石墨烯柔性电子23页PPT

合集下载

石墨烯的结构与性能21页PPT

石墨烯的结构与性能21页PPT

谢谢
11、越是没有本领的就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于பைடு நூலகம்升自我。——迈克尔·F·斯特利
石墨烯的结构与性能
16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。

石墨烯基固态柔性锂电池简介演示

石墨烯基固态柔性锂电池简介演示
石墨烯基固态柔性锂电池 简介演示
汇报人:
日期:
CATALOGUE
目 录
• 引言 • 石墨烯基固态柔性锂电池概述 • 石墨烯基固态柔性锂电池的制造
工艺和技术 • 石墨烯基固态柔性锂电池的性能
表现与测试
CATALOGUE
目 录
• 石墨烯基固态柔性锂电池的市场 前景与挑战
• 研究展望与未来发展建议 • 参考文献
降低生产成本
通过开发新的制备工艺和优 化生产流程,降低石墨烯基 固态柔性锂电池的生产成本 ,以促进其在电动汽车、可 穿戴设备等领域的应用。
加强安全性和可 靠性研究
针对石墨烯基固态柔性锂电 池在高温、低温、快速充放 电等极端条件下的安全性和 可靠性问题,应加强研究, 确保其在不同应用场景下的 稳定性和可靠性。
备。
研究目的和意义
研究石墨烯基固态柔性锂电池的目的是为了提高电池的能量 密度、安全性和循环寿命,同时实现电池在曲面和便携式设 备中的应用。
该研究的意义在于推动电池技术的创新发展,满足人们对高 能量密度、安全性和便携性的需求,为未来的能源存储和便 携式设备市场提供新的解决方案。
02
CATALOGUE
石墨烯基固态柔性锂电池概述
石墨烯基固态柔性锂电池的定义与特点
定义
石墨烯基固态柔性锂电池是一种以石墨烯为基础材料,采用固态电解质代替传 统液态电解质的柔性电池。
特点
具有高能量密度、长寿命、快速充放电、安全性好、柔性可弯折等特点。
石墨烯基固态柔性锂电池的工作原理
正极材料
通常采用锂过渡金属氮化物或磷化物等材料 。
电池结构设计与优化
电池结构设计
石墨烯基固态柔性锂电池的结构设计需要充分考虑电池的柔性和稳定性。通常采用多层结构,包括石 墨烯电极层、固态电解质层、集流体等。

石墨烯ppt课件

石墨烯ppt课件

04
缺点
设备成本高,制备过 程复杂。
液相剥离法制备过程及优化策略
过程
将石墨或膨胀石墨分散在溶剂中,通 过超声波、热应力等作用剥离出单层 或少层石墨烯。
优化策略
选择适当的溶剂和剥离条件,如超声 功率、时间、温度等,以提高剥离效 率和石墨烯质量。
优点
制备过程简单,成本低。
缺点
难以制备大面积、单层的石墨烯。
未来挑战和机遇并存局面思考
技术挑战
石墨烯制备技术仍存在一些难题 ,如大规模制备、成本控制、质 量稳定性等,需要加强技术研发
和创新。
市场机遇
随着石墨烯技术的不断突破和市场 需求的持续增长,石墨烯产业将迎 来更广阔的发展空间,企业需要抓 住机遇,积极拓展市场。
跨界融合
石墨烯产业需要与其他产业进行跨 界融合,共同推动产业升级和创新 发展,如与互联网、人工智能等产 业的深度融合。
THANKS
感谢观看
消费电子市场需求
随着消费电子产品的不断更新换代, 石墨烯在智能手机、平板电脑、可穿 戴设备等领域的应用需求将持续增长 。
新能源市场需求
石墨烯在新能源领域具有广阔的应用 前景,如太阳能电池、锂离子电池、 燃料电池等,未来市场需求将不断扩 大。
医疗健康市场需求
石墨烯在生物医疗领域的应用也逐渐 受到关注,如生物传感器、药物载体 、医疗器械等,未来市场需求有望持 续增长。
三维多孔支架、细胞培养基质、神经修复导管
石墨烯组织工程支架材料的研究进展及前景
骨组织工程、皮肤组织工程、心肌组织工程
安全性评价和毒理学问题关注
石墨烯的生物安全性问题
01 细胞毒性、免疫原性、遗传毒性
石墨烯的体内代谢和毒性机制

