2015年陕西省中考数学试卷

合集下载

2015年陕西省中考数学试卷及解析

2015年陕西省中考数学试卷及解析

2015年陕西省中考数学试卷、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1 . (3分)(2015?陕西)计算:9 0(—')=( )3A . 1.—'C . 0 D . 2232 . (3分)(2015?陕西)如图是一-个螺母的示意图,它的俯视图是(2 3 6 2 2 2A . a ?a =aB .(—2ab) =4a b2. 3 5 3 2 2 2C. (a ) =aD. 3a b -^a b =3ab4. (3分)(2015?陕西)如图,AB // CD,直线EF分别交直线AB , CD于点E,F.若/仁46°0', 则/ 2的度数为( )A . 43°0'B . 53°0'C . 133°0'D . 153°0'5. (3分)(2015?陕西)设正比例函数y=mx的图象经过点A (m, 4),且y的值随x值的增大而减小,则m=()A. 2B. —2 C . 4 D. —46. (3分)(2015?陕西)如图,在厶ABC中,/ A=36 ° AB=AC , BD是厶ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()C. 4个D. 5个冬+1A - 37. (3分)(2015?陕西)不等式组* 2 的最大整数解为(y- 2 (葢-3)>0& (3分)(2015?陕西)在平面直角坐标系中,将直线11:y= - 2X - 2平移后,得到直线12:y= - 2x+4,则下列平移作法正确的是(A .将11向右平移3个单位长度B •将11向右平移6个单位长度C.将11向上平移2个单位长度D •将11向上平移4个单位长度9. (3 分)(2015?陕西)在?ABCD 中,AB=10 , BC=14 , E, F 分别为边BC, AD 上的点,若四边形AECF为正方形,则AE的长为()A . 7B . 4 或10C . 5 或9 D. 6 或8210. (3分)(2015?陕西)下列关于二次函数y=ax - 2ax+1 (a> 1 )的图象与x轴交点的判断,正确的是()A .没有交点B •只有一个交点,且它位于y轴右侧C.有两个交点,且它们均位于y轴左侧D .有两个交点,且它们均位于y轴右侧二、填空题(共5小题,每小题3分,计12分,其中12、13题为选做题,任选一题作答)11. (3分)(2015?陕西)将实数n 0, - 6由小到大用号连起来,可表示为____________ .12. (3分)(2015?陕西)正八边形一个内角的度数为_____________ .13. (2015?陕西)如图,有一滑梯AB,其水平宽度AC为5.3米,铅直高度BC为2.8米,则/ A的度数约为_____________ (用科学计算器计算,结果精确到0.1°.14. (3分)(2015?陕西)如图,在平面直角坐标系中,过点M (- 3, 2)分别作x轴、y轴的垂线与反比例函数y=羊勺图象交于A ,B两点,则四边形MAOB的面积为点C是O O上的一个动点,且长的最大值是计78分,解答时写出过程)计算:「><(—7)+| —2「|+ (丿「3三、解答题(共11小题,16. (5 分)(2015?陕17. (5 分)(2015?陕西)解分式方程: x- 2 K+318. (5 分)(2015?陕西)分成面积相等的两部如图,已知△ ABC,请用尺规过点A作一条直线,使其将△ ABC (保留作图痕迹,不写作法)19. (5分)(2015?陕西)某校为了了解本校九年级女生体育测试项目仰卧起坐”的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x绍4)、良好(36$詔3)、及格(25纟W5)和不及格(x€4),并将统计结果绘制成如下两幅不完整的统计图.被测试女生1分钟■仰卧起坐•觇『试结果统计图不及格根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟仰卧起坐”个数的中位数落在______________ 等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟仰卧起坐”个数达到优秀的人数.20. (7分)(2015?陕西)如图,在厶ABC中,AB=AC ,作AD丄AB交BC的延长线于点D , 作AE // BD , CE丄AC,且AE , CE相交于点E,求证:AD=CE .A21. (7分)(2015?陕西)晚饭后,小聪和小军在社区广场散步,小聪问小军:你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高. 于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN丄NQ , AC丄NQ , BE丄NQ.请你根据以上信息,求出小军身高BE的长.(结果精确到0.01米)22. (7分)(2015?陕西)胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费,假设组团参加甲、乙两家旅行社两日游的人数均为x人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y (元)与x (人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.23. (7分)(2015?陕西)某中学要在全校学生中举办中国梦?我的梦”主题演讲比赛,要求每班选一名代表参赛•九年级(1 )班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由. (骰子:六个面上分别刻有 1 , 2, 3, 4, 5, 6个小圆点的小正方体)24. (8分)(2015?陕西)如图,AB是O O的直径,AC是O O的弦,过点B作O O的切线DE,与AC的延长线交于点D,作AE丄AC交DE于点E.(1 )求证:/ BAD= / E;(2)若0 O的半径为5, AC=8,求BE的长.225. (10分)(2015?陕西)在平面直角坐标系中,抛物线y=x +5x+4的顶点为M,与x轴交于A,B两点,与y轴交于C点.(1)求点A , B, C的坐标;2(2)求抛物线y=x +5x+4关于坐标原点O对称的抛物线的函数表达式;(3)设(2)中所求抛物线的顶点为M',与x轴交于A ;B两点,与y轴交于C点,在以A ,B , C, M , A', B', C', M这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积.26. (12分)(2015?陕西)如图,在每一个四边形ABCD中,均有AD // BC, CD丄BC , / ABC=60 ° AD=8 , BC=12 .(1)如图①,点M是四边形ABCD边AD上的一点,贝U △ BMC的面积为_________________(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△ BNC周长的最小值;(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos/ BPC的值最小?若存在,求出此时cos/ BPC的值;若不存在,请说明理由.2015年陕西省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的) 1. ( 3 分) 【考点】零指数幕.【分析】根据零指数幕:a °=i (a 用),求出(-丄)0的值是多少即可. 【解答】解:(-':)0=1.3故选:A .【点评】此题主要考查了零指数幕的运算, 要熟练掌握,解答此题的关键是要明确: ①a 0=i(a^0);② 0° 詢. 2. ( 3 分)【考点】简单组合体的三视图.