初中七年级数学解题技巧与方法
初中数学解题方法(PDF版)
初中数学解题方法或技巧目录一、通用解题方法(解题三步骤): (2)1.具体内容: (2)2.解题三步骤本质是: (2)3. 学生中常见的两种不正确的做法: (2)4.结果和过程的关系: (3)二、解题通用方法的应用 (3)1.七年级上册例题: (3)2.七年级下册例题: (3)3.八年级上册例题: (5)4.八年级下册例题: (6)5.九年级上册例题: (7)6.九年级下册例题: (9)三、时间控制: (11)1.考试时的时间控制: (11)2.平常的时间控制: (12)四、初中生常见的一些问题及解决方法: (12)1.应对生理的变化: (12)2.建立良好的人际关系: (12)3.观念的转变: (13)4.对待情绪的认识和态度: (13)5.在知识学习方面: (13)6.家务劳动方面: (14)7.目标与执行: (14)一、通用解题方法(解题三步骤):1.具体内容:2.解题三步骤本质是:目标导向。
3.学生中常见的两种不正确的做法:1)只重过程:看到一道题,题都没看完,就开始着急做,不管有没有思路,思路是否正确,计算量大不大,就开始动笔,可能做到一半就发现没法进行了,也不舍得放弃。
给的条件肯定是多的,如果没有目标导向,那就是做到哪是哪,靠运气,可能到进行不下去了,才发现走偏了,时间也浪费了,你也会更着急。
2)只重结果:做题时先看一下问题,特别是选择题,半做半蒙。
题上给的条件与问题之间可能能找到部分联系,不深究不严谨的地方,我感觉这样是对的,就走下去了。
看着好像掌握的还不错,其实学过的知识都是浮于表面的,就靠着自己的一点儿小聪明,在那学习,知识不连贯,串不起来。
这样的,不叫聪明,只能算是小聪明。
聪明加勤奋才能取得优秀的结果,何况这都算不上聪明。
4.结果和过程的关系:两者都重要,缺一不可,但相比来说,结果比过程稍重要。
二、解题通用方法的应用1.七年级上册:列方程解应用题:《九章算术》中“盈不足术”的问题,原文如下:“今有共买羊,人出五,不足四十五;人出七,不足三。
初一七年级数学阅读理解正确的解题方法和技巧
初一七年级数学阅读理解正确的解题方法
和技巧
数学阅读理解是初一七年级学生在数学研究中常遇到的一种题型。
正确的解题方法和技巧能够帮助学生更好地理解问题,提高解
题的准确性和效率。
下面将介绍一些解题方法和技巧,希望对同学
们的研究有所帮助。
1. 仔细阅读题目
在开始解答之前,首先要仔细阅读题目。
理解题目中提到的情境、条件和要求,弄清楚题目的意思和要求解的问题是什么。
2. 图表分析
对于数学阅读理解题,常常会有图表等形式的信息。
在解题时,应该仔细观察图表,并根据图表提供的信息进行分析。
图表通常可
以帮助我们理解问题并找到解题的关键。
3. 重点抓住关键词
在阅读题目过程中,注意抓住关键词。
关键词通常是与问题有关的信息,通过找到关键词可以更快地了解问题的要求,从而更好地解题。
4. 建立数学模型
阅读理解题往往涉及到实际问题,需要将问题转化为数学语言进行求解。
在解题时,可以尝试建立数学模型,将问题抽象成数学形式,从而更好地理解问题并找到解题思路。
5. 分步解题
对于较复杂的数学阅读理解题,可以考虑分步解题。
将问题分解为几个小步骤,逐步推导,可以更清晰地思考问题,避免出错。
6. 检查答案
最后,在解答完成后,不要忘记检查答案。
通过重新阅读题目和解题过程,确认答案的准确性和合理性。
希望以上的解题方法和技巧对同学们在初一七年级数学阅读理解题中能够有所帮助。
通过充分理解题目,运用正确的解题方法,相信同学们能够更好地应对数学阅读理解题,提高解题的能力和水平。
初中数学解题技巧:六种方法教你解决难题
初中数学解题技巧:六种方法教你解决难题_学习方法网---------------------------------------初中数学解题技巧:六种方法教你解决难题1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
通过配方解决数学问题的方法叫配方法。
其中,用的最多的是配成完全平方式。
配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。
因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。
我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理一元二次方程ax2bxc=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
初中数学教学中的解题策略和技巧
初中数学教学中的解题策略和技巧数学是一门需要逻辑思维和解题能力的学科,因此在初中数学教学中,合理的解题策略和技巧对于学生的学习至关重要。
本文将从引导学生思考、分析问题和解决问题的角度,讨论初中数学解题的一些有效策略和技巧。
1. 理清题意,确定解题思路在解题之前,学生需要先仔细阅读题目,理解题意。
他们可以将问题简化,抓住主要信息,并排除掉无关紧要的内容。
对于较难的题目,可以进行分解和重组,将其转化为更容易理解和解决的形式。
在理解题意和确定解题思路之后,学生会更有针对性地进行求解。
2. 练习套路,善用公式和定理初中数学常常运用一些基本的公式和定理,学生需要熟练掌握并运用它们。
例如,在解决代数方程时,学生可以运用一元二次方程的求解公式。
在解决几何问题时,学生可以利用勾股定理或相似三角形的性质。
