必然事件的概念,再根据必然事件的概念进行判断;需要掌握: 必然事件:事先肯定它一定会发生的事件;不确定事件:无法确定它会不会发生的事件;不可能事件:一定不会发生的事件.15.某市环青云湖竞走活动中,走完全部行程的队员即可获得一次摇奖机会,摇奖机是一个圆形转盘,被等分成16个扇形,摇中红、黄、蓝色区域,分获一、二、三等奖,奖品分别为自行车、雨伞、签字笔.小明走完了全程,可以获得一次摇奖机会,小明能获得签字笔的概率是( )A .116B .716C .14D .18【答案】C【解析】【分析】从题目知道,小明需要得到签字笔,必须获得三等奖,即转到蓝色区域,把圆盘中蓝色的小扇形数出来,再除以总分数,即可得到答案.【详解】解:小明要获得签字笔,则必须获得三等奖,即转到蓝色区域,从转盘中找出蓝色区域的扇形有4份,又因为转盘总的等分成了16份,因此,获得签字笔的概率为:41 164,故答案为C.【点睛】本题主要考查了随机事件的概率,概率是对随机事件发生之可能性的度量;在做转盘题时,能正确找到事件发生占圆盘的比例是做对题目的关键,还需要注意,转盘是不是被等分的,才能避免错误.16.下列事件中,是必然事件的是()A.任意画一个三角形,其内角和是180°B.经过有交通信号灯的路口,遇到红灯C.掷一次骰子,向上一面的点数是6D.射击运动员射击一次,命中靶心【答案】A【解析】【分析】根据必然事件、不可能事件、随机事件的概念对各个选项进行判断即可.【详解】A.任意画一个三角形,其内角和是180°是必然事件;B.经过有交通信号灯的路口,遇到红灯是随机事件;C.掷一次骰子,向上一面的点数是6是随机事件;D.射击运动员射击一次,命中靶心是随机事件;故选:A.【点睛】考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.17.数学老师拿出四张卡片,背面完全一样,正面分别画有:矩形、菱形、等边三角形、圆背面朝上洗匀后先让小明抽出一张,记下形状后放回,洗匀后再让小亮抽出一张请你计算出两次都抽到既是中心对称图形又是轴对称图形的概率是()A.34B.38C.916D.23【答案】C【解析】【分析】利用列表和画树状图可知所有的情况,在找出两次抽到的是既是中心对称图形又是轴对称图形的情况,利用求简单概率的公式即可求出.【详解】由题意可知:四张卡片正面的四种图形分别为矩形、菱形、等边三角形、圆,除等边三角形外其余三种都既是中心对称图形,又是轴对称图形.设矩形、菱形、圆分别为Al、A2、A3,等边三角形为B,根据题意可画树状图如下图:如图所示,共有16种等可能情况的结果数,其中两次都抽到既是中心对称图形又是轴对称图形的情况为9种,所以两次都抽到既是中心对称图形又是轴对称图形的概率916P ,故选C.【点睛】本题主要考查了利用列表法和画树状图法求概率,熟知中心对称图形、轴对称图形的定义与画树状图的方法及求概率的公式是解题关键.18.在六张卡片上分别写有13,π,1.5,5,02六个数,从中任意抽取一张,卡片上的数为无理数的概率是()A.16B.13C.12D.56【答案】B【解析】【分析】无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.【详解】∵这组数中无理数有 ,2共2个,∴卡片上的数为无理数的概率是21 = 63.故选B.【点睛】本题考查了无理数的定义及概率的计算.19.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是()A.B.C.D.【答案】B【解析】【分析】根据简单概率的计算公式即可得解.【详解】一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12中可能,其中能组成孔孟的有2种,所以两次摸出的球上的汉字能组成“孔孟”的概率是.故选B.考点:简单概率计算.20.一个不透明的口袋中装有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于6的概率为()A.16B.15C.14D.13【答案】A【解析】【分析】画树状图得出所有的情况,根据概率的求法计算概率即可.【详解】画树状图得:∵共有12种等可能的结果,两次摸出的小球标号之和等于6的有2种情况,∴两次摸出的小球标号之和等于6的概率21. 126故选A.【点睛】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.。