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】 解:从上面看外面是一个正六边形,里面是一个没有圆心的圆, 故选:B .【点评】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图. 3. ( 3 分)【考点】整式的除法;同底数幕的乘法;幕的乘方与积的乘方.【分析】根据同底数幕的乘法、积的乘方、幕的乘方、整式的除法,即可解答. 【解答】解:A 、a 2?a 3=a 5,故正确; B 、 正确;C 、 ( a 2) 3=a 6,故错误; 2 2 2 2D 、 3a b -^a b =3,故错误; 故选:B .【点评】本题考查了同底数幕的乘法、积的乘方、幕的乘方、整式的除法,解决本题的关键 是熟记同底数幕的乘法、积的乘方、幕的乘方、整式的除法的法则. 4. ( 3 分)【考点】平行线的性质.【分析】先根据平行线的性质求出/EFD 的度数,再根据补角的定义即可得出结论.【解答】 解:I AB // CD ,/仁46°0', •••/ EFD= / 1=46°0', •••/ 2=180 °- 46°0'=133°0'. 故选C .【点评】本题考查的是平行线的性质,用到的知识点为:两线平行,同位角相等. 5. ( 3 分)團①图②图③DC【考点】正比例函数的性质.【分析】直接根据正比例函数的性质和待定系数法求解即可.【解答】解:把x=m , y=4代入y=mx中,可得:m= =t2,因为y的值随x值的增大而减小,所以m= - 2,故选B【点评】本题考查了正比例函数的性质:正比例函数y=kx (k和)的图象为直线,当k> 0, 图象经过第一、三象限,y值随x的增大而增大;当k v 0,图象经过第二、四象限,y值随x的增大而减小.6. (3 分)【考点】等腰三角形的判定与性质.【分析】根据已知条件分别求出图中三角形的内角度数,再根据等腰三角形的判定即可找出图中的等腰三角形.【解答】解:I AB=AC ,•••△ABC是等腰三角形;•/ AB=AC,/ A=36 °°•••/ ABC= / C=72 °°••• BD是厶ABC的角平分线,•••/ ABD= / DBC= —/ ABC=36 ° °2•••/ A= / ABD=36 ° °•BD=AD ,•△ ABD是等腰三角形;在厶BCD 中,•••/ BDC=180 °-Z DBC -/C=180 °- 36°- 72°72 °•••/ C=Z BDC=72 ° °•BD=BC ,•△ BCD是等腰三角形;•/ BE=BC ,•BD=BE ,•△ BDE是等腰三角形;•••/ BED= (180°- 36° 吃=72° °•••/ ADE= / BED -Z A=72。

2015年陕西省中考数学试卷

2015年陕西省中考数学试卷

2015年陕西省中考数学试卷一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.(3分)计算:(﹣)0=()A.1 B.﹣ C.0 D.2.(3分)如图是一个螺母的示意图,它的俯视图是()A. B.C.D.3.(3分)下列计算正确的是()A.a2•a3=a6 B.(﹣2ab)2=4a2b2C.(a2)3=a5D.3a3b2÷a2b2=3ab4.(3分)如图,AB∥CD,直线EF分别交直线AB,CD于点E,F.若∠1=46°30′,则∠2的度数为()A.43°30′B.53°30′C.133°30′D.153°30′5.(3分)设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2 B.﹣2 C.4 D.﹣46.(3分)如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个 B.3个 C.4个 D.5个7.(3分)不等式组的最大整数解为()A.8 B.6 C.5 D.48.(3分)在平面直角坐标系中,将直线l1:y=﹣2x﹣2平移后,得到直线l2:y=﹣2x+4,则下列平移作法正确的是()A.将l1向右平移3个单位长度B.将l1向右平移6个单位长度C.将l1向上平移2个单位长度D.将l1向上平移4个单位长度9.(3分)在▱ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,若四边形AECF为正方形,则AE的长为()A.7 B.4或10 C.5或9 D.6或810.(3分)下列关于二次函数y=ax2﹣2ax+1(a>1)的图象与x轴交点的判断,正确的是()A.没有交点B.只有一个交点,且它位于y轴右侧C.有两个交点,且它们均位于y轴左侧D.有两个交点,且它们均位于y轴右侧二、填空题(共5小题,每小题3分,计12分,其中12、13题为选做题,任选一题作答)11.(3分)将实数,π,0,﹣6由小到大用“<”号连起来,可表示为.12.(3分)正八边形一个内角的度数为.13.如图,有一滑梯AB,其水平宽度AC为5.3米,铅直高度BC为2.8米,则∠A的度数约为(用科学计算器计算,结果精确到0.1°).14.(3分)如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A,B两点,则四边形MAOB的面积为.15.(3分)如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是.三、解答题(共11小题,计78分,解答时写出过程)16.(5分)计算:×(﹣)+|﹣2|+()﹣3.17.(5分)解分式方程:﹣=1.18.(5分)如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC分成面积相等的两部分.(保留作图痕迹,不写作法)19.(5分)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.20.(7分)如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E,求证:AD=CE.21.(7分)晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长.(结果精确到0.01米)22.(7分)胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费,假设组团参加甲、乙两家旅行社两日游的人数均为x人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.23.(7分)某中学要在全校学生中举办“中国梦•我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)24.(8分)如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.(1)求证:∠BAD=∠E;(2)若⊙O的半径为5,AC=8,求BE的长.25.(10分)在平面直角坐标系中,抛物线y=x2+5x+4的顶点为M,与x轴交于A,B两点,与y轴交于C点.(1)求点A,B,C的坐标;(2)求抛物线y=x2+5x+4关于坐标原点O对称的抛物线的函数表达式;(3)设(2)中所求抛物线的顶点为M′,与x轴交于A′,B′两点,与y轴交于C′点,在以A,B,C,M,A′,B′,C′,M′这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积.26.(12分)如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由.2015年陕西省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.(3分)计算:(﹣)0=()A.1 B.﹣ C.0 D.