通过大量的练习和应用,学生能够逐渐熟练使用这些套路,提高解题效率。
3. 掌握解题技巧,善用逻辑推理数学解题过程中,逻辑推理是非常重要的一环。
学生需要通过分析题目的条件和要求,找出其中的关联关系,并运用适当的逻辑方法进行推理。
有时候,学生需要通过反证法或类比法来解决问题。
掌握这些解题技巧能够帮助学生更好地理解和解决数学问题。
4. 增加解题思维的灵活性在解题过程中,学生需要培养思维的灵活性。
他们可以尝试不同的方法和路径,换一种思维角度去看待问题。
有时候,不同的解题路径可以得到不同的解答,学生需要在反复实践中培养出自己的解题风格。
5. 注意计算细节,减少失误数学解题过程中,细节是非常重要的。
学生需要注意计算的准确性和规范性,避免疏漏和计算错误。
他们可以使用草稿纸或辅助工具来帮助计算,并进行反复检查和验证,确保结果的准确性。
6. 增加解题的实际应用解题策略和技巧不仅仅局限于课本中的题目,初中数学的知识也可以应用到实际生活中。
教师可以通过举一些实际例子,让学生将数学知识与实际问题解决相结合,提高他们的实际运用能力。
总结起来,初中数学教学中的解题策略和技巧是培养学生解题能力和思维能力的重要手段。
初中数学解题十大技巧方法
初中数学解题十大技巧方法一直都有同学和家长问:“数学是一门弱势学科,我到底应该如何进行提高呢?”下面是小偏整理的初中数学解题十大技巧方法,感谢您的每一次阅读。
初中数学解题十大技巧方法1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
通过配方解决数学问题的方法叫配方法。
其中,用的最多的是配成完全平方式。
配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。
因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。
我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理一元二次方程a2+b+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
初中数学题目的解题技巧与思路
初中数学题目的解题技巧与思路数学作为一门抽象的学科,常常让初中生感到困惑和无助。
然而,只要我们掌握一些解题技巧和思路,数学题目就可以迎刃而解。
下面,我将介绍一些解题技巧和思路,帮助初中生更好地应对数学题目。
1. 阅读清晰在解题之前,我们首先要仔细阅读题目,并理解题目所给的条件和要求。
当我们理解了题目背后的意图,就能更好地找到解题的思路。
在阅读题目时,要注意关键词和关键信息,例如“至少”、“最多”、“总共”等等。
这些关键词能够帮助我们正确理解题意,从而选择合适的解题方法。
2. 找到已知条件,列出方程对于代数题目,我们需要根据已知条件列出方程,从而求解未知数。
在列方程时,要仔细分析题目并提取关键信息。
例如,如果题目给出了两个量的比例关系,我们可以将它表示为一个方程。
另外,要熟练掌握各种常见的代数方程类型,例如一元一次方程、二元一次方程等等。
掌握这些基本的方程解法将大大提高解题效率。
3. 利用图表和图形解题有些数学题目会给出图表或图形,这时我们可以通过观察图表和图形的特点来解题。
例如,对于几何问题,我们可以利用图形的各类性质和定理来解题。
另外,对于分析问题,我们也可以通过画出图表或图形,找到问题的规律和特点。
通过观察图表和图形,能够帮助我们更好地理解问题,选择合适的解题方法。
4. 注意单位换算和估算在一些实际问题中,题目给出的数据往往包含单位,我们要特别注意单位换算。
有时,将所有数据统一换算成相同的单位,会简化计算过程,避免搞混数字的大小关系。
另外,在解题过程中,可以利用估算来帮助我们做出合理的选择。
做一个粗略的估算,能够帮助我们判断问题的解是否合理,及时发现错误和纠正。
5. 分步解题,化繁为简对于一些复杂的数学题目,我们可以将其分解为几个简单的步骤来解决。
通过分步解题,将复杂的问题化繁为简,一步一步地逼近最终的解答。
有时,我们还可以通过逆向思维,从已知结果反推求解步骤。
在解题过程中,要时刻保持清晰的思路,将问题分解为具体的小步骤,一步一步地解决。
初中解题技巧数学题目解题的思路与方法
初中解题技巧数学题目解题的思路与方法数学是初中阶段的一门重要科目,对学生的思维能力、逻辑思维和问题解决能力有着重要的培养作用。
在解题过程中,正确的思路和方法是至关重要的。
本文将介绍一些初中数学题目解题的思路与方法。
I. 分析题目要求在解题之前,首先需要仔细阅读题目,理解题目中所给出的要求。
有时候一道复杂的数学题目可能只需要一个简单的公式或一个基本的解题思路就能解决。
因此,理解题目要求非常关键。
II. 创造解题思路掌握基本的数学概念和方法是解题的基础,但是遇到更复杂的问题时,学生需要学会创造解题思路。
例如,在代数问题中,可以通过列方程,引入未知数来解决问题;在几何问题中,可以利用相似三角形或平行线等基本几何定理来推导解决问题。
III. 切勿死扣公式在初中数学中,有很多重要的公式和定理,学生往往会试图将问题强行套用某个特定的公式,这样容易陷入思维的僵局,很难得到正确的答案。
因此,解题过程中要善于思考,考虑使用不同的方法和公式来解决问题。
IV. 整理信息在解题的过程中,整理清晰的信息是非常重要的。
有时候,数学问题的解决需要将题目中给出的条件整理归纳,找到其中的规律或者推导出未知的信息。
