人教版初一数学上册知识点归纳总结37062
完整版)人教版七年级数学上册知识点归纳
完整版)人教版七年级数学上册知识点归纳第一章有理数1.1 正数和负数正数是大于零的数,负数是小于零的数。
有些数既不是正数也不是负数,它们被称为零。
在同一个问题中,用正数和负数表示的量具有相反的意义。
需要注意的是,-a不一定是负数,+a也不一定是正数。
自然数指的是正整数和零的集合,也就是我们常说的自然数。
我们可以用a>0表示a是正数,a≥0表示a是正数或零,a<0表示a是负数,a≤0表示a是负数或零。
1.2 有理数有理数包括正整数、负整数、正分数和负分数,它们都可以写成分数的形式。
正整数和负整数统称为整数。
有理数可以分为六类:正整数、正分数、零、负分数、负整数和整数。
我们可以用数轴来表示有理数,数轴是一条直线,有原点、正方向和单位长度三个要素。
一般来说,当a是正数时,数轴上表示数a的点在原点的右边,距离原点a个单位长度;表示数-a的点在原点的左边,距离原点a个单位长度。
两个点关于原点对称,当a是正数时,在数轴上与原点的距离为a的点有两个,它们分别在原点的左右,表示-a和a,我们称这两个点关于原点对称。
相反数指的是只有符号不同的两个数,它们互为相反数。
a的相反数是-a,的相反数是0.在数轴上,表示相反数的两个点关于原点对称。
绝对值是数a到原点的距离,用|a|表示。
一个正数的绝对值是其本身,一个负数的绝对值是其相反数。
的绝对值是0.绝对值可以表示为a=|a|或a=-|a|。
如果a>0,则|a|=a,如果a<0,则|a|=-a。
有理数的比较可以在数轴上表示,从左到右的顺序就是从小到大的顺序。
需要注意的是,正数大于零,大于负数,正数大于负数;两个负数,其绝对值大的反而小。
1.3 有理数的加减法有理数的加减法可以用数轴来表示。
当加上一个正数时,表示数的点向右移动,当加上一个负数时,表示数的点向左移动。
同样地,当减去一个正数时,表示数的点向左移动,当减去一个负数时,表示数的点向右移动。
人教版七年级数学上册整册知识点梳理
人教版七年级数学上册整册知识点梳理学而时习之,不亦说乎!第一章有理数我们先来看看它的名称由来:“有理数”这一名称不免叫人费解,而有理数并不比别的数更“有道理”。
事实上,这似乎是一个翻译上的失误。
“有理数”一词是从西方传来,在英语中是rational number,而rational通常的意义是“理性的”。
中国在近代翻译西方科学著作时,依据日语中的翻译方法,以讹传讹,把它译成了“有理数”。
但是,这个词来源于古希腊,其英文词根为ratio,就是比率的意思(这里的词根是英语中的,希腊语意义与之相同)。
所以这个词的意义也很明显,就是整数的“比”。
与之相对,“无理数”就是不能精确表示为两个整数之比的数,而并非没有道理。
一、正数与负数1、正数与负数为了用数表示具有相反意义的量,我们把其中一种意义的量。
如零上、向东、收入和高于等规定为正的,而把与它相反的量规定为负的。
正的用小学学过的数(0除外)表示,负的用小学学过的数(0除外)在前面加上“-”(读作负)号来表示。
根据需要,有时在正数前面也加上“+”(读作正)号。
注意:①数0既不是正数,也不是负数。
0不仅仅表示没有,也可以表示一个确定的量,如温度计中的0℃不是没有表示没有温度,它通常表示水结成冰时的温度。
②正数、负数的“+”“-”的符号是表示量的性质相反,这种符号叫做性质符号。
在同一个问题中,分别用正数与负数表示的量具有相反的意义。
2、有理数整数和分数统称为有理数2.数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴(number axis)。
(2)数轴三要素:原点、正方向、单位长度。
(3)原点:在直线上任取一个点表示数0,这个点叫做原点(origin)。
(4)数轴上的点和有理数的关系:所有有理数都可以用数轴上的点来表示,但不是数轴上的所有点都表示有理数。
只有符号不同的两个数叫做互为相反数(opposite number)。
(例:2的相反数是-2;0的相反数是0)3、绝对值一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。
七年级上册数学知识点总结人教版(十五篇)
七年级上册数学知识点总结人教版(十五篇)七年级上册数学知识点总结人教版篇一(一)正负数1.正数:大于0的数。
2.负数:小于0的数。
3.0即不是正数也不是负数。
4.正数大于0,负数小于0,正数大于负数。
(二)有理数1.有理数:由整数和分数组成的数。
包括:正整数、0、负整数,正分数、负分数。
可以写成两个整数之比的形式。
(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。
如:π)2.整数:正整数、0、负整数,统称整数。
3.分数:正分数、负分数。
(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。
(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。
)2.数轴的三要素:原点、正方向、单位长度。
3.相反数:只有符号不同的两个数叫做互为相反数。
0的相反数还是0。
4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数比较大小,绝对值大的反而小。
(四)有理数的加减法1.先定符号,再算绝对值。
2.加法运算法则:同号相加,取相同符号,并把绝对值相加。
异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
一个数同0相加减,仍得这个数。
3.加法交换律:a+b= b+ a 两个数相加,交换加数的位置,和不变。
4.加法结合律:(a+b)+ c = a +(b+ c )三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
5. ab = a +(b)减去一个数,等于加这个数的相反数。
(五)有理数乘法(先定积的符号,再定积的大小)1.同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
2.乘积是1的两个数互为倒数。
3.乘法交换律:ab= ba4.乘法结合律:(ab)c = a (b c)5.乘法分配律:a(b +c)= a b+ ac(六)有理数除法1.先将除法化成乘法,然后定符号,最后求结果。
七年级上册数学知识点总结人教版必看
七年级上册数学知识点总结人教版必看学习从来无捷径。