2024版《石墨烯的研究》PPT课件

2024版《石墨烯的研究》PPT课件

目录•引言•石墨烯的基本性质•石墨烯的制备方法•石墨烯的应用领域•石墨烯的挑战与前景•结论引言石墨烯是一种由单层碳原子组成的二维材料。

石墨烯具有极高的电导率、热导率和机械强度等优异性能。

石墨烯的发现引起了科学界的广泛关注,被认为是未来材料科学的重要发展方向之一。

石墨烯的背景与概念0102 03推动材料科学的发展石墨烯作为一种新型材料,其研究有助于推动材料科学的发展,为制备更高性能的材料提供新的思路和方法。

促进相关产业的发展石墨烯的优异性能使其在电子、能源、生物等领域具有广泛的应用前景,其研究有助于促进相关产业的发展。

提高国家科技实力石墨烯作为一种具有重要战略意义的材料,其研究水平的提高有助于提高国家的科技实力和竞争力。

石墨烯的研究意义国内研究现状国内石墨烯研究起步较早,目前已经取得了一系列重要成果,包括石墨烯的制备、表征、应用等方面。

国外研究现状国外石墨烯研究也非常活跃,许多国际知名大学和科研机构都在开展石墨烯相关的研究工作。

发展趋势未来石墨烯的研究将更加注重应用基础研究,探索石墨烯在各个领域的应用潜力,同时加强石墨烯的规模化制备和产业化应用等方面的研究。

国内外研究现状及发展趋势石墨烯的基本性质石墨烯是由单层碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料。

二维碳纳米材料石墨烯中的碳原子以六边形进行排列,每个碳原子与周围三个碳原子通过σ键相连,形成稳定的晶格结构。

碳原子排列方式石墨烯中碳-碳键长约为0.142nm ,每个晶格内有三个σ键,所有碳原子均为sp2杂化。

原子尺寸零带隙半导体石墨烯是一种零带隙半导体,其载流子在狄拉克点附近呈现线性色散关系,具有极高的载流子迁移率。

高电导率由于石墨烯中载流子的特殊性质,其电导率极高,甚至超过铜等传统导体。

量子霍尔效应在低温强磁场条件下,石墨烯会表现出量子霍尔效应,这是其独特电学性质之一。

石墨烯的强度极高,其抗拉强度是钢铁的数百倍,同时具有优异的韧性。

2024石墨烯技术PPT课件

2024石墨烯技术PPT课件

contents •石墨烯概述•石墨烯制备方法•石墨烯表征技术•石墨烯应用领域•石墨烯产业发展现状与趋势•总结与展望目录石墨烯定义与结构定义结构石墨烯的每个碳原子与周围三个碳原子通过共价键连接,形成稳定的六边形结构。