概率典型题及解析

概率典型题及解析

概率典型题及解析一、选择题1.将[0,1]内的均匀随机数a 1转化为[-2,6]内的均匀随机数a ,需实施的变换为( )[答案] C[解析] ∵0≤a 1≤1,∴0≤8a 1≤8, ∴-2≤8a 1-2≤6.2.小红随意地从她的钱包中取出两枚硬币,已知她的钱包中有1分、2分币各两枚,5分币3枚,则她取出的币值正好是7分的概率是( )A.17B.27C.37D.47[答案] B[解析] 共有取法6+5+4+3+2+1=21种,其中币值正好为7分的必有一枚5分币,故有3×2=6种,∴概率P =621=27.3.从正六棱锥P -ABCD 的侧棱和底边共12条棱中任取两条,能构成异面直线的概率为( )A.111B.211C.411D.811[答案] C[解析] 共能组成11+10+9+…+1=66对,其中为异面直线的有6×4=24对(∵侧棱都共面,底面多边形的边当然共面,∴异面的只有一条侧棱和底面的一条边的情形,一侧棱可与底面多边形的4条边构成异面直线),∴P =2466=411. 4.在棱长为3的正方体内任取一个点,则这个点到各面的距离都大于1的概率为( )A.13 B.19 C.127D.34[答案] C[解析] 在正方体内到各面的距离都大于1的点的集合是以正方体的中心为中心、棱长为1的正方体,所以所求概率P =V 小正方体V 大正方体=133=127.5.某人利用随机模拟方法估计π的近似值,设计了下面的程序框图,运行时,从键盘输入1000,输出值为788,由此可估计π的近似值约为( )A .0.788B .3.142C .3.152D .3.14[答案] C[解析] 由条件知,投入1000个点(a ,b ),-1≤a ≤1,-1≤b ≤1,其中落入x 2+y 2≤1内的有788个.∵圆面积正方形面积=π4,∴π4≈7881000,∴π≈3.152. 6.在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于S3的概率为( )A.13B.23C.19D.49[答案] B[解析] 如图所示,作AD ⊥BC 于D ,PE ⊥BC 于E ,对于事件W =“△PBC 的面积大于S 3”,有12·BC ·PE >13·12·BC ·AD ,即PE >13AD ,∴BP >13AB ,∴由几何概型的概率计算公式得P (W )=23AB AB =23.7.利用随机模拟法近似计算下图中阴影部分曲线y =2x 与x =±1及x 轴围成的图形的面积时,设计了如下算法:设事件A 为“随机向正方形内投点,所投的点落在阴影部分”.S 表示阴影部分的面积.S 1:用计数器n 记录做了多少次投点试验,用计数器m 记录其中有多少次(x ,y )满足-1<x <1,0<y <2x (即点落在阴影部分).首先置n =0,m =0;S 2:用变换rand()*2-1产生-1~1之间的均匀随机数x 表示所投的点的横坐标;用变换rand()*2产生0~2之间的均匀随机数y 表示所投的点的纵坐标;S 3:判断点是否落在阴影部分,即是否满足y <2x ,如果是,则计数器m 的值加1,即m =m +1,如果不是,m 的值保持不变;S 4:表示随机试验次数的计数器n 的值加1,即n =n +1,如果还要继续试验,则返回步骤S 2继续执行;S 5:S =____①____; S 6:输出S ,结束. 则①处应为( ) A .m B.m n C .4mD.4m n[答案] D[解析] ∵阴影部分的面积为S ,正方形的面积为4,由几何概型计算公式得P (A )=S 4.所以m n =S 4.