每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要练的。
下面是小编给大家整理的一些七年级上册数学知识点人教版的学习资料,希望对大家有所帮助。
初一上册数学知识点总结(人教版)第一章有理数1.有理数:(1)凡能写成形式的数,都是有理数,整数和分数统称有理数。
注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a>0←→a是正数; a<0←→a是负数;a≥0←→a是正数或0 ⇔ a是非负数; a≤ 0←→a是负数或0←→a 是非正数。
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线。
3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意:a-b+c的相反数是-a+b-c;a-b 的相反数是b-a;a+b的相反数是-a-b;(3)相反数的和为0 ←→ a+b=0 ←→ a、b互为相反数。
(4)相反数的商为-1。
(5)相反数的绝对值相等4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(4) |a|是重要的非负数,即|a|≥0;新人教版七年级数学知识点第五章相交线与平行线1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。
性质是对顶角相等。
2、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。
3、两条直线被第三条直线所截:同位角F(在两条直线的同一旁,第三条直线的同一侧)内错角Z(在两条直线内部,位于第三条直线两侧)同旁内角U(在两条直线内部,位于第三条直线同侧)4、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。
人教版七年级上册数学知识点大全
人教版七年级上册数学知识点大全
一、数的概念和整数运算
- 数的概念:数的分类、数的表达方式、数的读法和写法- 整数的加法、减法、乘法和除法
- 整数的绝对值和相反数
- 整数的比较和排序
二、分数与小数
- 分数的概念和基本性质
- 分数的加法、减法、乘法和除法
- 分数和整数的换算
- 小数的概念和读法
- 小数和分数的关系
三、图形与运动
- 点、线、线段和射线的概念
- 角的概念和表示方法
- 平行线和垂直线的判定
- 面的概念和分类
- 三角形和四边形的特性
- 运动的基本概念和描述方法
四、图形的变换
- 翻折、旋转和平移的概念和性质
- 图形的对称和轴对称
五、数据的收集和整理
- 数据的收集和整理方式
- 数据的图表表示:条形图、折线图和饼图- 数据的分析和解读
六、算式与方程
- 代数式和算式的概念
- 算式的加减法原则
- 一元一次方程的概念和解法
七、数与量
- 长度、质量和时间的单位换算
- 面积和体积的概念和计算
八、函数
- 函数的概念和性质
- 函数的图像和特性
以上是人教版七年级上册数学的知识点大全,总结了数的概念和运算、分数与小数、图形与运动、图形的变换、数据的收集和整理、算式与方程、数与量以及函数等内容。
希望对你的学习有所帮助!。
人教版七年级数学上册知识点整理(完整版)
人教版七年级数学上册知识点整理(完整版)人教版七年级数学上册知识点整理(完整版)第一章有理数一、正数和负数(一)正数:大于0的数。
(二)0的意义1、0既不是正数,也不是负数,0是正数和负数的分界。
2、“0”不仅表示没有,还可以表示某种量的基准。
(三)负数:在正数前面加上符号“﹣”(负)的数。
(四)用正数和负数表示具有相反意义的量1、含义①具有相反意义②具有数量2、通常我们把其中一种意义的量规定为正,用正数表示,那么与它具有相反意义的量就可以用负数表示;例:若规定收入1000元记作+1000元,则支出300元记作-300元。
若规定前进10米记作+10米,则后退5米记作-5米。
注:用正数、负数表示具有相反意义的量时,究竟哪一种意义的量为正是可以任意选择的,但习惯上把“前进、上升、收入、盈利”等规定为正,而把“后退、下降、支出、亏损”等规定为负。
二、有理数(一)分类及有关概念1、根据有理数的定义分有理数整数正整数统称为整数(根据整数的奇偶性)奇数1、3、5、7、9……排列用整数和分数统称为有理数03、5、7、9、11……排列用2n+1负整数偶数(2n )分数(有限小数和无限循环小数也属于分数)正分数正分数和负分数统称分数负分数2、根据有理数的性质分有理数正有理数正整数正分数0负有理数负整数负分数3、数集:把一类数放在一起,就组成了一个集合,简称数集;每个集合最后的省略符号“”表示填入的数只是集合的一部分。
(二)数轴1、概念:规定了原点、正方向和单位长度的直线叫做数轴。
2、数轴上的点与有理数的关系:任意一个有理数都可以用数轴上的点来表示;但数轴上的点不都表示有理数。
3、一般的,设a是一个正数,表示数a的点在原点的右边,与原点的距离为a个单位长度;表示数﹣a的点在原点的左侧,与原点的距离为a个单位长度。
(三)相反数1、概念:只有符号不同的两个数叫做相反数。
2、几何意义:在数轴上位于原点两侧且到原点距离相等的两个点所表示的数互为相反数。
人教版七年级上册数学知识点总结归纳(最新最全)
人教版七年级上册数学知识点总结归纳(最新最全)七年级数学上册知识点总结第一章有理数1.1 正数和负数1.正数和负数的概念正数是比零大的数,负数是比零小的数,而0既不是正数,也不是负数。
注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0.(例如,带正号的数不一定是正数,带负号的数也不一定是负数,例如+a和-a都有可能是正数或负数)②正数有时可以在前面加“+”,有时“+”省略不写。
省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,例如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴表示“没有”,例如教室里有个人,就是说教室里没有人;⑵是正数和负数的分界线,既不是正数,也不是负数。
⑶表示一个确切的量。
例如,℃以及有些题目中的基准,比如以海平面为基准,则米就表示海平面。
1.2 有理数1.有理数的概念⑴正整数、负整数统称为整数(和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
例如,π是无限不循环小数,不能写成分数形式,不是有理数。
有限小数和无限循环小数都可化成分数,都是有理数。