这种结构使得石墨烯具有出色的力学、电学和热学性能。

石墨烯性质与特点力学性质石墨烯是已知强度最高的材料之一,同时还具有很好的韧性,可以弯曲成各种形状而不断裂。

电学性质石墨烯具有优异的导电性能,电子在其中的移动速度极快,使得石墨烯成为理想的电极材料。

热学性质石墨烯具有极高的热导率,可以快速地将热量从一个区域传递到另一个区域,这使得石墨烯在散热领域具有广阔的应用前景。

光学性质石墨烯对光的吸收率很低,且透光性极好,这使得石墨烯在透明导电薄膜等领域具有潜在的应用价值。

石墨烯发现历程及意义发现历程石墨烯最初是由英国曼彻斯特大学的两位科学家通过机械剥离法从石墨中分离出来的。

这一发现引起了科学界的广泛关注,并开启了石墨烯研究的新篇章。

意义石墨烯的发现不仅打破了二维晶体无法稳定存在的传统认知,而且为材料科学、凝聚态物理以及电子器件等领域的发展带来了新的机遇。

石墨烯的优异性能使得它在能源、环保、医疗、航空航天等领域具有广阔的应用前景,有望引领新一轮的技术革命和产业变革。

机械剥离法01020304原理优点缺点应用领域化学气相沉积法在高温下,碳源气体在催化剂表面分解并沉积形成石墨烯。

可控制备大面积、高质量的石墨烯;与现有半导体工艺兼容。

设备成本高,制备过程中可能产生有毒气体。

透明导电薄膜、电子器件、传感器等。

原理优点缺点应用领域原理优点缺点应用领域氧化还原法利用溶剂将石墨剥离成单层或少层石墨烯,适用于大规模生产。

液相剥离法碳化硅外延法电弧放电法激光诱导法通过高温处理碳化硅晶体,使其表面外延生长出石墨烯,适用于制备高质量石墨烯。

利用电弧放电产生的高温高压条件,将石墨转化为石墨烯,但产量较低。

利用激光束照射石墨表面,诱导出石墨烯,但设备成本较高。

石墨烯结构图ppt讲课文档

石墨烯结构图ppt讲课文档
尽管特斯拉实现这种高性能石墨烯电池的量产,可能需要数年 的时间,但是只要能够做出高性能石墨烯电池,那么电动汽车就没 有什么值得挑剔的了。这也意味着,电动汽车离成为主流又更近了 一步。
第九页,共27页。
石墨烯时代
任正非在接受媒体采访时声称,未来10 至20年内会爆发一场技术革命,“我认为 这个时代将来最大的颠覆,是石墨烯时代颠 覆硅时代”,“现在芯片有极限宽度,硅的 极限是七纳米,已经临近边界了,石墨是技 术革命前沿”。这里提到的石墨烯。
第十六页,共27页。
• ③2004年,英国物理学家安德烈·海姆和·康 斯坦丁诺沃肖洛夫成功地从石墨中分离出石 墨烯,凭借“在二维石墨烯材料的开创性实 验”,这两位科学家共同获得了2010年的 诺贝尔物理学奖。
第十七页,共27页。
• ④石墨烯的发现,之所以意义重大,是因为 它创造了诸多“纪录”。
第十八页,共27页。
第十页,共27页。
元年到来
中国石墨烯产业技术创新战略联盟率领贝特瑞、 正泰集团、常州第六元素、亿阳集团等四家上市公 司的代表参加了西班牙的石墨烯会议,并分别与意 大利、瑞典代表团签订了深度战略合作协议,为“ 石墨烯全球并购,中国整合”战略打响了第一枪。 此外,2015年3月初全球首批3万部量产石墨烯手机在
• ⑤石墨烯是世上最薄的材料,只有0.34纳米厚,十万
层石墨烯叠加起来的厚度大概等于一根头发丝的直径, 它比钻石还坚硬,强度比世界上最好的钢铁还要高上
100倍,每100纳米距离上可承受的最大压力竟然达 到了2.9微牛左右,这意味着,如果制成包装袋,那么
它将能承受大约两吨重的物品。在石墨烯中,电子能够 极为高效地迁移,迁移速率仅为光速的三百分之一,远 远高出其在硅、铜等传统半导体和导体中的速率。石墨 烯优异的导电性能可以提升电极材料的电导率,从而大 幅度增加电池的容量。