【分析】根据零指数幂:a0=1(a≠0),求出(﹣)0的值是多少即可.【解答】解:(﹣)0=1.故选:A.【点评】此题主要考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.2.(3分)如图是一个螺母的示意图,它的俯视图是()A. B.C.D.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看外面是一个正六边形,里面是一个没有圆心的圆,故选:B.【点评】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.3.(3分)下列计算正确的是()A.a2•a3=a6 B.(﹣2ab)2=4a2b2C.(a2)3=a5D.3a3b2÷a2b2=3ab【分析】根据同底数幂的乘法、积的乘方、幂的乘方、整式的除法,即可解答.【解答】解:A、a2•a3=a5,故正确;B、正确;C、(a2)3=a6,故错误;D、3a2b2÷a2b2=3,故错误;故选:B.【点评】本题考查了同底数幂的乘法、积的乘方、幂的乘方、整式的除法,解决本题的关键是熟记同底数幂的乘法、积的乘方、幂的乘方、整式的除法的法则.4.(3分)如图,AB∥CD,直线EF分别交直线AB,CD于点E,F.若∠1=46°30′,则∠2的度数为()A.43°30′B.53°30′C.133°30′D.153°30′【分析】先根据平行线的性质求出∠EFD的度数,再根据补角的定义即可得出结论.【解答】解:∵AB∥CD,∠1=46°30′,∴∠EFD=∠1=46°30′,∴∠2=180°﹣46°30′=133°30′.故选C.【点评】本题考查的是平行线的性质,用到的知识点为:两线平行,同位角相等.5.(3分)设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2 B.﹣2 C.4 D.﹣4【分析】直接根据正比例函数的性质和待定系数法求解即可.【解答】解:把x=m,y=4代入y=mx中,可得:m=±2,因为y的值随x值的增大而减小,所以m=﹣2,故选B【点评】本题考查了正比例函数的性质:正比例函数y=kx(k≠0)的图象为直线,当k>0时,图象经过第一、三象限,y值随x的增大而增大;当k<0时,图象经过第二、四象限,y值随x的增大而减小.6.(3分)如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个 B.3个 C.4个 D.5个【分析】根据已知条件分别求出图中三角形的内角度数,再根据等腰三角形的判定即可找出图中的等腰三角形.【解答】解:∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=∠ABC=36°,∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形;在△BCD中,∵∠BDC=180°﹣∠DBC﹣∠C=180°﹣36°﹣72°=72°,∴∠C=∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形;∵BE=BC,∴BD=BE,∴△BDE是等腰三角形;∴∠BED=(180°﹣36°)÷2=72°,∴∠ADE=∠BED﹣∠A=72°﹣36°=36°,∴∠A=∠ADE,∴DE=AE,∴△ADE是等腰三角形;∴图中的等腰三角形有5个.故选D.【点评】此题考查了等腰三角形的判定,用到的知识点是等腰三角形的判定、三角形内角和定理、三角形外角的性质、三角形的角平分线定义等,解题时要找出所有的等腰三角形,不要遗漏.7.(3分)不等式组的最大整数解为()A.8 B.6 C.5 D.4【分析】先求出各个不等式的解集,再求出不等式组的解集,最后求出答案即可.【解答】解:∵解不等式①得:x≥﹣8,解不等式②得:x<6,∴不等式组的解集为﹣8≤x<6,∴不等式组的最大整数解为5,故选C.【点评】本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是能根据不等式的解集求出不等式组的解集,难度适中.8.(3分)在平面直角坐标系中,将直线l1:y=﹣2x﹣2平移后,得到直线l2:y=﹣2x+4,则下列平移作法正确的是()A.将l1向右平移3个单位长度B.将l1向右平移6个单位长度C.将l1向上平移2个单位长度D.将l1向上平移4个单位长度【分析】利用一次函数图象的平移规律,左加右减,上加下减,得出即可.【解答】解:∵将直线l1:y=﹣2x﹣2平移后,得到直线l2:y=﹣2x+4,∴﹣2(x+a)﹣2=﹣2x+4,解得:a=﹣3,故将l1向右平移3个单位长度.故选:A.【点评】此题主要考查了一次函数图象与几何变换,正确把握变换规律是解题关键.9.(3分)在▱ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,若四边形AECF为正方形,则AE的长为()A.7 B.4或10 C.5或9 D.6或8【分析】设AE的长为x,根据正方形的性质可得BE=14﹣x,根据勾股定理得到关于x的方程,解方程即可得到AE的长.【解答】解:如图:设AE的长为x,根据正方形的性质可得BE=14﹣x,在Rt△ABE中,根据勾股定理可得x2+(14﹣x)2=102,解得x1=6,x2=8.故AE的长为6或8.故选:D.【点评】考查了平行四边形的性质,正方形的性质,勾股定理,关键是根据勾股定理得到关于AE的方程.10.(3分)下列关于二次函数y=ax2﹣2ax+1(a>1)的图象与x轴交点的判断,正确的是()A.没有交点B.只有一个交点,且它位于y轴右侧C.有两个交点,且它们均位于y轴左侧D.有两个交点,且它们均位于y轴右侧【分析】根据函数值为零,可得相应的方程,根据根的判别式,公式法求方程的根,可得答案.【解答】解:当y=0时,ax2﹣2ax+1=0,∵a>1∴△=(﹣2a)2﹣4a=4a(a﹣1)>0,ax2﹣2ax+1=0有两个根,函数与有两个交点,x=>0,故选:D.【点评】本题考查了抛物线与x轴的交点,利用了函数与方程的关系,方程的求根公式.二、填空题(共5小题,每小题3分,计12分,其中12、13题为选做题,任选一题作答)11.(3分)将实数,π,0,﹣6由小到大用“<”号连起来,可表示为﹣6.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:≈2.236,π≈3.14,∵﹣6<0<2.236<3.14,∴﹣6.故答案为:﹣6.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.12.(3分)正八边形一个内角的度数为135°.【分析】首先根据多边形内角和定理:(n﹣2)•180°(n≥3且n为正整数)求出内角和,然后再计算一个内角的度数.【解答】解:正八边形的内角和为:(8﹣2)×180°=1080°,每一个内角的度数为×1080°=135°.故答案为:135°.【点评】此题主要考查了多边形内角和定理,关键是熟练掌握计算公式:(n﹣2)•180 (n≥3)且n为整数).13.如图,有一滑梯AB,其水平宽度AC为5.3米,铅直高度BC为2.8米,则∠A的度数约为27.8°(用科学计算器计算,结果精确到0.1°).【分析】直接利用坡度的定义求得坡角的度数即可.【解答】解:∵tan∠A==≈0.5283,∴∠A=27.8°,故答案为:27.8°.【点评】本题考查了坡度坡角的知识,解题时注意坡角的正切值等于铅直高度与水平宽度的比值,难度不大.14.(3分)如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A,B两点,则四边形MAOB的面积为10.【分析】设点A的坐标为(a,b),点B的坐标为(c,d),根据反比例函数y=的图象过A,B两点,所以ab=4,cd=4,进而得到S△AOC=|ab|=2,S△BOD=|cd|=2,S矩形MCDO=3×2=6,根据四边形MAOB的面积=S△AOC+S△BOD+S矩形MCDO,即可解答.