同底数幂的乘法、幂的乘方与积的乘方同步练习题
北师大新版七年级下册《1同底数幂的乘法》2024年同步练习卷(2)+答案解析
北师大新版七年级下册《1同底数幂的乘法》2024年同步练习卷(2)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列计算正确的是()A. B. C. D.2.计算:()A. B. C. D.3.下列计算中,错误的是()A. B.C. D.4.小胡同学做了以下四个练习,你认为正确的是()A. B. C. D.5.下列计算结果与不相等的是()A. B. C. D.6.已知,用含m的代数式表示正确的是()A. B. C. D.7.若,则m的值为()A.2B.3C.4D.88.已知,,则等于()A.24B.32C.64D.1289.下列各式中,不能运用平方差公式计算的是()A. B.C. D.10.计算的结果是()A. B. C. D.二、填空题:本题共3小题,每小题3分,共9分。
11.已知,,则的值为______.12.计算:______结果用幂的形式表示13.若,则______.三、解答题:本题共4小题,共32分。
解答应写出文字说明,证明过程或演算步骤。
14.本小题8分计算下列各式,结果用幂的形式表示15.本小题8分若,,,探究a、b、c之间存在怎样的数量关系,并说明理由.16.本小题8分我国在2021年开展的第七次人口普查的资料表明:我国的人口约为万,假设当年人均可支配收入约为元,请你计算当年全国人民的总可支配收入约为多少万元.17.本小题8分规定一种新运算“*”:如果,那么;如果,那么试计算:;如果正整数m、n满足:,,且,试求m、n的值.答案和解析1.【答案】C【解析】解:,故此选项不合题意;B.,故此选项不合题意;C.,故此选项符合题意;D.,故此选项不合题意.故选:直接利用同底数幂的乘法运算法则以及合并同类项法则分别判断得出答案.此题主要考查了同底数幂的乘法运算以及合并同类项,正确掌握相关运算法则是解题关键.2.【答案】A【解析】解:,故选A根据同底数幂的乘法计算即可.此题考查同底数幂的乘法,关键是根据法则底数不变,指数相加计算.3.【答案】D【解析】解:根据合并同类项法则,,那么A正确,故A不符合题意.B.根据同底数幂的乘法法则,,那么B正确,故B不符合题意.C.根据同底数幂的乘法法则,,那么C正确,故C不符合题意.D.根据实数的乘法,与不一定相等,那么D错误,故D符合题意.故选:根据合并同类项法则、同底数幂的乘法法则解决此题.本题主要考查合并同类项、同底数幂的乘法,熟练掌握合并同类项法则、同底数幂的乘法法则是解决本题的关键.4.【答案】C【解析】解:,不符合题意;B.,不符合题意;C.,符合题意;D.,不符合题意;故选:根据同底数幂的乘法的法则同底数幂的乘法法则为:同底数幂相乘,底数不变,指数相加,进行求解即可.本题主要考查同底数幂的乘法,解答的关键是明确同底数幂的乘法的法则:底数不变,指数相加.5.【答案】C【解析】解:,不符合题意;B.,不符合题意;C.,符合题意;D.,不符合题意;故选:根据同底数幂的乘法的法则进行求解即可.本题主要考查同底数幂的乘法,解答的关键是明确同底数幂的乘法的法则:底数不变,指数相加.6.【答案】A【解析】解:,故选:逆运用同底数幂的乘法法则可得结论.本题考查了整式的运算,掌握同底数幂的乘法法则是解决本题的关键.7.【答案】D【解析】解:,,故选:根据同底数的幂相除的法则计算即可.本题考查有理数的乘方运算,解题的关键是掌握乘方的意义和同底数的幂相除的法则.8.【答案】D【解析】解:,故选:根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加可得,再代入计算即可.此题主要考查了同底数幂的乘法,关键是掌握计算法则.9.【答案】A【解析】解:,选项A符合题意;,选项B不符合题意;,选项C不符合题意;,选项D不符合题意;故选:根据平方差公式和完全平方公式的特点对每个选项进行分析,即可得出答案.本题考查了平方差公式和完全平方公式,熟练掌握平方差公式和完全平方公式的特点是解决问题的关键.10.【答案】B【解析】解:故选:利用幂的乘方的法则与同底数幂的乘法的法则进行运算即可.本题主要考查幂的乘方,同底数幂的乘法,解答的关键是对相应的运算法则的掌握.11.【答案】24【解析】解:,,故答案为:原式逆用同底数幂乘法法则变形,将已知等式代入计算即可求出值.此题考查了同底数幂的乘法,熟练掌握运算法则是解本题的关键.12.【答案】【解析】解:故答案为:根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,进行运算即可.本题考查了同底数幂的乘法法则,属于基础题,掌握基本的运算法则是关键.13.【答案】2【解析】解:,,,,故答案为:根据同底数幂的乘法,可得关于n的一元一次方程,根据解方程,可得答案.本题考查了同底数幂的乘法,利用了同底数幂的乘法法则,解一元一次方程的方法.14.【答案】解:原式;原式;原式;原式【解析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,进行运算即可.本题考查了同底数幂的乘法,解答本题的关键是掌握同底数幂的乘法法则.15.【答案】解:,理由如下:,,,,,【解析】根据时,随n的增大而增大,可得答案.本题考查了幂的乘方与积的乘方,利用时,随n的增大而增大是解题关键.16.【答案】解:万元答:当年全国人民的总可支配收入约为万元.【解析】通过计算得到全国人民的总可支配收入,然后利用科学记数法的表示形式表示,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n为整数.17.【答案】解:根据题中的新定义得:原式;已知等式化简得:,可得,当时,;时,;时,【解析】原式利用题中的新定义计算即可求出值;已知等式利用题中的新定义化简,计算即可求出各自的值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.。
幂的乘方与积的乘方试题精选(四)附答案
幂的乘方与积的乘方试题精选(四)一.填空题(共30小题)1.计算:[(﹣x)3]2×(x2)3=_________.2.若2×8n×16n=222,则n=_________.3.若a x=2,a y=3,则a2x+y=_________.4.当n为奇数时,=_________.5.计算:22005×0.52004=_________.6.﹣a2•(a2)2=_________.7.若n为正整数,且x2n=3,则(3x3n)2的值为_________.8.若3m=6,9n=2,则32m+2n=_________.9.已知,那么a2x=_________.10.计算:﹣[﹣(﹣1)2]2014=_________.11.如果(a x b y)3=a9b12,那么x=_________,y=_________.12.已知m x=1,m y=2,则m x+2y=_________.13.若a m=3,a n=5,则a2m+n=_________.14.若,则x=_________;若78=m,87=n,则5656=_________.(用含m,n的代数式表示)15.若x5•(x m)3=x11,则m=_________.16.若(xy)n=6,x n=2,则y n=_________.17.48×(0.25)9=_________.18.已知正整数a,b满足()a()b=4,则a﹣b=_________.19.312与96的大小关系是_________.20.若x=2m﹣1,y=1+4m+1,用含x的代数式表示y为_________.21.0.24×0.44×12.54=_________.22.计算:(0.125)2006(﹣8)2007(﹣1)2005=_________.23.计算:(1)(0.25)2×43=_________.24.已知:212=a6=4b,则﹣ab=_________.25.计算:①(a2)3=_________;②22009×(﹣0.5)2009=_________.26.若4x=2x+1,则x=_________.27.计算:=_________.28.若23k﹣1=32,则k的值为_________.29.(﹣)2013×(﹣2)2014=_________.30.若x,y均为正整数,且2x•8•4y=256,则x+y的值为_________.幂的乘方与积的乘方试题精选(四)参考答案与试题解析一.填空题(共30小题)1.计算:[(﹣x)3]2×(x2)3=x12.考点:同底数幂的乘法;幂的乘方与积的乘方.分析:先算乘方,再算乘法.注意先确定符号.解答:解:[(﹣x)3]2×(x2)3=x6•x6=x12.故应填x12.点评:本题考查乘方与乘法相结合.应先算乘方,再算乘法,要用到乘方法则:幂的乘方,底数不变,指数相乘.同底数幂的乘法法则:底数不变,指数相加.需注意负数的偶次幂是正数.2.若2×8n×16n=222,则n=3.考点:同底数幂的乘法;幂的乘方与积的乘方.分析:根据幂的乘法法则计算,再根据指数相等列式求解即可.解答:解:∵2×8n×16n=2×23n×24n=21+7n=222;∴1+7n=22,解得n=3.故填3.点评:本题主要考查了幂的有关运算.幂的乘方法则:底数不变指数相乘.同底数幂的乘法法则:底数不变指数相加.3.若a x=2,a y=3,则a2x+y=12.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:根据幂的乘方和同底数幂的乘法法则计算即可.解答:解:∵a x=2,a y=3,∴a2x+y=a2x•a y,=(a x)2•a y,=4×3,=12.点评:本题主要考查了幂的有关运算.幂的乘方法则:底数不变指数相乘.同底数幂的乘法法则:底数不变指数相加.4.当n为奇数时,=﹣1.考点:幂的乘方与积的乘方.分析:根据积的乘方运算的性质的逆用计算即可.解答:解:∵n为奇数,∴===﹣1.故答案为﹣1.点评:本题考查了积的乘方的性质,熟练掌握运算性质并灵活运用是解题的关键.5.计算:22005×0.52004=2.考点:幂的乘方与积的乘方.分析:根据积的乘方性质的逆用,都写成2004次方,求解即可.解答:解:22005×0.52004,=2×22004×0.52004,=2×(2×0.5)2004,=2×1,=2.点评:本题考查了积的乘方的性质,转化为同指数的幂相乘是利用性质解决本题的关键.6.﹣a2•(a2)2=﹣a6.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:根据幂的乘方,底数不变指数相乘,同底数幂相乘,底数不变指数相加计算即可.解答:解:﹣a2•(a2)2,=﹣a2•a4,=﹣a6.点评:此题主要考查同底数幂的乘法,幂的乘方的性质,熟练掌握运算性质是解题的关键.7.若n为正整数,且x2n=3,则(3x3n)2的值为243.考点:幂的乘方与积的乘方.分析:根据幂的乘方与积的乘方运算规则,可将所求的式子展开,然后将x2n=3整体代入求解.解答:解:(3x3n)2=9x3×2n=9(x2n)3=9×33=243.点评:本题考查了幂的乘方与积的乘方的性质,熟练掌握运算性质是解答此题的关键;幂的乘方,底数不变指数相乘;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.8.若3m=6,9n=2,则32m+2n=72.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:将原式分解为32m•32n后逆用幂的运算性质即可进行运算.解答:解:32m+2n=(3m)2•(32)n=62×2=36×2=72,故答案为72.点评:本题考查了同底数幂的除法与幂的乘方与积的乘方的知识,比较简单,属于基础题.9.已知,那么a2x=.考点:幂的乘方与积的乘方.分析:逆用幂的乘方的运算性质将a2x转化为(a x)2后代入即可求得其值.解答:解:∵,∴a2x=(a x)2=()2=,故答案为:.点评:本题考查了幂的乘方与积的乘方的知识,解题的关键是熟练的掌握运算性质并能正确的逆用性质.10.计算:﹣[﹣(﹣1)2]2014=﹣1.考点:幂的乘方与积的乘方.分析:运用幂的乘方及积的乘方法则计算.解答:解:﹣[﹣(﹣1)2]2014=﹣(﹣1)2014=﹣1故答案为:﹣1.点评:本题主要考查幂的乘方及积的乘方,解题的关键是注意符号.11.如果(a x b y)3=a9b12,那么x=3,y=4.考点:幂的乘方与积的乘方.分析:先运用幂的乘方化简,再利用相同底数的指数相等求解.解答:解:∵(a x b y)3=a9b12,∴a3x b3y=a9b12,∴3x=9,3y=12,∴x=3,y=4,故答案为:3,4.点评:本题主要考查了幂的乘方与积的乘方,解题的关键是利用相同底数的指数相等.12.已知m x=1,m y=2,则m x+2y=4.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:先求出(m y)2=22=4,再利用m x+2y=m x•(m y)2求解.解答:解:∵m y=2,∴(m y)2=22=4,∵m x=1,∴m x+2y=m x•(m y)2=1×4=4故答案为:4.点评:本题考查了积的乘方的性质,熟记运算性质并理清指数的变化是解题的关键.13.若a m=3,a n=5,则a2m+n=45.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:把a2m+n化为(a m)2•a n,再利用a m=3,a n=5计算求解.解答:解:∵a m=3,a n=5,∴a2m+n=(a m)2•a n=9×5=45,故答案为:45.点评:本题主要考查了同底数幂的乘法及幂的乘方与积的乘方,解题的关键是把a2m+n化为(a m)2•a n求解.14.若,则x=﹣2;若78=m,87=n,则5656=m7•n8.(用含m,n的代数式表示)考点:幂的乘方与积的乘方.分析:运用幂的乘方与积的乘方法则求解即可.解答:解:若,则x=﹣2;若78=m,87=n,则5656=(7×8)56=(78)7×(87)8=m7•n8.故答案为:﹣2,m7•n8.点评:本题主要考查了幂的乘方与积的乘方,解题的关键是把5656化为(78)7×(87)8求解.15.若x5•(x m)3=x11,则m=6.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:先运用幂的乘方与同底数幂的乘法,再根据指数相等求解.解答:解:∵x5•(x m)3=x11,∴x5+m=x11,∴5+m=11,∴m=6.故答案为:6.点评:本题主要考查了幂的乘方与同底数幂的乘法,解题的关键是根据指数相等求解.16.若(xy)n=6,x n=2,则y n=3.考点:幂的乘方与积的乘方.分析:运用积的乘方法则,把(xy)n=6化为x n•y n=6再代入x n=2运算.解答:解:∵(xy)n=6,∴x n•y n=6,∵x n=2,∴y n=6÷2=3,故答案为:3.点评:本题主要考查了幂的乘方与积的乘方,解题的关键是把(xy)n=6化为x n•y n=6运算.17.48×(0.25)9=.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:运用幂的乘方与积的乘方与同底数幂的乘法的法则计算.解答:解:48×(0.25)9=×=.故答案为:.点评:本题主要考查了幂的乘方与积的乘方与同底数幂的乘法,解题的关键是熟记法则.18.已知正整数a,b满足()a()b=4,则a﹣b=﹣2.考点:幂的乘方与积的乘方.分析:先化简()a()b=4得,运用与的指数相同得出结果.解答:解:()a()b==•2a•=4,∴a=2,2a=b,∴a=2,b=4,∴a﹣b=2﹣4=﹣2,故答案为:﹣2.点评:本题主要考查了幂的乘方与积的乘方.解题的关键是根据法则把()a()b=化为•2a•.19.312与96的大小关系是312=96.考点:幂的乘方与积的乘方.分析:把96变成(32)6,推出96=312,即可得出答案.