所以S =4mn 即为阴影部分面积的近似值.8.下面是随机模拟掷硬币试验的程序框图.其中a =0表示正面向上,a =1表示反面向上,则运行后输出的是( ) A .正面向上的频数 B .正面向上的频率 C .反面向上的频数 D .反面向上的频率 [答案] D 二、填空题9.若以连续掷两次骰子分别得到的点数m 、n 作为P 点的坐标,则点P 在圆x 2+y 2=25外的概率为______.[答案]712 [解析] 基本事件的总数为6×6=36(个),记事件A =“点P (m ,n )落在圆x 2+y 2=25外”,即m 2+n 2>25,当m 取1、2、3时,n 只能取5或6,有2×3=6种;当m 取4时,n 只能取4、5、6有3种;当m 取5或6时,n 可取1至6的任何值,有2×6=12种.∴事件A 包含的基本事件数共有6+3+12=21个, ∴P (A )=2136=712.10.任意一个三角形ABC 的面积为S ,D 为△ABC 内任取的一个点,则△DBC 的面积和△ADC 的面积都大于S3的概率为________.[答案] 19[解析] 在AB 上取三等分点E 、F ,过点E 作EM ∥BC 交AC 于M ,过点F 作FN ∥AC 交BC 于N ,则当点D 在△AEM 内时,满足S △DBC >S3,在△BFN 内时,满足S △DAC >S3,设EM 与FN 的交点为G ,则当点D 在△EFG内时,同时满足S △DBC >S 3,S △DAC >S3,∴所求概率P =S △EFG S △ABC =19.11.已知函数f (x )=-x 2+ax -b .若a 、b 都是区间[0,4]内的数,则f (1)>0成立的概率是________.[答案]932[解析] ∵0≤a ≤4,0≤b ≤4,∴点(a ,b )构成区域为正方形OBDE 及其内部,∵f (1)=-1+a -b >0,∴a -b >1,满足条件的点构成区域为△ABC 及其内部,其中A (1,0),B (4,0),C (4,3),S △ABC =92,所求概率P =S △ABC S 四边形OBDE =924×4=932.三、解答题12.向边长为2的正方形内投飞镖,用随机模拟方法估计飞镖落在中央边长为1的正方形内的概率.[解析] 用几何概型概率计算方法可求得概率P =S 小正方形S 大正方形=14.用计算机随机模拟这个试验步骤如下:S 1 用计数器n 记录做了多少次飞镖试验,用计数器m 记录其中有多少次投在中央的小正方形内,置初始值n =0,m =0;S 2 用函数rand( )*4-2产生两组-2~2的随机数x ,y ,x 表示所投飞镖的横坐标,y 表示所投飞镖的纵坐标;S 3 判断(x ,y )是否落在中央的小正方形内,也就是看是否满足|x |<1,|y |<1,如果是则m 的值加1,即m =m +1;否则m 值保持不变;S 4 表示随机试验次数的记数器n 的值加1,即n =n +1,如果还需要继续试验,则返回步骤S 2,否则,程序结束.程序结束后,飞镖投在小正方形内发生的频率mn 表示概率的近似值,全班同学一块试验,看频率是否在14附近波动,次数越多,越有可能稳定在14附近.13.已知地铁列车每10min 一班,在车站停1min.用随机模拟方法估计乘客到达站台立即乘上车的概率.[解析] 地铁列车每10min 一班,在车站停1min 可以看作在0~1min 这个时间段内,车停在停车点,在1~11min 这个时间段内行驶,乘客到达站台立即乘上车的条件是他在0~1min 这个时间段内到达站台.设事件A ={乘客到达站台立即乘上车}.S 1 用计算机产生一组[0,1]区间的均匀随机数a 1=RAND ; S 2 经过伸缩变换a =11*a 114.在长为18cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形.用随机模拟法估计该正方形的面积介于36cm 2与81cm 2之间的概率,并写出算法.[解析] 正方形的面积只与边长有关,本题可以转化为在线段AB 上任取一点M ,使AM 的长度介于6cm 与9cm 之间.