【解答】解:如图,设点A的坐标为(a,b),点B的坐标为(c,d),∵反比例函数y=的图象过A,B两点,∴ab=4,cd=4,∴S△AOC=|ab|=2,S△BOD=|cd|=2,∵点M(﹣3,2),∴S矩形MCDO=3×2=6,∴四边形MAOB的面积=S△AOC +S△BOD+S矩形MCDO=2+2+6=10,故答案为:10.【点评】本题主要考查反比例函数的对称性和k的几何意义,根据条件得出S△AOC=|ab|=2,S△BOD=|cd|=2是解题的关键,注意k的几何意义的应用.15.(3分)如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是3.【分析】根据中位线定理得到MN的最大时,AC最大,当AC最大时是直径,从而求得直径后就可以求得最大值.【解答】解:∵点M,N分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC是直径时,最大,如图,∵∠ACB=∠D=45°,AB=6,∴AD=6,∴MN=AD=3故答案为:3.【点评】本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN的值最大,难度不大.三、解答题(共11小题,计78分,解答时写出过程)16.(5分)计算:×(﹣)+|﹣2|+()﹣3.【分析】根据二次根式的乘法法则和负整数整数幂的意义得到原式=﹣+2+8,然后化简后合并即可.【解答】解:原式=﹣+2+8=﹣3+2+8=8﹣.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了负整数整数幂、17.(5分)解分式方程:﹣=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2﹣5x+6﹣3x﹣9=x2﹣9,解得:x=,经检验x=是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.(5分)如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC分成面积相等的两部分.(保留作图痕迹,不写作法)【分析】作BC边上的中线,即可把△ABC分成面积相等的两部分.【解答】解:如图,直线AD即为所求:【点评】此题主要考查三角形中线的作法,同时要掌握若两个三角形等底等高,则它们的面积相等.19.(5分)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在良好等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.【分析】(1)根据各个等级的百分比得出答案即可;(2)根据中位数的定义知道中位数是第25和26个数的平均数,由此即可得出答案;(3)首先根据扇形图得出优秀人数占的百分比,条形统计图可以求出平均数的最小值,然后即可求出答案.【解答】解:(1);(2)∵13+20+12+5=50,50÷2=25,25+1=26,∴中位数落在良好等级,故答案为:良好;(3)650×26%=169(人),即该年级女生中1分钟“仰卧起坐”个数达到优秀的人数是169.【点评】本题难度中等,主要考查统计图表的识别;解本题要懂得频率分布直分图的意义.同时考查了平均数和中位数的定义.20.(7分)如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E,求证:AD=CE.【分析】根据平行线的性质得出∠EAC=∠ACB,再利用ASA证出△ABD≌△CAE,从而得出AD=CE.【解答】证明:∵AE∥BD,∴∠EAC=∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠B=∠EAC,在△ABD和△CAE中,,∴△ABD≌△CAE,∴AD=CE.【点评】此题考查了全等三角形的判定与性质,用到的知识点是全等三角形的判定与性质、平行线的性质,关键是利用ASA证出△ABD≌△CAE.21.(7分)晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长.(结果精确到0.01米)【分析】先证明△CAD~△MND,利用相似三角形的性质求得MN=9.6,再证明△EFB~△MFN,即可解答.【解答】解:由题意得:∠CAD=∠MND=90°,∠CDA=∠MDN,∴△CAD~△MND,∴,∴,∴MN=9.6,又∵∠EBF=∠MNF=90°,∠EFB=∠MFN,∴△EFB~△MFN,∴,∴∴EB≈1.75,∴小军身高约为1.75米.【点评】本题考查的是相似三角形的判定及性质,解答此题的关键是相似三角形的判定.22.(7分)胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费,假设组团参加甲、乙两家旅行社两日游的人数均为x人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.【分析】(1)根据总费用等于人数乘以打折后的单价,易得y甲=640×0.85x,对于乙家旅行社的总费用,分类讨论:当0≤x≤20时,y乙=640×0.9x;当x>20时,y乙=640×0.9×20+640×0.75(x﹣20);(2)把x=32分别代入(1)中对应得函数关系计算y甲和y乙的值,然后比较大小即可.【解答】解:(1)甲家旅行社的总费用:y甲=640×0.85x=544x;乙家旅行社的总费用:当0≤x≤20时,y乙=640×0.9x=576x;当x>20时,y乙=640×0.9×20+640×0.75(x﹣20)=480x+1920;(2)当x=32时,y甲=544×32=17408(元),y乙=480×32+1920=17280,因为y甲>y乙,所以胡老师选择乙旅行社.【点评】本题考查了一次函数的应用:利用实际问题中的数量关系建立一次函数关系,特别对乙旅行社的总费用要采用分段函数解决问题.23.(7分)某中学要在全校学生中举办“中国梦•我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)【分析】(1)首先判断出向上一面的点数为奇数有3种情况,然后根据概率公式,求出小亮掷得向上一面的点数为奇数的概率是多少即可.(2)首先应用列表法,列举出所有可能的结果,然后分别判断出小亮、小丽获胜的概率是多少,再比较它们的大小,判断出该游戏是否公平即可.【解答】解:(1)∵向上一面的点数为奇数有3种情况,∴小亮掷得向上一面的点数为奇数的概率是:.(2)填表如下:由上表可知,一共有36种等可能的结果,其中小亮、小丽获胜各有9种结果.∴P(小亮胜)=,P(小丽胜)==,∴游戏是公平的.【点评】(1)此题主要考查了判断游戏公平性问题,要熟练掌握,首先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.(2)此题主要考查了列举法(树形图法)求概率问题,解答此类问题的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.24.(8分)如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.(1)求证:∠BAD=∠E;(2)若⊙O的半径为5,AC=8,求BE的长.【分析】(1)根据切线的性质,和等角的余角相等证明即可;(2)根据勾股定理和相似三角形进行解答即可.【解答】(1)证明:∵AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,∴∠ABE=90°,∴∠BAE+∠E=90°,∵∠DAE=90°,∴∠BAD+∠BAE=90°,∴∠BAD=∠E;(2)解:连接BC,如图:∵AB是⊙O的直径,∴∠ACB=90°,∵AC=8,AB=2×5=10,∴BC=,∵∠BCA=∠ABE=90°,∠BAD=∠E,∴△ABC∽△EAB,∴,∴,∴BE=.