整数也能化成分数,也是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,例如-2、-4、-6、-8…也是偶数,-1、-3、-5…也是奇数。
2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数正有理数负整数正分数有理数有理数(不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数统称为非负整数(也叫自然数)②负整数统称为非正整数③正有理数统称为非负有理数④负有理数统称为非正有理数3.数轴1.数轴的概念规定了原点、正方向、单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。
人教版七年级数学上册知识点归纳
人教版七年级数学上册知识点归纳人教版七年级数学上册是初中阶段的第一本数学教材,旨在帮助学生建立扎实的数学基础,培养良好的数学思维和解决实际问题的能力。
这本书内容涵盖了数与式、方程、几何等多个方面,适合七年级的学生学习。
通过对这些知识的掌握,学生能够为后续更深入的学习打下坚实的基础。
一、数与式1.认识数的概念学生需要理解整数、分数、小数的概念,以及它们之间的关系。
数的分类是学习数学的重要起点。
2.运算符的使用学生应掌握四则运算的基本规则,包括加、减、乘、除的运算顺序以及括号的使用。
3.字母表示数介绍用字母表示数的概念,了解代数式的构成,并能用代数式表示实际问题中的数量关系。
4.代数式的运算学习如何对代数式进行加、减、乘、除运算,培养学生的运算能力和对代数表达式的处理能力。
5.整式与分式进一步区分整式和分式的不同,掌握它们的加减法和乘法,以及如何进行约分和通分。
6.数的性质研究合数与质数,了解不同数之间的关系,以及如何判断一个数是否为质数。
二、方程与不等式1.线性方程的定义使学生能够理解线性方程的基本结构以及如何通过方程来解决问题。
2.解方程的方法学习一元一次方程的求解方法,包括移项、合并同类项等基本技巧。
3.方程的应用引导学生通过实际问题设置方程,使其意识到数学与实际生活的联系。
4.不等式的认识解释不等式的概念,学习如何表示不等式及其解集。
5.不等式的性质了解不等式的基本性质,如何进行不等式的加减乘除运算,以及保持不等式方向的条件。
6.应用题解析通过具体题目,训练学生将实际问题转化为不等式或方程,并加以求解。
三、几何初步1.平面图形的认识介绍基本的平面图形,学习对图形进行分类、比对和计算周长及面积的方法。
2.线段、角的概念让学生理解线段和角的定义,掌握基本性质,特别是直角、锐角、钝角的区分。
3.三角形的特性了解三角形的种类,学习三角形的内角和、外角及其性质。
4.图形的对称性学习对称的概念,通过平面图形的对称性理解几何图形的美学及其实际应用。
人教版七年级数学上册各章知识点总结
人教版七年级数学上册各章知识点总结第一章:有理数1. 有理数和整数的关系- 自然数是有理数,因为每个自然数都可以表示为分子为自然数、分母为1的有理数。
- 整数是有理数,因为每个整数都可以表示为分母为1的有理数。
- 分数是有理数,因为每个真分数都可以表示为分母不为0的有理数。
2. 有理数的加减法- 同号两数相加,取相同的符号,并将绝对值相加。
- 异号两数相加,取绝对值较大的符号,并将绝对值较大的数减去较小的数的绝对值。
3. 有理数的乘除法- 同号两数相乘,积为正数。
- 异号两数相乘,积为负数。
- 有理数相除,分子乘以倒数。
第二章:代数初步1. 代数式的基本概念- 代数式由变量、常数和运算符号组成。
- 代数式可以通过代入变量的具体数值来求得结果。
2. 代数式的计算- 同类项相加或相减,保持字母不变,系数相加或相减。
- 不同类项之间无法进行运算。
3. 代数式的应用- 通过列式子,可以将一个具体问题转化为代数式,从而解决问题。
第三章:小数1. 小数的定义和读法- 小数是有理数的一种表示形式,可以用分数的形式表示。
- 小数读法遵循读整数部分,读小数点,读小数部分的规则。
2. 小数的加减法- 小数相加减时,要保持小数点的位置对齐,然后按照整数加减法的规则进行运算。
3. 小数与分数的相互转化- 将小数转为分数,小数点后的位数作为分母,去掉小数点后的位数作为分子。
- 将分数转为小数,分子除以分母。
第四章:倍数和约数1. 倍数的概念- 如果一个数能被另一个数整除,则这个数是另一个数的倍数。
2. 倍数和公倍数- 两个数的公倍数是能同时整除这两个数的数。
- 两个数的最小公倍数是能整除这两个数的最小正整数。
3. 约数的概念- 如果一个数能整除另一个数,则这个数是另一个数的约数。
4. 因数和公因数- 两个数的公因数是能够同时整除这两个数的数。
- 两个数的最大公因数是能够整除这两个数的最大正整数。
第五章:比例1. 比例的基本概念- 比例是两个数之间的比较关系,可以用两个等比例的分数表示。
人教版七年级上册数学知识点汇总
第一章有理数1. 正数和负数•正数:大于0的数。
•负数:在正数前面加上符号“-”的数。
•0的意义:不仅表示没有,还可以表示某种量的基准。
•相反意义的量:用正数和负数表示具有相反意义的量,如收入与支出、前进与后退等。
2. 有理数的分类•整数:正整数、0、负整数。
•分数:正分数、负分数。
•有理数:整数和分数的统称。
3. 数轴•定义:规定了原点、正方向和单位长度的直线。
•点与有理数的关系:任意一个有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数。
4. 相反数•定义:只有符号不同的两个数。
•性质:任何一个数都有相反数,且只有一个;正数的相反数是负数,负数的相反数是正数;0的相反数是0。
5. 绝对值•定义:正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数。
•性质:绝对值表示数轴上某点到原点的距离。
6. 有理数的大小比较•利用数轴:数轴上右边的数大于左边的数。
•利用法则:同为正数或负数时,绝对值大的数分别更大或更小;正数大于0,负数小于0。
7. 有理数的运算•加法:同号相加取同号,异号相加取绝对值较大数的符号并相减。
•减法:减去一个数等于加上这个数的相反数。
•乘法:同号得正,异号得负,并把绝对值相乘。
•除法:除以一个数等于乘以这个数的倒数。
•乘方:求几个相同因数的积的运算。
第二章整式的加减1. 用字母表示数•代数式:用字母和数通过有限次的加、减、乘、乘方运算得到的式子。
•单项式:数与字母的乘积组成的式子。
•多项式:几个单项式的和。
2. 整式的加减•去括号:括号前是正数,去括号后各项符号不变;括号前是负数,去括号后各项符号改变。