解答:解:∵96=(32)6=312,∴312=96,故答案为:312=96.点评:本题考查了幂的乘方和积的乘方的应用,解此题的思路是把底数变成相同的数,也可以变第一个式子,即312=(32)6=96.20.若x=2m﹣1,y=1+4m+1,用含x的代数式表示y为y=4(x+1)2+1.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:将4m变形,转化为关于2m的形式,然后再代入整理即可解答:解:∵4m+1=22m×4=(2m)2×4,x=2m﹣1,∴2m=x+1,∵y=1+4m+1,∴y=4(x+1)2+1,故答案为:y=4(x+1)2+1.点评:本题考查幂的乘方的性质,解决本题的关键是利用幂的乘方的逆运算,把含m的项代换掉.21.0.24×0.44×12.54=1.考点:幂的乘方与积的乘方.分析:利用积的乘方的逆运算可知.解答:解:0.24×0.44×12.54,=(0.2×0.4×12.5)4,=14,=1.点评:本题主要考查积的乘方,等于把积的每个因式分别乘方,再把所得的幂相乘,熟练掌握性质并灵活运用是解题的关键.22.计算:(0.125)2006(﹣8)2007(﹣1)2005=8.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:根据积的乘方的逆运算.解答:解:(0.125)2006(﹣8)2007(﹣1)2005,=[0.125×(﹣8)]2006×(﹣8)×(﹣1),=8.故填8.点评:本题主要考查了幂的乘方和积的乘方运算.幂的乘方法则:底数不变指数相乘.积的乘方法则:等于把积的每个因式分别乘方,再把所得的幂相乘.解题关键是灵活运用积的乘方法则,看出0.125和8互为倒数.23.计算:(1)(0.25)2×43=4.考点:幂的乘方与积的乘方.分析:先转化为同底数的幂相乘,再利用积的乘方的性质的逆用计算即可.解答:解:(0.25)2×43,=(0.25×4)2×4,=1×4,=4.故填4.点评:本题主要考查积的乘方的性质,熟练掌握性质并灵活运用是解题的关键.24.已知:212=a6=4b,则﹣ab=2.考点:幂的乘方与积的乘方.分析:把212化成46,然后根据底数相等,指数相等求出a,b的值.再代入求出﹣ab的值.解答:解:由于212=46,∵212=a6=4b,则a=4,b=6.代入﹣ab=26﹣24=2.点评:本题考查了幂的乘方的性质的逆用,先求出a、b的值是解题的关键.25.计算:①(a2)3=a6;②22009×(﹣0.5)2009=﹣1.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:①根据幂的乘方,底数不变,指数相乘计算;②根据积的乘方的性质的逆用,求解即可.解答:解:①(a2)3=a6;②22009×(﹣0.5)2009,=(﹣2×0.5)2009,=(﹣1)2009,=﹣1.点评:本题主要考查了幂的乘方、积的乘方的性质,熟练掌握运算性质并灵活运用是解题的关键.26.若4x=2x+1,则x=1.考点:幂的乘方与积的乘方.分析:先把4x化成底数是2的形式,再让指数相同列出方程求解即可.解答:解:4x=(22)x=22x,根据题意得到22x=2x+1,∴2x=x+1,解得:x=1.点评:本题考查了幂的乘方的性质,逆用性质是解题的关键.27.计算:=﹣1.考点:幂的乘方与积的乘方.分析:根据积的乘方的逆运用得出[()×2]5,先算括号,再算乘方.解答:解:=[(﹣)×2]5=(﹣1)5=﹣1,故答案为:﹣1.点评:本题考查了幂的乘方和积的乘方,注意:a m×b m=(ab)m.28.若23k﹣1=32,则k的值为2.考点:幂的乘方与积的乘方.分析:把原式得出23k﹣1=25,推出3k﹣1=5,求出即可.解答:解:∵23k﹣1=32,∴23k﹣1=25,∴3k﹣1=5,∴k=2.故答案为:2.点评:本题考查了幂的乘方和解一元一次方程,关键是化成底数相同的幂,根据底数相同即可得出指数相等.29.(﹣)2013×(﹣2)2014=﹣2.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:运用幂的乘方与积的乘方和同底数幂的乘法法则计算.解答:解:(﹣)2013×(﹣2)2014=×(﹣2)=﹣2;故答案为:﹣2.点评:本题主要考查了幂的乘方与积的乘方和同底数幂的乘法,解题的关键是运用积的乘方化简运算.30.若x,y均为正整数,且2x•8•4y=256,则x+y的值为3或4.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:先把2x•8•4y化为2x+2y+3,256化为28,得出x+2y+3=8,即x+2y=5,因为x,y均为正整数,求出x,y,再求了出x+y.解答:解:∵2x•8•4y=2x2y+3,28=256,∴x+2y+3=8,即x+2y=5∵x,y均为正整数,∴或∴x+y=3或4,故答案为:3或4.点评:本题主要考查了幂的乘方,同底数幂的乘法,解题的关键是化为相同底数的幂求解.。
同底数幂、幂的乘方、积的乘方知识点及习题
幂的运算1、同底数幂的乘法同底数幂相乘,底数不变,指数相加.公式表示为:()mnm na a am n +⋅=、为正整数同底数幂的乘法可推广到三个或三个以上的同底数幂相乘,即()m n p m m p a a a a m n p ++⋅⋅=、、为正整数注意:(1)同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数.(2) 在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算.例1: 计算列下列各题 (1) 34a a ⋅; (2) 23b b b ⋅⋅ ; (3) ()()()24c c c -⋅-⋅-练习:简单 一选择题1. 下列计算正确的是( )A.a2+a3=a5B.a2·a3=a5C.3m +2m =5mD.a2+a2=2a42. 下列计算错误的是( )A.5x2-x2=4x2B.am +am =2amC.3m +2m =5mD.x·x2m-1= x2m3. 下列四个算式中①a3·a3=2a3 ②x3+x3=x6 ③b3·b·b2=b5④p 2+p 2+p 2=3p 2正确的有( )A.1个B.2个C.3个D.4个4. 下列各题中,计算结果写成底数为10的幂的形式,其中正确的是( )A.100×102=103B.1000×1010=103C.100×103=105D.100×1000=104二、填空题1. a4·a4=_______;a4+a4=_______。
2、 b 2·b ·b 7=________。
3、103·_______=10104、(-a)2·(-a)3·a5=__________。
5、a5·a( )=a2·( ) 4=a186、(a+1)2·(1+a)·(a+1)5=__________。
同底数幂的乘法、幂的乘方、积的乘方练习卷
同底数幂的乘法、幂的乘方、积的乘方练习卷同底数幂的乘法同底数幂相乘的法则是:底数不变,指数相加。
例如,a^m * a^n = a^(m+n)。
逆用法则是:a^(m+n) = a^m * a^n。
练:一.判断题1.x^3 + x^2 = x^5 (×)2.x^5 * x^2 = x^10 (√)3.a * a^2 * a^7 = a^9 (√)4.m^4 * m^4 = 2m^4 (×)5.y^y^5 = y^7 (√)二.填空题:1.m^5 * m^3 = m^82.-a^2 * a^6 = -a^83.(-a)^2 * a^6 = a^84.2^5 + 2^5 = 2^6二.计算题1.(b+2)^3 * (b+2)^5 * (b+2) = (b+2)^92.(x-2y)^2 * (2y-x)^3 = (x-2y)^53.x^3 * x^5 + x * x^3 * x^4 = 2x^84.(2x-1)^2 * (2x-1)^3 + (2x-1)^4 * (-2x+1) = (2x-1)^5三、一种计算机每秒可做4×10^8次运算,它工作3×10^3秒共可做多少次运算?总共可做的次数为:4 * 10^8 * 3 * 10^3 = 1.2 * 10^12.四、解答题:1.若3a=5,3b=6,求3a+b的值。
3a+b = 3a * 3b/3a = 5 * 6/3 = 10.2.若ma-2=6,mb+5=11,求ma+b+3的值。
ma+b+3 = ma * mb/ma-2 + 3 = 6 * 11/4 + 3 = 18.75.幂的乘方幂的乘方的法则是:底数不变,指数相乘。
例如,(a^m)^n = a^(m*n)。
逆用法则是:a^(m*n) = (a^m)^n。
练:一.计算题1.(10^3)^3 = 10^92.(x^4)^3 = x^123.(-x^3)^4 = x^124.(-x)^3 * (-x)^2 = -x^55.(a^2)^3 * a^5 = a^116.(x^2)^8 * (x^4)^4 = x^247.(b*m+1)^4 * (b*m-1)^5 = b^9 * m^98.(-x^3)^2 * (-x^2)^3 = -x^109.(-a^2)^3 + (-a)^3 = -2a^3二.解答题:1.若2^x+2^y-5=0,求4*16的值。
人教版八年级数学上册《幂的运算》专项练习题-附含答案
人教版八年级数学上册《幂的运算》专项练习题-附含答案一.同底数幂的乘法1.已知2m•2m•8=211则m=4.试题分析:将已知中的2m•2m•8化为同底数的幂然后利用同底数幂的乘法法则进行计算再根据指数相同列式求解即可.答案详解:解:2m•2m•8=2m•2m•23=2m+m+3∵2m•2m•8=211∴m+m+3=11解得m=4.所以答案是4.2.已知2x+3y﹣2=0 求9x•27y的值.试题分析:直接利用幂的乘方运算法则将原式变形进而化简得出答案.答案详解:解:∵2x +3y ﹣2=0∴2x +3y =2∴9x •27y =32x •33y =32x +3y =32=9.3.已知3x +2=m 用含m 的代数式表示3x ( )A .3x =m ﹣9B .3x =m 9C .3x =m ﹣6D .3x =m 6 试题分析:根据同底数幂的乘法法则解答即可.答案详解:解:∵3x +2=3x ×32=m∴3x =m 9. 所以选:B .二.同底数幂的除法4.已知:3m =2 9n =3 则3m ﹣2n = 23 .试题分析:先利用幂的乘方变为同底数幂 再逆用同底数幂的除法求解.答案详解:解:∵9n =32n =3∴3m ﹣2n =3m ÷32n =23所以答案是:23.5.已知m =154344 n =54340 那么2016m ﹣n = 1 . 试题分析:根据积的乘方的性质将m 的分子转化为以3和5为底数的幂的积 然后化简从而得到m =n 再根据任何非零数的零次幂等于1解答.答案详解:解:∵m =154344=34⋅54344=54340 ∴m =n∴2016m ﹣n =20160=1. 所以答案是:1.6.已知k a =4 k b =6 k c =9 2b +c •3b +c =6a ﹣2 则9a ÷27b = 9 . 试题分析:先将9a ÷27b 变形 再由k a =4 k b =6 k c =9 2b +c •3b +c =6a ﹣2分别得出a b c 的关系式 然后联立得方程组 整体求得(2a ﹣3b )的值 最后代入将9a ÷27b 变形所得的式子即可得出答案.答案详解:解:9a ÷27b=(32)a ÷(33)b=(3)2a ﹣3b∵k a =4 k b =6 k c =9∴k a •k c =k b •k b∴k a +c =k 2b∴a +c =2b ①;∵2b +c •3b +c =6a ﹣2∴(2×3)b +c =6a ﹣2∴b +c =a ﹣2②;联立①②得:{a +c =2b b +c =a −2∴{c =2b −a c =a −2−b∴2b ﹣a =a ﹣2﹣b∴2a ﹣3b =2∴9a ÷27b=(3)2a ﹣3b=32=9.所以答案是:9.三.幂的乘方与积的乘方(注意整体思想的运用)7.已知2m =a 32n =b m n 为正整数 则25m +10n = a 5b 2 .试题分析:根据积的乘方与幂的乘方及同底数幂的乘法的运算法则解答.答案详解:解:∵2m =a 32n =b∴25m +10n =(2m )5•(25)2n =(2m )5•322n =(2m )5•(32n )2=a 5b 2所以答案是:a 5b 2.8.计算:(﹣0.2)100×5101= 5 .试题分析:根据幂的乘方与积的乘方运算法则 将所求的式子变形为(﹣0.2×5)100×5再求解即可.答案详解:解:(﹣0.2)100×5101=(﹣0.2)100×5100×5=(﹣0.2×5)100×5=5所以答案是:5.9.若x+3y﹣3=0 则2x•8y=8.试题分析:根据已知条件求得x=3﹣3y然后根据同底数幂的乘法法则进行解答.答案详解:解:∵x+3y﹣3=0∴x=3﹣3y∴2x•8y=23﹣3y•23y=23=8.所以答案是:8.四.幂的运算中的规律10.阅读材料:求1+2+22+23+24+…+22017+22018的值.解:设S=1+2+22+23+24+…+22017+22018①将等式两边同时乘 2 得2S=2+22+23+24+25+…+22018+22019②②﹣①得2S﹣S=22019﹣1 即S=22019﹣1所以1+2+22+23+24+…+22017+22018=22019﹣1.请你仿照此法计算:(1)1+2+22+23+24+…+29+210;(2)1+3+32+33+34+…+3n﹣1+3n(其中n为正整数).试题分析:(1)直接利用例题将原式变形进而得出答案;(2)直接利用例题将原式变形进而得出答案.答案详解:解:(1)设S=1+2+22+23+24+ (210)将等式两边同时乘2得:2S=2+22+23+24+…+210+211②②﹣①得2S﹣S=211﹣1即S=211﹣1∴1+2+22+23+24+…+210=211﹣1.(2)设S=1+3+32+33+34+…+3n①将等式两边同时乘3得:3S=3+32+33+34+…+3n+3n+1②②﹣①得3S﹣S=3n+1﹣1即S=12(3n+1﹣1)∴1+3+32+33+34+…+3n=12(3n+1﹣1).11.(1)通过计算比较下列各式中两数的大小:(填“>”、“<”或“=”)①12<21②23<32③34>43④45>54⑤56>65…(2)由(1)可以猜测n n+1与(n+1)n(n为正整数)的大小关系:当n≤2时n n+1<(n+1)n;当n≥3时n n+1>(n+1)n;(3)根据上面的猜想可以知道:20082009>20092008.试题分析:先要正确计算(1)中的各个数根据计算的结果确定所填的符号观察所填符号总结规律.答案详解:解:(1)①∵12=1 21=2∴12<21②∵23=8 32=9∴23<32③∵34=81 43=64∴34>43④∵45=1024 54=625∴45>54⑤∵56=15625 65=7776∴56>65…(2)由(1)可以猜测n n+1与(n+1)n(n为正整数)的大小关系:当n≤2时n n+1<(n+1)n;当n≥3时n n+1>(n+1)n;(3)∵n =2008>3∴20082009>20092008.12.求1+2﹣1+2﹣2+2﹣3+2﹣4+…+2﹣200的值.试题分析:依据12=1−12 12+14=1−14 12+14+18=1−18 …可得规律12+14+18+⋯+12200=1−12200 进而得到1+2﹣1+2﹣2+2﹣3+2﹣4+…+2﹣200的值.答案详解:解:∵12=1−1212+14=1−1412+14+18=1−18…12+14+18+⋯+12200=1−12200∴1+2﹣1+2﹣2+2﹣3+2﹣4+…+2﹣200=1+12+14+18+⋯+12200=1+1−12200=2−12200.13.探究:22﹣21=2×21﹣1×21=2( 1 )23﹣22= 2×22﹣1×22 =2( 2 )24﹣23= 2×23﹣1×23 =2( 3 )……(1)请仔细观察 写出第4个等式;(2)请你找规律 写出第n 个等式;(3)计算:21+22+23+…+22019﹣22020.