通过整理信息,可以更好地把握解题思路并提高解题效率。
V. 灵活运用方法数学题目的解决没有固定的模式,因此需要学生学会灵活运用各种方法和技巧。
例如,当遇到代数问题时,可以利用因式分解、配方法、消元等技巧;当遇到几何问题时,可以利用相似三角形、勾股定理等几何定理。
熟练掌握不同的方法,为解题提供更多的可能性。
VI. 反复练习数学的解题能力需要通过不断的练习和实践来提高。
只有通过大量的题目练习,才能熟悉各种题型的解题思路和方法,培养自己的数学思维能力。
解题过程中遇到困难和错误,不要气馁,要及时总结和反思,提升解题的技巧和方法。
总结:初中数学题目解题的思路与方法,包括分析题目要求、创造解题思路、避免死扣公式、整理信息、灵活运用方法和反复练习等。
初中数学解题方法和技巧(附常见的6种方法)
初中数学解题方法和技巧(附常见的6种
方法)
初中数学的解题方法和技巧是初中数学研究中至关重要的一环。
以下是常见的6种解题方法和技巧:
1. 理清思路,逐步分析:在解题时,首先需要理清思路,逐步
分析问题,找到解决问题的方法和步骤。
2. 画图辅助解答:在解答数学题时,画图是非常有用的方法。
通过画图,可以更清晰地理解问题,并且可以发现一些隐藏的规律
和关系。
3. 正确理解题目中的各种术语和符号:理解和正确运用数学中
的术语和符号是解题的关键。
在解题时,需要认真阅读题目,并准
确地理解其中的各种术语和符号。
4. 打破常规,尝试新方法:在解题时,有时候需要打破常规,
尝试一些新的方法。
这样可以激发自己的思维,发现一些不同的解
题思路。
5. 掌握基本公式和定理:掌握数学中的基本公式和定理是解题的前提。
只有掌握了基本公式和定理,才能更好地解题。
6. 练、练、再练:练是掌握解题方法和技巧的重要途径。
只有通过大量的练,才能更加熟练地掌握各种解题方法和技巧,提高自己的数学解题能力。
以上是初中数学解题方法和技巧的常见6种方法,希望对初中数学学习者有所帮助。
初中数学巧解题技巧(含学习方法技巧、例题示范教学方法)
初中数学巧解题技巧第一篇范文:初中数学巧解题技巧数学是一门研究数量、结构、变化和空间等概念的学科,对于初中生而言,掌握数学巧解题技巧不仅有助于提高解题速度和准确率,还能培养逻辑思维和创新能力。
本文将结合初中数学的教学实践,探讨一些巧解题技巧,以帮助学生更好地应对各种数学题目。
一、观察题目特征在解题过程中,首先要对题目进行仔细阅读和观察。
观察题目的特征,包括题目的类型、所给条件、所求目标等。
通过对题目的特征进行分析,可以确定解题的基本思路和方法。
1.了解题目类型:初中数学题目主要包括选择题、填空题、解答题等类型。
不同类型的题目有不同的解题方法,学生需要熟悉各类型的解题特点。
2.分析题目条件:题目中给出的条件往往是解题的关键。
学生需要仔细分析条件,找出已知量和未知量,以及它们之间的关系。
3.明确所求目标:题目要求解的目标是解题的方向。
学生需要明确题目要求解的是方程、不等式、函数等,以便选择合适的解题方法。
二、运用数学公式和定理数学公式和定理是数学解题的重要工具。
在解题过程中,学生需要熟练掌握各种公式和定理,并能够灵活运用。
1.公式的运用:初中数学中有很多常用公式,如勾股定理、平方根公式、因式分解公式等。
学生需要根据题目的条件,选择合适的公式进行计算。
2.定理的运用:数学定理是数学逻辑推理的基础。
在解题过程中,学生需要根据题目的特征,运用相关的定理进行证明和推导。
3.公式和定理的变形:在实际解题中,学生需要根据题目的要求,对公式和定理进行适当的变形,以适应题目的需要。
三、注重数学思维和方法数学思维和方法是解决数学问题的核心。
在解题过程中,学生需要运用归纳推理、演绎推理、分类讨论等思维方法,以达到解决问题的目的。
1.归纳推理:通过观察特殊案例,找出一般规律,从而得出结论。
这种方法适用于解决具有规律性的问题。
2.演绎推理:根据已知的条件和定理,通过逻辑推理得出结论。
这种方法适用于解决具有明确逻辑关系的问题。
初中数学学习中的解题思路分析(含学习方法技巧、例题示范教学方法)
初中数学学习中的解题思路分析第一篇范文在初中数学学习中,解题思路分析是培养学生逻辑思维、提高解决问题能力的重要环节。
本文从以下几个方面对初中数学学习中的解题思路进行分析:理解题意、寻找解题规律、运用数学知识、转化问题、检验答案。
一、理解题意理解题意是解题的第一步,也是关键一步。
在解题过程中,要仔细阅读题目,弄清楚题目的已知条件、所求目标以及题目中的关键词。
对于一些复杂题目,还需要对题目进行逐步分解,明确各个部分之间的关系。
二、寻找解题规律寻找解题规律是解题过程中的核心环节。
通过观察题目,找出已知条件与所求目标之间的关系,运用已掌握的数学知识,寻找解决问题的方法。
在寻找解题规律时,要注意以下几点:1.熟悉各类数学运算规则,如加减乘除、平方、立方等。
2.掌握基本数学公式,如勾股定理、平方根、绝对值等。
3.了解数学中的性质和定理,如奇偶性、质数与合数、同底数幂的乘法等。
4.学会运用图形辅助解题,如画图、标注关键点等。
三、运用数学知识在找到解题规律后,就要运用所学的数学知识来解决问题。
这一环节需要学生熟练掌握各类数学运算,能够灵活运用基本公式和定理。
同时,还要注意将实际问题转化为数学问题,运用数学语言和符号进行表达。
四、转化问题转化问题是解题过程中的一种重要策略。
在面对复杂问题时,要学会将问题简化,将复杂问题转化为简单问题。
转化问题的方法有:1.分解问题:将复杂问题分解为若干个简单问题,逐一解决。