•合并同类项:把多项式中的同类项合并成一项。
第三章一元一次方程1. 定义•一元一次方程:只含有一个未知数,且未知数的次数是1的整式方程。
2. 标准形式•ax+b=0(其中a、b是已知数,且a≠0)。
3. 解法步骤•整理方程•去分母(如果有的话)•去括号•移项•合并同类项•系数化为1•检验解的正确性第四章图形的初步认识1. 直线、射线、线段•直线:没有端点,无限长,不可度量。
2.人教版初中数学七年级上册知识点总结
第一章有理数一、知识框架二.知识概念1.有理数(1)有理数的定义:凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数。
整数和分数统称有理数。
②根式型,根式中的被开方数开不尽,如3。
③构造型,如0.1010010001....,数字中有变化规律,但不循环。
④其他一般无限不循环小数。
(2)有理数的分类:①按定义分类:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②按性质分类:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴【拓展】无限不循环小数是无理数,有限小数或无限循环小数是有理数。
常见的无理数形式:①字母π型,含有π的式子。
注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数七年级数学必考知识点总结3.相反数(1)代数定义:只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0。
几何定义:在数轴上,位于原点的两侧,且到原点的距离相等的两个点表示两个数互为相反数。
(2)性质:相反数的和为0。
即:a、b 互为相反数⇔a+b=0。
4.绝对值(2)绝对值重要性质:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;小提示:绝对值的问题经常分类讨论;(3)几个含绝对值或含平方的式子之和等于0,则每一个式子等于0。
5.倒数(1)定义:乘积为1的两个数互为倒数;若a≠0,那么a 的倒数是a1;注意:0没有倒数。
(2)性质:若ab=1⇔a、b 互为倒数;若ab=-1⇔a、b 互为负倒数.6.有理数的混合运算(1)有理数加法法则①同号两数相加,取相同的符号,并把绝对值相加;②异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;③一个数与0相加,仍得这个数。
有理数加法的运算律①加法的交换律:a+b=b+a ;②加法的结合律:(a+b)+c=a+(b+c)。
人教版数学七年级上册知识点总结(最新最全)
人教版数学七年级上册知识点总结(最新最全)人教版数学七年级上册知识点总结第一章有理数知识点总结正数:大于零的数叫做正数。
负数:在正数前面加上负号“—”的数叫做负数。
意义:在同一个问题上,用正数和负数表示具有相反意义的量。
有理数:整数和分数统称有理数。
整数:正整数、零、负整数统称为整数。
分数:正分数、负分数统称分数。
分类:⑴按正、负性质分类:正有理数:正整数、正分数零有理数:零负有理数:负整数、负分数⑵按整数、分数分类:整数:正整数、零、负整数分数:正分数、负分数数轴:概念:规定了原点、正方向、单位长度的直线叫做数轴。
三要素:原点、正方向、单位长度数轴上的点和有理数是一一对应的。
比较大小:在数轴上,右边的数总比左边的数大。
应用:求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法。
(注意不带“+”“—”号)相反数:代数:只有符号不同的两个数叫做相反数。
几何:在数轴上,离原点的距离相等的两个点所表示的数叫做相反数。
性质:若a与b互为相反数,则a+b=0,即a=-b;反之,若a+b=0,则a与b互为相反数。
多重符号的化简:多个符号:三个或三个以上的符号的化简,看负号的个数,当“—”号的个数是偶数个时,结果取正号;当“—”号的个数是奇数个时,结果取负号。
倒数:概念:乘积为1的两个数互为倒数。
(倒数是它本身的数是±1;没有倒数)性质:若a与b互为倒数,则a·b=1;反之,若a·b=1,则a与b互为倒数。
若a与b互为负倒数,则a·b=-1;反之,若a·b=-1则a与b互为负倒数。
绝对值:几何意义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。
代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数。
性质:|a|≥0,若|a|=0,则a=0;若|a|=|b|,则a=b或a=﹣b。
1.数学中,绝对值是一个非常重要的概念。
绝对值是一个数与0的距离,因此非负数的绝对值是它本身,非正数的绝对值是它的相反数。
人教版初一数学上册知识点总结
人教版初一数学上册知识点总结
一、数与代数
1. 有理数的加法和减法
- 有理数的定义
- 加法运算规则
- 减法运算规则
- 有理数的加减混合运算
2. 有理数的乘法和除法
- 乘法运算规则
- 除法运算规则
- 有理数的乘除混合运算
- 有理数的乘方
3. 代数表达式
- 字母表示数
- 单项式
- 多项式
- 代数式的简化和变形
4. 一元一次方程
- 方程的概念
- 解方程的基本方法
- 方程的应用问题
二、几何
1. 线段、射线、直线
- 线段的性质
- 射线的定义
- 直线的性质
2. 角
- 角的定义
- 角的分类
- 角的度量
3. 三角形
- 三角形的基本性质
- 等边三角形、等腰三角形的性质 - 三角形的内角和外角
4. 四边形
- 四边形的基本性质
- 平行四边形的性质
- 矩形、菱形、正方形的性质
三、统计与概率
1. 统计
- 数据的收集和整理
- 频数和频率
- 统计图表的绘制和解读
2. 概率
- 随机事件的概率
- 简单事件的概率计算
- 概率的直观理解
四、应用题
1. 利用数学知识解决实际问题
- 列方程解应用题
- 利用几何知识解决实际问题
- 统计与概率在实际问题中的应用
请注意,以上内容仅为人教版初一数学上册知识点的概要总结,具体每个知识点的详细解释和例题解析需要根据教材内容进行深入学习和理解。
教师和学生可以根据这个框架来组织教学和复习计划,确保对每个知识点都有充分的掌握。
人教版数学七年级上册知识点汇总
