线段和角练习题

合集下载

综合算式专项练习题线段与角的计算

综合算式专项练习题线段与角的计算

综合算式专项练习题线段与角的计算综合算式专项练习题——线段与角的计算一、线段计算题1. 已知线段AB的长度为5cm,线段BC的长度为7cm,求线段AC 的长度。

解析:根据线段加法原理,线段AC的长度等于线段AB的长度加上线段BC的长度。

即AC = AB + BC = 5cm + 7cm = 12cm。

2. 在平面直角坐标系中,已知点A(-3, 4)和点B(5, -2),求线段AB的长度。

解析:根据两点间距离公式,线段AB的长度可以计算为√[(x2 -x1)² + (y2 - y1)²]。

带入坐标得到AB = √[(5 - (-3))² + (-2 - 4)²] = √[64 + 36] = √100 = 10。

二、角计算题1. 已知一条线段DE,角BED为90°,角AEB为120°,求角DEB的度数。

解析:根据角的和为180°,∠DEB = 180° - ∠BED - ∠AEB = 180° - 90° - 120° = -30°。

2. 已知∠ABC = 30°,∠BCD = 120°,求∠ABD的度数。

解析:根据角的外角性质,∠ABD = ∠BCD - ∠ABC = 120° - 30° = 90°。

三、混合算式题1. 一条线段的长度为9cm,截取其中的1/4作为新线段的长度,再将新线段平均分成3段,求每段的长度。

解析:新线段的长度为9cm * (1/4) = 9cm * 0.25 = 2.25cm。

将新线段平均分成3段,则每段的长度为2.25cm / 3 = 0.75cm。

2. 若一物体从点A开始沿直线运动,经过8秒后到达点B,然后还需经过5秒才能到达点C,求从A到C的总时间。

解析:从A到B的时间已知为8秒,从B到C的时间已知为5秒。

四年级数学线与角的练习题

四年级数学线与角的练习题

四年级数学线与角的练习题1. 线的练习题题目一:请你画出下面的线段。

a) AB,长度为3个单位。

b) CD,长度为5个单位。

c) EF,长度为7个单位。

d) GH,长度为10个单位。

题目二:请你判断下面的陈述是否正确。

a) 两条平行线永远不会相交。

b) 两条垂直线永远不会相交。

c) 两条相交线的交点称为角。

题目三:请你判断下面的线段是否平行。

a) AB与CDb) EF与GHc) IJ与KL题目四:请你判断下面的线段是否垂直。

a) AB与CDb) EF与GHc) IJ与KL2. 角的练习题题目一:请你判断下面的陈述是否正确。

a) 直角的度数为90°。

b) 扇形的度数为180°。

c) 钝角的度数大于90°。

题目二:请你根据度数判断下面的角是锐角、直角还是钝角。

a) 45°b) 90°c) 120°题目三:请你判断下面的角是否为相邻角。

a) ∠ABC和∠BCDb) ∠EFG和∠GHIc) ∠JKL和∠KLJ题目四:请你判断下面的角是否为对顶角。

a) ∠ABC和∠CDEb) ∠FGH和∠IJKc) ∠LMN和∠NOP3. 综合练习题题目一:请你判断下面的陈述是否正确。

a) 形成一个直线的两个相邻角的度数之和为180°。

b) 相交线上的相邻角是否总是相等。

c) 两条相交且垂直的线段形成的角为直角。

题目二:请你回答问题。

a) 如果两条线段的长度相等,它们一定平行吗?为什么?b) 如果两条线段的长度相等,它们一定垂直吗?为什么?题目三:请你将下面的角按照大小顺序排列。

∠ABC,∠DEF,∠GHI,∠JKL,∠MNO题目四:请你判断下面的线段是否平行或垂直。

a) AB与CDb) EF与GHc) IJ与KLd) MN与OP结束语:以上是四年级数学线与角的练习题,通过完成这些题目,你可以巩固你对线段和角的理解。

希望你能认真思考每个题目,并仔细完成练习。

小学数学线段和角的练习题

小学数学线段和角的练习题

小学数学线段和角的练习题一、线段练习题1. 在一张纸上,画一条长为5厘米的线段AB。

将线段AB分成两段,使其中一段的长度为3厘米,找出另一段的长度。

2. 画一条长为8厘米的线段CD,将线段CD平分为三等分,找出每一段的长度。

3. 画一条长为6厘米的线段EF,将线段EF分成四段,其中有一段的长度为2厘米,找出其他三段的长度。

4. 在一张纸上,画一条长为10厘米的线段GH。

将线段GH分成五段,且其中有一段的长度为4厘米,找出其他四段的长度。

二、角的练习题1. 画一个顶点为O的角,使其大小为40°。

将这个角平分为两个相等的角,找出每个角的大小。

2. 画一个顶点为P的角,使其大小为80°。

将这个角划分为四个相等的角,找出每个角的大小。

3. 画一个顶点为Q的角,使其大小为60°。

将这个角分成三段,找出每一段的大小。

4. 画一个顶点为R的角,使其大小为120°。

将这个角平分为六个相等的角,找出每个角的大小。

三、综合练习题1. 在一张纸上,画一条长为7厘米的线段AB。

再画一个顶点为A的角,使其大小为50°。

将线段AB和角A划分为三段,找出每一段的长度和每个角的大小。

2. 画一个顶点为O的角,使其大小为30°。

将这个角平分为四个相等的角,再将每个相等的角分为五段,找出每一段的大小。

3. 在一张纸上,画一条长为12厘米的线段CD。

再画一个顶点为C的角,使其大小为70°。

将线段CD和角C分成四段,找出每一段的长度和每个角的大小。

4. 画一个顶点为P的角,使其大小为140°。

将这个角划分为五个相等的角,再将每个相等的角分为三段,找出每一段的大小和每个角的大小。

以上是小学数学线段和角的练习题,通过解答这些题目可以加深对线段和角的理解,并提升数学应用能力。

希望能对你的学习有所帮助!。

人教版小学数学二年级上册《线段及角计数的技巧》练习试题附答案

人教版小学数学二年级上册《线段及角计数的技巧》练习试题附答案

方法技能分类评价5.线段及角计数的技巧一、仔细推敲,选一选。

(每小题7分,共28分)1.左图一共有()条线段。

①10②8③7 2.时针与分针成钝角的是()。

①7时②9时③12时3.如图,连接两个点画线段,一共能画()条线段。

①8 ②9 ③104.下图所标的4个角中,有()个角是钝角。

①3 ②2③1二、算一算,各有多少个角?(每空1分,共13分)1.()+()=()(个)2.()+()+()=()(个)3.()+()+()+()=()(个)我发现:数角时,先从单个的角数起,再数由2个、3个……单个的角组成的角,最后把这些角的个数()起来。

三、数一数,填一填。

(每空2分,共24分)()个锐角()个锐角()个锐角()个钝角()个钝角()个钝角()个直角()个直角()个直角()条线段()条线段()条线段四、动手操作,我能行。

(共35分)1.先量出下面这条线段的长度,再在下面画一条比它短2厘米的线段。

(11分)()厘米2.一块三角形纸板,切去1个角,还剩几个角?画线表示。

(12分)还剩()个角还剩()个角3.按要求在下面的平行四边形纸中剪一刀。

(画线表示要剪的位置)。

(12分)答案一、1.③【点拨】一共有4+2+1=7(条)线段。

2.①【点拨】7时,分针指向12,时针指向7,时针和分针形成的角比直角大,是钝角;9时,分针指向12,时针指向9,时针和分针形成的角是直角;12时,分针和时针都指向12。

3.③【点拨】一共能画4+3+2+1=10(条)线段。

4.②【点拨】角1和角2比直角大,是钝角;角3比直角小,是锐角;角4是直角,所以一共有2个钝角。

二、1.2+1=32.3+2+1=63.4+3+2+1=10加【点拨】数角时,先从单个的角数起,再数组合的角,最后把这些角的个数加起来,就是最后角的总个数。

三、11262005056 6【点拨】数角的个数或线段的条数时,要按照一定的顺序来数,做到不重复、不遗漏。

四、1.5【点拨】用刻度尺测量线段时,将尺子的0刻度对齐线段的一端,看看线段另一端对着几,就是几厘米。

线段与角度练习题

线段与角度练习题

线段与角度练习题一、线段练习题1. 在直角坐标系中,已知点A(-2, 3)和B(4, -1),求线段AB的长度。

解析:根据两点之间的距离公式,设AB的长度为d,有:d = √[(x2-x1)² + (y2-y1)²]= √[(4-(-2))² + (-1-3)²]= √[6² + (-4)²]= √[36 + 16]= √52= 2√13所以线段AB的长度为2√13。

2. 在平面内,已知线段CD的中点为E,且CE = 2m,DE = 4m。

求线段CD的长度。

解析:由线段中点定理得:CE² + DE² = CD²代入已知条件:2² + 4² = CD²4 + 16 = CD²20 = CD²CD = √20 = 2√5所以线段CD的长度为2√5。

二、角度练习题1. 已知角A的度数为30°,角A的补角的度数为多少?解析:角A的补角为90°减去角A的度数:补角度数 = 90° - 30° = 60°所以角A的补角的度数为60°。

2. 已知角B的度数为60°,角B的余角的度数为多少?解析:角B的余角为90°减去角B的度数:余角度数 = 90° - 60° = 30°所以角B的余角的度数为30°。

3. 在平面内,已知角C的度数为45°,角C的补角的度数为多少?解析:角C的补角为90°减去角C的度数:补角度数 = 90° - 45° = 45°所以角C的补角的度数为45°。

4. 在平面内,已知角D为直角,求角D的补角和余角的度数。

解析:直角的度数为90°,所以角D的补角为90° - 90° = 0°(零度)。

人教版七年级上数学几何初步--线段与角的经典题(含答案)

人教版七年级上数学几何初步--线段与角的经典题(含答案)