2.替换变量:将复杂问题中的变量替换为易于处理的变量,从而简化问题。
3.改变问题形式:将问题转化为另一种形式,如几何问题转化为代数问题等。
五、检验答案在求得答案后,要进行检验。
检验的方法有:1.代入法:将求得的答案代入原题,看是否满足题意。
2.逻辑推理:运用逻辑推理,检查答案的合理性。
3.互换法:将答案中的变量进行互换,检查是否仍然成立。
通过以上五个环节,学生可以更好地理解初中数学学习中的解题思路,提高解题能力。
初中数学解题思维训练技巧(含学习方法技巧、例题示范教学方法)
初中数学解题思维训练技巧第一篇范文数学作为基础学科之一,在学生的学习生涯中占据着举足轻重的地位。
特别是在初中阶段,数学不仅要求学生掌握基本的运算技能,更需要培养他们解决问题的思维能力。
初中数学解题思维训练,旨在帮助学生形成科学的思维模式,提高分析问题、解决问题的能力。
本文将从以下几个方面,探讨初中数学解题思维的训练技巧。
一、理解题目,分析问题首先,我们要培养学生认真审题的习惯。
审题是解题的第一步,只有充分理解了题目,才能有效地解决问题。
在审题过程中,学生需要关注题目的已知条件、所求目标以及潜在的隐含条件。
此外,还应教会学生如何从题目中提取关键信息,分析问题的本质。
二、梳理知识点,构建知识体系初中数学涉及的知识点较多,学生在解题时需要迅速地梳理相关知识点,构建知识体系。
这要求学生在平时的学习中,加强对基础知识的记忆和理解,形成自己的知识网络。
在解题过程中,学生可以按照以下步骤进行:1.确定问题所需的知识点;2.回忆相关知识点的概念、公式、定理等;3.分析知识点之间的联系,形成解题思路。
三、培养逻辑思维能力逻辑思维能力是数学解题的核心。
学生需要学会运用逻辑推理、归纳总结等方法,分析问题、解决问题。
在平时的教学中,教师可以引导学生进行以下训练:1.分析题目中的逻辑关系,找出关键步骤;2.运用已知条件,进行推理、归纳;3.检查推理过程,确保逻辑严密。
四、发散思维,寻找解题策略在解题过程中,学生应善于运用发散思维,寻找多种解题策略。
教师可以引导学生从以下几个方面进行思考:1.变换角度,审视问题;2.尝试不同的解题方法;3.比较各种方法的优缺点,选择最佳解题策略。
五、培养反思意识,提高解题效率解题后的反思是提高解题能力的重要环节。
学生需要对自己的解题过程进行总结,找出错误的原因,总结经验教训。
教师可以引导学生从以下几个方面进行反思:1.解题思路是否清晰?2.知识点运用是否准确?3.逻辑推理是否严密?4.解题方法是否最优?六、注重实践,提高解题能力最后,学生需要加强数学实践,提高解题能力。
初中数学解题技巧方法归纳
初中数学解题技巧方法归纳初中数学解题中的基本方法1. 观察与实验( 1 )观察法:有目的有计划的通过视觉直观的发现数学对象的规律、性质和解决问题的途径。
( 2 )实验法:实验法是有目的的、模拟的创设一些有利于观察的数学对象,通过观察研究将复杂的问题直观化、简单化。
它具有直观性强,特征清晰,同时可以试探解法、检验结论的重要优势。
2. 比较与分类( 1 )比较法是确定事物共同点和不同点的思维方法。
在数学上两类数学对象必须有一定的关系才好比较。
我们常比较两类数学对象的相同点、相异点或者是同异综合比较。
( 2 )分类的方法分类是在比较的基础上,依据数学对象的性质的异同,把相同性质的对象归入一类,不同性质的对象归为不同类的思维方法。
如上图中一次函数的 k 在不等于零的情况下的分类是大于零和小于零体现了不重不漏的原则。
3 .特殊与一般( 1 )特殊化的方法特殊化的方法是从给定的区域内缩小范围,甚至缩小到一个特殊的值、特殊的点、特殊的图形等情况,再去考虑问题的解答和合理性。
( 2 )一般化的方法4. 联想与猜想( 1 )类比联想类比就是根据两个对象或两类事物间存在着的相同或不同属性,联想到另一事物也可能具有某种属性的思维方法。
通过类比联想可以发现新的知识;通过类比联想可以寻求到数学解题的方法和途径:( 2 )归纳猜想牛顿说过:没有大胆的猜想就没有伟大的发明。
猜想可以发现真理,发现论断;猜想可以预见证明的方法和思路。
初中数学主要是对命题的条件观察得出对结论的猜想,或对条件和结论的观察提出解决问题的方案与方法的猜想。
归纳是对同类事物中的所蕴含的同类性或相似性而得出的一般性结论的思维过程。
归纳有完全归纳和不完全归纳。
完全归纳得出的猜想是正确的,不完全归纳得出的猜想有可能正确也有可能错误,因此作为结论是需要证明的。
关键是猜之有理、猜之有据。
5. 换元与配方( 1 )换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。
初中数学解题心得(含学习方法技巧、例题示范教学方法)
初中数学解题心得数学作为基础学科之一,在学生的学习生涯中占据着重要的地位。
特别是在初中阶段,数学不仅要求学生掌握基本的运算技能,还要求他们具备一定的逻辑思维和解题能力。
通过对初中数学解题的心得体会,可以帮助学生更好地理解和应用数学知识,提高解决问题的能力。
一、理解题目要求在解题之前,首先要做的是仔细阅读题目,理解题目所要求的解题目标。
在初中数学中,题目可能涉及到概念理解、公式运用、证明过程等方面。
因此,学生需要仔细阅读题目,弄清楚题目所给出的已知条件,明确题目所要求解的目标。
二、分析题目在理解题目要求之后,接下来要进行的是分析题目。
分析题目主要包括两个方面:一是分析题目所给的条件,二是分析题目所求的目标。