第一章有理数1.1正数和负数1.正数:大于0的数.2.负数:小于0的数.3.0即不是正数,也不是负数.4.正数大于0,负数小于0,正数大于负数.1.2有理数及其大小比较1.整数:正整数、0、负整数,统称整数.2.有理数:可以写成分数形式的数.(1)正有理数:可以写成正分数形式的数.(2)负有理数:可以写成负分数形式的数.3.数轴(1)定义:用直线上的点表示数,这条直线叫做数轴.(在直线上任取一个点表示数0,这个点叫作原点;规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;选取适当的长度为单位长度.)(2)数轴的三要素:原点、正方向、单位长度.(3)原点将数轴(原点除外)分成两部分,其中正方向一侧的部分叫作数轴的正半轴;另一侧的部分叫作数轴的负半轴.(4)数轴上特殊的最大(小)数①最小的自然数是0,无最大的自然数;②最小的正整数是1,无最大的正整数;③最大的负整数是-1,无最小的负整数.4.相反数:只有符号不同的两个数叫做互为相反数.(1)任何数都有相反数,且只有一个;(2)0的相反数是0;(3)互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0.5.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0.6.有理数的大小比较(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.第二章有理数的运算2.1有理数的加法与减法1.有理数加法法则(1)同号两数相加,和取相同的符号,且和的绝对值等于加数的绝对值的和.(2)绝对值不相等的异号两数相加,和取绝对值较大的加数的符号,且和的绝对值等于加数的绝对值中较大者与较小者的差,互为相反数的两个数相加得0.(3)一个数与0相加,仍得这个数.2.有理数加法运算律(1)加法交换律:a+b=b+a(2)加法结合律:(a+b)+c=a+(b+c)3.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).2.2有理数的乘法与除法1.有理数的乘法法则(1)两数相乘,同号得正,异号得负,且积的绝对值等于乘数的绝对值的积.(2)任何数与0相乘,都得0.2.倒数:乘积为1的两个数互为倒数;但0没有倒数.3.有理数乘法的运算律(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.4.有理数除法法则:除以一个数等于乘以这个数的倒数.(注意:0不能做除数)(1)两数相除,同号得正,异号得负,且商的绝对值等于被除数的绝对值除以除数的绝对值的商.(2)0除以任何一个不等于0的数,都得0.2.3有理数的乘方1.乘方:求n个相同乘数的积的运算.(1)乘方的结果叫作幂.(2)在a n中,a叫作底数,n叫作指数.(3)负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.2.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数即1≤a<10,这种记数法叫科学记数法.10的指数=整数位数-1,整数位数=10的指数+1.第三章代数式3.1列代数式表示数量关系1.代数式:用运算符号把数或表示数的字母连接起来的式子.(1)单独的一个数或字母也是代数式.(2)列代数式应注意:若式子后面有单位且式子是和或差的形式,式子应用小括号括起来.2.反比例(1)两个相关联的量,一个量变化,另一个量也随着变化,且这两个量的乘积一定,这两个量就叫作成反比例的量,它们之间的关系叫作反比例关系.(2)反比例关系可以用xy=k或kyx来表示,其中k叫作比例系数.(k≠0)3.2代数式的值1.代数式的值:一般地,用数值代替代数式中的字母,按照代数式中的运算关系计算得出的结果.2.求代数式的一般步骤(1)代入:用指定的字母的数值代替代数式里的字母,其他的运算符号和原来的数值都不能改变;(2)计算:按照代数式指明的运算,根据有理数的运算方法进行计算.第四章整式的加减4.1整式1.整式(1)定义:单项式和多项式的统称.(2)单项式:数与字母的乘积组成的式子叫单项式.单独的一个数或一个字母也是单项式.(3)系数;一个单项式中,数字因数叫做这个单项式的系数.(4)次数:一个单项式中,所有字母的指数和叫做这个单项式的次数.(5)多项式:几个单项式的和.(6)项:组成多项式的每个单项式.(7)常数项:不含字母的项.(8)多项式的次数:多项式中,次数最高的项的次数.4.2整式的加法与减法1.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项.2.合并同类项:把多项式中的同类项合并成一项.3.合并同类项后,所得项的系数是合并前各同类项的系数的和,字母连同它的指数不变.4.整式的加减:进行整式的加减运算时,如果有括号先去括号,再合并同类项.(1)步骤:①列出代数式;②去括号;③合并同类项.(2)去括号的法则①括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不变;②括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项的符号都要改变.第五章一元一次方程5.1方程1.等式:用“=”号连接而成的式子.2.等式的性质(1)等式两边都加上(或减去)同一个数(或式子),结果仍相等;如果a=b,那么a±c=b±c.(2)等式两边都乘以(或除以)同一个不为零的数,结果仍相等.如果a=b,那么ac=bc;如果a=b,(c≠0),那么a/c=b/c.3.方程:含未知数的等式(方程是含有未知数的等式,但等式不一定是方程).4.方程的解:使等式左右两边相等的未知数的值.5.一元一次方程(1)概念:只含有一个未知数(元)且未知数的指数是1(次)的方程.(2)一般形式:ax+b=0(a≠0)5.2解一元一次方程1.移项:把等式一边的某项变号后移到另一边.2.解一元一次方程的一般步骤化简方程——分数基本性质去分母——同乘(不漏乘)最简公分母去括号——注意符号变化移项——变号(留下靠前)合并同类项——合并后符号系数化为1——除前面5.3实际问题与一元一次方程1.用方程解决问题(1)行程问题:路程=时间×速度(2)利润问题:利润=售价-进价,售价=标价×(1-折扣)(3)等积变形问题:长方体的体积=长×宽×高;圆柱的体积=底面积×高;(4)利息问题:本息和=本金+利息;利息=本金×利率(5)顺水逆水问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度第六章几何图形初步6.1几何图形1.几何图形:把从实物中抽象出来的各种图形的统称.2.立体图形:有些几何图形的各部分不都在同一平面内,这样的图形是立体图形.