环境材料-石墨烯-PPT模版

环境材料-石墨烯-PPT模版

LOGO
LOGO
石墨烯利用前景
Other Uses
涂料
海水淡化 抗菌效用 多孔材料 物理研究
石墨烯基涂料可用于导电油墨,抗静电,电磁 干扰屏蔽,和气体阻隔的应用 石墨烯过滤器远优于其它海水淡化技术,与水分 子分解发电技术结合,水、电可成为廉价产品 石墨烯氧化物对于抑制大肠杆菌的生长超级有效, 而且不会伤害到人体细胞
当石墨烯被释放到地表水中时,它 的硬度会增大,吸附的的有机材料 也更少,它很快就会变得不稳定, 既不能发生沉淀,也不能随水的流 动而被带走。
LOGO
【参考文献】
The Rise of Graphene. A K Geim & K S Novoselov. Nature Materials 6, 183-191 (2007) A Road Map for Graphene. K S Novoselov et al. Nature 490, 192200 (2012) The Transportation and Stability of Graphene Oxide Nanoparticles in Ground Water and Surface nphere. Environmental Engineering Science,2014
LOGO
石墨烯制备及产业化
机械分离 机械分离(Mechanical exfoliation):最普通的是微机械分离法,直接将石墨烯薄片 从较大的晶体上剪裁下来,如用另外一种材料膨化或者引入缺陷的热解石墨进行摩擦, 体相石墨的表面会产生絮片状的晶体,在这些絮片状的晶体中含有单层的石墨烯。产 率低、仅供实验研究。 氧化还原法 氧化还原(Oxidation-reduction):将天然石墨与强酸和强氧化性物质反应生成氧化 石墨(GO),经过超声分散制备成氧化石墨烯(单层氧化石墨),然后加入还原剂去除氧 化石墨表面的含氧基团,如羧基、环氧基和羟基,得到石墨烯。宏量制备产生废液污 染、石墨烯品质不高存在缺陷。 取向附生法 取向附生(Epitaxy):让碳原子在 1150 ℃下渗入钌,然后冷却到850℃,之前吸收 的大量碳原子就会“浮”到钌表面,镜片形状的单层碳原子“ 孤岛” 布满整个基质表面, 最终生长成完整的一层石墨烯。成本高、厚度不均匀。

石墨烯-最终版PPT课件

石墨烯-最终版PPT课件

.
14
小结
这种方法生长石墨烯是最有可能实现C 基集成 电路的有效途径之一。但单晶SiC的价格昂贵,石墨 烯的制作成本非常高,生长条件苛刻,目前还难以实 现大面积制备。
在可控制备及性能研究上存在着以下问题: 外延石墨烯的可控生长机制有待进一步深入研究, 其生长的可控性(层数、晶畴大小、大面积均匀一致 性)有待进一步增强。
机械剥离法 化学气相沉积法(CVD) 表面外延生长法 氧化石墨还原法 ……
.
6
利用机械力将石墨烯片从高度定向热解石墨表面剥离开来 的制备方法。Geim等就是采用微机械剥离法得到了石墨 烯,并进行了表征 ,他们将薄片的两面粘在一种特殊的胶 带上,通过撕开胶带将石墨烯剥离开,制备的石墨烯片最 大宽度可以达到10um以上。目前,该法仍是制备石墨烯 最简单直接的方法。
.
4
石墨烯的性质
极高的载流 子迁移率, 常温下超过 15000 cm2/V·s
世界上电 阻率最小 的材料
——多才多艺
极高的强度,理论 弹性模量1000GPa、 拉伸强度125GPa
石墨烯
良好的透光性, 单层只吸收 2.3%的光
较大的比表 面积 2600m2/g
导热系数高达
5300W/m·K
.
5
石墨烯的制备
表面外延生长法 机械剥离法
化学气相沉积法
氧化石墨还原法
.
19
表面外延生长法
表面外延生长法是渗碳原 理的进一步推广,提高了 石墨烯的晶体完整度,但 该法的成本比前面两种方 法更高。
氧化石墨还 原法
机械剥离法
表面外延生长法
化学气相沉积法
.
20
其他方法如有机合成法、 直接超声剥离法甚至生物 还原法等都提供了可供借 鉴的思路。将不同的方法 结合起来也有一定的前景。

纳米材料--石墨烯的世界ppt

纳米材料--石墨烯的世界ppt

石墨烯的应用
双层石墨烯可降低元器件电噪声 美国IBM公司T·J·沃森研究中心 的科学家,攻克了在利用石墨构建 纳米电路方面最令人困扰的难题, 即通过将两层石墨烯片叠加,可以 将元器件的电噪声降低10倍,由此 可以大幅改善晶体管的性能,这将 有助于制造出比硅晶体管速度快、 体积小、能耗低的石墨烯晶体管。

新材料产业面临的问题
第一:炒作过甚
在世纪之交,世界各地刮起了一阵纳米狂热风。欧美、日本以及国内 争相出台纳米发展计划。科学家们纷纷预言“21世纪将是纳米时代”。 于是,国内一时之间出现了“纳米水“、”纳米电冰箱“、“纳米毛衣”、 “纳米化妆品”令人眼花缭乱、不明觉厉的产品。2010年获得诺贝尔奖 之后,石墨烯在不少研究方向上捷报频传。