几何初步--线段与角的经典题一.解答题(共45小题)1.如图,已知线段AB(1)请用尺规按下列要求作图:①延长线段AB到C,使BC=AB,②延长线段BA到D,使AD=AC(不写画法,当要保留画图痕迹)(2)请直接回答线段BD与线段AC长度之间的大小关系(3)如果AB=2cm,请求出线段BD和CD的长度.2.已知线段MN=3cm,在线段MN上取一点P,使PM=PN;延长线段MN到点A,使AN=MN;延长线段NM到点B,使BN=3BM.(1)根据题意,画出图形;(2)求线段AB的长;(3)试说明点P是哪些线段的中点.3.如图(1),线段上有3个点时,线段共有3 条;如图(2)线段上有4个点时,线段共有6条;如图(3)线段上有5个点时,线段共有10条.(1)当线段上有6个点时,线段共有条;(2)当线段上有n个点时,线段共有条;(用n的代数式表示)(3)当n=100时,线段共有条.4.已知,如图B,C两点把线段AD分成3:5:4三部分,M为AD的中点,BM=9cm,求CM和AD的长5.如图,已知线段AB=16 cm,点M在AB上,AM:BM=1:3,P、Q分别以AM,AB的中点,求PQ的值.6.在数轴上点A表示的数是8,B是数轴上一点,且AB=12,动点P从点A出发,以每秒6个单位长度的速度沿数轴向左运动,设运动时间为t(t>0)秒.(1)①写出数轴上点B表示的数,②写出点P表示的数(用含t的代数式表示)(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速前进,若点P,Q同时出发,问点P运动多少秒时追上点Q?(3)在(2)的情况下,若M为AP的中点,N为PB的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请画出图形,并求出线段MN的长..7.已知线段AB,在AB的延长线上取一点C,使BC=2AB,在BA的延长线上取一点D,使DA=AB,取AB中点E,若DE=7.5cm,求DC的长.8.如图,已知线段AB的长为x,延长线段AB至点C,使BC=AB.(1)用含x的代数式表示线段BC的长和AC的长;(2)取线段AC的中点D,若DB=3,求x的值.9.如图,点C是线段AB上一点,点M,N,P分别是线段AC,BC,AB的中点.(1)若AB=12cm,则MN的长度是;(2)若AC=3cm,CP=1cm,求线段PN的长度.10.已知线段AB=6,在直线AB上取一点P,恰好使AP=2PB,点Q为PB的中点,求线段AQ的长.11.如图,延长线段AB到点F,延长线BA到点E,点M、N分别是线段AE、BF 的中点,若AE:AB:BF=1:2:3,且EF=18cm,求线段MN的长.12.如图,线段AC=20cm,BC=3AB,N线段BC的中点,M是线段BN上的一点,且BM:MN=2:3.求线段MN的长度.13.如图,B是线段AD上一动点,沿A→D以2cm/s的速度运动,C是线段BD 的中点,AD=10cm,设点B运动时间为t秒.(1)当t=2时,①AB=cm.②求线段CD的长度.(2)在运动过程中,若AB的中点为E,则EC的长是否变化?若不变,求出EC 的长;若发生变化,请说明理由.14.如图,已知线段AB和CD的公共部分为BD,且BD=AB=CD,线段AB、CD的中点E、F之间距离是20,求AB、CD的长.15.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a cm,其它条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC﹣BC=b cm,M、N分别为AC、BC 的中点,你能猜想MN的长度吗?并说明理由;16.如图所示,点A在线段CB上,AC=AB,点D是线段BC的中点.若CD=3,求线段AD的长.17.(1)观察思考:如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握多少次手?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.18.如图,点A、M、B、N、C在同一直线上顺次排列,点M是线段AB的中点,点N是线段MC的中点,点N在点B的右边.(1)填空:图中共有线段条;(2)若AB=6,MC=7,求线段BN的长;(3)若AB=a,MC=7,将线段BN的长用含a的代数式表示出来.19.定义:若线段上的一个点把这条线段分成1:2的两条线段,则称这个点是这条线段的三等分点.如图1,点C在线段AB上,且AC:CB=2:1,则点C 是线段AB的一个三等分点,显然,一条线段的三等分点有两个.(1)已知:如图2,DE=15cm,点P是DE的三等分点,求DP的长.(2)已知,线段AB=15cm,如图3,点P从点A出发以每秒1cm的速度在射线AB上向点B方向运动;点Q从点B出发,先向点A方向运动,当与点P重合后立马改变方向与点P同向而行且速度始终为每秒2cm,设运动时间为t秒.①若点P点Q同时出发,且当点P与点Q重合时,求t的值.②若点P点Q同时出发,且当点P是线段AQ的三等分点时,求t的值.20.如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).(1)填空:①A、B两点间的距离AB=,线段AB的中点表示的数为;②用含t的代数式表示:t秒后,点P表示的数为;点Q表示的数为.(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;(3)求当t为何值时,PQ=AB;(4)若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.21.已知数轴上有三点A、B、C,其位置如图1所示,数轴上点B表示的数为﹣40,AB=120,AC=2AB(1)图1中点C在数轴上对应的数是(2)如图2,动点P、Q两点同时从C、A出发向右运动,同时动点R从点A向左运动,已知点P的速度是点R的速度的3倍,点Q的速度是点R的速度2倍少5个单位长度/秒,点P在点Q左侧运动时,经过5秒,点P、Q之间的距离与点Q、R之间的距离相等,求动点Q的速度(3)如图3,若T点是A点右侧一点,点T在数轴上所表示的数为n,TB的中点为M,N为TA的4等分点且靠近于T点,若TM=2AN,求n的值.22.如图,线段AB=12,动点P从A出发,以每秒2个单位的速度沿射线AB运动,M为AP的中点.(1)出发多少秒后,PB=2AM?(2)当P在线段AB上运动时,试说明2BM﹣BP为定值.(3)当P在AB延长线上运动时,N为BP的中点,下列两个结论:①MN长度不变;②MA+PN的值不变,选择一个正确的结论,并求出其值.23.如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点.(1)求线段MN的长度;(2)根据第(1)题的计算过程和结果,设AC+BC=a,其他条件不变,求MN的长度;(3)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?25.【新知理解】如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”.(1)线段的中点这条线段的“巧点”;(填“是”或“不是”).(2)若AB=12cm,点C是线段AB的巧点,则AC=cm;【解决问题】(3)如图②,已知AB=12cm.动点P从点A出发,以2cm/s的速度沿AB向点B 匀速移动:点Q从点B出发,以1cm/s的速度沿BA向点A匀速移动,点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s).当t为何值时,A、P、Q三点中其中一点恰好是另外两点为端点的线段的巧点?说明理由26.如图,C是线段AB上一点,AB=20cm,BC=8cm,点P从A出发,以2cm/s 的速度沿AB向右运动,终点为B;点Q从点B出发,以1cm/s的速度沿BA 向左运动,终点为A.已知P、Q同时出发,当其中一点到达终点时,另一点也随之停止运功.设点P运动时间为xs.(1)AC=cm;(2)当x=s时,P、Q重合;(3)是否存在某一时刻,使得C、P、Q这三个点中,有一个点恰为另外两点所连线段的中点?若存在,求出所有满足条件的x的值;若不存在,请说明理由.27.有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,A、B两点之间的距离是90米.甲、乙两机器人分别从A、B两点同时同向出发到终点C,乙机器人始终以50米/分的速度行走,乙行走9分钟到达C点.设两机器人出发时间为t(分钟),当t=3分钟时,甲追上乙.前4分钟甲机器人的速度保持不变,在4≤t≤6分钟时,甲的速度变为另一数值,且甲、乙两机器人之间的距离保持不变.请解答下面问题:(1)B、C两点之间的距离是米.在4≤t≤6分钟时,甲机器人的速度为米/分.(2)求甲机器人前3分钟的速度为多少米/分?(3)求两机器人前6分钟内出发多长时间相距28米?(4)若6分钟后,甲机器人的速度又恢复为原来出发时的速度,直接写出当t >6时,甲、乙两机器人之间的距离S.(用含t的代数式表示)28.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.29.已知∠AOB=130°,∠COD=80°,OM,ON分别是∠AOB和∠COD的平分线.(1)如果OA,OC重合,且OD在∠AOB的内部,如图1,求∠MON的度数;(2)如果将图1中的∠COD绕点O点顺时针旋转n°(0<n<155),如图2,①∠MON与旋转度数n°有怎样的数量关系?说明理由;②当n为多少时,∠MON为直角?(3)如果∠AOB的位置和大小不变,∠COD的边OD的位置不变,改变∠COD 的大小;将图1中的OA绕着O点顺时针旋转m°(0<m<100),如图3,∠MON与旋转度数m°有怎样的数量关系?说明理由.24.以直线AB上一点O为端点作射线OC,使∠BOC=60°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)(1)如图1,若直角三角板DOE的一边OD放在射线OB上,则∠COE=°;(2)如图2,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OE恰好平分∠AOC,请说明OD所在射线是∠BOC的平分线;(3)如图3,将三角板DOE绕点O逆时针转动到某个位置时,若恰好∠COD=∠AOE,求∠BOD的度数?30.已知,O为直线AB上一点,∠DOE=90°.(1)如图1,若∠AOC=130°,OD平分∠AOC.①求∠BOD的度数;②请通过计算说明OE是否平分∠BOC.(2)如图2,若∠BOE:∠AOE=2:7,求∠AOD的度数.31.如图①,已知线段AB=20cm,CD=2cm,线段CD在线段AB上运动,E、F 分别是AC、BD的中点.(1)若AC=4cm,则EF=cm.(2)当线段CD在线段AB上运动时,试判断EF的长度是否发生变化?如果不变请求出EF的长度,如果变化,请说明理由.(3)我们发现角的很多规律和线段一样,如图②已知∠COD在∠AOB内部转动,OE、OF分别平分∠AOC和∠BOD,则∠EOF、∠AOB和∠COD有何关系,请直接写出.32.