【点评】本题考查了切线的性质、相似三角形等知识点,关键是根据切线的性质和相似三角形的性质分析.25.(10分)在平面直角坐标系中,抛物线y=x2+5x+4的顶点为M,与x轴交于A,B两点,与y轴交于C点.(1)求点A,B,C的坐标;(2)求抛物线y=x2+5x+4关于坐标原点O对称的抛物线的函数表达式;(3)设(2)中所求抛物线的顶点为M′,与x轴交于A′,B′两点,与y轴交于C′点,在以A,B,C,M,A′,B′,C′,M′这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积.【分析】(1)令y=0,求出x的值;令x=0,求出y,即可解答;(2)先求出A,B,C关于坐标原点O对称后的点为(4,0),(1,0),(0,﹣4),再代入解析式,即可解答;(3)取四点A,M,A′,M′,连接AM,MA′,A′M′,M′A,MM′,由中心对称性可知,MM′过点O,OA=OA′,OM=OM′,由此判定四边形AMA′M′为平行四边形,又知AA′与MM′不垂直,从而平行四边形AMA′M′不是菱形,过点M作MD⊥x 轴于点D,求出抛物线的顶点坐标M,根据,即可解答.【解答】解:(1)令y=0,得x2+5x+4=0,∴x1=﹣4,x2=﹣1,令x=0,得y=4,∴A(﹣4,0),B(﹣1,0),C(0,4).(2)∵A,B,C关于坐标原点O对称后的点为(4,0),(1,0),(0,﹣4),∴所求抛物线的函数表达式为y=ax2+bx﹣4,将(4,0),(1,0)代入上式,得解得:,∴y=﹣x2+5x﹣4.(3)如图,取四点A,M,A′,M′,连接AM,MA′,A′M′,M′A,MM′,由中心对称性可知,MM′过点O,OA=OA′,OM=OM′,∴四边形AMA′M′为平行四边形,又知AA′与MM′不垂直,∴平行四边形AMA′M′不是菱形,过点M作MD⊥x轴于点D,∵y=,∴M(),又∵A(﹣4,0),A′(4,0)∴AA′=8,MD=,∴=【点评】本题考查了二次函数的性质与图象、中心对称、平行四边形的判定、菱形的判定,综合性较强,解决本题的关键是根据中心对称,求出抛物线的解析式,在(3)中注意菱形的判定与数形结合思想的应用.26.(12分)如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为24;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由.【分析】(1)如图①,过A作AE⊥BC,可得出四边形AECD为矩形,得到EC=AD,BE=BC﹣EC,在直角三角形ABE中,求出AE的长,即为三角形BMC的高,求出三角形BMC面积即可;(2)如图②,作点C关于直线AD的对称点C′,连接C′N,C′D,C′B交AD于点N′,连接CN′,则BN+NC=BN+NC′≥BC′=BN′+CN′,可得出△BNC周长的最小值为△B N′C的周长=BN′+CN′+BC=BC′+BC,求出即可;(3)如图③所示,存在点P,使得cos∠BPC的值最小,作BC的中垂线PQ交BC于点Q,交AD于点P,连接BP,CP,作△BPC的外接圆O,圆O与直线PQ 交于点N,则PB=PC,圆心O在PN上,根据AD与BC平行,得到圆O与AD相切,根据PQ=DC,判断得到PQ大于BQ,可得出圆心O在BC上方,在AD上任取一点P′,连接P′B,P′C,P′B交圆O于点M,连接MC,可得∠BPC=∠BMC≥∠BP′C,即∠BPC最大,cos∠BPC的值最小,连接OB,求出即可.【解答】解:(1)如图①,过A作AE⊥BC,∴四边形AECD为矩形,∴EC=AD=8,BE=BC﹣EC=12﹣8=4,在Rt△ABE中,∠ABE=60°,BE=4,∴AB=2BE=8,AE==4,=BC•AE=24;则S△BMC故答案为:24;(2)如图②,作点C关于直线AD的对称点C′,连接C′N,C′D,C′B交AD于点N′,连接CN′,则BN+NC=BN+NC′≥BC′=BN′+CN′,∴△BNC周长的最小值为△BN′C的周长=BN′+CN′+BC=BC′+BC,∵AD∥BC,AE⊥BC,∠ABC=60°,∴过点A作AE⊥BC,则CE=AD=8,∴BE=4,AE=BE•tan60°=4,∴CC′=2CD=2AE=8,∵BC=12,∴BC′==4,∴△BNC周长的最小值为4+12;(3)如图③所示,存在点P,使得cos∠BPC的值最小,作BC的中垂线PQ交BC于点Q,交AD于点P,连接BP,CP,作△BPC的外接圆O,圆O与直线PQ交于点N,则PB=PC,圆心O在PN上,∵AD∥BC,∴圆O与AD相切于点P,∵PQ=DC=4>6,∴PQ>BQ,∴∠BPC<90°,圆心O在弦BC的上方,在AD上任取一点P′,连接P′B,P′C,P′B交圆O于点M,连接MC,∴∠BPC=∠BMC≥∠BP′C,∴∠BPC最大,cos∠BPC的值最小,连接OB,则∠BON=2∠BPN=∠BPC,∵OB=OP=4﹣OQ,在Rt△BOQ中,根据勾股定理得:OQ2+62=(4﹣OQ)2,解得:OQ=,∴OB=,∴cos∠BPC=cos∠BOQ==,则此时cos∠BPC的值为.。

2015年陕西省中考数学试卷及答案

2015年陕西省中考数学试卷及答案

数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前陕西省2015年初中毕业学业考试数学 .................................................................................. 1 陕西省2015年初中毕业学业考试数学答案解析 (5)陕西省2015年初中毕业学业考试数学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:02()3-= ( )A .1B .32-C .0D .232.如图是一个螺母的示意图,它的俯视图是 ( )ABC D3.下列计算正确的是( )A .236a a a =B .222(2)4ab a b -=C .235()a a =D .322233a b a b ab ÷=4.如图,AB CD ∥,直线EF 分别交直线,AB CD 于点,E F .若14630'∠=,则2∠的度数为 ( ) A .4330' B .5330' C .13330' D .15330'5.设正比例函数mx y =的图象经过点)4,(m A ,且y 的值随x 值的增大而减小,则m =( )A .2B .2-C .4D .4-6.如图,在ABC △中,36A ∠=,AB AC =,BD 是ABC △的角平分线.若在边AB 上截取BE BC =,连接DE ,则图中等腰三角形共有 ( )A .2个B .3个C .4个D .5个7.不等式组113,22(3)0x x x ⎧+⎪⎨⎪--⎩≥->的最大整数解为( )A .8B .6C .5D .48.在平面直角坐标系中,将直线1:22l y x =--平移后,得到直线2:24l y x =-+,则下列平移作法正确的是 ( ) A .将1l 向右平移3个单位长度 B .将1l 向右平移6个单位长度 C .将1l 向上平移2个单位长度 D .将1l 向上平移4个单位长度 9.在□ABCD 中,10AB =,14BC =,E ,F 分别为边BC ,AD 上的点.若四边形AECF为正方形,则AE 的长为( )A .7B .4或10C .5或9D .6或810.下列关于二次函数221(1)y ax ax a =-+>的图象与x 轴交点的判断,正确的是 ( ) A .没有交点B .只有一个交点,且它位于y 轴右侧C .有两个交点,且它们均位于y 轴左侧D .