试题分析:(1)根据给出的内容 直接可以仿写25﹣24=2×24﹣1×24=24(2)2n +1﹣2n =2×2n ﹣1×2n =2n(3)将原式进行变形 即提出负号后 就转化为原题中的类型 利用(1)(2)的结论 直接得出结果.答案详解:解:探究:22﹣21=2×21﹣1×21=2123﹣22=2×22﹣1×22=2224﹣23=2×23﹣1×23=23(1)25﹣24=2×24﹣1×24=24;(2)2n+1﹣2n=2×2n﹣1×2n=2n;(3)原式=﹣(22020﹣22019﹣22018﹣22017﹣……﹣22﹣2)=﹣2.所以答案是:1;2×22﹣1×22;2;2×23﹣1×23;3五.新定义14.定义一种新运算(a b)若a c=b则(a b)=c例(2 8)=3 (3 81)=4.已知(3 5)+(3 7)=(3 x)则x的值为35.试题分析:设3m=5 3n=7 根据新运算定义用m、n表示(3 5)+(3 7)得方程求出x 的值.答案详解:解:设3m=5 3n=7依题意(3 5)=m(3 7)=n∴(3 5)+(3 7)=m+n.∴(3 x)=m+n∴x=3m+n=3m×3n=5×7=35.所以答案是:35.15.规定两数a b之间的一种运算记作(a b);如果a c=b那么(a b)=c.例如:因为23=8 所以(2 8)=3.(1)根据上述规定填空:①(5 125)=3(﹣2 ﹣32)=5;②若(x 18)=﹣3 则x=2.(2)若(4 5)=a(4 6)=b(4 30)=c试探究a b c之间存在的数量关系;(3)若(m8)+(m3)=(m t)求t的值.试题分析:(1)①根据新定义的运算进行求解即可;②根据新定义的运算进行求解即可;(2)根据新定义的运算进行求解即可;(3)根据新定义的运算进行求解即可.答案详解:解:①∵53=125∴(5 125)=3∵(﹣2)5=﹣32∴(﹣2 ﹣32)=5所以答案是:3;5;②由题意得:x﹣3=1 8则x﹣3=2﹣3∴x=2所以答案是:2;(2)∵(4 5)=a(4 6)=b(4 30)=c ∴4a=5 4b=6 4c=30∵5×6=30∴4a•4b=4c∴a+b=c.(3)设(m8)=p(m3)=q(m t)=r ∴m p=8 m q=3 m r=t∵(m8)+(m3)=(m t)∴p+q=r∴m p+q=m r∴m p•m r=m t即8×3=t∴t=24.16.规定两数a b之间的一种运算记作(a b):如果a c=b那么(a b)=c.例如:因为23=8 所以(2 8)=3.(1)根据上述规定填空:(3 27)=3(5 1)=0(2 14)=﹣2.(2)小明在研究这种运算时发现一个现象:(3n4n)=(3 4)小明给出了如下的证明:设(3n4n)=x则(3n)x=4n即(3x)n=4n所以3x=4 即(3 4)=x所以(3n4n)=(3 4).请你尝试运用这种方法证明下面这个等式:(3 4)+(3 5)=(3 20)试题分析:(1)分别计算左边与右边式子即可做出判断;(2)设(3 4)=x(3 5)=y根据同底数幂的乘法法则即可求解.答案详解:解:(1)∵33=27∴(3 27)=3;∵50=1∴(5 1)=0;∵2﹣2=1 4∴(2 14)=﹣2;(2)设(3 4)=x(3 5)=y则3x=4 3y=5∴3x+y=3x•3y=20∴(3 20)=x+y∴(3 4)+(3 5)=(3 20).所以答案是:3 0 ﹣2.六.阅读类---紧扣例题化归思想17.阅读下列材料:一般地n个相同的因数a相乘a⋅a⋯a︸n个记为a n.如2×2×2=23=8 此时3叫做以2为底8的对数记为log28(即log28=3).一般地若a n=b(a>0且a≠1 b>0)则n叫做以a为底b的对数记为log a b(即log a b=n).如34=81 则4叫做以3为底81的对数记为log381(即log381=4).(1)计算以下各对数的值:log24=2log216=4log264=6.(2)观察(1)中三数4、16、64之间满足怎样的关系式log24、log216、log264之间又满足怎样的关系式;(3)由(2)的结果你能归纳出一个一般性的结论吗?log a M+log a N=log a(MN);(a>0且a≠1 M>0 N>0)(4)根据幂的运算法则:a n•a m=a n+m以及对数的含义证明上述结论.试题分析:首先认真阅读题目准确理解对数的定义把握好对数与指数的关系.(1)根据对数的定义求解;(2)认真观察不难找到规律:4×16=64 log24+log216=log264;(3)由特殊到一般得出结论:log a M+log a N=log a(MN);(4)首先可设log a M=b1log a N=b2再根据幂的运算法则:a n•a m=a n+m以及对数的含义证明结论.答案详解:解:(1)log24=2 log216=4 log264=6;(2)4×16=64 log24+log216=log264;(3)log a M+log a N=log a(MN);(4)证明:设log a M=b1log a N=b2则a b1=M a b2=N∴MN=a b1⋅a b2=a b1+b2∴b1+b2=log a(MN)即log a M+log a N=log a(MN).18.阅读下列材料:若a3=2 b5=3 则a b的大小关系是a>b(填“<”或“>”).解:因为a15=(a3)5=25=32 b15=(b5)3=33=27 32>27 所以a15>b15所以a >b .解答下列问题:(1)上述求解过程中 逆用了哪一条幂的运算性质 CA .同底数幂的乘法B .同底数幂的除法C .幂的乘方D .积的乘方(2)已知x 7=2 y 9=3 试比较x 与y 的大小.试题分析:(1)根据幂的乘方进行解答即可;(2)根据题目所给的求解方法 进行比较.答案详解:解:∵a 15=(a 3)5=25=32 b 15=(b 5)3=33=27 32>27 所以a 15>b 15 所以a >b 所以答案是:>;(1)上述求解过程中 逆用了幂的乘方 所以选C ;(2)∵x 63=(x 7)9=29=512 y 63=(y 9)7=37=2187 2187>512∴x 63<y 63∴x <y .19.阅读下面一段话 解决后面的问题.观察下面一列数:1 2 4 8 … 我们发现 这一列数从第二项起 每一项与它前一项的比都等于2.一般地 如果一列数从第二项起 每一项与它前一项的比都等于同一个常数 这一列数就叫做等比数列 这个常数叫做等比数列的比.(1)等比数列5 ﹣15 45 …的第四项是 ﹣135 .(2)如果一列数a 1 a 2 a 3 a 4 …是等比数列 且公比为q 那么根据上述的规定 有a 2a 1=q ,a 3a 2=q ,a 4a 3= …所以a 2=a 1q a 3=a 2q =(a 1q )q =a 1q 2 a 4=a 3q =(a 1q 2)q =a 1q 3 … a n = a 1q n ﹣1 (用含a 1与q 的代数式表示).(3)一个等比数列的第二项是10 第三项是20 则它的第一项是 5 第四项是 40 . 试题分析:(1)由于﹣15÷5=﹣3 45÷(﹣15)=﹣3 所以可以根据规律得到第四项.(2)通过观察发现 第n 项是首项a 1乘以公比q 的(n ﹣1)次方 这样就可以推出公式了;(3)由于第二项是10 第三项是20 由此可以得到公比然后就可以得到第一项和第四项.答案详解:解:(1)∵﹣15÷5=﹣3 45÷(﹣15)=﹣3∴第四项为45×(﹣3)=﹣135.故填空答案:﹣135;(2)通过观察发现第n项是首项a1乘以公比q的(n﹣1)次方即:a n=a1q n﹣1.故填空答案:a1q n﹣1;(3)∵公比等于20÷10=2∴第一项等于:10÷2=5第四项等于20×2=40.a n=a1q n﹣1.故填空答案:它的第一项是5 第四项是40.七.整式除法(难点)20.我阅读:类比于两数相除可以用竖式运算多项式除以多项式也可以用竖式运算其步骤是:(i)把被除式和除式按同一字母的降幂排列(若有缺项用零补齐).(ii)用竖式进行运算.(ii)当余式的次数低于除式的次数时运算终止得到商式和余式.我会做:请把下面解答部分中的填空内容补充完整.求(5x4+3x3+2x﹣4)÷(x2+1)的商式和余式.解:答:商式是5x2+3x﹣5 余式是﹣x+1;我挑战:已知x4+x3+ax2+x+b能被x2+x+1整除请直接写出a、b的值.试题分析:我会做:根据“我阅读”的步骤计算填空即可;我挑战:用竖式计算令余式为0即可算出a b的值.答案详解:解:我阅读:(iii)余式是﹣x+1所以答案是:0x2﹣5x2﹣5x2﹣5x2+0x﹣5 ﹣x+1;我挑战:∴x4+x3+ax2+x+b=(x2+x+1)(x2+a﹣1)+(2﹣a)x+b﹣a+1 ∵x4+x3+ax2+x+b能被x2+x+1整除∴(2﹣a)x+b﹣a+1=0∴2﹣a=0且b﹣a+1=0解得a=2 b=1.21.计算:3a3b2÷a2+b•(a2b﹣3ab).试题分析:根据单项式的除法以及单项式乘以多项式进行计算即可.答案详解:解:原式=3ab2+a2b2﹣3ab2=a2b2.22.计算:(2a3•3a﹣2a)÷(﹣2a)试题分析:依据单项式乘单项式法则进行计算然后再依据多项式除以单项式法则计算即可.答案详解:解:原式=(6a4﹣2a)÷(﹣2a)=6a4)÷(﹣2a)﹣2a÷(﹣2a)=﹣3a3+1.八.巧妙比大小---化相同23.阅读下列解题过程试比较2100与375的大小.解:∵2100=(24)25=1625375=(33)25=2725而16<27∴2100<375请根据上述解答过程解答:比较255、344、433的大小.试题分析:根据幂的乘方的逆运算把各数化为指数相同、底数不同的形式再根据底数的大小比较即可.答案详解:解:∵255=3211344=8111433=6411且32<64<81∴255<433<344.24.比较20162017与20172016的大小我们可以采用从“特殊到一般”的思想方法:(1)通过计算比较下列各式中两数的大小:(填“>”、“<”或“=”)①12<21②23<32③34>43④45>54⑤56>65…(2)由(1)可以猜测n n+1与(n+1)n(n为正整数)的大小关系:当n≤2时n n+1<(n+1)n;当n>2时n n+1>(n+1)n;(3)根据上面的猜想则有:20162017>20172016(填“>”、“<”或“=”).试题分析:(1)通过计算可比较大小;(2)观察(1)中的符号归纳n n+1与(n+1)n(n为正整数)的大小关系;(3)由(2)中的规律可直接得到答案;答案详解:解:(1)①∵12=1 21=2∴12<21②∵23=8 32=9∴23<32③∵34=81 43=64∴34>43④∵45=1024 54=625∴45>54⑤∵56=15625 65=7776∴56>65(2)通过观察可以看出;n≤2时n n+1<(n+1)n;n>2时n n+1>(n+1)n;(3)由(2)得到的结论;2016>2∴20162017>20172016.所以答案是:(1)<<>>;≤2 >2;>.25.(1)用“>”、“<”、“=”填空:35<3653<63(2)比较下列各组中三个数的大小并用“<”连接:①41086164②255344433.试题分析:(1)根据底数为大于1的正数时底数相同指数越大幂越大和指数相同时底数越小幂越小填空即可;(2)①先把这3个数化为底数都为2的幂比较大小;②根据(a m)n=a mn(m n是正整数)的逆运算把三个数化为指数相同的数再比较底数的大小即可.答案详解:解:(1)∵3>1∴35<36所以答案是:<;∵1<5<6∴53<63所以答案是:<;(2)①∵410=(42)5=220164=(42)4=21686=218∵220>218>216∴164<86<410;②∵255=(25)11344=(34)11433=(43)11又∵25=32<43=64<34=81∴255<433<344.九.幂的运算的综合提升26.已知5a=2b=10 求1a +1b的值.试题分析:想办法证明ab=a+b即可.答案详解:解:∵5a=2b=10∴(5a)b=10b(2b)a=10a∴5ab=10b2ab=10a∴5ab•2ab=10b•10a∴10ab=10a+b∴ab=a+b∴1a+1b=a+bab=127.已知6x=192 32y=192 则(﹣2017)(x﹣1)(y﹣1)﹣2=−1 2017.试题分析:由6x=192 32y=192 推出6x=192=32×6 32y=192=32×6 推出6x﹣1=32 32y ﹣1=6 可得(6x﹣1)y﹣1=6 推出(x﹣1)(y﹣1)=1 由此即可解决问.答案详解:解:∵6x=192 32y=192∴6x=192=32×6 32y=192=32×6∴6x﹣1=32 32y﹣1=6∴(6x﹣1)y﹣1=6∴(x﹣1)(y﹣1)=1∴(﹣2017)(x﹣1)(y﹣1)﹣2=(﹣2017)﹣1=−1 201728.已知三个互不相等的有理数既可以表示为1 a a+b的形式又可以表示0 bab的形式试求a2n﹣1•a2n(n≥1的整数)的值.试题分析:由于ba 有意义则a≠0 则应有a+b=0 则ba=−1 故只能b=1 a=﹣1了再代入代数式求解.答案详解:解:由题可得:a≠0 a+b=0∴ba=−1 b=1∴a=﹣1又∵2n﹣1为奇数﹣1的奇数次方得﹣1;2n为偶数﹣1的偶数次方得1∴a2n﹣1•a2n=(﹣1)2n﹣1×(﹣1)2n=﹣1×1=﹣1.29.化简与求值:(1)已知3×9m×27m=321求(﹣m2)3÷(m3•m2)m的值.(2)已知10a=5 10b=6 求①102a+103b的值;②102a+3b的值.试题分析:(1)先根据幂的乘方的运算法则求出m的值然后化简(﹣m2)3÷(m3•m2)m并代入求值;(2)根据幂的乘方以及同底数幂的乘法法则求解.答案详解:解:(1)3×9m×27m=3×32m×33m=35m+1=321∴5m+1=21解得:m=4则(﹣m2)3÷(m3•m2)m=﹣m6﹣5m将m=4代入得:原式=﹣46﹣20=﹣4﹣14;(2)①102a+103b=(10a)2+(10b)3=52+63=241;②102a+3b=(10a)2•(10b)3=25×216=5400.。
同底数幂的乘法、幂的乘方与积的乘方练习
同底数幂的乘法、幂的乘方与积的乘方1、同底数幂的乘法法则:逆用2、幂的乘方法则:逆用:3. 积的乘方法则:逆用:练习:1.=_____,=____ _,32m·3m=_______,23·(-2)4=_____,x·(-x)4·x7=_____, 1 000×10m-3=_______,=______,=______,=___________.2. (-x2y3)2=_________;a2·(a3)4·a=_________.3. 若成立,则m= ,n=4. ①若,则m=___ __;②若,则a=__ _ _;③若,则y=___ _;④若,则x=__ ___; ⑤若644×83=2x,则x=_________.5. ①若x2n=4,则x6n=________;②a12=(_________)6=(________)3 ; ③若,则x=____ ____;④若xn=2,yn=3,则(xy)3n=_______;⑤若xn-3·x n+3=x10,则n=_________.6. 一个正方体的边长是,则它的表面积是_________.7.下面计算正确的是( ) A.; B.; C.; D.8. 81×27可记为( ) A.; B.; C.; D.9.若,则下面等式不成立的是( ) A; B.C.;D.10.下列说法中正确的是( ) A. 和一定是互为相反数 B. 当n为奇数时, 和相等C. 当n为偶数时, 和相等D. 和一定不相等计算11、⑴⑵⑶⑷⑸⑹-(a3-m)2 ⑺(-2x5y4z) 5 ⑻0.12516×(-8)17 ⑼()199×(-2)199 ⑽ 0.299×5101 ⑾12、⑴⑵⑶⑷⑸(-2a b)+8(a)·(-a)·(-b);⑹⑺13、⑴已知,,求、、的值. ⑵,已知10a=5,10b =6,求102a+3b的值.⑷,求n的值。