点O 是直线AB上一点,∠COD 是直角,OE平分∠BOC.(1)①如图1,若∠DOE=25°,求∠AOC 的度数;②如图2,若∠DOE=α,直接写出∠AOC的度数(用含α的式子表示);(2)将图1中的∠COD 绕点O按顺时针方向旋转至图 2 所示位置.探究∠DOE 与∠AOC 的度数之间的关系,写出你的结论,并说明理由.33.探究题:如图①,已知线段AB=14cm,点C为AB上的一个动点,点D、E 分别是AC和BC的中点.(1)若点C恰好是AB中点,则DE=cm;(2)若AC=4cm,求DE的长;(3)试利用“字母代替数”的方法,设AC=a cm请说明不论a取何值(a不超过14cm),DE的长不变;(4)知识迁移:如图②,已知∠AOB=120°,过角的内部任一点C画射线OC,若OD、OE分别平分∠AOC和∠BOC,试说明∠DOE=60°与射线OC的位置无关.34.如图①,∠AOB=∠COD=90°,OM平分∠AOC,ON平分∠BOD.(1)已知∠BOC=20°,且∠AOD小于平角,求∠MON的度数;(2)若(1)中∠BOC=α,其它条件不变,求∠MON的度数;(3)如图②,若∠BOC=α,且∠AOD大于平角,其它条件不变,求∠MON的度数.35.已知O是直线AB上的一点,∠COD是直角,OE平分∠BOC.初步尝试:(1)如图1,若∠AOC=30°.求∠DOE的度数;类比探究:(2)在图1中,若∠AOC=a,直接写出∠DOE的度数(用含a的代数式表示);解决问题:(3)如图2时,O是直线AB上的一点,∠COD是直角,OE平分∠BOC,探究∠AOC和∠DOE的度数之间的数量关系.直接写出你的结论.36.如图,∠AOB=100°,∠AOC为锐角,且OM平分∠BOC,ON平分∠AOC.(1)如果∠AOC=40°,求∠MON的度数;(2)如果∠AOC为任意一个锐角,你能求出∠MON的度数吗?若能,请求出来;若不能,说明为什么?37.已知:∠AOD=160°,OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.则∠MON的大小为;(2)如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD.求∠MON的大小;(3)在(2)的条件下,若∠AOB=10°,当∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒时,∠AOM:∠DON=2:3,求t的值.38.如图,∠AOB=20°,∠AOE=110°,OB平分∠AOC,OD平分∠AOE.(1)求∠COD的度数;(2)若以点O为观察中心,OA为正东方向,求射线OD的方位角;(3)若∠AOE的两边OA,OE分别以每秒5°和每秒3°的速度,同时绕点O按逆时针方向旋转,当OA回到原处时,OA,OE停止运动,则经过多少秒时,∠AOE=30°?39.如图,直角三角板的直角顶点O在直线AB上,OC,OD是三角板的两条直角边,OE平分∠AOD.(1)若∠COE=20°,则∠BOD=;若∠COE=α,则∠BOD=(用含α的代数式表示)(2)当三角板绕O逆时针旋转到图2的位置时,其它条件不变,试猜测∠COE 与∠BOD之间有怎样的数量关系?并说明理由.40.如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=110°.将一直角三角板的直角顶点放在点O处(∠OMN=30°),一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.求∠BON的度数.(2)将图1中的三角板绕点O以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为(直接写出结果).(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究∠AOM与∠NOC的数量关系,并说明理由.41.阅读解答过程,回答问题:如图,OC在∠AOB内,∠AOB和∠COD都是直角,且∠BOC=30°,求∠AOD的度数.解:过O作射线OM,使点M,O,A在同一直线上,因为∠MOD+∠BOD=90°,∠BOC+∠BOD=90°,所以∠BOC=∠MOD,所以∠AOD=180°﹣∠MOD=180°﹣∠BOC=180°﹣30°=150°.(1)如果∠BOC=60°,那么∠AOD等于多少度?如果∠BOC=n°,那么∠AOD等于多少度?(2)如果∠AOB=∠DOC=x°,∠AOD=y°,求∠BOC的度数.42.已知:∠AOD=160°,OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.当OB绕点O在∠AOD内旋转时,求∠MON的大小;(2)如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD.当∠BOC绕点O 在∠AOD内旋转时求∠MON的大小;(3)在(2)的条件下,若∠AOB=10°,当∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒时,∠AOM:∠DON=2:3,求t的值.43.如图(a),将两块直角三角尺的直角顶点C叠放在一起.(1)若∠DCE=25°,∠ACB=;若∠ACB=130°,则∠DCE=;(2)猜想∠ACB与∠DCE大大小有何特殊关系,并说明理由;(3)如图(b),若是两个同样的三角尺60°锐角的顶点A重合在一起,则∠DAB 与∠CAE的大小有何关系,请说明理由;(4)已知∠AOB=α,∠COD=β(α、β都是锐角),如图(c),若把它们的顶点O 重合在一起,则∠AOD与∠BOC的大小有何关系,请说明理由.44.如图,两条直线AB、CD相交于点O,且∠AOC=∠AOD,射线OM(与射线OB重合)绕O点逆时针方向旋转,速度为15°/s,射线ON(与射线OD重合)绕O点顺时针方向旋转,速度为12°/s.两射线OM、ON同时运动,运动时间为t秒.(本题出现的角均指小于平角的角)(1)图中一定有个直角;当t=2时,∠MON的度数为,∠BON 的度数为,∠MOC的度数为.(2)当0<t<12时,若∠AOM=3∠AON﹣60°,试求出t的值;(3)当0<t<6时,探究的值,在t满足怎样的条件是定值,在t满足怎样的条件不是定值.45.已知,如图(1),∠AOB和∠COD共顶点O,OB和OD重合,OM为∠AOD 的平分线,ON为∠BOC的平分线,∠AOB=α,∠COD=β(1)如图(2),若α=90°,β=30°,则,∠MON=(2)若将∠COD绕O逆时针旋转至图(3)的位置,求∠MON(用α、β表示)(3)如图(4),若α=2β,∠COD绕O逆时针旋转,转速为3°/秒,∠AOB绕O 同时逆时针旋转,转速为1°/秒(转到OC与OA共线时停止运动),且OE平分∠BOD,请判断∠COE与∠AOD的数量关系并说明理由.线段与角的经典题一.解答题(共45小题)1.【解答】解:(1)如图所示,BC、AD即为所求;(2)由图可得,BD>AC;(3)∵AB=2cm,∴AC=2AB=4cm,∴AD=4cm,∴BD=4+2=6cm,∴CD=2AD=8cm.2.【解答】解:(1)如图所示:(2)∵MN=3cm,AN=MN,∴AN=1.5cm,∵BN=3BM,∴BM=MN=1.5cm,∴AB=BM+MN+AN=6cm;(3)∵点P在线段MN上,PM=PN,∴点P是线段MN 的中点,∵BM=AN=1.5cm,PM=PN=1.5cm,∴BP=AP=3cm,∴点P是线段AB 的中点.3.【解答】解:(1)当线段上有6个点时,线段共有=15条;(2)当线段(3)当n=100时,线段共有=4950上有n个点时,线段共有条;条;故答案为:15,,4950.4.【解答】解:设AB=3xcm,BC=5xcm,CD=4xcm,∴AD=AB+BC+CD=12xcm,∵M是AD的中点,∴AM=MD=AD=6xcm,∴BM=AM﹣AB=6x﹣3x=3xcm,∵BM=9 cm,∴3x=9,解得,x=3,∴CM=MD﹣CD=6x﹣4x=2x=2×3=6(cm),AD=12x=12×3=36(cm).5.【解答】解:∵AB=16cm,AM:BM=1:3,∴AM=4cm.BM=12cm,∵P,Q 分别为AM,AB的中点,∴AP=AM=2cm,AQ=AB=8cm,∴PQ=AQ﹣AP=6cm.6.【解答】解:(1)①8﹣12=﹣4,8=12=20,∴数轴上点B表示的数﹣4或20,②动点P从点A出发,以每秒6个单位长度的速度沿数轴向左运动,则点P表示的数8﹣6t;(2)分两种情况:当点B在点A的左侧时,点P运动追上点Q,即8﹣6t=﹣4﹣4t,解得t=6;当点B在点A的右侧时,点P运动追上点Q,即8﹣6t=20﹣4t,解得t=﹣6(舍去),∴点P运动6秒追上点Q;(3)∵M为AP的中点,∴M点表示的数为(8+8﹣6t)÷2=8﹣3t,∵N为PB的中点,∴N点表示的数为(﹣4+8﹣6t)÷2=2﹣3t,∴MN=8﹣3t﹣(2﹣3t)=6,∴点P在运动的过程中,MN的长度不会发生变化.7.【解答】解:∵E是AB中点,∴AE=EB,设AE=x,则AB=2x,又∵DA=AB,∴DA=2x,∵BC=2AB,∴BC=4x,∵DE=7.5cm,∴3x=7.5,解得:x=2.5,∴DC=DA+AB+BC=2x+2x+4x=8x=8×2.5=20(cm).8.【解答】解:(1)∵AB=x,BC=AB,∴BC=x,∵AC=AB+BC,∴AC=x+x= x.(2)∵AD=DC=AC,AC=x,∴DC=x,∵DB=3,BC=x,∵DB=DC﹣BC,∴3=x﹣x,∴x=12.9.【解答】解:(1)∵M、N分别是AC、BC的中点,∴MC=AC,CN=BC,∴MN=MC+CN=AC+BC=(AC+BC)=AB=6cm.故答案为6cm;(2)∵AC=3cm,CP=1cm,∴AP=AC+CP=4cm,∵P是线段AB的中点,∴AB=2AP=8cm.∴CB=AB ﹣AC=5cm,∵N是线段CB的中点,CN=CB=2.5cm,∴PN=CN﹣CP=1.5cm.10.【解答】解:如图1所示,∵AP=2PB,AB=6,∴PB=AB=×6=2,AP=AB=×6=4;∵点Q为PB的中点,∴PQ=QB=PB=×2=1;∴AQ=AP+PQ=4+1=5.如图2所示,∵AP=2PB,AB=6,∴AB=BP=6,∵点Q为PB的中点,∴BQ=3,∴AQ=AB+BQ=6+3=9.故AQ的长度为5或9.11.【解答】解:设EA=xcm,则AB=2xcm,BF=3xcm,EF=6xcm.∵点M,N分别是线段EA,BF的中点,∴EM=MA=xcm,BN=NF=xcm.∵AB=2xcm,∴MN=MA+AB+BN=4xcm.∵EF=18cm,∴6x=18,解得:x=3,∴MN=4x=12cm.12.【解答】解:∵AC=20cm,BC=3AB,∴BC=×20=15cm,∴AB=5cm,∵N为BC的中点,∴BN=CN=7.5cm,∵BM:MN=2:3,∴MN=×7.5=4.5cm.13.【解答】解:(1)①∵B是线段AD上一动点,沿A→D以2cm/s的速度运动,∴当t=2时,AB=2×2=4cm.故答案为:4;②∵AD=10cm,AB=4cm,∴BD=10﹣4=6cm,∵C是线段BD的中点,∴CD=BD=×6=3cm;(2)不变;∵AB 中点为E,C是线段BD的中点,∴EB=AB,BC=BD,∴EC=EB+BC=(AB+BD)=AD=×10=5cm.14.