有两个交点,且它们均位于y 轴右侧第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题3分,共12分.把答案填写在题中的横线上) 11.π,0,6-由小到大用“<”号连起来,可表示为 . 12.请从以下两小题中任选一个作答,若多选,则按第一题计分.A .正八边形一个内角的度数为 .B .如图,有一滑梯AB ,其水平宽度AC 为5.3米,铅直高度BC 为2.8米,则A ∠的度数约为 (用科学计算器计算,结果精确到0.1).13.如图,在平面直角坐标系中,过点()32M -,分别作x 轴、y 轴的垂线与反比例函数4y x=的图象交于,A B 两点,则四边形MAOB 的面积为 .14.如图,AB 是O 的弦,6AB =,点C 是O 上的一个动点,且45ACB ∠=.若点,M N 分别是,AB BC 的中点,则MN 长的最大值是.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共20页) 数学试卷 第4页(共20页)三、解答题(本大题共11小题,共78分.解答应写出文字说明、证明过程或演算步骤) 15.(本小题满分5分)31(|()2-+-+.16.(本小题满分5分) 解分式方程:23133x x x --=+-.17.(本小题满分5分)如图,已知ABC △,请用尺规过点A 作一条直线,使其将ABC △分成面积相等的两部分.(保留作图痕迹,不写作法)18.(本小题满分5分)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育教师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x ).现在我们将这些同学的测试结果分为四个等级:优秀(44)x ≥、良好(3643)x ≤≤、及格(2535)x ≤≤和不及格(24)x ≤,并将统计结果绘制成如下两幅不完整的统计图.请你根据以上信息,解答下列问题: (1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在 等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.19.(本小题满分7分)如图,在ABC △中AB AC =,.作AD AB ⊥交BC 的延长线于点D ,作AE BD ∥,CE AC ⊥,且,AE CE 相交于点E . 求证:AD CE =.20.(本小题满分7分)晚饭后,小聪和小军在社区广场散步.小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ 移动,如图,当小聪正好站在广场的A 点(距N 点5块地砖长)时,其影长AD 恰好为1块地砖长;当小军正好站在广场的B 点(距N 点9块地砖长)时,其影长BF 恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC 为1.6米,MN NQ ⊥,AC NQ ⊥,BE NQ ⊥.请你根据以上信息,求出小军身高BE 的长.(结果精确到0.01米)数学试卷 第5页(共20页) 数学试卷 第6页(共20页)21.(本小题满分7分)胡老师计划组织朋友暑假去革命圣地延安两日游.经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同.针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费.假设组团参加甲、乙两家旅行社两日游的人数均为x 人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y (元)与x (人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你通过计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.22.(本小题满分7分)某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题: (1)小亮掷得向上一面的点数为奇数的概率是多少? (2)该游戏是否公平?请用列表或树状图等方法说明理由. (骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)23.(本小题满分8分) 如图,AB 是O 的直径,AC 是O 的弦,过点B 作O 的切线DE ,与AC 的延长线交于点D ,作AE AC ⊥交DE 于点E .(1)求证:BAD E ∠=∠;(2)若O 的半径为5,8AC =,求BE 的长.24.(本小题满分10分)在平面直角坐标系中,抛物线254y x x =++的顶点为M ,与x 轴交于,A B 两点,与y 轴交于C 点.(1)求点,,A B C 的坐标;(2)求抛物线254y x x =++关于坐标原点O 对称的抛物线的函数表达式; (3)设(2)中所求抛物线的顶点为M ',与x 轴交于,A B ''两点,与y 轴交于C '点.在以,,,,,,,A B C M A B C M ''''这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积.25.(本小题满分12分)如图,在每一个四边形ABCD 中,均有AD BC ∥,CD BC ⊥,60ABC ∠=,8AD =,12BC =.(1)如图1,点M 是四边形ABCD 边AD 上的一点,则BMC △的面积为 ;毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------。

【真题】2015年陕西省中考数学试卷及参考答案PDF

【真题】2015年陕西省中考数学试卷及参考答案PDF

2015年陕西省中考数学试卷一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.(3分)计算:(﹣)0=()A.1 B.﹣ C.0 D.2.(3分)如图是一个螺母的示意图,它的俯视图是()A. B.C.D.3.(3分)下列计算正确的是()A.a2•a3=a6 B.(﹣2ab)2=4a2b2C.(a2)3=a5D.3a3b2÷a2b2=3ab4.(3分)如图,AB∥CD,直线EF分别交直线AB,CD于点E,F.若∠1=46°30′,则∠2的度数为()A.43°30′B.53°30′C.133°30′D.153°30′5.(3分)设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2 B.﹣2 C.4 D.﹣46.(3分)如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个 B.3个 C.4个 D.5个7.(3分)不等式组的最大整数解为()A.8 B.6 C.5 D.48.(3分)在平面直角坐标系中,将直线l1:y=﹣2x﹣2平移后,得到直线l2:y=﹣2x+4,则下列平移作法正确的是()A.将l1向右平移3个单位长度B.将l1向右平移6个单位长度C.将l1向上平移2个单位长度D.将l1向上平移4个单位长度9.(3分)在▱ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,若四边形AECF为正方形,则AE的长为()A.7 B.4或10 C.5或9 D.6或810.(3分)下列关于二次函数y=ax2﹣2ax+1(a>1)的图象与x轴交点的判断,正确的是()A.没有交点B.只有一个交点,且它位于y轴右侧C.有两个交点,且它们均位于y轴左侧D.有两个交点,且它们均位于y轴右侧二、填空题(共5小题,每小题3分,计12分,其中12、13题为选做题,任选一题作答)11.(3分)将实数,π,0,﹣6由小到大用“<”号连起来,可表示为.12.(3分)正八边形一个内角的度数为.13.