(完整版)同底数幂、幂的乘方、积的乘方知识点及习题,推荐文档
D.a2n 与b2n
(2) –a·(-a)2·a3
(3) –b2·(-b)2·(-b)3
(4) x·(-x2)·(-x)2·(-x3)·(-x)3
(5) x n x x n1
(7) x6·(-x)5-(-x)8 ·(-x)3
(6)x4-m ·x4+m·(-x) (8) -a3·(-a)4·(-a)5
A. x5 ;
B. x5 ;
C. x6 ;
D. x6 .
7.下列四个算式中: ①(a3)3=a3+3=a6;②[(b2)2]2=b2×2×2=b8;③[(-x)3]4=(-x)12=x12; ④(-y2)5=y10,正确的算式有( )
A.0 个;
B.1 个;
C.2 个;
D.3 个.
8.下列各式:① a5
幂的运算
1、同底数幂的乘法 同底数幂相乘,底数不变,指数相加.
公式表示为: am an amn m、n为正整数
同底数幂的乘法可推广到三个或三个以上的同底数幂相乘,即
am an a p amm p (m、n、为p 正整数 )
注意:(1)同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相 加,所得的和作为积的指数.
中等:
1、 (-10)3·10+100·(-102)的运算结果是( )
A.108
B.-2×104
2、(x-y)6·(y-x)5=_______。
C.0
D.-104
3、10m·10m-1·100=______________。
4、a 与 b 互为相反数且都不为 0,n 为正整数,则下列两数互为相反数的是( )
5.计算
x3
y2
(完整版)七年级下册-同底数幂的乘法、幂的乘方与积的乘方练习
❖ 知识点一:同底数幂的乘法大山坪一长方形草坪的长比宽多2米,如果草坪的长和宽都增加3米,则这个长方形草坪的面积将增加75平方米,这块草坪原来的长和宽各是多少米? 解:设这个长方形草坪的宽是x 米,则长为(x+2)米。
x ( x+2)+75=(x+3)(x+5)解这个方程需要用到整式的乘法。
思考: a n 表示的意义是什么?其中a 、n 、a n分 别叫做什么?概念:求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂,在n a 中,a 叫做底数,n 叫做指数.含义:n a 中,a 为底数,n 为指数,即表示a 的个数,n a 表示有n 个a 连续相乘.问题:25表示什么?10×10×10×10×10 可以写成什么形式?25= . 10×10×10×10×10 = .思考: 式子103×102的意义是什么?幂的运算知识讲解这个式子中的两个因数有何特点?先根据自己的理解,解答下列各题。
103×102 =23×22 =a3×a2 =思考:观察下面各题左右两边,底数、指数有什么关系?103×102 = 10() = 10();23×22 = 2() = 2();a3× a2 = a()= a()。
猜想: a m · a n=? (当m、n都是正整数)分组讨论,并尝试证明你的猜想是否正确。
a m·a n=(aa…a)(aa…a)=aa…a=a m+nm个a n个a (m+n)个a即:a m·a n =a m+n (当m、n都是正整数)猜想是正确的!同底数幂的乘法:a m·a n =a m+n (当m、n都是正整数)同底数幂相乘,底数______,指数________。
运算形式(同底、乘法)运算方法(底不变、指数相加)如 43×45=43+5=48想一想:a m·a n·a p= (m、n、p都是正整数)问题:光在真空中的速度大约是3×105千米/秒,太阳系以外距离地球最近的恒星是比邻星,它发出的光到达地球大约需要4.22年。
1-2--同底数幂的乘法、幂的乘方与积的乘方训练题及答案
10. 若 3 X 9m X 27m x 81m = 319,则 m 的值为()A. 2B. 3C. 4同底数幕的乘法、幕的乘方与积的乘方训练题及答案、选择题(共10小题;共30分) 1.下列运算正确的是() A. m 4?m 2= m 8B. (m 2)3 = m 5C. m 3 十m 2 = mD. 3m - m = 22.下列计算结果正确的是A. 3a - (-a ) = 2a C. a 5 十 a = a 5B. a 3 x (-a )2 = a 5 D. (-a 2)3 = a 63.下列运算,结果正确的是()A. m 6十m 3= m 2C. (m + n )2 = m 2 + n 2 223 3B. 3mn 2?m 2n = 3m 3n 3 2 2D. 2mn + 3mn = 5m n4.下列各式计算正确的是A. (a 7)2a 9B. a 7 ?a 2=評C. 2a 2 + 3a 3 = 5a 5D. (ab)3 = a 3b 35.如图,阴影部分的面积是 __________11A. y xyC. 6xyD. 3xy6. (a+ 2b -c )( 2a - b + c )展开后的项数为()A. 6B. 7C. 87.已知:N : =220 x 518,则N 是位正整数.A. 10B. 18C. 1913B .〒xy8.若x 取全体实数,则代数式3x 2 - 6x + 4的值()D. 9D. 20A. 一定为正B. 一定为负C.可能是0D.正数、负数、0都有可能9.将一多项式 (17x 2- 3x + 4) - (ax 2 + bx + c),除以(5x+ 6)后,得商式为 0 .求 a - b - c =() (2x + 1),余式为A. 3B. 23C. 25D. 29D. 5、填空题(共5小题;共15分)11. 如图,多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点1多边形,它的面积S可用公式S= a + -b- 1(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为皮克定理”.现有一张方格纸共有200个格点,画有一个格点多边形,它的面积S=40 .(1)这个格点多边形边界上的格点数 b = ________ (用含a的代数式表示);(2)设该格点多边形外的格点数为c,则c- a = ___________ .r T T T _「1卜V HH H卜H卜十十十TH」丄丄JL ■L」12. (-2a m ?b m+n )3 = ka9b15,则k + m + n = _____________13.在公式(x- 1)n = =a0 + a1x1 + a2x2 + a3x3 + ? a n x n中,a1 + ? + a n = .14.若a2n = 5, b2n : =16,则(ab)n = .15.已知m = 19962 1994 1995 + 1995 X 1996 + 1995 X 1996 2 + ? + 1995 X 1996 + 1995 X 1996 ,n= 1996 1996,贝U m与n满足的关系为三、解答题(共7小题;共55 分)16. 计算:(1) (-x 2)3?(-x 2)4;⑵(-x 5)8- (-x 8)5;(3) -a ?a5 - (a2)3 + (-2 ) ?(a3)2.17. 计算5a3b?(-3b )2 + (-6ab )2 ?(-ab )- ab3?(-4a 2).18. 若[(x3)m ]2 = x12,求m 的值.19.先化简,再求值: (1 + x)( 1 - x) + x(x + 2)- 1,其中x =20. 小丽给小强和小亮出了一道计算题:若(-3 )x(-3 )2(-3 3) = (-3 )7,求x的值•小强的答案是x = -2,小亮的答案是x = 2,二人都认为自己的结果正确,假如你是小丽,你能判断谁的计算结果正确吗?1 1 321. 先化简,再代入求值:当a= -, b = 4时,求整式a3(-b 3)2 + (- -ab2)的值.22. 比较下列式子的大小:a n与a n+2(a为正数,n为正整数))7第一部分 1. C 2. B 3. B 4. D 5. A6. A7. C8. A9. D10. A答案第二部分 11. (1) 82 - 12. -3 13. 1 或-1 2a ;( 2) 11814. ±4V 5 15. m = n 16. (1) 原式= =-X 6 ?X 8 = :-x 14 . 16. (2) 原式= =X 40-(-X 40)= X 40 + X 40 16. (3) 原式= =-a 6 -a 6 -2a 6 = -4a 6.第三部分 2X 4°. 17. (1) =5a 3b ?9b =45a 3b 3-=13a 3b 3.18. (1) •- [(x 3)m ]2 = ... (x 3m )2 = x 12 . • •• X 6m =X 12 ..6m =12 .• m = 2 .19. (1) 原式 = 1 -2X ,当X = 1 z2时,原式= 1 =2 x 2 =1 .x 12,2 2X2+ X 2 + 2X - 120. (1)小亮的答案是正确的. 因为 5a 3b ?(-3b )2 + (-6ab )2 ?(-ab ) - ab 3?(-4a 2) 2 - 36a 2b 2 ?ab+ ab 3 ?4a 236a 3b 3 + 4a 3b 3 (-3 )X (-3 )2(-3 3) (-3 (-3 (-3 )X (-3 )2(-3 )3 X +2+3所以x+2+3=7,即卩X = 2 .故小亮的答案是正确的.21. (1)原式=a3b6 - 1a3b6= ?a3b6.o o1当 a = 一,b = 4 时,47 1 3 7原式=0X (4)x46 = o X 43 = 56 .22. (1)①当a> 1 时,贝U a2 > 1,a n+2 > a n;②当 a = 1 时,贝U a2 = 1, a n+2 = a n;③当0 < a < 1时,贝Ua2 < 1,a n+2 < a n.。
同底数幂的乘法、幂的乘方与积的乘方同步练习题(可编辑修改word版)
新北师大版七年级年级下册第一章幂的运算训练题一、单选题1、下列运算:①(-x2)3=-x5;②3xy-3yx=0;③3100·(-3)100=0;④m·m5·m7=m12;⑤3a4+a4=3a8 ⑥(x2)4=x16.其中正确的有();A.1 个B.2 个C.3 个D.4 个2、计算(-a2)3的结果是()A.-a5 B.a6 C.-a6 D.a53、下列各式计算正确的是()A.(x2)3=x5 B.(x3)4=x12 C.x n x3n 1 D.x5·x6=x304、我们约定a b=10a×10b,如2 3=102×103=105,那么4 8 为()A.32 B.1032 C.1012 D.12105、如果x m3 x n x2,则n 等于()A.m-1 B.m+5 C.4-m D.5-m6、m9 可以写成()A.m4+m5 B.m4·m5 C.m3·m3 D.m2+m77、下列几个算式:①a4·a4=2a4;②m3+m2=m5;③x·x2·x3=x5;④n2+n2=n4.其中计算正确的有()A.0 个B.1 个C.2 个D.3 个8、计算(-2)2008+(-2)2009等于()A.-22008 B.-2 C.-1 D.220089、在y m2( ) y= 2m2中,括号内应填的代数式是()A.y m B.y m4C.y m2D.y m310、设 a m=8,a n=16,则 a m+n=()A.24 B.32 C.64 D.12811、如果 23m=26,那么 m 的值为()A.2 B.4 C.6 D.812、下列各式能用同底数幂乘法法则进行计算的是()A.(x+y)2(x-y)2 B.(x+y)2(-x-y)C.(x+y)2+2(x+y)2D.(x-y)2(-x-y)13、若 22a+3•2b-2=210,则 2a+b 的值是()A.8 B.9 C.10 D.1114、下列各式中,计算结果为x7 的是()A.x xB.x x5C.x xD.x3x415、计算(﹣x2)•x3的结果是()A. x3B.﹣x5C.x6D.﹣x616、计算3 x3x2的结果是( )A.2 x2B.3x2C.3x D.317、如果938,则 n 的值是()A.4 B.2 C.3 D.无法确定18、下列各式中,① x4 x2x8,② x3 x2 2 x6,③ a4 a3a7,④ a5a7a12,⑤a a a7.正确的式子的个数是()A.1个;B.2个;C.3个;D.4个.19、若a2m=25,则a-m等于()A.15 B.-51 1C.或-5 5D.62520、下列计算错误的有()①a8÷a2=a4;②(-m)4÷(-m)2=-m2;③x2n÷x n=x n;④-x2÷(-x)2=-1.A.1 个B.2 个C.3 个D.4 个二、填空题21、计算:-a2•(-a)2n+2=22、计算0.1252008×(﹣8)2009=.(n 是整数)..23、计算:(1)(-a5)5=;(2)(-y2)3·(-y3)2=;(3)(a2)4·a4=;(4)=.24、计算:(1)-22×(-2)3=;(2)a m·a·=;(3)10m×10000 =;(4)=.25、一台电子计算机每秒可作1012 次运算,它工作5×106 秒可作次运算.26、(1)=81,则x=;(2)=n,用含n 的代表式表示3x=.27、(1)a3·a m=a8,则m=;(2)2m=6,2n=5,则=.28、(1)32×32-3×33=;(2)x5·x2+x3·x4=;(3)(a-b)·(b-a)3·(a-b)4=;(4)100·10n·=;(5)a m··a2m·a=;(6)2×4×8×2n=.29、(1)107×103=;(2)a3·a5=;(3)x·x2·x3=;(4)(-a)5·(-a)3·(-a)=;(5)b m·=;(6)=.30、已知a m+1×a2m-1=a9,则m=.31、4m•4•16=.32、若x•x a•x b•x c=x2011,则a+b+c= .33、计算:-32•(-3)3= (结果用幂的形式表示).34、已知10n=3,10m=4,则10n+m的值为.35.计算:(-2)2013+(-2)2014=.三、解答题36、计算下列各题:(1)(-2)·(-2)2·(-2)3;(2)(-x)6·x4·(-x)3·(-x)2;(3);(4).37、已知,x+2y-4=0.求:的值.38、计算:(1)(a-b)2(a-b)3(b-a)5;(2)(a-b+c)3(b-a-c)5(a-b+c)6;(3)(b-a)m·(b-a)n-5·(a-b)5;(4)x3·x5·x7-x2·x4·x9.39、计算:(1)10×104×105+103×107;(2)m·m2·m4+m2·m5;(3)(-x)2·(-x)3+2x(-x)4;(4)103×10+100×102.40、计算:(1);(2)x m+15•x m﹣1(m 是大于 1 的整数);(3)(﹣x)•(﹣x)6;(4)﹣m3•m4.41、为了求 1+2+22+23+...+22012的值,可令 s=1+2+22+23+...+22012,则 2s=2+22+23+24 (22013)因此 2s﹣s=22013﹣1,所以 1+2+22+23+…+22012=22013﹣1.仿照以上推理,计算1+5+52+53+…+52013的值.42、化简求值:(-3a b)-8(a)•(-b)•(-a b),其中a=1,b=-1.43、已知 x6-b∙x2b+1=x11,且 y a-1∙y4-b=y5,求 a+b 的值.44、计算:(1)-p2·(-p)4·[(-p)3]5;(2)(m-n)2[(n-m)3]5;(3)25·84·162.45、判断下列计算是否正确,并简要说明理由.(1)(a3)4=a7;(2)a3·a4=a12;(3)(a2)3·a4=a9;(4)(a2)6=a12.46、阅读材料:求 1+2+22+23+24+…+22013的值.解:设 S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以 2 得:2S=2+22+23+24+25+…+22013+22014将下式减去上式得 2S-S=22014-1 即 S=22014-1即 1+2+22+23+24+…+22013=22014-1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(其中 n 为正整数).47、我们约定a b 10a10b,如2 3 102103105.(1)试求12 3 和4 8 的值.(2)想一想,a b c是否与a b c的值相等?验证你的结论.。