【解答】解:设BD=x,则AB=3x,CD=4x.∵点E、点F分别为AB、CD的中点,∴AE=AB=1.5x,CF=CD=2x,AC=AB+CD﹣BD=3x+4x﹣x=6x.∴EF=AC﹣AE﹣CF=6x﹣1.5x﹣2x=2.5x.∵EF=20,∴2.5x=20,解得:x=8.∴AB=3x=24,CD=4x=32.15.【解答】解:(1)∵点M、N分别是AC、BC的中点,AC=8cm,CB=6cm,∴CM=AC=4cm,CN=BC=3cm,∴MN=CM+CN=4+3=7cm,即线段MN的长是7cm;(2)∵点M、N分别是AC、BC的中点,AC+CB=acm,∴CM=AC,CN= BC,∴MN=CM+CN=AC+BC=(AC+BC)=acm,即线段MN的长是acm;(3)如图:MN=b,理由是:∵点M、N分别是AC、BC的中点,AC﹣CB=bcm,∴CM=AC,CN=BC,∴MN=CM ﹣CN=AC﹣BC=(AC﹣BC)=bcm,即线段MN的长是bcm.16.【解答】解:∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵AC=AB,AC+AB=CB,∴AC=2,AB=4,∴AD=CD﹣AC=3﹣2=1,即线段AD的长是1.17.【解答】解:(1)∵以点A为左端点向右的线段有:线段AB、AC、AD,以点C为左端点向右的线段有线段CD、CB,以点D为左端点的线段有线段DB,∴共有3+2+1=6条线段;(2)设线段上有m个点,该线段上共有线段x条,则x=(m﹣1)+(m﹣2)+(m﹣3)+…+3+2+1,∴倒序排列有x=1+2+3+…+(m﹣3)+(m﹣2)+(m﹣1),∴2x=mm+m+…+m=m(m﹣1),∴x=m(m ﹣1);(3)把45位同学看作直线上的45个点,每两位同学之间的一握手看作为一条线段,直线上45个点所构成的线段条数就等于握手的次数,因此一共要进行×45×(45﹣1)=990次握手.18.【解答】解:(1)图中共有线段1+2+3+4=10条;故答案为:10;(2)∵AB=6,点M是线段AB的中点,∴BM=AB=3,∵MC=7,点N是线段MC的中点,∴NC=MC=3.5,BC=MC﹣BM=7﹣3=4,∴BN=BC﹣NC=4﹣3.5=0.5;(3)∵AB=a,点M是线段AB的中点,∴BM=AB=a,∵MC=7,点N是线段MC的中点,∴NC=MC=3.5,BC=MC﹣BM=7﹣a,∴BN=BC﹣NC=7﹣a﹣3.5=3.5﹣a.19.【解答】解:(1)当DP=2PE时,DP=DE=10cm;当2DP=PE时,DP=DE=5cm.综(2)①根据题意得:(1+2)t=15,解得:t=5.答:上所述:DP的长为5cm或10cm.当t=5秒时,点P与点Q重合.②(I)点P、Q重合前:当2AP=PQ时,有t+2t+2t=15,解得:t=3;当AP=2PQ时,有t+t+2t=15,解得:t=;(II)点P、Q重合后,当AP=2PQ时,有t=2(t﹣5),解得:t=10;当2AP=PQ时,有2t=(t﹣5),解得:t=﹣5(不合题意,舍去).综上所述:当t=3秒、秒或10秒时,点P是线段AQ的三等分点.20.【解答】解:(1)①10,3;②﹣2+3t,8﹣2t;(2)∵当P、Q两点相遇时,P、Q表示的数相等∴﹣2+3t=8﹣2t,解得:t=2,∴当t=2时,P、Q相遇,此时,﹣2+3t=﹣2+3×2=4,∴相遇点表示的数为4;(3)∵t秒后,点P表示的数﹣2+3t,点Q表示的数为8﹣2t,∴PQ=|(﹣2+3t)﹣(8﹣2t)|=|5t﹣10|,又PQ=AB=×10=5,∴|5t﹣10|=5,解得:t=1或3,∴当:t=1或3时,PQ=AB;(4)∵点M表示的数为=﹣2,点N表示的数为=+3,∴MN=|(﹣2)﹣(+3)|=|﹣2﹣﹣3|=5.21.【解答】解:(1)∵AB=120,点B表示的数为﹣40,∴点A表示的数为80.∵AC=2AB,∴点C表示的数为80﹣120×2=﹣160.(2)设点R的速度为x个单位长度/秒,则点P的速度为3x个单位长度/秒,点Q的速度为(2x﹣5)个单位长度/秒,当点P在点Q左边时,P、R相遇时QP=QR,5(3x+x)=AC=240,解得x=12,2x﹣5=24﹣5=19,∴点Q的速度为19个单位长度/秒,(3)设AT=y,∵TB的中点为M,∴TM=TB=(120+y)=60+y,∵N为TA的4等分点且靠近于T点,∴AN=y,∵TM=2AN,∴60+y=y,解得x=60,∴n=80+60=140.故答案为:﹣160.22.【解答】解:(1)如图1,由题意得:AP=2t,则PB=12﹣2t,∵M为AP的中点,∴AM=t,由PB=2AM得:12﹣2t=2t,t=3,答:出发3秒后,PB=2AM;(2)如图1,当P在线段AB上运动时,BM=12﹣t,2BM﹣BP=2×(12﹣t)﹣(12﹣2t)=24﹣2t﹣12+2t=12,∴当P在线段AB上运动时,2BM﹣BP为定值12;(3)选①;如图2,由题意得:MA=t,PB=2t﹣12,∵N为BP的中点,∴PN=BP=(2t﹣12)=t﹣6,①MN=PA﹣MA﹣PN=2t﹣t﹣(t﹣6)=6,∴当P在AB延长线上运动时,MN长度不变;所以选项①叙述正确;②MA+PN=t+(t﹣6)=2t﹣6,∴当P在AB延长线上运动时,MA+PN的值会改变.所以选项②叙述不正确.23.【解答】解:(1)∵线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC 的中点,∴CM=AC=5厘米,CN=BC=3厘米,∴MN=CM+CN=8厘米;(2)∵点M,N分别是AC,BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN= AC+BC=a;(3)①当0<t≤5时,C是线段PQ的中点,得10﹣2t=6﹣t,解得t=4;②当5<t≤时,P为线段CQ的中点,2t﹣10=16﹣3t,解得t=;③当<t≤6时,Q为线段PC的中点,6﹣t=3t﹣16,解得t=;④当6<t≤8时,C为线段PQ的中点,2t﹣10=t﹣6,解得t=4(舍),综上所述:t=4或或.24.【解答】解:(1)∵∠BOE=∠COE+∠COB=90°,又∵∠COB=60°,∴∠COE=30°,故答案为:30;(2)∵OE 平分∠AOC,∴∠COE=∠AOE=COA,∵∠EOD=90°,∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,∴∠COD=∠DOB,∴OD所在射线是∠BOC的平分线;(3)设∠COD=x°,则∠AOE=5x°,∵∠DOE=90°,∠BOC=60°,∴6x=30或5x+90﹣x=120∴x=5或7.5,即∠COD=5°或7.5°∴∠BOD=65°或52.5°.25.【解答】解:(1)∵线段的长是线段中线长度的2倍,∴线段的中点是这条线段的“巧点”.故答案为:是;(2)∵AB=12cm,点C是线段AB的巧点,∴AC=12×=4cm或AC=12×=6cm或AC=12×=8cm;故答案为:4或6或8;(3)t秒后,AP=2t,AQ=12﹣t(0≤t≤6)①由题意可知A不可能为P、Q两点的巧点,此情况排除.②当P为A、Q的巧点时,Ⅰ.AP=AQ,即,解得s;Ⅱ.AP=AQ,即,解得s;Ⅲ.AP=AQ,即,解得t=3s;③当Q为A、P的巧点时,Ⅰ.AQ=AP,即,解得s(舍去);Ⅱ.AQ=AP,即,解得t=6s;Ⅲ.AQ=AP,即,解得s.26.【解答】解:(1)AC=AB﹣BC=20﹣8=12(cm),(2)20÷(2+1)=(s).故当x=s时,P、Q重合;(3)存在,①C是线段PQ的中点,得2x+20﹣x=2×12,解得x=4;②P为线段CQ的中点,得12+20﹣x=2×2x,解得x=;③Q为线段PC的中点,得2x+10=2×(20﹣x),解得x=7;综上所述:x=4或x=或x=7.故答案为:12;.27.【解答】解:(1)∵乙机器人从B点出发,以50米/分的速度行走9分钟到达C点,∴B、C两点之间的距离是50×9=450(米).∵在4≤t≤6分钟时,甲、乙两机器人之间的距离保持不变,∴在4≤t≤6分钟时,甲机器人的速度为50米/分.(2)设甲机器人前3分钟的速度为x米/分,则3x﹣50×3=90,解得x=80.答:甲机器人前3分钟的速度为80米/分.(3)当t=4时,两人相距80﹣50=30米,且4≤t≤6时,两人相距总是30米.分三种情况说明:①甲在AB间时,90﹣80t+50t=28,解得t=>,此情形不存在.②甲乙均在B右侧,且甲在乙后时,90+50t﹣80t=28,解得t=.③甲乙均在B右侧,且乙在甲后时,80t﹣90﹣50t=28,解得t=.答:两机器人前6分钟内出发分钟或分钟相距28米.(4)S=.故答案为:450,50;28.【解答】解:∵∠AOB=90°,OC平分∠AOB,∴∠COB=∠AOB=45°,∵∠COD=90°,∴∠BOD=45°,∵∠BOD=3∠DOE,∴∠DOE=15°,∴∠BOE=30°,∴∠COE=∠COB+∠BOE=45°+30°=75°.29.【解答】解:(1)如图1,∵OM平分∠AOB,∠AOB=130°,∴∠AOM=∠AOB=×130°=65°,∵ON平分∠COD,∠COD=80°,∴∠AON=∠COD=×80°=40°,∴∠MON=∠AOM﹣∠AON=65°﹣40°=25°;(2)①如图2中,∠MON=∠COM﹣∠NOC=65°+n°﹣40°=n°+25°.②当∠MON=90°时,n°+25°=90°,∴n=65°.(3)如图3中,∠MON=∠COM﹣∠CON=65°+m°﹣(80°+m°)=m°+25°.30.【解答】解:(1)①∵OD平分∠AOC,∠AOC=130°,∴∠AOD=∠DOC=∠AOC=×130°=65°,∴∠BOD=180°﹣∠AOD=180°﹣65°=115°;②∵∠DOE=90°,又∵∠DOC=65°,∴∠COE=∠DOE﹣∠DOC=90°﹣65°=25°,∵∠BOD=115°,∠DOE=90°,∴∠BOE=∠BOD﹣∠DOE=115°﹣90°=25°,∴∠COE=∠BOE,即OE平分∠BOC.(2)若∠BOE:∠AOE=2:7,设∠BOE=2x,则∠AOE=7x,又∵∠BOE+∠AOE=180°,∴2x+7x=180°,∴x=20°,∠BOE=2x=40°,∵∠DOE=90°,∴∠AOD=90°﹣40°=50°.31.【解答】解:(1)∵AB=20cm,CD=2cm,AC=4cm,∴DB=14cm,∵E、F分别是AC、BD的中点,∴CE=AC=2cm,DF=DB=7cm,∴EF=2+2+7=11cm,故答案为:11;(2)EF的长度不变.∵E、F分别是AC、BD的中点,∴EC= AC,DF=DB,∴EF=EC+CD+DF=AC+CD+DB===,∵AB=20cm,CD=2cm,∴EF==11cm;(3).理由:∵OE、OF分别平分∠AOC和∠BOD,∴∠COE=∠AOC,∠DOF=∠BOD,∴∠EOF=∠COE+∠COD+∠DOF=∠AOC+∠COD+∠BOD=(∠AOC+∠BOD)+∠COD=(∠AOB﹣∠COD)+∠COD=(∠AOB+∠COD).故答案为:.32.