如图,有一滑梯AB,其水平宽度AC为5.3米,铅直高度BC为2.8米,则∠A的度数约为(用科学计算器计算,结果精确到0.1°).14.(3分)如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A,B两点,则四边形MAOB的面积为.15.(3分)如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是.三、解答题(共11小题,计78分,解答时写出过程)16.(5分)计算:×(﹣)+|﹣2|+()﹣3.17.(5分)解分式方程:﹣=1.18.(5分)如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC分成面积相等的两部分.(保留作图痕迹,不写作法)19.(5分)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.20.(7分)如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E,求证:AD=CE.21.(7分)晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长.(结果精确到0.01米)22.(7分)胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费,假设组团参加甲、乙两家旅行社两日游的人数均为x人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.23.(7分)某中学要在全校学生中举办“中国梦•我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)24.(8分)如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.(1)求证:∠BAD=∠E;(2)若⊙O的半径为5,AC=8,求BE的长.25.(10分)在平面直角坐标系中,抛物线y=x2+5x+4的顶点为M,与x轴交于A,B两点,与y轴交于C点.(1)求点A,B,C的坐标;(2)求抛物线y=x2+5x+4关于坐标原点O对称的抛物线的函数表达式;(3)设(2)中所求抛物线的顶点为M′,与x轴交于A′,B′两点,与y轴交于C′点,在以A,B,C,M,A′,B′,C′,M′这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积.26.(12分)如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由.2015年陕西省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.(3分)计算:(﹣)0=()A.1 B.﹣ C.0 D.【分析】根据零指数幂:a0=1(a≠0),求出(﹣)0的值是多少即可.【解答】解:(﹣)0=1.故选:A.2.(3分)如图是一个螺母的示意图,它的俯视图是()A. B.C.D.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看外面是一个正六边形,里面是一个没有圆心的圆,故选:B.3.(3分)下列计算正确的是()A.a2•a3=a6 B.(﹣2ab)2=4a2b2C.(a2)3=a5D.3a3b2÷a2b2=3ab【分析】根据同底数幂的乘法、积的乘方、幂的乘方、整式的除法,即可解答.【解答】解:A、a2•a3=a5,故正确;B、正确;C、(a2)3=a6,故错误;D、3a2b2÷a2b2=3,故错误;故选:B.4.(3分)如图,AB∥CD,直线EF分别交直线AB,CD于点E,F.若∠1=46°30′,则∠2的度数为()A.43°30′B.53°30′C.133°30′D.153°30′【分析】先根据平行线的性质求出∠EFD的度数,再根据补角的定义即可得出结论.【解答】解:∵AB∥CD,∠1=46°30′,∴∠EFD=∠1=46°30′,∴∠2=180°﹣46°30′=133°30′.故选:C.5.(3分)设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2 B.﹣2 C.4 D.﹣4【分析】直接根据正比例函数的性质和待定系数法求解即可.【解答】解:把x=m,y=4代入y=mx中,可得:m=±2,因为y的值随x值的增大而减小,所以m=﹣2,故选:B.6.(3分)如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个 B.3个 C.4个 D.5个【分析】根据已知条件分别求出图中三角形的内角度数,再根据等腰三角形的判定即可找出图中的等腰三角形.【解答】解:∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=∠ABC=36°,∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形;在△BCD中,∵∠BDC=180°﹣∠DBC﹣∠C=180°﹣36°﹣72°=72°,∴∠C=∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形;∵BE=BC,∴BD=BE,∴△BDE是等腰三角形;∴∠BED=(180°﹣36°)÷2=72°,∴∠ADE=∠BED﹣∠A=72°﹣36°=36°,∴∠A=∠ADE,∴DE=AE,∴△ADE是等腰三角形;∴图中的等腰三角形有5个.故选:D.7.(3分)不等式组的最大整数解为()A.8 B.6 C.5 D.4【分析】先求出各个不等式的解集,再求出不等式组的解集,最后求出答案即可.【解答】解:∵解不等式①得:x≥﹣8,解不等式②得:x<6,∴不等式组的解集为﹣8≤x<6,∴不等式组的最大整数解为5,故选:C.8.(3分)在平面直角坐标系中,将直线l1:y=﹣2x﹣2平移后,得到直线l2:y=﹣2x+4,则下列平移作法正确的是()A.将l1向右平移3个单位长度B.将l1向右平移6个单位长度C.将l1向上平移2个单位长度D.将l1向上平移4个单位长度【分析】利用一次函数图象的平移规律,左加右减,上加下减,得出即可.【解答】解:∵将直线l1:y=﹣2x﹣2平移后,得到直线l2:y=﹣2x+4,∴﹣2(x+a)﹣2=﹣2x+4,解得:a=﹣3,故将l1向右平移3个单位长度.故选:A.9.(3分)在▱ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,若四边形AECF为正方形,则AE的长为()A.7 B.4或10 C.5或9 D.6或8【分析】设AE的长为x,根据正方形的性质可得BE=14﹣x,根据勾股定理得到关于x的方程,解方程即可得到AE的长.【解答】解:如图:设AE的长为x,根据正方形的性质可得BE=14﹣x,在Rt△ABE中,根据勾股定理可得x2+(14﹣x)2=102,解得x1=6,x2=8.故AE的长为6或8.故选:D.10.(3分)下列关于二次函数y=ax2﹣2ax+1(a>1)的图象与x轴交点的判断,正确的是()A.没有交点B.只有一个交点,且它位于y轴右侧C.有两个交点,且它们均位于y轴左侧D.有两个交点,且它们均位于y轴右侧【分析】根据函数值为零,可得相应的方程,根据根的判别式,公式法求方程的根,可得答案.【解答】解:当y=0时,ax2﹣2ax+1=0,∵a>1∴△=(﹣2a)2﹣4a=4a(a﹣1)>0,ax2﹣2ax+1=0有两个根,函数与有两个交点,x=>0,故选:D.二、填空题(共5小题,每小题3分,计12分,其中12、13题为选做题,任选一题作答)11.(3分)将实数,π,0,﹣6由小到大用“<”号连起来,可表示为﹣6.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:≈2.236,π≈3.14,∵﹣6<0<2.236<3.14,∴﹣6.