设事件A ={正方形的面积介于36cm 2与81cm 2之间}(1)利用计算器或计算机产生一组0到1区间的均匀随机数a 1=RAND ; (2)经过伸缩变换,a =a 1*18;算法为: INPUT “n =”;n m =0DO i =1a =18*rand( )15.如图,射击比赛使用的靶子是一个边长为50cm 的正方形木板,由内到外画了五个同心圆,半径分别为5cm,10cm,15cm,20cm,25cm ,由内到外依次为10环,9环,8环,7环,6环.某人在20m 之外向此板射击,设击中线上或没有击中靶子时不算,可重新射击,假设击中靶子上任意位置的可能性相等.用随机模拟法估算下列概率:(1)得到8环以上(包括8环)的概率;(2)得到9环的概率;(3)得到8环以下(不包括8环)的概率.[解析]设事件A=“得到8环以上(包括8环)”,事件B=“得到9环”,事件C=“得到8环以下(不包括8环)”.S1用计算器产生两组[0,1]区间上的均匀随机数a1=RAND,b1=RAND……;16.利用随机模拟法近似计算图中阴影部分(曲线y=9-x2与x轴和y=x 围成的图形)的面积.[解析]设事件A为“随机向矩形内投点,所投的点落在阴影部分”.(1)利用计算器或计算机产生两组0到1区间的均匀随机数,x1=RAND,y1=RAND;(2)经过伸缩平移变换,x=(x1-0.5)*6,y=y1*9;设阴影部分的面积为S,矩形的面积为9×6=54.由几何概率公式得P(A)=S54. 所以,阴影部分面积的近似值为:S ≈54N 1N.17.利用随机模拟法近似计算图中阴影部分(曲线y =x 与直线x =2及x轴围成的图形)的面积.[解析] 设事件A “随机向正方形内投点,所投的点落在阴影部分”. S 1 用计数器n 记录做了多少次试验,用计数器m 记录其中有多少次(x ,y )满足y <x (所投的点落在阴影部分).首先置n =0,m =0;S 2 用变换rand( )*2产生0~2之间的均匀随机数x 表示所投点的横坐标;用变换rand( )*2产生0~2之间的均匀随机数y 表示所投点的纵坐标;S 3 判断点是否落在阴影部分,即是否满足y <x .如果是,则计数器m 的值加1,即m =m +1.如果不是,m 的值保持不变;S 4 表示随机试验次数的计数器n 的值加1,即n =n +1.如果还要继续试验,则返回步骤S 2继续执行,否则,程序结束.程序结束后,事件A 发生的频率mn作为事件A 概率的近似值.设阴影部分面积为S ,正方形面积为4,则m n ≈P (A )=S4,∴S ≈4mn.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.将三粒均匀的分别标有:1,2,3,4,5,6 的正六面体骰子同时掷出,出现的数字分
别为 a , b , c ,则 a , b , c 正好是直角三角形三边长的概率是( )
A. 1 36
【答案】A 【解析】
B. 1 6
C. 1 12
D. 1 3
【分析】
本题是一个由三步才能完成的事件,共有 6×6×6=216 种结果,每种结果出现的机会相同,
A. 3 4
【答案】C 【解析】
B. 1 3
C. 1 2
D. 1 4
【分析】
算出阴影部分的面积及大正方形的面积,这个比值就是所求的概率.
【详解】
解:设小正方形的边长为 1,则其面积为 1.
圆的直径正好是大正方形边长,
根据勾股定理,其小正方形对角线为 2 ,即圆的直径为 2 ,
大正方形的边长为 2 ,
解: A 、凸 n 多边形的内角和 180(n 2) ,故不可能为 500 ,所以凸多边形的内角和 为 500 是不可能事件; B 、所有凸多边形外角和为 360 ,故凸多边形的外角和为 360 是必然事件; C 、四边形中,平行四边形绕它的对角线交点旋转180 能与它本身重合,故四边形绕它的
对角线交点旋转180 能与它本身重合是随机事件;
D. 3 8
【解析】
分析:用黄球所占的份数除以所有份数的和即可求得是黄球的概率.