【解答】解:(1)①∵∠COD=90°,∠DOE=25°,∴∠COE=∠COD﹣∠DOE=90°﹣25°=65°,又∵OE平分∠BOC,∴∠BOC=2∠COE=130°,∴∠AOC=180°﹣∠BOC=180°﹣130°=50°;②∵∠COD=90°,∠DOE=α,∴∠COE=∠COD﹣∠DOE=90°﹣α,又∵OE平分∠BOC,∴∠BOC=2∠COE=180°﹣2α,∴∠AOC=180°﹣∠BOC=180°﹣(180°﹣2α)=2α;(2)∠DOE=∠AOC,理由如下:如图2,∵∠BOC=180°﹣∠AOC,又∵OE平分∠BOC∴∠COE=∠BOC=(180°﹣∠AOC)=90°﹣∠AOC,又∵∠COD=90°,∴∠DOE=90°﹣∠COE=90°﹣(90°﹣∠AOC)=∠AOC.33.【解答】解:(1)∵AB=14cm,点D、E分别是AC和BC的中点,∴DE=DC+EC= AC+BC=AB=7cm故答案为:7;(2)∵AC=4cm,AB=14cm,∴BC=AB﹣AC=10cm,又∵D为AC中点,E为BC中点,∴CD=2cm,CE=5cm,∴DE=CD+CE=7cm;(3)∵AC=acm,∴BC=AB﹣AC=(14﹣a)cm,又∵D为AC 中点,E为BC中点,∴CD=acm,CE=(14﹣a)cm,∴DE=CD+CE=a+(14﹣a)=7cm,∴无论a取何值(不超过14)DE的长不变;(4)设∠AOC=α,∠BOC=120﹣α,∵OD平分∠AOC,OE平分∠BOC,∴∠COD=,∠COE=(120°﹣α),∴∠DOE=∠COD+∠COE=+(120°﹣α)=60°,∴∠DOE=60°,与OC位置无关.34.【解答】解:(1)∵∠AOB=∠COD=90°,∠BOC=20°,∴∠AOC=∠BOD=90°﹣20°=70°.∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠BON=35°,∴∠MON=∠MOC+∠COB+∠BON=35°+20°+35°=90°;(2)∵∠AOB=∠COD=90°,∠BOC=α,∴∠AOC=∠BOD=90°﹣α.∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠BON=45°﹣α,∴∠MON=∠MOC+∠COB+∠BON=45°﹣α+α+45°﹣=90°;(3)∵∠AOB=∠COD=90°,∠BOC=α,∴∠AOC=∠BOD=90°+α.∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠BON=45°+α,∴∠MON=∠MOC﹣∠COB+∠BON=45°+α﹣α+45°+=90°.35.【解答】解:(1)由已知得∠BOC=180°﹣∠AOC=150°,又∠COD是直角,OE 平分∠BOC,∴∠DOE=∠COD﹣∠BOC=90°﹣×150°=15°.(2)由(1)知∠DOE=∠COD﹣∠BOC,∴∠DOE=90°﹣(180°﹣∠AOC)=90°﹣90°+∠AOC=∠AOC=α.(3)∠AOC=2∠DOE.理由如下:∵∠COD是直角,OE 平分∠BOC,∴∠COE=∠BOE,∠COB=2∠COE,∴∠AOC=180°﹣∠COB=180°﹣2∠COE=2(90°﹣∠COE),∵∠DOE=90°﹣∠COE,∴∠AOC=2∠DOE.36.【解答】解:(1)因为OM平分∠BOC,ON平分∠AOC所以∠MOC=∠BOC,∠NOC=∠AOC 所以∠MON=∠MOC﹣∠NOC=(∠BOC﹣∠AOC)=(100°+40°﹣40°)=50°.(2)可以.同理,∠MON=∠MOC﹣∠NOC=(∠BOC﹣∠AOC)=(∠BOA+∠AOC﹣∠AOC)=∠BOA=50°.37.【解答】解:(1)因为∠AOD=160°OM平分∠AOB,ON平分∠BOD,所以∠MOB=∠AOB,∠BON=∠BOD,即∠MON=∠MOB+∠BON=∠AOB+∠BOD=(∠AOB+∠BOD)=∠AOD=80°,故答案为:80°;(2)因为OM平分∠AOC,ON平分∠BOD,所以∠MOC=∠AOC,∠BON=∠BOD,即∠MON=∠MOC+∠BON﹣∠BOC=∠AOC+∠BOD﹣∠BOC=(∠AOC+∠BOD)﹣∠BOC=(∠AOD+∠BOC)﹣∠BOC=×180°﹣20°=70°;(3)∵射线OB从OA 逆时针以2°每秒的旋转t秒,∠COB=20°,∴∠AOC=∠AOB+∠COB=2t°+10°+20°=2t°+30°.∵射线OM平分∠AOC,∴∠AOM=∠AOC=t°+15°.∵∠BOD=∠AOD﹣∠BOA,∠AOD=160°,∴∠BOD=150°﹣2t.∵射线ON平分∠BOD,∴∠DON=∠BOD=75°﹣t°.又∵∠AOM:∠DON=2:3,∴(t+15):(75﹣t)=2:3,解得t=21.38.【解答】解:(1)因为OB平分∠AOC,∠AOB=20°,所以∠AOC=40°,因为OD平分∠AOE,∠AOE=110°,所以∠AOD=55°,因为∠COD=∠AOD﹣∠AOC,所以∠COD=55°﹣40°=15°;(2)因为90°﹣55°=35°,所以射线OD的方位角是北偏东35°;(3)设经过x秒时,∠AOE=30°,①如图1所示,当OA未追上OE时,依题意,得5x﹣110=3x﹣30,解得,x=40;②如图2所示,当OA超过OE时,依题意,得5x﹣110=3x﹣305x﹣110=3x+30,解得,x=70.39.【解答】解:(1)若∠COE=20°,∵∠COD=90°,∴∠EOD=90°﹣20°=70°,∵OE平分∠AOD,∴∠AOD=2∠EOD=140°,∴∠BOD=180°﹣140°=40°;若∠COE=α,∴∠EOD=90﹣α,∵OE平分∠AOD,∴∠AOD=2∠EOD=2(90﹣α)=180﹣2α,∴∠BOD=180°﹣(180﹣2α)=2α;故答案为:40°;2α;(2)如图2,∠BOD=2∠COE,理由是:设∠BOD=β,则∠AOD=180°﹣β,∵OE平分∠AOD,∴∠EOD=∠AOD==90°﹣,∵∠COD=90°,∴∠COE=90°﹣(90°﹣)=,即∠BOD=2∠COE.40.【解答】解:(1)如图2,∵OM平分∠BOC,∴∠MOC=∠MOB,又∵∠BOC=110°,∴∠MOB=55°,∵∠MON=90°,∴∠BON=∠MON﹣∠MOB=35°;(2)分两种情况:①如图2,∵∠BOC=110°∴∠AOC=70°,当直线ON恰好平分锐角∠AOC 时,∠AOD=∠COD=35°,∴∠BON=35°,∠BOM=55°,即逆时针旋转的角度为55°,由题意得,5t=55°解得t=11(s);②如图3,当NO平分∠AOC时,∠NOA=35°,∴∠AOM=55°,即逆时针旋转的角度为:180°+55°=235°,由题意得,5t=235°,解得t=47(s),综上所述,t=11s或47s时,直线ON恰好平分锐角∠AOC;(3)∠AOM﹣∠NOC=20°.理由:∵∠MON=90°,∠AOC=70°,故答案为:11或47;∴∠AOM=90°﹣∠AON,∠NOC=70°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(70°﹣∠AON)=20°,∴∠AOM与∠NOC的数量关系为:∠AOM﹣∠NOC=20°.41.【解答】解:(1)∵∠AOB=90°,∠BOC=60°.∴∠AOC=∠AOB﹣∠BOC=30°.∴∠AOD=∠AOC+∠COD=30°+90°=120°.若∠BOC=n°,则∠AOC=∠AOB﹣∠BOC=(90﹣n)°.∴∠AOD=∠AOC+∠COD=(90﹣n)°+90°=(180﹣n)°.(2)∵∠AOB=x°,∠AOD=y°.∴∠BOD=∠AOD﹣∠AOB=(y﹣x)°.∴∠BOC=∠DOC ﹣∠BOD=x°﹣(y﹣x)°=(2x﹣y)°.42.【解答】解:(1)因为∠AOD=160°OM平分∠AOB,ON平分∠BOD所以∠MOB=∠AOB,∠BON=∠BOD即∠MON=∠MOB+∠BON=∠AOB+∠BOD=(∠AOB+∠BOD)=∠AOD=80°;(2)因为OM平分∠AOC,ON平分∠BOD所以∠MOC=∠AOC,∠BON=∠BOD即∠MON=∠MOC+∠BON﹣∠BOC=∠AOC+∠BOD﹣∠BOC=(∠AOC+∠BOD)﹣∠BOC=(∠AOD+∠BOC)﹣∠BOC=×180°﹣20°=70°;(3)∵射线OB从OA逆时针以2°每秒的旋转t秒,∠COB=20°,∴∠AOC=∠AOB+∠COB=2t°+10°+20°=2t°+30°.∵射线OM平分∠AOC,∴∠AOM=∠AOC=t°+15°.∵∠BOD=∠AOD﹣∠BOA,∠AOD=160°,∴∠BOD=150°﹣2t.∵射线ON平分∠BOD,∴∠DON=∠BOD=75°﹣t°.又∵∠AOM:∠DON=2:3,∴(t+15):(75﹣t)=2:3,解得t=21.答:t为21秒.43.【解答】解:(1)∵∠BCE=90°,∠DCE=25°,∴∠BCD=∠BCE﹣∠DCE=65°,∵∠ACD=90°,∴∠ACB=∠ACD+∠BCD=90°+65°=155°;∵∠ACB=130°,∠ACD=90°,∴∠BCD=∠ACB﹣∠ACD=130°﹣90°=40°,∵∠BCE=90°,∴∠DCE=∠BCE﹣∠BCD=90°﹣40°=50°,故答案为:155°,50°;(2)∠ACB+∠DCE=180°,理由如下:∵∠ACB=∠ACE+∠DCE+∠DCE,∴∠ACB+∠DCE=∠ACE+∠DCE+∠DCE+∠DCE=∠ACD+∠BCE=180°;(3)∠DAB+∠CAE=120°,理由如下:∵∠DAB=∠DAE+∠CAE+∠CAB,∴∠DAB+∠CAE=∠DAE+∠CAE+∠CAB+∠CAE=∠DAC+∠BAE=120°;(4)∠AOD+∠BOC=α+β,理由如下:∵∠AOD=∠AOC+∠COB+∠BOD,∴∠AOD+∠BOC=∠AOC+∠COB+∠BOD+∠BOC=∠AOB+∠COD=α+β.44.【解答】解:(1)如图所示,∵两条直线AB,CD相交于点O,∠AOC=∠AOD,∴∠AOC=∠AOD=90°,∴∠BOC=∠BOD=90°,∴图中一定有4个直角;当t=2时,∠BOM=30°,∠NON=24°,∴∠MON=30°+90°+24°=144°,∠BON=90°+24°=114°,∠MOC=90°﹣30°=60°;故答案为:4;144°,114°,60°;(2)当ON与OA重合时,t=90÷12=7.5(s),当OM与OA重合时,t=180°÷15=12(s),如图所示,当0<t≤7.5时,∠AON=90°﹣12t°,∠AOM=180°﹣15t°,由∠AOM=3∠AON﹣60°,可得180°﹣15t°=3(90°﹣12t°)﹣60°,解得t=;如图所示,当7.5<t<12时,∠AON=12t°﹣90°,∠AOM=180°﹣15t°,由∠AOM=3∠AON﹣60°,可得180°﹣15t°=3(12t°﹣90°)﹣60°,解得t=10;综上所述,当∠AOM=3∠AON﹣60°时,t的值为s或10s;(3)当∠MON=180°时,∠BOM+∠BOD+∠DON=180°,∴15t°+90°+12t°=180°,解得t=,①如图所示,当0<t<时,∠COM=90°﹣15t°,∠BON=90°+12t°,∠MON=∠BOM+∠BOD+∠DON=15t°+90°+12t°,∴==(不是定值),。