(棱柱、棱锥、圆柱、圆锥、球等)3.平面图形:有些几何图形的各部分都在同一平面内,这样的图形是平面图形.(三角形、四边形、圆、多边形等)4.展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的.(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型.5.点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.6.2直线、射线、线段1.直线、线段、射线(1)线段:线段有两个端点.(2)射线:将线段向一个方向无限延长就形成了射线.射线只有一个端点.(3)直线:将线段的两端无限延长就形成了直线.直线没有端点.(4)两点确定一条直线:经过两点有一条直线,并且只有一条直线.(5)相交:两条直线有一个公共点时,称这两条直线相交.(6)两条直线相交有一个公共点,这个公共点叫交点.(7)中点:M点把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点.(8)线段的性质:两点的所有连线中,线段最短.(两点之间,线段最短)(9)距离:连接两点间的线段的长度,叫做这两点的距离.2.尺规作图:在数学中,我们常限定用无刻度的直尺和圆规作图.6.3角1.角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边.或:角也可以看成是一条射线绕着它的端点旋转而成的.2.平角和周角(1)平角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角.(2)周角:终边继续旋转,当它又和始边重合时,所形成的角.3.角的表示(1)用数字表示单独的角,如∠1,∠2,∠3等.(2)用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等.(3)用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等.(4)用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等.注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧.4.角的度量单位及换算(60进制)(1)角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”.(2)换算1°=60',1'=60”把1°的角60等分,每一份叫做1分的角,1分记作“1'”.把1'的角60等分,每一份叫做1秒的角,1秒记作“1''”.5.角的分类6.角的平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.7.余角和补角(1)余角:两个角的和等于90度,这两个角互为余角.即其中每一个是另一个角的余角.(2)补角:两个角的和等于180度,这两个角互为补角.即其中一个是另一个角的补角.(3)补角的性质:等角的补角相等.(4)余角的性质:等角的余角相等.。
初一数学上册知识点总结人教版
初一数学上册知识点总结人教版数学是一门基础性的科学,值得每个人去学习,尤其是孩子,更要去学习数学,并且以此来构架自己的思维体系。
以下是我整理的初一数学上册学问点总结人教版【三篇】,仅供参考,大家一起来看看吧。
【篇1】初一数学上册学问点总结人教版第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形生活中的立体图形柱:棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……正有理数整数有理数零有理数负有理数分数2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不行)。
任何一个有理数都可以用数轴上的一个点来表示。
4、倒数:假如a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
5、肯定值:在数轴上,一个数所对应的点与原点的距离,叫做该数的肯定值,(|a|≥0)。
若|a|=a,则a≥0;若|a|=-a,则a≤0。
正数的肯定值是它本身;负数的肯定值是它的相反数;0的肯定值是0。
互为相反数的两个数的肯定值相等。
6、有理数比较大小:正数大于0,负数小于0,正数大于负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,肯定值大的反而小。
7、有理数的运算:(1)五种运算:加、减、乘、除、乘方多个数相乘,积的符号由负因数的个数确定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。
只要有一个数为零,积就为零。
有理数加法法则:同号两数相加,取相同的符号,并把肯定值相加。
异号两数相加,肯定值值相等时和为0;肯定值不相等时,取肯定值较大的加数的符号,并用较大的肯定值减去较小的肯定值。
新人教版数学七年级上知识点总结
新人教版数学七年级上知识点总结新人教版数学七年级上知识点总结七年级数学(上册)第一章有理数及其运算1.整数包含正整数和负整数,分数包含正分数和负分数。
正整数和正分数通称为正数,负整数和负分数通称为负数。
2.正数都比0大,负数比0小,0既不是正数也不是负数。
3.正整数、0、负整数、正分数、负分数这样的数称为有理数。
4.相反数:只有符号不同的两个数互为相反数,a和-a互为相反数,0的相反数是0。
在任意的数前面添上“-”号,就表示原来的数的相反数。
5.绝对值:数轴上一个数所对应的点与原点的距离叫做该数的绝对值,用“||”表示。
正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
当a是正数时,aa;当a是负数时,aa;当a=0时,a06.两个负数比较大小,绝对值大的反而小。
7.数轴上的两个点表示的数,右边的总比左边的大。
8.有理数加法法则:同号两个数相加,取相同的符号,并把绝对值相加。
异号的两个数相加,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两数相加得0.一个数同0相加仍得这个数加法交换律:abba加法结合律:(ab)ca(bc)9.有理数减法法则:减去一个数等于加上这个数的相反数。
10.有理数乘法法则:两数相乘,同号得正,异号得负,绝对值相乘。
任何数与0相乘积仍得0。
11.倒数:乘积是1的两个数互为倒数。