幂的乘方与积的乘方同步培优题典(解析版)
专题4.2幂的乘方与积的乘方姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020春•碑林区校级期中)计算a 3(﹣a 3)2的结果是( )A .a 8B .﹣a 8C .a 9D .a 12【分析】首先计算幂的乘方,再算同底数幂的乘法即可.【解析】原式=a 3•a 6=a 9,故选:C .2.(2020春•莘县期末)计算(−32)2020×(23)2021=( ) A .﹣1 B .−23 C .1 D .23 【分析】直接利用积的乘方运算法则将原式变形进而得出答案.【解析】(−32)2020×(23)2021 =(32)2020×(23)2021 =(32×23)2020×23 =23.故选:D .3.(2020•黔南州)下列运算正确的是( )A .(a 3)4=a 12B .a 3•a 4=a 12C .a 2+a 2=a 4D .(ab )2=ab 2 【分析】利用幂的乘方的性质、同底数幂的乘法法则、合并同类项法则、积的乘方的性质分别进行计算即可.【解析】A 、(a 3)4=a 12,故原题计算正确;B 、a 3•a 4=a 7,故原题计算错误;C 、a 2+a 2=2a 2,故原题计算错误;D 、(ab )2=a 2b 2,故原题计算错误;故选:A .4.(2020春•安化县期末)下列运算结果为a 6的是( )A .a 2+a 3B .a 2•a 3C .(﹣a 2)3D .(﹣a 3)2【分析】分别根据合并同类项法则,同底数幂的乘法法则,幂的乘方与积的乘方运算法则逐一判断即可.【解析】A .a 2与a 3不是同类项,所以不能合并,故本选项不合题意;B .a 2•a 3=a 5,故本选项不合题意;C .(﹣a 2)3=﹣a 6,故本选项不合题意;D .(﹣a 3)2=a 6,故本选项符合题意.故选:D .5.(2020春•来宾期末)计算(﹣112)2019×(23)2019的结果等于( ) A .1 B .﹣1C .−94D .−49 【分析】利用积的乘方得到原式=(−32×23)2019,然后根据乘方的意义计算.【解析】原式=(−32×23)2019=(﹣1)2019=﹣1.故选:B .6.(2020春•碑林区校级期中)已知a x =2,a y =3,则a 2x +3y 的值等于( )A .108B .36C .31D .27 【分析】利用同底数幂的乘法法则和幂的乘方的计算法则进行计算即可.【解析】a 2x +3y =(a x )2×(a y )3=22×33=108,故选:A .7.(2020•思明区校级二模)下列化简的结果是4x 2的式子是( )A .x 4B .2x 2C .(2x )2D .3x +x【分析】根据幂的乘方与积的乘方运算法则对选项C 进行化简,根据合并同类项法则对选项D 进行化简即可判断.【解析】(2x )2=4x 2,3x +x =4x ,∴化简的结果是4x 2的式子是(2x )2,故选:C .8.(2020春•吴中区期末)已知3x﹣3•9x=272,则x的值是()A.2B.3C.4D.5【分析】将3x﹣3•9x=272化为3x﹣3•32x=36,得到x﹣3+2x=6,从而求出x的值.【解析】3x﹣3•9x=272,即3x﹣3•32x=36,∴x﹣3+2x=6,∴x=3,故选:B.=()9.(2020•河北)若k为正整数,则(k+k+⋯+k)k︸k个kA.k2k B.k2k+1C.2k k D.k2+k【分析】根据乘方的定义及幂的运算法则即可求解.=((k•k)k=(k2)k=k2k,【解析】(k+k+⋯+k)k︸k个k故选:A.10.(2020春•杭州期末)我们知道:若a m=a n(a>0且a≠1),则m=n.设5m=3,5n=15,5p=75.现给出m,n,p三者之间的三个关系式:①m+p=2n;②m+n=2p﹣1;③n2﹣mp=1.其中正确的是()A.①②B.①③C.②③D.①②③【分析】根据同底数幂的乘除法公式即可求出m、n、p的关系.【解析】∵5m=3,∴5n=15=5×3=5×5m=51+m,∴n=1+m,∵5p=75=52×3=52+m,∴p=2+m,∴p=n+1,①m+p=n﹣1+n+1=2n,故此结论正确;②m+n=p﹣2+p﹣1=2p﹣3,故此结论错误;③n2﹣mp=(1+m)2﹣m(2+m)=1+m2+2m﹣2m﹣m2=1,故此结论正确;故正确的是:①③.故选:B .二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020春•丹阳市校级期末)计算:(2a 2b )2= 4a 4b 2 .【分析】利用积的乘方的性质和幂的乘方的性质进行计算即可.【解析】原式=4a 4b 2,故答案为:4a 4b 2.12.(2020春•涟源市期末)计算:(12)2019×41010= 2 . 【分析】根据幂的乘方与积的乘方运算法则逐一判断即可.【解析】(12)2019×41010 =(12)2019×22020 =(12)2019×22019×2=(12×2)2019×2=12019×2=1×2=2.故答案为:2.13.(2020春•徐州期末)比较大小:25 < 43(填>,<或=).【分析】利用幂的乘方将43化为26,再比较即可求解.【解析】∵43=(22)3=26,25<26,∴25<43,故答案为<.14.(2020春•来宾期末)若43×83=2x ,则x = 15 .【分析】利用幂的乘方得到26×29=2x ,然后利用积的乘方得到215=2x ,从而得到x 的值.【解析】∵43×83=2x ,∴(22)3×(23)3=2x ,∴26×29=2x ,∴215=2x,∴x=15.故答案为15.15.(2020春•会宁县期末)已知2x+3y﹣2=0,则9x•27y=9.【分析】直接利用幂的乘方运算法则以及同底数幂的乘法运算法则化简得出答案.【解析】∵2x+3y﹣2=0,∴2x+3y=2,则9x•27y=32x•33y=32x+3y=32=9.故答案为:9.16.(2020春•青白江区期末)若x=4m+1,y=64m﹣3,用x的代数式表示y,则y=(x﹣1)3﹣3.【分析】首先根据x=4m+1,可得:4m=x﹣1,然后根据64m=43m=(4m)3,用x的代数式表示y即可.【解析】∵x=4m+1,∴4m=x﹣1,∴64m=43m=(4m)3=(x﹣1)3,∴y=64m﹣3=(x﹣1)3﹣3.故答案为:(x﹣1)3﹣3.17.(2020春•岱岳区期末)已知m、n均为正整数,且2m+3n=5,则4m•8n的值为32.【分析】根据同底数幂的乘法以及幂的乘方运算法则计算即可.【解析】∵2m+3n=5,∴4m•8n=22m•23n=22m+3n=25=32.故答案为:32.18.(2020春•涟源市期末)已知2a=3,2b=6,2c=12,则a+c﹣2b=0.【分析】先计算22b,再逆运用同底数幂的乘除法法则,代入求值即可.【解析】∵2b=6,∴(2b)2=62.即22b=36.∵2a+c﹣2b=2a×2c÷22b=3×12÷36=1,∴a+c﹣2b=0.故答案为:0.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2020春•盐城期末)计算:(﹣a2)3•(﹣a3)2.【分析】利用幂的乘方的性质进行计算,再算乘法即可.【解析】原式=﹣a6•a6=﹣a12.20.(2020春•新沂市期末)化简:a•a5﹣(﹣2a3)2.【分析】分别根据同底数幂的乘法法则以及幂的乘方与积的乘方运算法则化简后,再合并同类项即可.【解析】a•a5﹣(﹣2a3)2=a6﹣4 a6=﹣3a6.21.计算:(1)(xy4)m(2)﹣(p2q)n(3)(xy3n)2+(xy6)n(4)(﹣3x3)2﹣[(2x)2]3.【分析】(1)利用积的乘方运算即可;(2)利用积的乘方运算即可;(3)利用积的乘方运算即可;(4)先算积的乘方,再合并同类项.【解析】(1)原式=x m y4m;(2)原式=﹣p2n q n;(3)原式=x2y6n+x n y6n;(4)原式=9x6﹣8x6=x6.22.(2020春•雅安期末)已知3x+5y﹣1=0,求8x•32y的值.【分析】根据幂的乘方的运算法则运算即可.【解析】原式=23x•25y=23x +5y ,∵3x +5y ﹣1=0,∴3x +5y =1,∴原式=21=2.23.阅读理解已知:(a ×b )2=a 2×b 2、(a ×b )3=a 3×b 3、(a ×b )4=a 4×b 4.(1)用特列验证上述等式是否成立(取a =1,b =﹣2);(2)通过上述验证,猜一猜:(a ×b )100= a 100×b 100 ,归纳得出(a ×b )n = a n ×b n ;(3)上述性质可以用来进行积的乘方运算,反之仍然成立,即a n b n =(a ×b )n ,计算:(−14)2019×42020. 【分析】(1)把a =1,b =﹣2代入,再进行计算,即可得出答案;(2)根据(1)中的算式得出答案即可;(3)先根据积的乘方进行变形,再求出即可.【解析】(1)当a =1,b =﹣2时,(a ×b )2=[1×(﹣2)]2=4,a 2×b 2=12×(﹣2)2=4, 即(a ×b )2=a 2×b 2;当a =1,b =﹣2时,(a ×b )3=[1×(﹣2)]3=﹣8,a 3×b 3=13×(﹣2)3=﹣8, 即(a ×b )3=a 3×b 3;当a =1,b =﹣2时,(a ×b )4=[1×(﹣2)]4=16,a 4×b 4=14×(﹣2)4=16,即(a ×b )4=a 4×b 4;(2)(a ×b )100=a 100×b 100,(a ×b )n =a n ×b n ,故答案为:a 100×b 100,a n ×b n ;(3)(−14)2019×42020=[(−14)×4]2019×4=﹣1×4=﹣4.24.(2020春•漳州期末)如果x n =y ,那么我们规定(x ,y )=n .例如:因为32=9,所以(3,9)=2.(1)[理解]根据上述规定,填空:(2,8)= 3 ,(2,14)= ﹣2 ;(2)[说理]记(4,12)=a ,(4,5)=b ,(4,60)=c .试说明:a +b =c ;(3)[应用]若(m ,16)+(m ,5)=(m ,t ),求t 的值.【分析】(1)根据规定的两数之间的运算法则解答;(2)根据积的乘方法则,结合定义计算;(3)根据定义解答即可.【解析】(1)23=8,(2,8)=3,2−2=14,(2,14)=﹣2, 故答案为:3;﹣2;(2)证明:∵(4,12)=a ,(4,5)=b ,(4,60)=c ,∴4a =12,4b =5,4c =60,∴4a ×4b =60,∴4a ×4b =4c ,∴a +b =c ;(3)设(m ,16)=p ,(m ,5)=q ,(m ,t )=r ,∴m p =16,m q =5,m r =t ,∵(m ,16)+(m ,5)=(m ,t ),∴p +q =r ,∴m p +q =m r ,∴m p •m r =m t ,即16×5=t ,∴t =80.。
第01周 1.1同底数幂的乘法 1.2幂的乘方与积的乘方
第01周周练习班级姓名A卷(100分)一、选择题(每小题3分,共30分)1.(2014•温州)计算:m6•m3的结果(B)2.(2014•江西模拟)下列计算正确的是(C)3.下列说法中,正确的是(C)4.若N=(a•a2•b3)4,那么N等于(C)5.(2014•随州)计算(﹣xy2)3,结果正确的是(B)A.x3y5 B.﹣x3y6 C.x3y6 D.﹣x3y56.下列计算错误的个数是(C)①(3x3)2=6x6;②(﹣5a5b5)2=﹣25a10b10;③;④(3x2y3)4=81x6y7.7.(2014•南京联合体二模)下列运算中,结果是a6的式子是(D)8.(﹣x2)2n﹣1等于(D)9.当b为偶数时,(m﹣n)a•(n﹣m)b与(n﹣m)a+b的关系是(C)10.(2012•滨州)求1+2+22+23+…+22012的值,可令S=1+2+22+23+…+22012,则2S=2+22+23+24+…+22013,因此2S﹣S=22013﹣1.仿照以上推理,计算出1+5+52+53+…+52012的值为(C)A.52012﹣1 B.52013﹣1 C.D.二、填空题(每小题4分,共16分)11.若a n﹣3•a2n+1=a10,则n=.12.若52x+1=125,则(x﹣2)2012+x=.13.若(a2b3)n+1=a6b3m,则m+n=.14.1平方千米的土地,一年内从太阳得到的能量相当于燃烧1.3×105吨煤所产生的能量.已知,我国西部的广大地区约有6.4×106平方千米的广阔面积,那么,我国西部地区一年内从太阳得到的能量约相当于燃烧吨煤所产生的能量.三、解答题(共54分)15.计算:(1)﹣b2•(﹣b)2•(﹣b)3;(2)(a2)4+a•a7;(3)•22009;(4)(﹣2x2y)•(3x3y2)•(x2y)2.16.(1)已知a m=2,a n=3,求a3m+2n的值;(2)已知x3=m,x5=n,试用含m,n的代数式表示x14.17.已知2x+5y=7,求4x•32y的值.18.如果x、y是正整数,且2x•2y=32(1)求满足条件的整数x、y共有多少对?(2)根据条件能否快速判断出2x﹣1•2y+1的计算结果?19.已知20x=1000,50y=1000,求的值.20.若,b=(﹣4)3,c=(﹣3)4,试比较a,b,c的大小.B卷(20分)21.(3分)如果(3x m y m-n)3=27x12y9成立,那么整数m=_____,n=______.22.(3分)设a=334,b=251,c=425,按照从大到小的顺序排列为.23.计算:.24.(7分)阅读下列材料:一般地,n个相同的因数a相乘记为a n,记为a n.如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b(即log a b=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算以下各对数的值:log24=,log216=,log264=.