在分析题目所给的条件时,学生需要对已知条件进行分类整理,找出已知条件之间的关系;在分析题目所求的目标时,学生需要明确解题的目标,确定解题的方向。
三、选择解题方法在分析题目之后,学生需要选择合适的解题方法。
初中数学的解题方法包括代数法、几何法、三角法等。
不同的解题方法适用于不同类型的题目,因此,学生需要根据题目的特点选择合适的解题方法。
四、列出解题步骤确定解题方法之后,学生需要列出解题的步骤。
解题步骤应该是清晰、简洁、逻辑严密的。
在列出解题步骤时,学生需要注意以下几点:1.步骤的清晰性:每个步骤都应该明确指出要做什么,不应该让读者产生疑惑。
2.步骤的简洁性:每个步骤都应该尽量简洁,不应该多余的叙述。
3.步骤的逻辑性:每个步骤都应该有逻辑的依据,不应该出现跳跃或矛盾的情况。
五、检查答案解题完成后,学生需要对答案进行检查。
检查答案主要包括两个方面:一是检查答案是否符合题目的要求,二是检查答案是否合理。
在检查答案是否符合题目的要求时,学生需要对照题目的要求,看答案是否达到了题目的要求;在检查答案是否合理时,学生需要对答案进行推理分析,看答案是否符合数学的逻辑。
六、总结解题经验解题完成后,学生需要对解题过程进行总结,总结解题的经验教训。
人教版七年级数学核心题目解题技巧精选
七年级数学核心题目解题技巧精选有理数及其运算篇【核心提示】有理数部分概念较多,其中核心知识点是数轴、相反数、绝对值、乘方。
通过数轴要尝试使用“数形结合思想”解决问题,把抽象问题简单化。
相反数看似简单,但互为相反数的两个数相加等于0这个性质有时总忘记用..绝对值是中学数学中的难点,它贯穿于初中三年,每年都有不同的难点,我们要从七年级把绝对值学好,理解它的几何意义.乘方的法则我们不仅要会正向用,也要会逆向用,难点往往出现在逆用法则方面。
【核心例题】例1计算:200720061......431321211⨯++⨯+⨯+⨯ 分析 此题共有2006项,通分是太麻烦.有这么多项,我们要有一种“抵消”思想,如能把一些项抵消了,不就变得简单了吗?由此想到拆项,如第一项可拆成2111211-=⨯,可利用通项()11111+-=+⨯n n n n ,把每一项都做如此变形,问题会迎刃而解.解 原式=)2007120061(......413131212111-++-+-+-)()()( =2007120061......41313121211-++-+-+- =200711- =20072006 例2 已知有理数a 、b 、c 在数轴上的对应点分别为A 、B 、C(如右图)。
化简b c b a a -+-+。
分析 从数轴上可直接得到a 、b 、c 的正负性,但本题关键是去绝对值,所以应判断绝对值符号内表达式的正负性。
我们知道“在数轴上,右边的数总比左边的数大”,大数减小数是正数,小数减大数是负数,可得到a —b 〈0、c —b 〉0。
解 由数轴知,a<0,a —b<0,c —b 〉0所以,b c b a a -+-+= -a —(a —b)+(c-b )= -a —a+b+c —b= —2a+c例3 计算:⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⋅⋅⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-211311 (9811991110011)分析 本题看似复杂,其实是纸老虎,只要你敢计算,马上就会发现其中的技巧,问题会变得很简便。
初中数学解题技巧与方法
初中数学解题技巧与方法初中数学常用解题法1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
通过配方解决数学问题的方法叫配方法。
其中,用的最多的是配成完全平方式。
配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。
因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。
我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理一元二次方程ax2+bx+c=0a、b、c属于R,a≠0根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程组,解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
它是中学数学中常用的方法之一。
不同题型的解题法选择题:在做选择题可运用各种解题的方法:如直接法、特殊值法、排除法、验证法、图解法、假设法、动手操作法比如折一折,量一量等方法,对于选择题中有“或”的选项一定要警惕,看看要不要取舍。
七年级数学解题方法和技巧
七年级数学解题方法和技巧对于数学来说,要讲究科学的学习方法,努力提高学习效率,这样才能变被动学习为主动学习,从而有效地提高学习成绩。
下面给大家分享一些关于七年级数学解题方法和技巧,希望对大家有所帮助。
一.七年级数学解题方法和技巧数学各类题型1.选择题是所占比例较大(40%)的客观性试题,考察的内容具体,知识点多,“双基”与能力并重。
对选择题的审题,要搞清楚是选择正确陈述还是选择错误陈述,采用特殊什么方法求解等。
2.填空题属于客观性试题。
一般是中档题,但是由于没有中间解题过程,也就没有过程分,稍微出现点错误就和一点不会做结果相同,“后果严重”。
审题时注意题目考查的知识点、方法和此类问题的易错点等。
3.解答题在试卷中所占分数较多(74分),不仅需要解出结果还要列出解题过程。