12.乘法交换律:abba乘法结合律:(ab)ca(bc)乘法分配律:(ab)cacbc13.有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两个有理数相除,同号得正,异号得负,绝对值相除。
0除以任何数都得0,且0不能作除数。
14.有理数的乘方:求n个相同因数a的积的运算叫做乘方,乘方的结果叫做幂。
在a中a叫做底数,n叫做指数,a读作a的n次幂(或a的n次方)。
15.乘方的正负:正数的任何次幂都是正数,负数的奇次幂是负数,负数的偶次幂是正数。
【精编】人教版初一数学上册知识点归纳总结37062
1. 有理数:人教版七年级数学上册期末总复习第一章有理数(1) 凡能写成q(p、 q为整数且p p0) 形式的数、都是有理数、整数和分数统称有理数.注意:0 即不是正数、也不是负数;-a 不一定是负数、+a 也不一定是正数;不是有理数;(2) 有理数的分类: ①有理数正有理数零负有理数正整数正分数负整数负分数②有理数正整数整数零负整数分数正分数负分数(3) 注意:有理数中、1、0、-1 是三个特殊的数、它们有自己的特性;这三个数把数轴上的数分成四个区域、这四个区域的数也有自己的特性;(4) 自然数0 和正整数; a >0 a 是正数; a <0 a 是负数;a≥0 a 是正数或0 a 是非负数; a ≤0 a 是负数或0 a 是非正数.2. 数轴:数轴是规定了原点、正方向、单位长度(数轴的三要素)的一条直线.3. 相反数:(1) 只有符号不同的两个数、我们说其中一个是另一个的相反数;0 的相反数还是0;(2) 注意:a-b+c 的相反数是-(a-b+c)= -a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ;(3) 相反数的和为0 a+b=0 a 、b 互为相反数.(4) 相反数的商为-1.(5)相反数的绝对值相等w w w .x k b 1.c o m4. 绝对值:(1) 正数的绝对值等于它本身、0 的绝对值是0、负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;a (a 0) a (a 0)(2) 绝对值可表示为:a0 (a 0) 或 a ;(3)(3) a1 a 0 ;aa aa (a10)a 0 ;a ( a 0)(4) |a| 是重要的非负数、即|a| ≥0、非负性;5. 有理数比大小:(1)正数永远比0 大、负数永远比0 小;(2)正数大于一切负数;(3)两个负数比较、绝对值大的反而小;(4)数轴上的两个数、右边的数总比左边的数大;(5)-1 、-2 、+1、+4、-0.5 、以上数据表示与标准质量的差、绝对值越小、越接近标准。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学上册期末总复习第一章有理数1.有理数: (1)凡能写成)0p q ,p (pq≠为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数; (2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数. 2.数轴:数轴是规定了原点、正方向、单位长度(数轴的三要素)的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是-(a-b+c)= -a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ;(3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. (4)相反数的商为-1.(5)相反数的绝对值相等w w w .x k b 1.c o m 4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ;(3)0a 1aa >⇔= ;0a 1aa <⇔-=;(4) |a|是重要的非负数,即|a|≥0,非负性; 5.有理数比大小:(1)正数永远比0大,负数永远比0小; (2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小; (4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。
6.倒数:乘积为1的两个数互为倒数;注意:0没有倒数; 若ab=1⇔ a 、b 互为倒数; 若ab=-1⇔ a 、b 互为负倒数.等于本身的数汇总:相反数等于本身的数:0 倒数等于本身的数:1,-1 绝对值等于本身的数:正数和0 平方等于本身的数:0,1 立方等于本身的数:0,1,-1. 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘; (2)任何数与零相乘都得零;(3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。
11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .(简便运算)12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a. 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数; 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; (3)a 2是重要的非负数,即a 2≥0;若a 2+|b|=0 ⇔ a=0,b=0;(4)正数的任何次幂都是正数,0的任何次幂都是0;负数的奇次幂是负数,负数的偶次幂是正数。
(5)据规律 ⇒⎪⎪⎭⎪⎪⎬⎫⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===100101101.01.0222底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a ×10n的形式,其中a 是整数数位只有一位的数即1≤a<10,这种记数法叫科学记数法.10的指数=整数位数-1, 整数位数=10的指数+116.近似数的精确位:一个近似数,四舍五入到哪一位,就说这个近似数精确到那一位. 17.混合运算法则:先乘方,后乘除,最后加减; 注意:不省过程,不跳步骤。
18.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.常用于填空,选择。