(2)观察(1)中三数4、16、64之间满足怎样的关系式,log24、log216、log264之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?log a M+log a N=;(a>0且a≠1,M>0,N>0)(4)根据幂的运算法则:a n•a m=a n+m以及对数的含义证明上述结论.答案:A卷:一、选择题:1-10:BCCCB CDDCC二、填空题:11.4;12.﹣1;13.5;14.8.32×1011;三、解答题:15.解:(1)﹣b2•(﹣b)2•(﹣b)3=﹣b2•b2•(﹣b3)=b7;(2)(a2)4+a•a7=a8+a8=2a8;(3)•22009=•22008•2=(﹣×2)2008×2=2;(4)(﹣2x2y)•(3x3y2)•(x2y)2=(﹣6x5y3)•(x4y2)=﹣6x9y5.16.解:(1)∵a m=2,a n=3,∴a3m+2n=a3m•a2n=(a m)3•(a n)2=23×32=72;(2)∵x3=m,x5=n,∴x14=(x3)3•x5=m3n.17.解:2x+5y=7,4x•32y=22x•25y=22x+5y=27=128.18.解:(1)∵2x•2y=2x+y=25,∴x+y=5,∵x、y是正整数,∴x=1时,y=4,x=2时,y=3,x=3时,y=2,x=4时,y=1,∴正整数x、y共有4对;(2)∵x﹣1+y+1=x+y,∴2x﹣1•2y+1的计算结果是32.19.解:∵20x=1000,50y=1000,∴=20,=50,∴=20×50=1000,∴+==1.∴故答案为:1.20.解:∵=•(﹣2)=2,b=(﹣4)3=﹣64,c=(﹣3)4=81,∴c>a>b.B卷:21.4,1;22.解:a=334=(32)17=917;b=b=251=(23)17=817;c=425=250;∴250<251<334即:c<b<a.故答案是:c<b<a.23.解:设1+++…+=m,1+++…+=n,则原式=(m﹣1)n﹣m(n﹣1)=m﹣n=.24.解:(1)log24=2,log216=4,log264=6;(2)4×16=64,log24+log216=log264;(3)log a M+log a N=log a(MN);(4)证明:设log a M=b1,log a N=b2,则=M,=N,∴MN=,∴b1+b2=log a(MN)即log a M+log a N=log a(MN).。
八年级数学人教版上册同步练习积的乘方(解析版)
14.1.3积的乘方一、单选题1.下列运算中,正确的是( )A .22()ab ab =B .()325a a =C .23a a a ⋅=D .22()2a a -=-【答案】C【分析】根据幂的运算性质判断即可;【详解】222()ab a b =,故A 错误; ()326a a =,故B 错误; 23a a a ⋅=,故C 正确;22()a a -=,故D 错误;故答案选C .【点评】本题主要考查了幂的运算性质,准确分析判断是解题的关键.2.下列运算正确..的是( ) A .246x x x ⋅=B .246()x x =C .3362x x x +=D .33(2)6x x -=- 【答案】A【分析】根据同底数幂的乘法、幂的乘方、积的乘方以及合并同类项进行判断即可.【详解】A 选项246x x x ⋅=,选项正确,故符合题意;B 选项248()x x =,选项错误,故不符合题意;C 选项3332x x x +=,选项错误,故不符合题意;D 选项33(2)8x x -=-,选项错误,故不符合题意.故选:A .【点评】本题考查同底数幂的乘法、幂的乘方、积的乘方以及合并同类项,属于基础题,熟练掌握这些计算公式和方法是解决本题的关键.3.数151025N =⨯是( )A .10位数B .11位数C .12位数D .13位数 【答案】C【分析】利用同底数幂的乘法和积的乘方的逆运算,将原数改写变形即可得出结论.【详解】()1015105101051011252252253210 3.210N =⨯=⨯⨯=⨯⨯=⨯=⨯,∴N 是12位数,故选:C .【点评】本题考查同底数幂的乘法和积的乘方的逆运算的应用,灵活运用基本运算法则对原式变形是解题关键.4.计算()()202020213232 -⨯的结果是( ) A .32- B .23- C .23 D .32【答案】D【分析】利用积的乘方的逆运算解答. 【详解】()()202020213232-⨯ =20202020233322⎛⎫⎛⎫-⨯⨯ ⎪ ⎪⎝⎭⎝⎭=2020233322⎛⎫-⨯⨯ ⎪⎝⎭=32. 故选:D .【点评】此题考查积的乘方的逆运算,掌握积的乘方的计算公式是解题的关键.5.下列运算正确的是( )A .x 2·x 3=x 6B .(x 3)2=x 6C .(-3x)3=27x 3D .x 4+x 5=x 9【答案】B【分析】根据幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,逐项判断即可.【详解】∵x 2•x 3=x 5,∴选项A 不符合题意;∵(x 3)2=x 6,∴选项B 符合题意;∵(−3x )3=−27x 3,∴选项C 不符合题意;∵x 4+x 5≠x 9,∴选项D 不符合题意.故选:B .【点评】此题主要考查了幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,要熟练掌握.6.计算()20192020122⎛⎫-⨯- ⎪⎝⎭等于( ) A .﹣2B .2C .﹣12D .12 【答案】A【分析】逆运用同底数幂的乘法法则,把()20202-写成()()201922-⨯-的形式,再逆运用积的乘方法则得结论.【详解】()20192020122⎛⎫-⨯- ⎪⎝⎭()()201920191222⎛⎫=-⨯-⨯- ⎪⎝⎭()()20191222⎡⎤⎛⎫=--⨯- ⎪⎢⎥⎝⎭⎣⎦()201921?=-⨯2=-.故选:A .【点评】本题考查了同底数幂的乘法、积的乘方等知识点,熟练运用和逆用幂的运算法则是解决本题的关键.二、填空题目7.2007200820092()(1.5)(1)3⨯÷-=_____.【答案】-1.5【分析】首先把20081.5分解成20071.5 1.5⨯,再根据积的乘方的性质的逆用解答即可. 【详解】原式=()200720072 1.5 1.513⎛⎫⨯⨯÷- ⎪⎝⎭=()20072 1.5 1.513⎛⎫⨯⨯⨯- ⎪⎝⎭=﹣1.5, 故答案为-1.5 .【点评】本题考查有理数的乘方运算,逆用积的乘方法则是解题关键.8.计算:()()299990.045⎡⎤⨯-⎣⎦的结果是______. 【答案】1【分析】根据积的乘方的逆运算和幂的乘方计算即可【详解】原式()()()()99992999999990.0450.04250.110425⎡⎤⨯-⨯⨯⎣===⎦== 故答案为:1【点评】本题考查了积的乘方的逆运算和幂的乘方,熟练掌握法则是解题的关键9.计算:(-0.125)2021×82 020=________. 【答案】18-【分析】先根据同底数幂乘法的逆运算将2021(0.125)-化为20201(1))8(8⨯--,再利用积的乘方逆运算得到20201(8)81()8-⨯⨯-,求值即可. 【详解】20212020(0.1285)-⨯ =202020201())881(8⨯-⨯- =20201(8)81()8-⨯⨯- =18- 故答案为:18-. 【点评】本题考查同底数幂相乘的逆运算,积的乘方的逆运算.熟记公式并灵活运用公式是解题的关键.10.计算201520162332⎛⎫⎛⎫⨯-= ⎪ ⎪⎝⎭⎝⎭________________. 【答案】32【分析】直接运用积的乘方运算法则进行计算即可.【详解】201520162332⎛⎫⎛⎫⨯- ⎪ ⎪⎝⎭⎝⎭ =20152015233322⎛⎫⎛⎫⎛⎫⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ =2015233322⎡⎤⎛⎫⎛⎫⨯-⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=()2015312⎛⎫-⨯- ⎪⎝⎭=312⎛⎫-⨯-⎪⎝⎭ =32. 故答案为:32. 【点评】本题主要考查了积的乘方运算,熟练掌握运算法则是解答此题的关键.三、解答题11.计算:()()322435x x x -+-⋅. 【答案】62x -【分析】根据幂的运算法则计算即可.【详解】原式6242725x x x =-+⋅,662725x x =-+, 62x =-.【点评】本题考查了幂的运算,解题关键是熟知幂的运算法则,熟练进行计算.12.已知x 2n =4,求(x 3n )2﹣x n 的值.(其中x 为正数,n 为正整数)【答案】62【分析】由积的乘方逆用可得x n =2,然后将(x 3n )2﹣x n 化成只含有x n 的形式,然后将x n =2代入计算即可.【详解】∵x 2n =4(x 为正数,n 为正整数)∴x n =2,∴(x 3n )2﹣x n =(x n )6﹣x n =26﹣2=62.【点评】本题主要考查了幂的乘方和积的乘方,灵活运用幂的乘方和积的乘方运算法则是解答本题的关键. 13.计算:()2323(2)3a b ab a b⋅-+-. 【答案】3a 4b 2.【分析】根据同底数幂乘法及积的乘方的运算法则计算,再合并同类项即可得答案.【详解】()2323(2)3a b ab a b⋅-+-=-6a 4·b 2+9a 4b 2=3a 4b 2.【点评】本题考查整式的运算,熟练掌握同底数幂乘法、积的乘方及合并同类项法则是解题关键. 14.已知21202a b ⎛⎫-++= ⎪⎝⎭,求20202021a b 的值. 【答案】12- 【分析】先根据绝对值和平方的非负性求得2a =,12b =-,再将20202021a b 化为20202020a b b ⋅,再逆运用积的乘方公式适当变形后代入值计算即可.【详解】∵21202a b ⎛⎫-++= ⎪⎝⎭, ∴20a -=,102b +=, 解得2a =,12b =-. ∴2020202120202020a b a b b =⋅=2020()ab b ⋅ 将2a =,12b =-代入, 原式=202011[2()]()22⨯-⨯- =20201(1)()2-⨯- =11()2⨯- =12-.【点评】本题考查积的乘方运算的逆运算,同底数幂的乘法的逆运算,绝对值和平方的非负性.理解几个非负数(式)的和为0,那么这几个非负数(式)都为0.15.计算:32327(3)4a a a a -⋅-⋅【答案】.95a【分析】原式利用幂的乘方与积的乘方,以及同底数幂的乘法运算法则计算,合并即可得到结果.【详解】32327(3)4a a a a -⋅-⋅327694a a a a =⋅-⋅9994a a =-95a =.【点评】本题考查了幂的乘方与积的乘方,同底数幂的乘法以及合并同类项,熟练掌握运算法则是解本题的关键.16.已知32a =,35b =,3200c =,写出一个a ,b ,c 的等量关系式.【答案】32a b c +=【分析】根据8×25=200进行变形代入,再利用幂的乘方及同底数幂乘法计算即可得到结论.【详解】∵8×25=200,∴3225200⨯=,∵32a =,35b =,3200c =,∴()()32333a b c ⨯=,∴32333a b c ⨯=,∴3233a b c +=,∴32a b c +=.【点评】本题考查了同底数幂乘法及幂的乘方,熟练运用法则是解题的关键.17.计算题(1)若a 2=5,b 4=10,求(ab 2)2;(2)已知a m =4,a n =4,求a m+n 的值.【答案】(1)50;(2)16【分析】(1)根据积的乘方与幂的乘方运算法则进行计算求值即可;(2)逆用同底数幂乘法法则进行计算即可.【详解】(1)∵a 2=5,b 4=10,∴(ab 2)2=a 2•b 4=5×10=50;(2)∵a m =4,a n =4,∴a m+n =a m •a n =4×4=16.【点评】本题考查了同底数幂的乘法,积的乘方与幂的乘方,熟练掌握运算法则是解题的关键. 18.尝试解决下列有关幂的问题:(1)若1632793m m ⨯÷=,求m 的值;(2)已知2,3,x y a a =-=求32x y a -的值;(3)若n 为正整数,且24n x =,求()()223234n nx x -的值 【答案】(1)15;(2)89-;(3)512 【分析】(1)首先利用幂的乘方运算法则化简,再利用同底数幂的乘除法运算法则求出答案; (2)根据同底数幂的除法被幂的乘方法则解答;(3)将()()223234n n x x -利用幂的乘方和积的乘方法则变形为()()222394n n x x -,再代入计算.【详解】(1)∵1632793m m ⨯÷=,∴16323333m m ÷=⨯,∴11633m +=,∴m+1=16,∴m=15;(2)∵2,3x y a a =-=,∴32x y a -=32x y a a ÷=()()32x y a a ÷ =()3223-÷ =89-; (3)∵24n x =,∴()()223234n nx x - =()()222394n n x x -=239444⨯-⨯=512【点评】本题考查了幂的乘方运算以及同底数幂的乘法运算,正确掌握运算法则是解题关键. 19.如果n x y =,那么我们规定(,)x y n =.例如:因为239=,所以(3,9)2=.(1)(理解)根据上述规定,填空:(2,8)= ,12,4⎛⎫= ⎪⎝⎭;(2)(说理)记(4,12)a =,(4,5)b =,(4,60)c =.试说明:a b c +=;(3)(应用)若(,16)(,5)(,)m m m t +=,求t 的值.【答案】(1)3,-2;(2)见解析;(3)80【分析】(1)根据规定的两数之间的运算法则解答;(2)根据积的乘方法则,结合定义计算;(3)根据定义解答即可.【详解】(1)23=8,(2,8)=3, 2124-=,(2,14)=-2, 故答案为:3;-2;(2)∵(4,12)=a ,(4,5)=b ,(4,60)=c ,∴412a =,45b =,460c =,∵12560⨯=,∴444a b c ⨯=,∴44a b c +=,∴a b c +=;(3)设(m ,16)=p ,(m ,5)=q ,(m ,t )=r ,∴16p m =,5q m =,r m t =,∵(16)(5)()m m m t +=,,,, ∴p q r +=,∴p q r m m +=,∴p q r m m m ⨯=,即165t ⨯=,∴80t =.【点评】本题考查了幂的乘方和积的乘方以及新定义下的实数运算,掌握幂的乘方和积的乘方法则是解题的关键.20.计算:()20192020122⎛⎫-⨯ ⎪⎝⎭=________.【答案】2【分析】利用同底数幂的乘法运算将原式变形,再利用积的乘方求出结果. 【详解】(-2)202012⨯()2019 =2202012⨯()2019 =2⨯2201912⨯()2019 =2122⨯⨯()2019 =21⨯=2【点评】此题考察整式乘法公式的运用,准确变形是解题的关键.祝福语祝你考试成功!。
幂的乘方与积的乘方试题精选(六)附答案