解答这种题目时,审题显得极其重要。
只有了解题目提供的条件和隐含信息,联想相关题型的通性通法,寻找和确定具体的解题方法和步骤,问题才能解决。
选择题的答题技巧掌握选择题应试的基本方法:要抓住选择题的特点,充分地利用选择支提供的信息,决不能把所有的选择题都当作解答题来做。
首先,看清试题的指导语,确认题型和要求。
二是审查分析题干,确定选择的范围与对象,要注意分析题干的内涵与外延规定。
三是辨析选项,排误选正。
四是要正确标记和仔细核查。
填空题答题技巧要求熟记的基本概念、基本事实、数据公式、原理,复习时要特别细心,注意记熟,做到临考前能准确无误、清晰回忆。
对那些起关键作用的,或最容易混淆记错的概念、符号或图形要特别注意,因为考查的往往就是它们。
如区间的端点开还是闭、定义域和值域要用区间或集合表示、单调区间误写成不等式或把两个单调区间取了并集等等。
解答题答题技巧(1)仔细审题。
注意题目中的关键词,准确理解考题要求。
(2)规范表述。
分清层次,要注意计算的准确性和简约性、逻辑的条理性和连贯性。
(3)给出结论。
注意分类讨论的问题,最后要归纳结论。
(4)讲求效率。
(完整)初中七年级数学解题技巧与方法
初中七年级数学解题技巧与方法1、细心地发掘概念和公式很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。
例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。
二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。
这样就不能很好的将学到的知识点与解题联系起来。
三是,一部分同学不重视对数学公式的记忆。
记忆是理解的基础。
如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢? 我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。
2、总结相似的类型题目这个工作,不仅仅是老师的事,我们的同学要学会自己做。
当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”。
这个问题如果解决不好,在进入初二、初三以后,同学们会发现,有一部分同学天天做题,可成绩不升反降。
其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。
久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄的一团糟。
我们的建议是:“总结归纳”是将题目越做越少的最好办法。
3、收集自己的典型错误和不会的题目同学们最难面对的,就是自己的错误和困难。
但这恰恰又是最需要解决的问题。
同学们做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实际的题目中演练。
另外一个就是,找出自己的不足,然后弥补它。
这个不足,也包括两个方面,容易犯的错误和完全不会的内容。
但现实情况是,同学们只追求做题的数量,草草的应付作业了事,而不追求解决出现的问题,更谈不上收集错误。
我们之所以建议大家收集自己的典型错误和不会的题目,是因为,一旦你做了这件事,你就会发现,过去你认为自己有很多的小毛病,现在发现原来就是这一个反复在出现;过去你认为自己有很多问题都不懂,现在发现原来就这几个关键点没有解决。
初中数学解题技巧方法总结
初中数学解题技巧方法总结初中数学解题技巧方法总结数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段。
以下是小编带来的初中数学解题技巧方法总结,一起来看看吧。
一、选择题的解法1、直接法:根据选择题的题设条件,通过计算、推理或判断,,最后得到题目的所求。
2、特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关,在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后淘汰错误的,保留正确的。
3、淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。
4、逐步淘汰法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既采用“走一走、瞧一瞧”的策略,每走一步都与四个结论比较一次,淘汰掉不可能的,这样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。
5、数形结合法:根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。
二、常用的数学思想方法1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。
2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。
数学学科的各部分之间也是相互联系,可以相互转化的。
在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。
如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。