对材料抵抗裂缝能力——也就是断裂韧性——的测量不仅仅 包括抗拉强度——也就是指当材料被拉伸时它断裂的可能 性,它还测量了当一种特定材料被扭曲时,它在断裂之前 所能忍受的“惩罚”。例如金属是可延展的,你需要反复扭 曲弯曲才能折断一根汤匙。玻璃能够抵抗扭曲,但它不具 有延展性,因此如果扭曲力或者拉伸力超过一定的极限, 它便会迅速断裂。即使是一个小裂缝也足以导致玻璃碎裂。 朱教授和莱斯大学的娄俊(Jun Lou)合作进行的研究发现, 有裂缝的石墨烯断裂的可能性是钢铁的10倍,且此时它的 断裂韧性更接近于氧化铝或者碳化硅基陶瓷。相对较低的 断裂韧性意味着一片石墨烯里一个小裂缝就足以摧毁它。 这样小的裂缝很可能是制造石墨时自然产生的结果。
利用石墨烯试 制的触摸面板
含有石墨烯的柔性材料在产业化过程中 可作为一种透明导电材料,应用在可弯 曲、可折叠电子显示器的生产中。
13年E-Ink推出世界最薄电子纸手表,厚度仅为0.8毫米
石墨烯的其他用途

石墨烯材料PPT课件

石墨烯材料PPT课件

1985
第7页/共111页
石墨烯的晶格结构与其相应的倒格矢空间
第8页/共111页
石墨烯能带结构
第9页/共111页
石墨烯层数的表征方法
(1)扫描隧道显微镜(STM)
具有很高的空间分辨率,横向为 0.1~0.2nm,纵向可达0.001nm。
单层石墨烯厚度只有0.335nm
第10页/共111页
(2)原子力显微镜表征
石墨烯的组成与结构
第1页/共111页
石墨简介
石墨(graphite)是一种结晶形碳。 六方晶系,为铁墨色至深灰色。密度 2.25克/厘米3,硬度1.5,熔点3652℃, 沸点4827℃。质软,有滑腻感,可导 电。
化学性质不活泼,耐腐蚀,与酸、 碱等不易反应。在空气或氧气中加 强热,可燃烧并生成二氧化碳。强氧 化剂会将它氧化成有机酸。
研究人员发现单氢化及双氢化锯齿状边的石墨烯具有铁磁性。此外,通过对 石墨烯不同方向的裁剪及化学改性可以对其磁性能进行调控。研究表明分子在石 墨烯表面的物理吸附将改变其磁性能。例如氧的物理吸附增加石墨烯网络结构的 磁阻,位于石墨烯纳米孔道内的钾团簇将导致非磁性区域的出现。
第25页/共111页
石墨烯的优异特性
第27页/共111页
• 分数量子霍尔效应和异常量子霍尔效应
第28页/共111页
整数量子霍尔效应
1985年的诺贝尔物理学奖
量子霍尔效应只发生于二维导体。这效应促成了一种新度
量衡标准,称为电阻率量子(resistivity quantum)
h/e2;垂直于外磁场的载流导线,其横向电导率会呈现量
子化值。称这横向电导率为霍尔电导(Hall
第36页/共111页
•外延生长法