初二数学线段和角度练习题

初二数学线段和角度练习题

初二数学线段和角度练习题1. 直线段练习题(1) 请画出一条长度为5cm的直线段。

(2) 请画出一条长度为8cm的直线段,并在直线段上任意选择一点P。

(3) 在直线段AB上,现在已知A点的坐标是(2, 3),B点的坐标是(7, 1),请问直线段AB的长度是多少?2. 角度练习题(1) 请画出一个直角,并标注其内角、外角和相邻补角。

(2) 请画出一个钝角,并标注其内角、外角和对角。

(3) 请画出一个锐角,并标注其内角、外角和对角。

(4) 角ABC是一个直角,角ABD是一个钝角,角BCD是一个锐角。

请问角A和角D的关系是什么?3. 线段和角度的计算练习题(1) 如果直线段AB的长度是3cm,直线段AC的长度是5cm,直线段AD的长度是7cm,请问直线段BC的长度是多少?(2) 在三角形ABC中,已知∠ABC是一个锐角,∠ACB的度数是30°,边AB的长度是4cm,请问边AC的长度是多少?(3) 在直角三角形ABC中,已知∠BAC是一个直角,边AB的长度是5cm,边AC的长度是12cm,请问边BC的长度是多少?4. 实际问题运用练习题(1) 一辆汽车以每小时60km的速度行驶,行驶5个小时后停下来。

请问汽车总共行驶了多少千米?(2) 一张长方形的长是10cm,宽是6cm,请问长方形的周长是多少厘米?(3) 在一个直角三角形中,一条直角边的长度是3cm,斜边的长度是5cm,请问另一条直角边的长度是多少厘米?通过以上练习题,我们可以巩固对于初二数学中线段和角度的基础知识。

通过练习画线段、计算线段长度,以及练习画角度、确定角度的类型和计算角度的相关问题,我们可以提高自己的数学能力,加深对于数学概念的理解。

祝你在数学学习中取得优异的成绩!。

小学数学线段与角度练习题

小学数学线段与角度练习题

小学数学线段与角度练习题【练习题一】线段的长度计算1. A、B两点的坐标分别是(2, 3)和(5, 1),请计算线段AB的长度。

【练习题二】线段的比较2. 下图是一张城市地图,A、B、C、D四个地点分别标在图上。

请根据图上刻度计算线段AB、BC和CD的长度,并回答以下问题:AB C Da) 线段AB的长度与线段BC的长度相比,哪个更长?b) 线段BC的长度与线段CD的长度相比,哪个更短?【练习题三】线段的延长与截取3. 下图中,线段AB的长度是5个单位,仅根据图上信息,回答以下问题:C/ |\/ B| \/ | \/____A|a) 如果将线段AB延长2个单位,得到的点是什么?b) 如果将线段AB截取3个单位并得到的点是C,则点C在原来线段AB的什么位置上?【练习题四】角度的测量4. 利用直尺和量角器测量以下角的度数:a) 直角b) 锐角c) 钝角【练习题五】角的比较5. 下图中,三个角分别为α、β和γ,请回答以下问题:B/ \/ \α γ/ \A_________Ca) 角α的度数与角γ的度数相比,哪个更大?b) 角α的度数与角β的度数相比,哪个更小?【练习题六】角的分类6. 根据以下信息,判断并分类角:a) 度数为90°,是哪种类型的角?b) 度数为180°,是哪种类型的角?c) 度数为30°,是哪种类型的角?d) 度数为0°,是哪种类型的角?【练习题七】角的补角与余角7. 两个角的和为90°时,这两个角互为补角;两个角的和为180°时,这两个角互为补角。

请分别找出以下角的补角和余角:a) 30°角的补角和余角分别是多少?b) 120°角的补角和余角分别是多少?c) 45°角的补角和余角分别是多少?【练习题八】角的相等关系8. 判断以下各组角是否相等:a) 60°角和120°角是否相等?b) 45°角和90°角是否相等?c) 钝角和锐角是否相等?。

小学4年级数学角与线段练习题

小学4年级数学角与线段练习题

小学4年级数学角与线段练习题一、填空题(共5小题)1. 一个角是_______时,我们称它为锐角。

2. 两条线段相交的点为________。

3. 两条线段起点相同,终点不同,我们称这两条线段为_________。

4. 两条线段起点和终点都相同,我们称这两条线段为_________。

5. 两条线段相交,但是不共享公共端点,我们称这两条线段为_________。

二、选择题(共10小题)1. 以下哪个角是锐角?A. 直角B. 钝角C. 平角2. 在以下四个图形中,哪个图形展示了两个相交线段的形态?A. ○B. ∟C. +3. 下面哪种情况不属于两个线段的形态?A. 起点和终点都相同B. 有一个公共端点C. 不相交4. 以下哪个角不是锐角?A. 45°B. 90°C. 120°5. 下图中,________是两个线段的公共端点。

(图略)A. AB. BC. C6. 下图中,哪两个线段是平行线段?(图略)A. AD 和 CEB. AB 和 CDC. BC 和 DE7. 以下哪个角是锐角?B. 90°C. 60°8. 在以下四个图形中,哪个图形展示了平行线段的形态?A. ○B. ∟C. ∥9. 下面哪个图形展示了两个线段相交,但不共享公共端点的情况?A. ○B. ∟C. +10. 下图中,________是两个线段的公共端点。

(图略)A. AB. BC. C三、综合题(共5小题)1. 在下图中,线段AD与线段BC相交,且AB是直线,那么下面哪个角是钝角?A. ∠ABCB. ∠ABDC. ∠CBD2. 下图中的线段AB与线段CD相交,且∠ACB是锐角,那么下面哪个选项是正确的?(图略)A. ∠ACB 和∠CDB 是一对对顶角。

B. ∠ACB 和∠CDB 是一对对立角。

C. ∠ACB 和∠CDB 是一对同位角。

3. 如下图所示,线段AB与线段CD相交于点E,角BED与角AEC 是否为邻补角?(图略)A. 是B. 否4. 如图,线段AB与线段CD相交于点E,下面哪些选项是正确的?(图略)I. ∠AEB 是任意角。

线段、角典型例题

线段、角典型例题

线段、角典型例题(总4页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除2基本的平面图形典型例题与强化训练典型例题:例1、已知线段AB ,延长线段AB 到C ,使BC=23 AB ,反向延长线段AB至D ,使AD=12AB ,P 为线段CD 的中点,已知BP=15cm ,求线段AB 、CD 的长。

例2、如图,C ,D ,E 将线段AB 分成2:3:4:5四部分,M ,P ,Q ,N 分别是AC ,CD ,DE ,EB 的中点,且MN=21,求线段PQ 的长度.例3、已知线段AB=14cm ,在直线AB 上有一点C ,且BC=4cm ,M 是线段AC 的中点,求线段AM 的长.例4、如图所示,∠AOB=90°, ∠BOC=30°,OE 平分∠AOC ,OD 平分∠BOC,求∠DOE 的度数。

(1)若∠AOB=α,其他条件不变,∠DOE 等于多少?(2)若∠BOC=β,其他条件不变,∠DOE 等于多少(3)若∠AOB=α,∠BOC=β,其他条件不变,∠DOE 等于多少?例5、如图,直线AB 、CD 相交于点O ,且∠BOC=80°,OE 平分∠BOC .OF 为OE 的反向延长线.求∠2和∠3的度数,并说明OF 是否为∠AOD 的平分线.例6、如图,由点O 引出六条射线OA 、OB 、OC 、OD 、OE 、OF ,且∠AOB=90°,OF 平分∠BOC ,OE 平分∠AOD 。

若∠EOF=170°,求∠COD 的度数。

练习:1.下列说法中,错误的是()A .经过一点可以作无数条直线B .经过两点只能作一条直线C .一条直线只能用一个字母表示D .线段CD 和线段DC 是同一条线段 2.下列说法中,正确的是( )A .射线AB 和射线BA 是同一条射线 B .延长射线MN 到CC .延长线段MN 到P 使NP =2MND .连结两点的线段叫做两点间的距离3.平面上的三条直线最多可将平面分成( )部分。

四年级数学线段与角练习题

四年级数学线段与角练习题

四年级数学线段与角练习题一、线段练习题1. 用尺子量一下下列线段的长度:a) ABb) CDc) EFd) GH2. 将下列线段按由长到短的顺序排列:a) 8 cm, 5 cm, 3 cm, 6 cmb) 12 mm, 7 mm, 10 mm, 15 mm3. 根据所给线段,写出它的名称:a) 3 cmb) 5 mmc) 10 cmd) 2.5 cm4. 比较下列线段的长度,写出 ">"、"<" 或 "=":a) AB ____ CDb) EF ____ GHc) PQ ____ RS5. 用线段AB、CD和EF构成一个三角形,回答以下问题:a) 这个三角形有几个顶点?b) 这个三角形有几条边?c) 这个三角形有几个角?二、角练习题1. 下列角的度数是多少?a) 直角b) 钝角c) 锐角d) 平角2. 根据下面的图形,写出正确的角的名称:a)b)c)d)3. 下列角是几何图形中的哪一部分?a) 直角b) 锐角c) 钝角d) 平角4. 比较下列角的大小,写出 ">"、"<" 或 "=":a) ∠ABC ____ ∠DEFb) ∠GHI ____ ∠JKLc) ∠MNO ____ ∠PQR5. 判断下列说法的正确与否:a) 钝角大于直角。

b) 锐角小于钝角。

c) 平角等于直角。

三、综合练习题1. 计算下列数学表达式的值:a) 8 + 3 - 2 =b) 5 × 4 + 10 =c) 15 - 6 ÷ 2 =d) (7 + 3) × 2 =2. 下列哪个图形是一个矩形?a)b)c)d)3. 用尺子画出一个直角三角形,标出其中的所有线段和角度。

4. 将下列数从小到大排列:a) 3, 6, 1, 5, 2b) 8, 4, 9, 2, 65. 判断下列说法的正确与否:a) 直角三角形的两条直角边相等。

小学数学线段与角度练习题

小学数学线段与角度练习题

小学数学线段与角度练习题小学数学练习题:线段与角度一、判断题1. 直线段和线段是一样的东西。

()2. 线段一定是直线。

()3. 线段可以无限延伸。

()4. 两个相交的线段一定有公共部分。

()5. 两个相邻的线段之间有且只有一个公共的端点。

()6. 直线和线段都可以表示为一个大写字母。

()7. 直角是指两条线段相交,形成一个角度为90度的角。

()8. 锐角和钝角都是直角的特例。

()二、选择题1. 在下列选项中,不属于线段的是:()a) AD b) BC c) AB d) AC2. 在下列选项中,是直线段的是:()a) AB b) AC c) CD d) BC3. 下列哪个选项中的点在线段中:()a) C b) D c) A d) B4. 下列哪个选项中的点不在线段中:()a) A b) B c) C d) D5. 图中哪两个角是邻角:()(图略)a) ∠ABC 和∠BCDb) ∠ABC 和∠ADEc) ∠BCD 和∠ADEd) ∠ABC 和∠ADE6. ∠ABC 和∠CBD 的度数之和为:()a) 90度 b) 180度 c) 270度 d) 360度7. ∠ABC 和∠ABD 的度数之和为:()a) 90度 b) 180度 c) 270度 d) 360度8. ∠ABC 和∠ACD 的度数之和为:()a) 90度 b) 180度 c) 270度 d) 360度三、解答题1. 请画出下面图中的线段:(图略)2. 下列哪个选项中的两个角是邻角?请说明理由:(图略)4. 下列选项中,哪个角大?请说明理由:(图略)答案:一、判断题1. 错误2. 错误3. 正确4. 正确5. 正确6. 正确7. 正确8. 错误二、选择题1. d) AC2. b) AC3. a) C4. d) D5. a) ∠ABC 和∠BCD6. a) 90度7. b) 180度8. c) 270度三、解答题1. 略2. ∠ABC 和∠BCD 是邻角,因为它们有共同的边段BC,并且相交于点B。