详解:∵红球、黄球、黑球的个数之比为 5:3:1,
∴从布袋里任意摸出一个球是黄球的概率是 3 = 1 . 5+3+1 3
故选:B.
点睛:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之
比.
7.下列判断正确的是( ) A.任意掷一枚质地均匀的硬币 10 次,一定有 5 次正面向上 B.天气预报说“明天的降水概率为 40%”,表示明天有 40%的时间都在降雨 C.“篮球队员在罚球线上投篮一次,投中”为随机事件 D.“a 是实数,|a|≥0”是不可能事件 【答案】C 【解析】 【分析】 直接利用概率的意义以及随机事件的定义分别分析得出答案. 【详解】 A、任意掷一枚质地均匀的硬币 10 次,一定有 5 次正面向上,错误; B、天气预报说“明天的降水概率为 40%”,表示明天有 40%的时间都在降雨,错误; C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确; D、“a 是实数,|a|≥0”是必然事件,故此选项错误. 故选 C. 【点睛】 此题主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键.
B. 1 8
C. 1 12
D. 1 16
【分析】 根据题意,由列表法得到投放的所有结果,然后正确的只有 1 种,即可求出概率. 【详解】 解:由列表法,得:
∴共有 12 种等可能的结果数,其中将两包垃圾随机投放到其中的两个垃圾箱中,能实现对 应投放的结果为 1 种,
∴投放正确的概率为: P 1 ; 12
4.下列诗句所描述的事件中,是不可能事件的是( ) A.黄河入海流 B.锄禾日当午 C.大漠孤烟直 D.手可摘星辰 【答案】D 【解析】 【分析】 不可能事件是指在一定条件下,一定不发生的事件. 【详解】 A、是必然事件,故选项错误; B、是随机事件,故选项错误; C、是随机事件,故选项错误; D、是不可能事件,故选项正确. 故选 D. 【点睛】 此题主要考查了必然事件,不可能事件,随机事件的概念.理解概念是解决这类基础题的 主要方法.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下, 一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的 事件.
2.太原是我国生活垃圾分类的 46 个试点城市之一,垃圾分类的强制实施也即将提上日程 根据规定,我市将垃圾分为了四类可回收垃圾、餐厨垃圾有害垃圾和其他垃圾现有投放这 四类垃圾的垃圾桶各 1 个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个 不同的垃圾桶,投放正确的概率是( )
A. 1 6
【答案】C 【解析】
故选 D.
10.抛掷一枚质地均匀的硬币,前 2 次都正面朝上,第 3 次正面朝上的概率( )
A.大于 1 2
【答案】B
B.等于 1 2
C.小于 1 2
D.无法确定
【解析】
【分析】
根据概率的意义解答即可.
【详解】
∵硬币由正面朝上和朝下两种情况,并且是等可能,
∴第 3 次正面朝上的概率是 1 . 2
故选:B. 【点睛】
根据必然事件的意义、概率的意义、方差的意义、中位数和众数的概念逐一进行判断即可. 【详解】 A.打开电视机,正在播放“张家界新闻”是随机事件,故 A 选项错误; B.天气预报说“明天的降水概率为 65%”,意味着明天可能下雨,故 B 选项错误; C.两组数据平均数相同,则方差大的更不稳定,故 C 选项错误; D,数据 5,6,7,7,8 的中位数与众数均为 7,正确, 故选 D. 【点睛】 本题考查了概率、方差、众数和中位数等知识,熟练掌握相关知识的概念、意义以及求解 方法是解题的关键.
8.如图,管中放置着三根同样的绳子 AA1、BB1、CC1 小明和小张两人分别站在管的左右两 边,各随机选该边的一根绳子,若每边每根绳子被选中的机会相等,则两人选到同根绳子 的概率为( )
A. 1 2
B. 1 3
C. 1 6
D. 1 9
【答案】B
【解析】
【分析】
画出树状图,得出所有结果和两人选到同根绳子的结果,即可得出答案.