3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查,这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。
4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。
初中数学实际问题解决技巧(含学习方法技巧、例题示范教学方法)
初中数学实际问题解决技巧第一篇范文在学生的数学学习过程中,面对各种复杂实际问题的解决,不仅需要扎实的数学基础,还需要灵活的思维和科学的解题技巧。
初中数学实际问题解决技巧,主要可以从以下几个方面来培养和提高。
一、问题分析技巧在解决初中数学实际问题时,首先要对问题进行分析。
分析问题的目的是为了理解问题的本质,找出问题的关键点,从而为解决问题奠定基础。
在分析问题时,需要注意以下几点:1.仔细阅读题目,理解题目的意思和要求。
对于题目中的关键词语,需要进行标注和理解。
2.对问题进行分类,确定问题的类型。
比如,是几何问题、代数问题、概率问题,还是综合问题等。
3.找出问题的已知条件和所求目标。
已知条件是解决问题的基础,所求目标是解决问题的目标。
4.分析已知条件和所求目标之间的关系,找出解题的思路和方法。
二、解题步骤技巧在确定了问题的解题思路和方法后,就可以开始解题了。
解题的过程需要注意以下几个步骤:1.列出解题步骤,明确每一步的目的和意义。
2.按照步骤进行解题,每一步都要有明确的计算和推理。
3.在解题过程中,要注意数学符号的使用和书写的规范。
4.对于复杂的问题,需要进行逐步简化,将复杂问题转化为简单问题。
三、解题策略技巧在解决初中数学实际问题时,有时候直接的解题方法可能会比较复杂,这时候就需要采用一些策略来简化问题。
常见的解题策略有:1.画图法:对于几何问题,通过画图来直观地理解和解决问题。
2.设元法:对于代数问题,通过设定未知数来建立方程,从而解决问题。
3.逆向思维法:对于一些问题,通过逆向思考,从结果出发,反向推导出问题的解。
4.转化法:对于一些复杂问题,可以通过转化,将问题转化为已知问题来解决。
四、检查和总结技巧在完成解题后,还需要进行检查和总结。
检查是为了确保解题的正确性,总结是为了提高解题的效率。
1.在解题过程中,需要时刻保持清醒的头脑,对每一步的计算和推理进行回顾和检查。
2.解题完成后,需要对解题过程进行总结,找出解题的关键点和难点,以便下次遇到类似问题时能够快速解决。
七年级有效数学解题技巧总结大全
七年级有效数学解题技巧总结大全初中数学解题技巧一、熟悉习题中所涉及的内容,包括定义、公式、定理和规则。
解题、做练习只是学习过程中的一个环节,而不是学习的全部,你不能为解题而解题。
解题是为阅读服务的,是检查你是否读懂了教科书,是否深刻理解了其中的概念、定理、公式和规则,能否利用这些概念、定理、公式和规则解决实际问题。
解题时,我们的概念越清晰,对公式、定理和规则越熟悉,解题速度就越快。
因此,我们在解题之前,应通过阅读教科书和做简单的练习,先熟悉、记忆和辨别这些基本内容,正确理解其涵义的本质,接着马上就做后面所配的练习,一刻也不要停留。
二、熟悉习题中所涉及到的以前学过的知识,以及与其他学科相关的知识。
有时候,我们遇到一道不会做的习题,不是我们没有学会现在所要学会的内容,而是要用到过去已经学过的一个公式,而我们却记得不很清楚了;或是需用到一个特殊的定理,而我们却从未学过,这样就使解题速度大为降低。
这时,我们应先补充一些必须补充的相关知识,弄清楚与题目相关的概念、公式或定理,然后再去解题,否则就是浪费时间,当然,解题速度就更无从谈起了。
三、熟悉基本的解题步骤和解题方法。
解题的过程,是一个思维的过程。
对一些基本的、常见的问题,前人已经总结出了一些基本的解题思路和常用的解题程序,我们一般只要顺着这些解题的思路,遵循这些解题的步骤,往往很容易找到习题的答案。
否则,走了弯路就多花了时间。
四、认真做好归纳总结。
在解过一定数量的习题之后,对所涉及到的知识、解题方法进行归纳总结,以便使解题思路更为清晰,就能达到举一反三的效果,对于类似的习题一目了然,可以节约大量的解题时间。
五、先易后难,逐步增加习题的难度。
人们认识事物的过程都是从简单到复杂。
简单的问题解多了,从而使概念清晰了,对公式、定理以及解题步骤熟悉了,解题时就会形成跳跃性思维,解题的速度就会大大提高。
养成了习惯,遇到一般的难题,同样可以保持较高的解题速度。
有些学生不太重视这些基本的、简单的习题,认为没有必要花费时间去解这些简单的习题,结果是概念不清,公式、定理及解题步骤不熟,遇到稍难一些的题,就束手无策,解题速度就更不用说了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中七年级数学解题技巧与方法
1、细心地发掘概念和公式
很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。
例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。
二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。
这样就不能很好的将学到的知识点与解题联系起来。
三是,一部分同学不重视对数学公式的记忆。
记忆是理解的基础。
如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?