石墨烯PPT

石墨烯PPT
如果有五角元胞和七角元胞存在,那么他们构成石墨烯的缺陷 。如果少量的五角元胞细胞会使石墨烯翘曲; 12个五角元胞的会 形成富勒烯。碳纳米管也被认为是卷成圆桶的石墨烯;
可见,石墨烯是构建其它维数碳质材料(如零维富勒烯、一维纳米碳管 、三维石墨)的基本单元
第8页,本讲稿共28页
第9页,本讲稿共28页
二、石墨烯材料的制备
兆赫(terahertz)领域。
第24页,本讲稿共28页
双层石墨烯可降低元器件电噪声
美国IBM公司T·J·沃森研究中心的科
学家,最近攻克了在利用石墨构建纳米 电路方面最令人困扰的难题,即通过将 两层石墨烯片叠加,可以将元器件的电 噪声降低10倍,由此可以大幅改善晶 体管的性能,这将有助于制造出比硅 晶体管速度快、体积小、能耗低的石 墨烯晶体管。
烯的厚度。
第12页,本讲稿共28页
3、热膨胀法
用酸进行插层反应得到膨胀率较低的石墨鳞片 ,鳞片的平均厚度约为30μm,横向尺寸在 400μm左右,这种石墨鳞片就是可膨胀石墨。将 这种可膨胀石墨放入微波或高温炉中加热,就可 以的到厚度为几纳米到几十个纳米的纳米石墨片 。
第13页,本讲稿共28页
4、化学法
第15页,本讲稿共28页
三、石墨烯材料的性质
1、力学性质——比钻石还要硬
数据转换分析:在石墨烯样品微粒开始碎裂前,它们每100纳
米距离上可承受的最大压力居然达到了大约2.9微牛。
据科学家们测算,这一结果相当于要施加55牛顿的压力才 能使1米长的石墨烯断裂。如果物理学家们能制取出厚度相当于 普通食品塑料包装袋的(厚度约100纳米)石墨烯,那么需要 施加差不多两万牛的压力才能将其扯断。换句话说,如果用 石墨烯制成包装袋,那么它将能承受大约两吨重的物品。

石墨烯材料及其锂离子电池中的应用资料23页PPT

石墨烯材料及其锂离子电池中的应用资料23页PPT
55、 为 中 资料
51、没有哪个社会可以制订一部永远 适用的 宪法, 甚至一 条永远 适用的 法律。 ——杰 斐逊 52、法律源于人的自卫本能。——英 格索尔
53、人们通常会发现,法律就是这样 一种的 网,触 犯法律 的人, 小的可 以穿网 而过, 大的可 以破网 而出, 只有中 等的才 会坠入 网中。 ——申 斯通 54、法律就是法律它是一座雄伟的大 夏,庇 护着我 们大家 ;它的 每一块 砖石都 垒在另 一块砖 石上。 ——高 尔斯华 绥 55、今天的法律未必明天仍是法律。 ——罗·伯顿
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特

石墨烯在电子器件中的应用简介PPT课件

石墨烯在电子器件中的应用简介PPT课件

石墨烯纳米带场效应管
设计示意图
AFM图像
第11页/共15页
石墨烯纳米带场效应管
不同宽度的GNRFET特征对比
第12页
双层石墨烯晶体管——可以使噪声信号降低10倍 双极超导石墨烯晶体管——即使载流子浓度为0也 可以提供一定的超导电流 零带隙、顶栅石墨烯场效应管——可达到很高的饱 和速度,使电子器件速度更快 石墨烯纳米带场效应管——可以使石墨烯器件表现 出半导体性质,室温下开关比可达107
本论文主要内容:
1 简介 2 石墨烯在电子器件中的应用 3 研究进展与应用前景
第1页/共15页
基本结构:
石墨烯是碳原子六 角结构(蜂窝状)紧密 排列的二维单层石墨 层 。自2004年被科学 家发现并首次制备出以 来,石墨烯受到了全世 界科学家的广泛关注。
基本结构示意图
第2页/共15页
基本性质: 1 力学性质 2 热学性质 3 电学性质
第6页/共15页
双层石墨烯晶体管
双层石墨烯晶体管的SFM图像(a)和AFM图像(b)
第7页/共15页
双层石墨烯晶体管
噪声频谱
第8页/共15页
双极超导石墨烯晶体管
(a)双极石墨烯超导晶体管AFM图像 (b)示意图
第9页/共15页
双极超导石墨烯晶体管
石墨烯中的约瑟夫森效应和超导特性
第10页/共15页
石墨烯的零带隙特点限制了高的开关电流比的实现。 如果利用把石墨烯改造成窄带模式的方法引进带隙, 将会导致显著的迁移率下降和制造上的严峻挑战。
第13页/共15页
石墨烯的研究进展
2008年英国超小型晶体管研究获重大进展 2008年IBM 研制出原子尺寸的双层石墨烯晶体管 2009年IBM展示运行速度最快的石墨烯晶体管 2009年超材料石墨烯开发取得重大突破 石墨烯衍生物-石墨烷的制成
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档