幂的乘方与积的乘方试题精选(六)一.填空题(共14小题)1.计算(﹣9)3×(﹣)6×(1+)3=_________.2.﹣0.216x6=(_________)3,42×(_________)6=453.①=_________;②(﹣a5)4•(﹣a2)3=_________.4.①(a﹣2b)3(2b﹣a)2=_________;②22014×(﹣2)2015=_________.5.幂的乘方,底数不变,指数相乘.即:(a m)n=a mn(m,n都是正整数).填空:(1)(23)2=_________(2)(b5)5=_________(3)(x2n﹣1)3=_________.6.填空:(1)(a8)7=_________;(2)(105)m=_________;(3)(a m)3=_________;(4)(b2m)5=_________;(5)(a4)2•(a3)3=_________.7.(0.125)1999•(﹣8)1999=_________.8.计算(0.04)2003×[(﹣5)2003]2的结果为_________.9.若27a=32a+3,则a=_________.10.已知n为正整数,且a=﹣1,则﹣(﹣a2n)2n+3的值为_________.11.现有三个数2244,3333,4422,用“>”连接这三个数为_________.12.设a=3050,b=4040,c=5030,则a,b,c中最大的是_________,最小的是_________.13.设b=251,c=425,按照从大到小的顺序排列为_________.14.(2013•镇江)地震中里氏震级增加1级,释放的能量增大到原来的32倍,那么里氏_________级地震释放的能量是3级地震释放能量的324倍.二.解答题(共16小题)15.(2011•禅城区模拟)同学们,我们在七年级学习了“幂的乘方”这个知识点,知道(3b)2=9b2,请你用几何图形直观地解释上述式子.16.已知m2a+3b=25,m3a+2b=125,求m a+b的值.17.已知2x+5y+3=0,求4x•32y的值.18.(x4)2+(x2)4﹣x(x2)4﹣x(x2)2•x3﹣(﹣x)3•(﹣x2)2•(﹣x)19.已知x m=4,x n=3,求x2m+x3n的值.20.n为正整数,且x2n=3,则(3x3n)2的值为:_________.21.几个相同的数码摆成一个数,并且不用任何数学运算符号(含括号),如果要使摆成的数尽可能的大,该怎样摆呢?如用3个1按上述要求摆成一个数,有如下四种形式:①111;②111;③111;④.显然,111是这四个数中的最大的数.那么3个2有几种摆法?请找出其中的最大数.22.如果2•8m•16m=222成立,求m的值.23.若x m=3,y n=9,求x2m y3n的值.24.(﹣8)57×0.12555.25.(1)算一算下面两组算式:(3×5)2与32×52;[(﹣2)×3]2与(﹣2)2×32,每组两个算式的结果是否相同?(2)想一想,(ab)3等于什么?(3)猜一猜,当n为正整数时,(ab)n等于什么?你能利用乘方的意义说明理由吗?(4)利用上述结论,求(﹣8)2009×(0.125)2010的值.26.(2007•双柏县)阅读下列材料:一般地,n个相同的因数a相乘记为a n,记为a n.如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b(即log a b=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算以下各对数的值:log24=_________,log216=_________,log264=_________.(2)观察(1)中三数4、16、64之间满足怎样的关系式,log24、log216、log264之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?log a M+log a N=_________;(a>0且a≠1,M>0,N>0)(4)根据幂的运算法则:a n•a m=a n+m以及对数的含义证明上述结论.27.试比较大小:213×310与210×312.28.计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)29.已知x2m=2,求(2x3m)2﹣(3x m)2的值.30.已知2a=3,2b=5,求23a+2b+2的值.幂的乘方与积的乘方试题精选(六)参考答案与试题解析一.填空题(共14小题)1.计算(﹣9)3×(﹣)6×(1+)3=﹣216.考点:幂的乘方与积的乘方.专题:计算题.分析:根据幂的乘方的性质都化成指数是3的幂相乘,再根据积的乘方的性质的逆用计算即可.解答:解:(﹣9)3×(﹣)6×(1+)3,=(﹣9)3×[(﹣)2]3×()3,=[(﹣9)××]3,=(﹣6)3,=﹣216.点评:本题主要考查积的乘方的性质的逆用,转化为同指数的幂相乘是解题的关键.2.﹣0.216x6=(﹣0.6x2)3,42×(2)6=45考点:幂的乘方与积的乘方;同底数幂的乘法.分析:①运用积的乘方的性质的逆用解答;②根据同底数幂的乘法,底数不变,指数相加;幂的乘方,底数不变指数相乘解答.解答:解:①∵(﹣0.6x2)3=﹣0.216x6,∴﹣0.216x6=﹣0.6x2;②∵26=(22)3=43,∴42×26=45.点评:本题主要考查积的乘方的性质的逆用,熟练掌握性质并灵活运用是解题的关键.3.①=﹣a3b6;②(﹣a5)4•(﹣a2)3=﹣a15.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:①运用积的乘方法则运算即可.②先运用积的乘方法则计算,再运用同底数幂的乘法法则运算即可.解答:解:①=﹣a3b6;②(﹣a5)4•(﹣a2)3=﹣a15.故答案为:﹣a3b6,﹣a15.点评:本题主要考查了幂的乘方与积的乘方及同底数幂的乘法,解题的关键是注意运算符号.4.①(a﹣2b)3(2b﹣a)2=(a﹣2b)5;②22014×(﹣2)2015=﹣24029.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:①先把(a﹣2b)3(2b﹣a)2化为(a﹣2b)3(a﹣2b)2再运用同底数幂的乘法法则运算即可.②先把求出符号,再运用同底数幂的乘法法则运算即可.解答:解:①(a﹣2b)3(2b﹣a)2=(a﹣2b)3(a﹣2b)2=(a﹣2b)5,②22014×(﹣2)2015=﹣24029.故答案为:(a﹣2b)5,﹣24029.点评:本题主要考查了幂的乘方与积的乘方及同底数幂的乘法,解题的关键是注意运算符号.5.幂的乘方,底数不变,指数相乘.即:(a m)n=a mn(m,n都是正整数).填空:(1)(23)2=26(2)(b5)5=b25(3)(x2n﹣1)3=x6n﹣3.考点:幂的乘方与积的乘方.分析:根据幂的乘方的计算法则计算即可.解答:解:(1)(23)2=26;(2)(b5)5=b25;(3)(x2n﹣1)3=x6n﹣3.故答案为:26;b25;x6n﹣3.点评:考查了幂的乘方,底数不变,指数相乘.即:(a m)n=a mn(m,n都是正整数).6.填空:(1)(a8)7=a56;(2)(105)m=105m;(3)(a m)3=a3m;(4)(b2m)5=b10m;(5)(a4)2•(a3)3=a17.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:根据幂的乘方,底数不变指数相乘;同底数幂相乘,底数不变指数相加,对各项计算即可.解答:解:(1)(a8)7=a8×7=a56;(2)(105)m=105×m=105m;(3)(a m)3=a m×3=a3m;(4)(b2m)5=b2m×5=b10m;(5)(a4)2•(a3)3=a4×2•a3×3=a8•a9=a8+9=a17.点评:本题主要考查幂的乘方的性质,熟练掌握运算性质是解题的关键.7.(0.125)1999•(﹣8)1999=﹣1.考点:幂的乘方与积的乘方.分析:根据积的乘方,等于把每一个因式分别乘方,再把所得的幂相乘的性质的逆用解答即可.解答:解:(0.125)1999•(﹣8)1999,=(﹣0.125×8)1999,=(﹣1)1999,=﹣1.点评:本题主要考查积的乘方的性质,熟练掌握性质并灵活运用是解题的关键.8.计算(0.04)2003×[(﹣5)2003]2的结果为1.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:本题需要用到积的乘方的逆运算.解答:解:(0.04)2003×[(﹣5)2003]2,=(0.04)2003×[(﹣5)2]2003,=(0.04×25)2003,=1.点评:本题考查幂的乘方的性质和积的乘方的性质,整理转化为同指数的幂相乘是利用性质解题的关键.9.若27a=32a+3,则a=3.考点:幂的乘方与积的乘方.分析:根据幂的乘方的性质转化为同底数的幂,再根据指数相等列出方程,解方程即可.解答:解:∵27a=(33)a=33a=32a+3.∴3a=2a+3,解答a=3.点评:主要考查幂的乘方的性质,转化为同底数的幂是解题的关键.10.已知n为正整数,且a=﹣1,则﹣(﹣a2n)2n+3的值为1.考点:幂的乘方与积的乘方.分析:利用积的乘方性质:(ab)n=a n•b n,幂的乘方性质:(a m)n=a mn,直接计算.解答:解:∵n为正整数时,2n为偶数,2n+3为奇数,∴﹣(﹣a2n)2n+3=﹣(﹣1)2n+3=﹣(﹣1)=1,故本题答案为1.点评:本题考查了幂的乘方与积的乘方的运算,注意:﹣1的奇数次方为﹣1,﹣1的偶数次方为1.11.现有三个数2244,3333,4422,用“>”连接这三个数为2244>3333>4422.考点:幂的乘方与积的乘方.分析:化成指数相同的比较底数的大小就能得到答案.解答:解:2244=(224)11,3333=(333)11,4422=(442)11,∵224>333>442,∴2244>3333>4422.故答案为:2244>3333>4422.点评:本题考查幂的乘方的概念和积的乘方的性质的逆运用.12.设a=3050,b=4040,c=5030,则a,b,c中最大的是a,最小的是c.考点:幂的乘方与积的乘方.专题:计算题.分析:化成指数相同比较底数的大小即可.解答:解:a=3050=(305)10,b=4040=(404)10,c=5030=(503)10∵305>404>503∴a>b>c 故答案为a;c.点评:本题考查幂的乘方的概念的反运用.13.设b=251,c=425,按照从大到小的顺序排列为b>c.考点:幂的乘方与积的乘方;有理数大小比较.专题:计算题.分析:根据幂的乘方得出c=250,再根据2>1和乘方的意义进行比较即可.解答:解:b=251,c=425=(22)25=250,∵2>1,∴b>c.故答案为:b>c.点评:本题考查了学生对有理数的大小比较和幂的乘方的应用,解此题的关键是把c化成250.14.(2013•镇江)地震中里氏震级增加1级,释放的能量增大到原来的32倍,那么里氏7级地震释放的能量是3级地震释放能量的324倍.考点:幂的乘方与积的乘方.分析:设里氏n级地震释放的能量是3级地震释放能量的324倍,根据题意得出方程32n﹣1=323﹣1×324,求出方程的解即可.解答:解:设里氏n级地震释放的能量是3级地震释放能量的324倍,则32n﹣1=323﹣1×324,32n﹣1=326,n﹣1=6,n=7.故答案为:7.点评:本题考查了幂的乘方和积的乘方的应用,解此题的关键是能根据题意得出方程.二.解答题(共16小题)15.(2011•禅城区模拟)同学们,我们在七年级学习了“幂的乘方”这个知识点,知道(3b)2=9b2,请你用几何图形直观地解释上述式子.考点:幂的乘方与积的乘方.专题:数形结合.分析:如图:利用正方形的面积求解方法证得即可.解答:解:∵S=(3b)2,S正方形ABCD=9b2,正方形ABCD∴(3b)2=9b2.点评:此题考查了积的乘方的实际意义.此题比较新颖,注意抓住面积的不同表示方法是解题的关键.16.已知m2a+3b=25,m3a+2b=125,求m a+b的值.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:先根据同底数幂相乘得出m2a+3b•m3a+2b=m5a+5b再根据幂的乘方底数不变指数相乘得到(m a+b)5=25×125,可得答案.解答:解:∵m2a+3b•m3a+2b=m5a+5b=(m a+b)5=25×125,∴m a+b==5.点评:本题考查了同底数幂相乘以及幂的乘方的逆运算,熟练掌握运算法则是解题的关键.17.已知2x+5y+3=0,求4x•32y的值.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:由2x+5y+3=0得2x+5y=﹣3,再把4x•32y统一为底数为2的乘方的形式,再根据同底数幂的乘法法则即可得到结果.解答:解:∵2x+5y+3=0,∴2x+5y=﹣3,∴4x•32y=22x•25y=22x+5y=2﹣3=.点评:本题考查了同底数幂的乘法、积的乘方等多个运算性质,需同学们熟练掌握.18.(x4)2+(x2)4﹣x(x2)4﹣x(x2)2•x3﹣(﹣x)3•(﹣x2)2•(﹣x)考点:幂的乘方与积的乘方;同底数幂的乘法.分析:运用幂的乘方,积的乘方和同底数幂的乘法法则计算.解答:解:(x4)2+(x2)4﹣x(x2)4﹣x(x2)2•x3﹣(﹣x)3•(﹣x2)2•(﹣x)=x8+x8﹣x9﹣x8﹣x8=﹣x9点评:本题主要考查了幂的乘方,积的乘方和同底数幂的乘法,解决本题的关键是注意符号.19.已知x m=4,x n=3,求x2m+x3n的值.考点:幂的乘方与积的乘方.分析:根据幂的乘方把x2m+x3n化成(x m)2+(x n)3,代入求出即可.解答:解:∵x m=4,x n=3,∴x2m+x3n=(x m)2+(x n)3=42+33=16+27=43.点评:本题考查了幂的乘方的逆运用和有理数的混合运算,关键是把x2m+x3n化成(x m)2+(x n)3和代入后求出正确结果.20.n为正整数,且x2n=3,则(3x3n)2的值为:243.考点:幂的乘方与积的乘方.分析:根据积的乘方先求出结果,再根据幂的乘方得出9(x2n)3,代入求出即可.解答:解:∵x2n=3,∴(3x3n)2=9x6n=9(x2n)3=9×33=9×27=243,故答案为:243.点评:本题考查了幂的乘方和积的乘方,有理数的混合运算的应用,注意:x mn=(x m)n,用了整体代入思想.21.几个相同的数码摆成一个数,并且不用任何数学运算符号(含括号),如果要使摆成的数尽可能的大,该怎样摆呢?如用3个1按上述要求摆成一个数,有如下四种形式:①111;②111;③111;④.显然,111是这四个数中的最大的数.那么3个2有几种摆法?请找出其中的最大数.考点:幂的乘方与积的乘方.分析:按照题目中的数字的排列方法即可得到3个2所有的摆法,然后找到最大的即可.解答:解:①222;②222;③222;④.显然,222是这四个数中的最大的数.点评:此题主要考查了有理数的乘方,综合性较强,做题的关键是:根据要求把几种形式分别表示出来.22.