我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。
2、总结相似的类型题目
这个工作,不仅仅是老师的事,我们的同学要学会自己做。
当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会
AHA12GAGGAGAGGAFFFFAFAF
做时,你才真正的掌握了这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”。
这个问题如果解决不好,在进入初二、初三以后,同学们会发现,有一部分同学天天做题,可成绩不升反降。
其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。
久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄的一团糟。
我们的建议是:“总结归纳”是将题目越做越少的最好办法。
3、收集自己的典型错误和不会的题目
同学们最难面对的,就是自己的错误和困难。
但这恰恰又是最需要解决的问题。
同学们做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实际的题目中演练。
另外一个就是,找出自己的不足,然后弥补它。
这个不足,也包括两个方面,容易犯的错误和完全不会的内容。
但现实情况是,同学们只追求做题的数量,草草的应付作业了事,而不追求解决出现的问题,更谈不上收集错误。
我们之所以建议大家收集自己的典型错误和不会的题目,是因为,一旦你做了这件事,你就会发现,过去你认为自己有很多的小毛病,现在发现原来
AHA12GAGGAGAGGAFFFFAFAF
就是这一个反复在出现;过去你认为自己有很多问题都不懂,现在发现原来就这几个关键点没有解决。
AHA12GAGGAGAGGAFFFFAFAF
我们的建议是:做题就像挖金矿,每一道错题都是一块金矿,只有发掘、冶炼,才会有收获。
4、就不懂的问题,积极提问、讨论
发现了不懂的问题,积极向他人请教。
这是很平常的道理。
但就是这一点,很多同学都做不到。
原因可能有两个方面:一是,对该问题的重视不够,不求甚解;二是,不好意思,怕问老师被训,问同学被同学瞧不起。
抱着这样的心态,学习任何东西都不可能学好。
“闭门造车”只会让你的问题越来越多。
知识本身是有连贯性的,前面的知识不清楚,学到后面时,会更难理解。
这些问题积累到一定程度,就会造成你对该学科慢慢失去兴趣。
直到无法赶上步伐。
讨论是一种非常好的学习方法。
一个比较难的题目,经过与同学讨论,你可能就会获得很好的灵感,从对方那里学到好的方法和技巧。
需要注意的是,讨论的对象最好是与自己水平相当的同学,这样有利于大家相互学习。
我们的建议是:“勤学”是基础,“好问”是关键。
5、注重实战(考试)经验的培养
AHA12GAGGAGAGGAFFFFAFAF
考试本身就是一门学问。
有些同学平时成绩很好,上课老师一提问,什么都会。
课下做题也都会。
可一到考试,成绩就不理想。
出现这种情况,有两个主要原因:一是,考试心态不不好,容易紧张;二是,考试时间紧,总是不能在规定的时间内完成。
心态不好,一方面要自己注意调整,但同时也需要经历大型考试来锻炼。
每次考试,大家都要寻找一种适合自己的调整方法,久而久之,逐步适应考试节奏。
做题速度慢的问题,需要同学们在平时的做题中解决。
自己平时做作业可以给自己限定时间,逐步提高效率。
另外,在实际考试中,也要考虑每部分的完成时间,避免出现不必要的慌乱。
我们的建议是:把“做作业”当成考试,把“考试”当成做作业。
AHA12GAGGAGAGGAFFFFAFAF
任何方法最重要的是有效,同学们在学习中千万要避免形式化,一定要追求实效。
如有侵权请联系告知删除,感谢你们的配合!
37032 90A8 邨qC22997 59D5 姕0(s 23890 5D52 嵒22913 5981 妁39264 9960 饠38818 97A2 鞢X
AHA12GAGGAGAGGAFFFFAFAF。