第二章 整式的加减1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。
2.单项式的系数与次数:单项式中的数字因数,称单项式的系数(要包括前面的符号);单项式中所有字母指数的和,叫单项式的次数(只与字母有关)。
3.多项式:几个单项式的和叫多项式。
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数; 5.⎩⎨⎧多项式单项式整式 (整式是代数式,但是代数式不一定是整式)。
6.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项(与系数无关,与字母的排列顺序无关)。
7.合并同类项法则:系数相加,字母与字母的指数不变.8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号; 若括号前边是“-”号,括号里的各项都要变号.9.整式的加减:一找:(标记);二“+”(务必用+号开始合并)三合:(合并)10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列)。
第三章 一元一次方程1.等式:用“=”号连接而成的式子叫等式. 2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数(或式子),结果仍相等; 等式性质2:等式两边都乘以(或除以)同一个不为零的数,结果仍相等.3.方程:含未知数的等式,叫方程(方程是含有未知数的等式,但等式不一定是方程). 4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”。
5.移项:把等式一边的某项变号后移到另一边叫移项.移项的依据是等式性质1(移项变号).6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式: ax+b=0(x 是未知数,a 、b 是已知数,且a ≠0). 8.一元一次方程解法的一般步骤: 化简方程----------分数基本性质去 分 母----------同乘(不漏乘)最简公分母 去 括 号----------注意符号变化 移 项----------变号(留下靠前)合并同类项--------合并后符号w w w .x k b 1.c o m 系数化为1---------除前面 10.列一元一次方程解应用题:(1)读题分析法:………… 多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程. (2)画图分析法: ………… 多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础. 11.列方程解应用题的常用公式:(1)行程问题: 路程=速度·时间 时间路程速度=速度路程时间=; (2)工程问题:工作量=工作效率·工作时间 工时工作量工效=工效工作量工时=; 工程问题常用等量关系: 先做的+后做的=完成量w w w .x k b 1.c o m (3)顺水逆水问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度; 顺水逆水问题常用等量关系: 顺水路程=逆水路程 (4)商品利润问题: 售价=定价10几折 , %100⨯-=成本成本售价利润率;利润问题常用等量关系: 售价-进价=利润 (5)配套问题: (6)分配问题⎧⎨⎩⎧⎨⎩第四章 图形初步认识(一)多姿多彩的图形立体图形:棱柱、棱锥、圆柱、圆锥、球等.1、几何图形 平面图形:三角形、四边形、圆、多边形等.主视图---------从正面看 2、几何体的三视图 左视图---------从左边看 俯视图---------从上面看(1)会判断简单物体(棱柱、圆柱、圆锥、球)的三视图. (2)能根据三视图描述基本几何体或实物原型. 3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的.(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型. 4、点、线、面、体 (1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形. 线:面和面相交的地方是线,分为直线和曲线. 面:包围着体的是面,分为平面和曲面. 体:几何体也简称体.(2)点动成线,线动成面,面动成体. (二)直线、射线、线段 12经过两点有一条直线,并且只有一条直线.简单地:两点确定一条直线. 3、画一条线段等于已知线段 (1)度量法(2)用尺规作图法 4、线段的长短比较方法 (1)度量法 (2)叠合法 (3)圆规截取法5、线段的中点(二等分点)、三等分点、四等分点等 定义:把一条线段平均分成两条相等线段的点. 图形:A M B符号:若点M 是线段AB 的中点,则AM=BM=21AB ,AB=2AM=2BM. 6、线段的性质两点的所有连线中,线段最短.简单地:两点之间,线段最短. 7、两点的距离连接两点的线段的长度叫做两点的距离(距离是线段的长度,而不是线段本身). 8、点与直线的位置关系(1)点在直线上(或者直线经过点) (2)点在直线外(或者直线不经过点). (三)角1、角:有公共端点的两条射线所组成的图形叫做角.1︒=60'=3600", 1'=60"; 1'=(601)︒, 1"=(601)'=(36001)︒ (1)度量法 (2)叠合法6、角的四则运算角的和、差、倍、分及其近似值 7、画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角. (2)借助量角器能画出给定度数的角. (3)用尺规作图法. 8、角的平分线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线(若OB 是∠AOC 的平分线,则∠AOB=∠BOC=21∠AOC, ∠AOC=2∠AOB =2∠BOC ). 9、互余、互补(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角. (2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角. (3)∠1的余角可以用90°-∠1表示;∠1的补角可以用180°-∠1表示. (4)余角的性质:同角(等角)的余角相等; 补角的性质:同角(等角)的补角相等. 10、方向角(1)正方向(2)南或北写在前面,东或西写在后面(北偏东、北偏西、南偏东、南偏西)东 西 北 东北 西北 北偏东 北偏西 南偏西南偏西西南东南南。