故选择:C. 【点睛】 本题考查了列表法与树状图法求概率,解题的关键是正确求出所有等可能的结果数.
3.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次 (假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是( )
A. 1 2
B. 1 3
C. 4 9
【答案】C 【解析】
D. 5 9
故选:A
【点睛】 本题考查概率的求法,概率等于所求情况数与总情况数之比.本题属于基础题,也是常考题 型.
6.一个布袋里放有红色、黄色、黑色三种球,它们除颜色外其余都相同,红球、黄球、黑
球的个数之比为 5:3:1,则从布袋里任意摸出一个球是黄球的概率是( )
A. 5 9
【答案】B
B. 1 3
C. 1 9
12.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持
人,则选出的恰为一男一女的概率是( )
A. 4 5
【答案】B 【解析】
B. 3 5
C. 2 5
D. 1 5
试题解析:列表如下:
∴共有 20 种等可能的结果,P(一男一女)= 12 = 3 . 20 5
故选 B.
13.如图,小明随意向水平放置的大正方形内部区域抛一个小豆子,则小豆子落在小正方 形内部及边界(阴影)区域的概率为( )
图形的情况,利用求简单概率的公式即可求出. 【详解】
16.数学老师拿出四张卡片,背面完全一样,正面分别画有:矩形、菱形、等边三角形、 圆背面朝上洗匀后先让小明抽出一张,记下形状后放回,洗匀后再让小亮抽出一张请你计
算出两次都抽到既是中心对称图形又是轴对称图形的概率是( )
A. 3 4
【答案】C 【解析】
B. 3 8
C. 9 16
D. 2 3
【分析】
利用列表和画树状图可知所有的情况,在找出两次抽到的是既是中心对称图形又是轴对称
本题考查了概率的意义,正确理解概率的含义并明确硬币只有正反两个面是解决本题的关
键.
11.下列说法正确的是( ) A.打开电视机,正在播放“张家界新闻”是必然事件 B.天气预报说“明天的降水概率为 65%”,意味着明天一定下雨 C.两组数据平均数相同,则方差大的更稳定 D.数据 5,6,7,7,8 的中位数与众数均为 7 【答案】D 【解析】 【分析】
【分析】
根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.
【详解】
∵总面积为 3×3=9,其中阴影部分面积为 4× 1 ×1×2=4, 2
∴飞镖落在阴影部分的概率是 4 . 9
故答案选:C. 【点睛】 本题考查了几何概率的求法,解题的关键是根据题意将代数关系用面积表示出来,一般用 阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例 即事件(A)发生的概率.
a,b,c 正好是直角三角形三边长,则它们应该是一组勾股数,在这 216 组数中,是勾股
数的有 3,4,5;3,5,4;4,3,5;4,5,3;5,3,4;5,4,3 共 6 种情况,即可求
出 a,b,c 正好是直角三角形三边长的概率.
【详解】
P(a,b,c 正好是直角三角形三边长)= 6 1 216 36
过多次摸球实验后发现,摸到红球的频率稳定在 25% 附近,则口袋中白球可能有( )
个.
A.20
B.16
C.12
D.15Hale Waihona Puke 【答案】C【解析】
【分析】
由摸到红球的频率稳定在 25% 附近,可以得出口袋中得到红色球的概率,进而求出白球个
数即可得到答案.
【详解】
解:设白球个数为 x 个,
∵摸到红球的频率稳定在 25% 左右,
D 、任何一个三角形的中位线都平行于这个三角形的第三边,即三角形中位线定理,故是
必然事件.
故选: C .
【点睛】 本题考查了必然事件、不可能事件、随机事件的概念.解决本题关键是正确理解必然事 件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事 件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可 能发生也可能不发生的事件.
【详解】
如图所示:
共有 9 种等可能的结果数,两人选到同根绳子的结果有 3 个,
相关文档
最新文档