如果2•8m•16m=222成立,求m的值.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:先得出2×(23)m×(24)m=222,根据幂的乘方得出2×23m×24m=222,根据同底数幂的乘法得出21+3m+4m=222,推出1+3m+4m=22,求出即可.解答:解:∵2•8m•16m=222,∴2×(23)m×(24)m=222,∴2×23m×24m=222,∴21+3m+4m=222,∴1+3m+4m=22,∴m=3.点评:本题考查了同底数幂的乘法法则,幂的乘方和积的乘方等知识点的应用,主要考查学生的计算能力.23.若x m=3,y n=9,求x2m y3n的值.考点:幂的乘方与积的乘方.分析:先把x2m y3n化为(x m)2•(y n)2.再代入数值求解.解答:解:∵x m=3,y n=9,∴x2m y3n=(x m)2•(y n)2=9×81=729.点评:本题主要考查了幂的乘方与积的乘方,解题的关键是把x2m y3n化为(x m)2•(y n)2.24.(﹣8)57×0.12555.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:把0.12555化为再与(﹣8)55相乘,再乘以(﹣8)2运算.解答:解:(﹣8)57×0.12555=(﹣8)2×[(﹣8)55×]=﹣64.点评:本题主要考查了幂的乘方与积的乘方及同底数幂的乘法,解题的关键是把0.12555化为运用积的乘方简化运算.25.(1)算一算下面两组算式:(3×5)2与32×52;[(﹣2)×3]2与(﹣2)2×32,每组两个算式的结果是否相同?(2)想一想,(ab)3等于什么?(3)猜一猜,当n为正整数时,(ab)n等于什么?你能利用乘方的意义说明理由吗?(4)利用上述结论,求(﹣8)2009×(0.125)2010的值.考点:有理数的乘方;幂的乘方与积的乘方.专题:规律型.分析:(1)先根据有理数的乘方法则计算出(3×5)2与32×52;[(﹣2)×3]2与(﹣2)2×32的值,再进行比较;(2)根据(1)中的两组数据找出规律,猜想出(ab)3的值;(3)根据(1)中的两组数据找出规律,猜想出(ab)n的值;(4)利用(3)中的规律求出(﹣8)2009×(0.125)2010的值.解答:解:(1)∵(3×5)2=255,32×52=225,∴(3×5)2=32×52;∵[(﹣2)×3]2=36,(﹣2)2×32=36,∴[(﹣2)×3]2=(﹣2)2×32;∴这两组的结果相同;(2)由(1)可知,(ab)3=a3b3;(3)由(2)可猜想,(ab)n=a n b n;∵(ab)的n次方相当于n个ab相乘,即(ab)的n次方=ab•ab•ab…ab=a•a•a…a•b•b•b…b=a n b n;(4)∵(ab)n=a n b n,∴(﹣8)2009×(0.125)2010=[(﹣8)×0.125]2009×0.125=(﹣1)2009×0.125=(﹣1)×0.125=﹣0.125.点评:本题属规律性题目,考查的是有理数的乘方,根据(1)中两组数的结果找出规律是解答此题的关键.26.(2007•双柏县)阅读下列材料:一般地,n个相同的因数a相乘记为a n,记为a n.如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b(即log a b=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算以下各对数的值:log24=2,log216=4,log264=6.(2)观察(1)中三数4、16、64之间满足怎样的关系式,log24、log216、log264之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?log a M+log a N=log a(MN);(a>0且a≠1,M>0,N>0)(4)根据幂的运算法则:a n•a m=a n+m以及对数的含义证明上述结论.考点:幂的乘方与积的乘方.专题:压轴题;阅读型.分析:首先认真阅读题目,准确理解对数的定义,把握好对数与指数的关系.(1)根据对数的定义求解;(2)认真观察,不难找到规律:4×16=64,log24+log216=log264;(3)有特殊到一般,得出结论:log a M+log a N=log a(MN);(4)首先可设log a M=b1,log a N=b2,再根据幂的运算法则:a n•a m=a n+m以及对数的含义证明结论.解答:解:(1)log24=2,log216=4,log264=6;(2)4×16=64,log24+log216=log264;(3)log a M+log a N=log a(MN);(4)证明:设log a M=b1,log a N=b2,则=M,=N,∴MN=,∴b1+b2=log a(MN)即log a M+log a N=log a(MN).点评:本题是开放性的题目,难度较大.借考查对数,实际考查学生对指数的理解、掌握的程度;要求学生不但能灵活、准确的应用其运算法则,还要会类比、归纳,推测出对数应有的性质.27.试比较大小:213×310与210×312.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:根据积得乘方,可转化成同底数的同指数的幂,根据系数的大小,可得答案.解答:解:∵213×310=23×(2×3)10,210×312=32×(2×3)10,23<32,∴213×310<210×312.点评:本题考查了积的乘方,转化成同底数的同指数的幂是解题关键.28.计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)考点:幂的乘方与积的乘方;同底数幂的乘法.分析:先利用积的乘方,去掉括号,再利用同底数幂的乘法计算,最后合并同类项即可.解答:解:原式=a n﹣5(a2n+2b6m﹣4)+a3n﹣3b3m﹣6(﹣b3m+2),=a3n﹣3b6m﹣4+a3n﹣3(﹣b6m﹣4),=a3n﹣3b6m﹣4﹣a3n﹣3b6m﹣4,=0.点评:本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.29.已知x2m=2,求(2x3m)2﹣(3x m)2的值.考点:幂的乘方与积的乘方.分析:根据积的乘方等于每个因式分别乘方,再把所得的幂相乘,可得已知条件,根据已知条件,可得计算结果.解答:解:原式=4x6m﹣9x2m=4(x2m)3﹣9x2m=4×23﹣9×2=14.点评:本题考查了幂的乘方与积得乘方,先由积的乘方得出已知条件是解题关键.30.已知2a=3,2b=5,求23a+2b+2的值.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:根据幂的乘方,底数不变指数相乘,可得答案.解答:解:原式=23a•a2b•a2=(2a)3(2b)2•22=33×52×4=2700.点评:本题考查了幂的乘方与积得乘方,幂的乘方,底数不变指数相乘.11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新北师大版七年级年级下册第一章幂的运算训练题
一、单选题
1、下列运算:①(-x 2)3=-x 5;②3xy -3yx =0;③3100·(-3)100=0;④m ·m 5·m 7=m 12;⑤3a 4+a 4=3a 8 ⑥(x 2)4=x 16.其中正确的有( );
A .1个
B .2个
C .3个
D .4个
2、计算(-a 2)3的结果是( )A .-a 5 B .a 6 C .-a 6 D .a 5
3、下列各式计算正确的是( )A .(x 2)3=x 5 B .(x 3)4=x 12
C .()
3131n n x x ++= D .x 5·x 6=x 30 4、我们约定a ⊗b =10a ×10b ,如2⊗3=102×103=105,那么4⊗8为( )
A .32
B .1032
C .1012
D .1210
5、如果32m n x x x -=,则n 等于( )A .m -1 B .m +5 C .4-m D .5-m
6、m 9可以写成( )A .m 4+m 5 B .m 4·m 5 C .m 3·m 3 D .m 2+m 7
7、下列几个算式:①a 4·a 4=2a 4;②m 3+m 2=m 5;③x ·x 2·x 3=x 5;④n 2+n 2=n 4.其中计算正确的有( )A .0个 B .1个 C .2个 D .3个
8、计算(-2)2008+(-2)2009等于( )A .-22008 B .-2 C .-1 D .22008
9、在222( )y=y m m y -+中,括号内应填的代数式是( )
A .y m
B .4m y +
C .2m y +
D .3m y +
10、设a m =8,a n =16,则a m+n =( )A .24 B .32 C .64 D .128
11、如果23m=26,那么m 的值为( )A .2 B .4 C .6 D .8
12、下列各式能用同底数幂乘法法则进行计算的是( )A .(x+y )2(x-y )2 B .(x+y )2(-x-y ) C .(x+y )2+2(x+y )2 D .(x-y )2(-x-y )
13、若22a+3•2b-2=210,则2a+b 的值是( )A .8 B .9 C .10 D .11
14、下列各式中,计算结果为x 7的是( )
A .()()
25x x -⋅- B .()25x x -⋅ C .()()34x x -⋅- D .34x x + 15、计算(﹣x 2)•x 3的结果是( )A . x 3 B .﹣x 5 C .x 6 D .﹣x 6
16、计算323x x ÷的结果是( )A .22x B .23x C .3x D .3
17、如果()2893n =,则n 的值是( )A .4 B .2 C .3 D .无法确定 18、下列各式中,①428x x x =,②3262x x x =,③437a a a =,④5712a a a +=,⑤()()437a a a --=.正确的式子的个数是( ) A .1个;B .2个;C .3个;D .4个.
19、若a 2m =25,则a -m 等于( ) A .15 B .-5 C .15或-15 D .1625
20、下列计算错误的有( )①a 8÷a 2=a 4; ②(-m )4÷(-m )2=-m 2; ③x 2n ÷x n =x n ;
④-x 2÷(-x )2=-1. A .1个 B .2个 C .3个 D .4个
二、填空题
21、计算:-a 2•(-a )2n+2=_______.(n 是整数).
22、计算 0.125 2008×(﹣8)2009=______.
23、计算:(1)(-a 5)5=________;(2)(-y 2)3·(-y 3)2=________;(3)(a 2)4·a 4=________;(4)=________.
24、计算:(1)-22×(-2)3=________;(2)a m ·a ·
=________;(3)10m ×10000=________;(4)=________.
25、一台电子计算机每秒可作1012次运算,它工作5×106秒可作________次运算.
26、(1)=81,则x =________;(2)=n ,用含n 的代表式表示3x =________.
27、(1)a3·a m=a8,则m=________;(2)2m=6,2n=5,则=________.
28、(1)32×32-3×33=________;(2)x5·x2+x3·x4=________;(3)(a-b)·(b-a)3·(a-b)4=________;(4)100·10n·=________;(5)a m··a2m·a=________;(6)2×4×8×2n=________.
29、(1)107×103=________;(2)a3·a5=________;(3)x·x2·x3=________;(4)(-a)5·(-a)3·(-a)=________;(5)b m·=________;(6)=
________.
30、已知a m+1×a2m-1=a9,则m=______.
31、4m·4·16=_______.
32、若x•x a•x b•x c=x2011,则a+b+c=______.
33、计算:-32•(-3)3= ________(结果用幂的形式表示).
34、已知10n=3,10m=4,则10n+m的值为______.
35.计算:(-2)2013+(-2)2014=_______.
三、解答题
36、计算下列各题:
(1)(-2)·(-2)2·(-2)3;(2)(-x)6·x4·(-x)3·(-x)2;(3);(4).
37、已知,x+2y-4=0.求:的值.
38、计算:
(1)(a-b)2(a-b)3(b-a)5;(2)(a-b+c)3(b-a-c)5(a-b+c)6;(3)(b-a)m·(b-a)n-5·(a-b)5;(4)x3·x5·x7-x2·x4·x9.
39、计算:
(1)10×104×105+103×107;(2)m·m2·m4+m2·m5;
(3)(-x)2·(-x)3+2x(-x)4;(4)103×10+100×102.
40、
计算:
(1);(2)x m+15•x m﹣1(m是大于1的整数);
(3)(﹣x)•(﹣x)6;(4)﹣m3•m4.
41、为了求1+2+22+23+...+22012的值,可令s=1+2+22+23+...+22012,则2s=2+22+23+24...+22013,因此2s﹣s=22013﹣1,所以1+2+22+23+...+22012=22013﹣1.仿照以上推理,计算1+5+52+53+ (52013)
值.
42、化简求值:(-3a b)-8(a)·(-b)·(-a b),其中a=1,b=-1.
43、已知x6-b∙x2b+1=x11,且y a-1∙y4-b=y5,求a+b的值.
44、计算:
(1)-p2·(-p)4·[(-p)3]5;(2)(m-n)2[(n-m)3]5;(3)25·84·162.
45、判断下列计算是否正确,并简要说明理由.
(1)(a 3)4=a 7; (2)a 3·a 4=a 12; (3)(a 2)3·a 4=a 9;(4)(a 2)6=a 12.
46、阅读材料:求1+2+22+23+24+…+22013的值.
解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:
2S=2+22+23+24+25+…+22013+22014 将下式减去上式得2S-S=22014-1 即S=22014-1 即1+2+22+23+24+…+22013=22014-1
请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n (其中n 为正整数).
47、我们约定1010a b a b ⊗=⨯,如23523101010⊗=⨯=.(1)试求123⊗和48⊗的值.(2)想一想,()a b c ⊗⊗是否与()a b c ⊗⊗的值相等?验证你的结论.。