四年级线与角练习题

四年级线与角练习题

四年级线与角练习题四年级线与角练习题在四年级数学课堂上,线与角是一个重要的学习内容。

通过学习线与角的概念和性质,学生可以更好地理解几何形状和空间关系。

为了帮助同学们巩固所学的知识,下面我将给大家提供一些线与角的练习题。

练习题一:线段的长度计算1. 请计算以下线段的长度:(a) AB,其中A(-2, 3),B(4, 7);(b) CD,其中C(1, 2),D(5, 6);(c) EF,其中E(-3, -1),F(1, 3)。

2. 请计算以下线段的长度,并判断哪个线段最长:(a) GH,其中G(2, 4),H(6, 8);(b) IJ,其中I(-1, 3),J(3, -1);(c) KL,其中K(-5, 2),L(-1, -2)。

练习题二:角的性质1. 在下图中,角A和角B的度数分别是多少?(图略)2. 在下图中,角C和角D的度数分别是多少?(图略)3. 在下图中,角E和角F的度数分别是多少?(图略)练习题三:角的分类1. 根据下列描述,判断角的分类:(a) 角G的度数为90度,它是一个锐角/直角/钝角;(b) 角H的度数为180度,它是一个锐角/直角/钝角;(c) 角I的度数为45度,它是一个锐角/直角/钝角。

2. 根据下列描述,判断角的分类:(a) 角J的度数为120度,它是一个锐角/直角/钝角;(b) 角K的度数为90度,它是一个锐角/直角/钝角;(c) 角L的度数为160度,它是一个锐角/直角/钝角。

练习题四:角的度数计算1. 请计算以下角的度数:(a) 角M,其中角M的补角度数为40度;(b) 角N,其中角N的补角度数为120度;(c) 角O,其中角O的补角度数为160度。

2. 请计算以下角的度数:(a) 角P,其中角P的补角度数为60度;(b) 角Q,其中角Q的补角度数为150度;(c) 角R,其中角R的补角度数为170度。

以上是一些关于线与角的练习题,希望同学们能够通过练习加深对线与角的理解。

线段和角精选练习题

线段和角精选练习题

线段和角精选练习题线段和角是几何学中的基本概念,对于理解和解决几何问题起着重要的作用。

在本文中,我们将提供一些关于线段和角的精选练习题,帮助读者巩固相关知识并提升解题能力。

1. 线段问题a) 已知线段AB的长度为5cm,线段BC的长度为7cm,求线段AC的长度。

b) 若线段DE的长度为8cm,线段EF的长度为12cm,求线段DF 的长度。

c) 线段GH的长度为10cm,线段HI的长度为6cm,线段GI的长度为多少cm?2. 角度问题a) 已知∠ABC = 30°,∠BCD = 60°,求∠BAD的度数。

b) 若∠EFG = 90°,∠FGH = 45°,求∠EFH的度数。

c) 已知∠IJK = 120°,∠KLM = 30°,求∠ILM的度数。

3. 线段和角度综合问题a) 在△ABC中,AB = 6cm,BC = 8cm,∠ABC = 90°,求AC的长度。

b) 在△DEF中,DE = 5cm,∠DEF = 60°,求EF的长度。

c) 已知∠GHI = 45°,∠HIJ = 60°,GH = 4cm,求GJ的长度。

4. 角度问题的解析a) 若三角形的内角和为180°,求该三角形每个角的度数。

b) 若四边形的内角和为360°,求该四边形每个角的度数。

5. 线段比例问题a) 在△ABC中,AD是BC的1/2,且BD = 6cm,求AC的长度。

b) 在平行四边形DEFG中,EG是DF的2倍,且DF = 10cm,求EG的长度。

c) 在△HIJ中,HL是IJ的1/3,且IL = 12cm,求HJ的长度。

通过以上的练习题,我们可以巩固线段和角的相关知识,培养解题能力。

当然,在解答这些题目时,我们要积极思考,分析问题,合理运用所学知识,以得到准确和有效的解答。

最后,希望读者能够通过这些练习题更好地理解线段和角的概念,并能够在实际应用中灵活运用。

七年级线段和角综合练习

七年级线段和角综合练习

七年级线段和角综合练习1.如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,C是AB的中点,且a、b满足|a+3|+(b+3a)2=0.(1)求点C表示的数;(2)点P从A点以3个单位每秒向右运动,点Q同时从B点以2个单位每秒向左运动,若AP+BQ=2PQ,求时间t;(3)若点P从A向右运动,点M为AP中点,在P点到达点B之前:①的值不变;②2BM﹣BP的值不变,其中只有一个正确,请你找出正确的结论并求出其值.2.如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+|b﹣4|=0.(1)点A表示的数为;点B表示的数为;(2)一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,设运动的时间为t(秒),①当t=1时,甲小球到原点的距离为;乙小球到原点的距离为;当t=3时,甲小球到原点的距离为;乙小球到原点的距离为;②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请求出甲,乙两小球到原点的距离相等时经历的时间.3.如图所示,观察数轴,请回答:(1)点C与点D的距离为,点B与点D的距离为;(2)点B与点E的距离为,点A与点C的距离为;发现:在数轴上,如果点M与点N分别表示数m,n,则他们之间的距离可表示为MN=.(用m,n 表示)(3)利用发现的结论解决下列问题:数轴上表示x和2的两点P和Q之间的距离是3,则x=.4.如图,在数轴上每相邻两点间的距离为一个单位长度,点A、B、C、D对应的数分别是a、b、c、d,且d﹣2a=14(1)那么a=,b=;(2)点A以3个单位/秒的速度沿着数轴的正方向运动,1秒后点B以4个单位/秒的速度也沿着数轴的正方向运动.当点A到达D点处立刻返回,与点B在数轴的某点处相遇,求这个点对应的数;(3)如果A、B两点以(2)中的速度同时向数轴的负方向运动,点C从图上的位置出发也向数轴的负方向运动,且始终保持AB=AC.当点C运动到﹣6时,点A对应的数是多少?5.如图数轴上三点A,B,C对应的数分别为﹣6,2,x.请回答问题:(1)若点A先沿着数轴向右移动8个单位长度,再向左移动5个单位长度后所对应的数字是;(2)若点C到点A、点B的距离相等,那么x对应的值是;(3)若点C到点A、点B的距离之和是10,那么x对应的值是;(4)如果点A以每秒4个单位长度的速度向右运动,点B以每秒2个单位长度的速度向左运动,点C 从原点以每秒1个单位长度的速度向左运动,且三点同时出发.设运动时间为t秒,请问t为何值时点C 到点A、点B的距离相等?6.已知,如图A、B分别为数轴上的两点,A点对应的数为﹣10,B点对应的数为90.(1)请写出与AB两点距离相等的M点对应的数;(2)现在有一只电子蚂蚁P从B点出发时,以5个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以3个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道对应的数是多少吗?(3)若当电子蚂蚁P从B点出发时,以5个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A 点出发,以3个单位/秒的速度向左运动,经过多长的时间两只电子蚂蚁在数轴上相距30个单位长度?7.A、B两个动点在数轴上做匀速运动,它们的运动时间以及位置记录如表.(1)根据题意,填写下列表格;时间(秒)057A点位置19﹣1B点位置1727(2)A、B两点能否相遇,如果相遇,求相遇时的时刻及在数轴上的位置;如果不能相遇,请说明理由;(3)A、B两点能否相距9个单位长度?如果能,求相距9个单位长度的时刻;如不能,请说明理由.8.如图,已知数轴上有A、B、C三个点,它们表示的数分别是18,8,﹣10.(1)填空:AB=,BC=;(2)若点A以每秒1个单位长度的速度向右运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向左运动.试探索:BC﹣AB的值是否随着时间t的变化而改变?请说明理由;(3)现有动点P、Q都从A点出发,点P以每秒1个单位长度的速度向终点C移动;当点P移动到B 点时,点Q才从A点出发,并以每秒3个单位长度的速度向左移动,且当点P到达C点时,点Q就停止移动.设点P移动的时间为t秒,试用含t的代数式表示P、Q两点间的距离.9.在直线AB上,点P在A、B两点之间,点M为线段PB的中点,点N为线段AP的中点,若AB=m,且使关于x的方程mx+4=2(x+m)有无数个解.(1)求线段AB的长;(2)试说明线段MN的长与点P在线段AB上的位置无关;(3)若点C为线段AB的中点,点P在线段CB的延长线上,试说明的值不变.10.如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm(如图所示),点P 从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发.(1)当PA=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度.(2)若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm.(3)当点P运动到线段AB上时,分别取OP和AB的中点E、F,求的值.11.已知A、B两点在数轴上表示的数为a和b,M、N均为数轴上的点,且OA<OB.(1)若A、B的位置如图所示,试化简:|a|﹣|b|+|a+b|+|a﹣b|.(2)如图,若|a|+|b|=8.9,MN=3,求图中以A、N、O、M、B这5个点为端点的所有线段长度的和;(3)如图,M为AB中点,N为OA中点,且MN=2AB﹣15,a=﹣3,若点P为数轴上一点,且PA= AB,试求点P所对应的数为多少?12.已知线段AB=12,CD=6,线段CD在直线AB上运动(A在B左侧,C在D左侧).(1)M、N分别是线段AC、BD的中点,若BC=4,求MN;(2)当CD运动到D点与B点重合时,P是线段AB延长线上一点,下列两个结论:①是定值;②是定值,请作出正确的选择,并求出其定值.13.如图,已知同一平面内∠AOB=90°,∠AOC=60°,(1)填空∠BOC=;(2)如OD平分∠BOC,OE平分∠AOC,直接写出∠DOE的度数为°;(3)试问在(2)的条件下,如果将题目中∠AOC=60°改成∠AOC=2α(α<45°),其他条件不变,你能求出∠DOE的度数吗?若能,请你写出求解过程;若不能,请说明理由.14.如图,点O为直线AB上一点,过点O作直线OC,已知∠AOC≠90°,射线OD平分∠AOC,射线OE平分∠BOC,射线OF平分∠DOE.求:(1)当0°<∠AOC<90°时,求∠FOB+∠DOC的度数;(2)若∠DOC=3∠COF,求∠AOC的度数.15.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB=90°,∠BOC=60°时,∠MON的度数是多少?为什么?(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON=(直接写出结果).(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON=(直接写出结果).16.O为直线AD上一点,以O为顶点作∠COE=90°,射线OF平分∠AOE.(1)如图1,∠AOC与∠DOE的数量关系为,∠COF和∠DOE的数量关系为;(2)若将∠COE绕点O旋转至图2的位置,OF仍然平分∠AOE,请写出∠COF和∠DOE之间的数量关系,并说明理由;(3)若将∠COE绕点O旋转至图3的位置,射线OF仍然平分∠AOE,请写出∠COF和∠DOE之间的数量关系,并说明理由.17.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后,OM恰好平分∠BOC.①求t的值;②此时ON是否平分∠AOC?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠MON?请说明理由;(3)在(2)问的基础上,经过多长时间OC平分∠MOB?请画图并说明理由.18.如图1,射线OC、OD在∠AOB的内部,且∠AOB=150°,∠COD=30°,射线OM、ON分别平分∠AOD、∠BOC,(1)求∠MON的大小,并说明理由;(2)如图2,若∠AOC=15°,将∠COD绕点O以每秒x°的速度逆时针旋转10秒钟,此时∠AOM:∠BON=7:11,如图3所示,求x的值.19.如图,以直线AB上一点O为端点作射线OC,使∠BOC=70°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)(1)如图①,若直角三角板DOE的一边OD放在射线OB上,则∠COE=°;(2)如图②,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OC恰好平分∠BOE,求∠COD的度数;(3)如图③,将直角三角板DOE绕点O转动,如果OD始终在∠BOC的内部,试猜想∠BOD和∠COE 有怎样的数量关系?并说明理由.20.已知∠AOD=α,射线OB、OC在∠AOD的内部,OM平分∠AOC,ON平分∠BOD.(1)如图1,当射线OB与OC重合时,求∠MON的大小;(2)在(1)的条件下,若射线OC绕点O逆时针旋转一定角度θ,如图2,求∠MON的大小;(3)在(2)的条件下,射线OC绕点O继续逆时针旋转,旋转到与射线OA的反向延长线重合为止,在这一旋转过程中,∠MON=.21.如图①点O为直线AB上一点,过点O作射线OC,将一直角三角板如图摆放(∠MON=90°)(1)将如图①中的三角板绕O点旋转一定角度得到如图②,使边OM恰好平分∠BOC,问ON是否平分∠AOC?请说明理由.(2)将如图①中的三角板绕O点旋转一定角度得到如图③,使边ON在∠BOC的内部,如果∠BOC=60°,则∠BOM与∠NOC之间存在怎样的数量关系,请说明理由.22.已知,如图1,∠AOC=∠BOD=80°.设∠AOC和∠BOD的公共角∠BOC度数是m°(0<m<80).(1)用含m的代数式表示:∠COD的度数是°,∠AOD的度数是°.(2)若∠AOD=4∠BOC,求m的值.(3)如图2,当OM、ON分别是∠AOD、∠COD的角平分线时,∠MON的度数是否变化?若不变,求出∠MON的度数;若变化,请说明理由.(4)若射线OP以每秒10°的速度从OA位置绕点O逆时针运动,同时,射线OQ以每秒5°的速度从OC 位置绕点O顺时针运动,当OP在∠AOB内,OQ在∠BOC内时,如图3,在任何某一时刻,总有∠POB=2∠QOB,求m的值.23.(1)已知:如图1,点O为直线AB上任意一点,射线OC为任意一条射线.OD、OE分别平分∠AOC和∠BOC,则∠DOE=;(2)已知:如图2,点O为直线AB上任意一点,射线OC为任意一条射线,其中∠COD=∠AOC,∠COE=∠BOC,求∠DOE得度数;(3)如图3,点O为直线AB上任意一点,OD是∠AOC的平分线,OE在∠BOC内,∠COE=∠BOC,∠DOE=72°,求∠BOE的度数.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C、E、F在直线AB的同侧时(如图1所示)①若∠COF=28°,则∠BOE=°②若∠COF=α°,则∠BOE=°.(2)当点C与点E、F在直线AB的两旁(如图2所示)时,(1)中②是否仍然成立?请给出你的结论并说明理由.25.如图,已知∠AOB=120°,射线OA绕点O以每秒钟6°的速度逆时针旋转到OP,设射线OA旋转OP所用时间为t秒(t<30).(1)如图1,直接写出∠BOP=°(用含t的式子表示);(2)若OM平分∠AOP,ON平分∠BOP.①当OA旋转到如图1所示OP处,请完成作图并求∠MON的度数;②当OA旋转到如图2所示OP处,若2∠BOM=3∠BON,求t的值.。

线段与角的认识与计算测验题及答案

线段与角的认识与计算测验题及答案

线段与角的认识与计算测验题及答案一、选择题1. 下列哪个选项是线段的定义?A. 由两个端点和它们之间的线段所组成B. 由一个端点和它两边延伸无限的直线所组成C. 由一个端点和它对立面无限延伸的线段所组成2. 在下列选项中,哪个是正确的角定义?A. 两条射线中间的一部分B. 两个线段之间的夹角C. 两个垂直线之间的角3. 下面哪个选项展示了两个相互垂直的直线之间的角?A. 直角B. 钝角C. 顶角4. 如果两个线段相等,它们的长度分别是3厘米和5厘米,那么这两个线段分别是多少厘米?A. 3厘米和5厘米B. 5厘米和3厘米C. 8厘米和8厘米5. 下面哪个选项是正确的角度度量单位?A. 米B. 毫米C. 度二、填空题1. 线段AB的长度是7.5厘米,线段AC的长度是3.2厘米,那么线段AB比线段AC长________厘米。

2. 若线段AB和线段CD的长度相等,线段AB的长度是8.9厘米,那么线段CD的长度为________厘米。

3. 一个角的度数是120°,那么它是一个________角。

4. 两条直线相交时,互相垂直的角称为________角。

5. 两条直线平行时,对应的内角和外角之和为________。

三、简答题1. 什么是共线点?请举例说明。

2. 什么是顶角?它们有什么特点?3. 请解释什么是直角和钝角,并给出相应的例子。

答案:一、选择题1. A2. A3. A4. B5. C二、填空题1. 4.32. 8.93. 锐角4. 直角5. 180°三、简答题1. 共线点是指在一条直线上的点。

例如,A、B和C是共线点,它们都在直线上。

2. 顶角是指两条相邻线段之间的角。

它们的特点是共享同一边,并且位于这两条线段的夹角内部。

3. 直角是一个90°的角,例如一个正方形的内角。

钝角是一个大于90°但小于180°的角,例如一个圆的内角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线段和角练习题
一.填空题
1:已知线段AB =5cm ,C 为线段AB 上一点,且BC =3cm ,则线段AC = cm 。

2:已知线段AB =5cm ,C 为直线AB 上一点,且BC =3cm ,则线段AC = cm 。

3:已知∠AOB =50°, OC 为∠AOB 内一射线,且∠BOC=30°,则∠AOC = °。

4:已知∠AOB =50°,∠BOC=30°,则∠AOC = °。

二、问题探究,探寻规律
1. 如图,已知线段AB=10cm ,C 为线段AB 上一点,M 、N 分别为AC 、BC 的中点,
(1) 若BC =4cm ,求MN 的长, (2) 若BC =6cm ,求MN 的长, (3) 若BC =8cm ,求MN 的长,
(4) 若C 为线段AB 上任一点,你能求MN 的长吗?请写出结论,并说明理由。

2. 如图,已知∠AOB =90°,OM ,ON 分别平分∠AOC 和∠BOC ,
(1) 若∠AOC =30°,求∠MON 的度数, (2) 若∠BOC =50°,求∠MON 的度数,
(3) 由(1)(2)你发现了什么,请写出结论,并说明理由。

3. 如图,已知线段AB=10cm ,C 为线段AB 延长线上一点,M 、N 分别为AC 、BC 的中点,
(1) 若BC =4cm ,求MN 的长, (2) 若BC =6cm ,求MN 的长, (3) 若C 为线段AB 延长线上任一点,你能求MN 的长吗?若能,请求出MN 的长,
并说明理由。

A
B
4. 如图,已知∠AOB =90°,OM ,ON 分别平分∠AOC 和∠BOC ,
(1) 若∠AOC =40°,求∠MON 的度数, (2) 若∠AOC =α,求∠MON 的度数, (3) 若∠BOC =β,求∠MON 的度数, (4) 由(1)(2)(3)的结果,你发现了什么规律,请写出结
论,并说明理由。

三、拓展提高、应用规律
5. 已知∠AOB =α,过O 任作一射线OC ,OM 平分∠AOC ,ON 平分∠BOC , (1) 如图,当OC 在∠AOB 内部时,试探寻∠MON 与α的关系;
(2) 当OC 在∠AOB 外部时,其它条件不变,上述关系是否成立?画出相应图形,并说明
理由。

6.已知C 为直线AB 上任一点,M 、N 分别为AC 、BC 的中点,试探究MN 与AB 之间的关系,并说明理由。

1.如图,AB:BC:CD =2:3:4,如果AB 中点M 和CD 中点N 的距离是24cm ,求AB ,BC ,CD 的长度
B
A O A M
B
C N D
2.已知:如图,O 是直线AB 上一点,∠AOC=∠BOD ,射线OE 平分∠BOC ,∠EOD=42︒,求∠EOC 的大小
3.1
2
AOB AOC AOD AOC BOC BOD ∠∠∠∠∠=∠如图,已知是的余角,是的补角,且,
AOC BOD ∠∠求、的度数。

4.已知如图,AB =10,点C 为线段AB 上一点,点D 、E 分别为线段AB 、AC 的中点,ED =1,求线段AC 的长。

E D C
B
A
5.如右图,已知:C ,D 是AB 上两点,且AB=20cm,CD=6cm,M 是AD 的中点,N 是BC 的中点,则线段MN 的长为 。

O
A
B
C
D
O A B C D E
6.如图,从点O 引出6条射线OA ,OB ,OC ,OD ,OE ,OF ,且∠AOB =100︒,OF 平分∠BOC ,
∠AOE =∠DOE ,∠EOF =140︒,求∠COD 度数。

7.如线段AB 和CD 的公共部分为BD ,且BD =31AB =5
1
CD ,线段AB 、CD 的中点E 、F 的距
离为6cm ,求AB 、CD 的长.
A
C
B D E F
8.点A 、B 在数轴上的位置如图所示,点P 是数轴上的一动点
(1)若PB=2,则点P 表示的数是 _____________;
(2)若点P 是AB 的三等分点,则点P 表示的数是 __________________
(3)是否存在点P ,使PA+PB 的值最小?若存在,则点P 在数轴的什么位置?PA+PB 的最小
值是多少?答____________________________________________________________; (4)若PB=2且点M 是AP 的中点,求线段AM 的长。

9.如图,P 是定长线段AB 上一点,C 、D 两点分别从P 、B 出发以1 cm/s 、2 cm/s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上).
(1)若C 、D 运动到任一时刻时,总有PD =2AC ,请说明P 点在线段AB 上的位置;
(2)在(1)的条件下,Q 是直线AB 上一点,且AQ -BQ =PQ ,求AB
PQ 的值.
(3)在(1)的条件下,若C 、D 运动5秒后,恰好有AB CD 2
1 ,此时C 点停止运动,D 点
在线段PB 上继续运动,M 、N 分别是CD 、PD 的中点,下列结论:①PM -PN 的值不变;②
AB
MN 的值不变,只有一个结论是正确的,请你找出正确的结论并求值.。

相关文档
最新文档