故答案为:﹣6.12.(3分)正八边形一个内角的度数为135°.【分析】首先根据多边形内角和定理:(n﹣2)•180°(n≥3且n为正整数)求出内角和,然后再计算一个内角的度数.【解答】解:正八边形的内角和为:(8﹣2)×180°=1080°,每一个内角的度数为×1080°=135°.故答案为:135°.13.如图,有一滑梯AB,其水平宽度AC为5.3米,铅直高度BC为2.8米,则∠A的度数约为27.8°(用科学计算器计算,结果精确到0.1°).【分析】直接利用坡度的定义求得坡角的度数即可.【解答】解:∵tan∠A==≈0.5283,∴∠A=27.8°,故答案为:27.8°.14.(3分)如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A,B两点,则四边形MAOB的面积为10.【分析】设点A的坐标为(a,b),点B的坐标为(c,d),根据反比例函数y=的图象过A,B两点,所以ab=4,cd=4,进而得到S△AOC=|ab|=2,S△BOD=|cd|=2,S矩形MCDO=3×2=6,根据四边形MAOB的面积=S△AOC+S△BOD+S矩形MCDO,即可解答.【解答】解:如图,设点A的坐标为(a,b),点B的坐标为(c,d),∵反比例函数y=的图象过A,B两点,∴ab=4,cd=4,∴S△AOC=|ab|=2,S△BOD=|cd|=2,∵点M(﹣3,2),∴S矩形MCDO=3×2=6,∴四边形MAOB的面积=S△AOC +S△BOD+S矩形MCDO=2+2+6=10,故答案为:10.15.(3分)如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是3.【分析】根据中位线定理得到MN的最大时,AC最大,当AC最大时是直径,从而求得直径后就可以求得最大值.【解答】解:∵点M,N分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC是直径时,最大,如图,∵∠ACB=∠D=45°,AB=6,∴AD=6,∴MN=AD=3故答案为:3.三、解答题(共11小题,计78分,解答时写出过程)16.(5分)计算:×(﹣)+|﹣2|+()﹣3.【分析】根据二次根式的乘法法则和负整数整数幂的意义得到原式=﹣+2+8,然后化简后合并即可.【解答】解:原式=﹣+2+8=﹣3+2+8=8﹣.17.(5分)解分式方程:﹣=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2﹣5x+6﹣3x﹣9=x2﹣9,解得:x=,经检验x=是分式方程的解.18.(5分)如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC分成面积相等的两部分.(保留作图痕迹,不写作法)【分析】作BC边上的中线,即可把△ABC分成面积相等的两部分.【解答】解:如图,直线AD即为所求:19.(5分)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在良好等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.【分析】(1)根据各个等级的百分比得出答案即可;(2)根据中位数的定义知道中位数是第25和26个数的平均数,由此即可得出答案;(3)首先根据扇形图得出优秀人数占的百分比,条形统计图可以求出平均数的最小值,然后即可求出答案.【解答】解:(1);(2)∵13+20+12+5=50,50÷2=25,25+1=26,∴中位数落在良好等级,故答案为:良好;(3)650×26%=169(人),即该年级女生中1分钟“仰卧起坐”个数达到优秀的人数是169.20.(7分)如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E,求证:AD=CE.【分析】根据平行线的性质得出∠EAC=∠ACB,再利用ASA证出△ABD≌△CAE,从而得出AD=CE.【解答】证明:∵AE∥BD,∴∠EAC=∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠B=∠EAC,在△ABD和△CAE中,,∴△ABD≌△CAE,∴AD=CE.21.(7分)晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长.(结果精确到0.01米)【分析】先证明△CAD~△MND,利用相似三角形的性质求得MN=9.6,再证明△EFB~△MFN,即可解答.【解答】解:由题意得:∠CAD=∠MND=90°,∠CDA=∠MDN,∴△CAD~△MND,∴,∴,∴MN=9.6,又∵∠EBF=∠MNF=90°,∠EFB=∠MFN,∴△EFB~△MFN,∴,∴∴EB≈1.75,∴小军身高约为1.75米.22.(7分)胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费,假设组团参加甲、乙两家旅行社两日游的人数均为x人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.【分析】(1)根据总费用等于人数乘以打折后的单价,易得y甲=640×0.85x,对于乙家旅行社的总费用,分类讨论:当0≤x≤20时,y乙=640×0.9x;当x>20时,y乙=640×0.9×20+640×0.75(x﹣20);(2)把x=32分别代入(1)中对应得函数关系计算y甲和y乙的值,然后比较大小即可.【解答】解:(1)甲家旅行社的总费用:y甲=640×0.85x=544x;乙家旅行社的总费用:当0≤x≤20时,y乙=640×0.9x=576x;当x>20时,y乙=640×0.9×20+640×0.75(x﹣20)=480x+1920;(2)当x=32时,y甲=544×32=17408(元),y乙=480×32+1920=17280,因为y甲>y乙,所以胡老师选择乙旅行社.23.(7分)某中学要在全校学生中举办“中国梦•我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)【分析】(1)首先判断出向上一面的点数为奇数有3种情况,然后根据概率公式,求出小亮掷得向上一面的点数为奇数的概率是多少即可.(2)首先应用列表法,列举出所有可能的结果,然后分别判断出小亮、小丽获胜的概率是多少,再比较它们的大小,判断出该游戏是否公平即可.【解答】解:(1)∵向上一面的点数为奇数有3种情况,∴小亮掷得向上一面的点数为奇数的概率是:.(2)填表如下:123 4 56 1(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)由上表可知,一共有36种等可能的结果,其中小亮、小丽获胜各有9种结果.∴P(小亮胜)=,P(小丽胜)==,∴游戏是公平的.24.(8分)如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.(1)求证:∠BAD=∠E;(2)若⊙O的半径为5,AC=8,求BE的长.【分析】(1)根据切线的性质,和等角的余角相等证明即可;(2)根据勾股定理和相似三角形进行解答即可.【解答】(1)证明:∵AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,∴∠ABE=90°,∴∠BAE+∠E=90°,∵∠DAE=90°,∴∠BAD+∠BAE=90°,∴∠BAD=∠E;(2)解:连接BC,如图:∵AB是⊙O的直径,∴∠ACB=90°,∵AC=8,AB=2×5=10,∴BC=,∵∠BCA=∠ABE=90°,∠BAD=∠E,∴△ABC∽△EAB,∴,∴,∴BE=.25.(10分)在平面直角坐标系中,抛物线y=x2+5x+4的顶点为M,与x轴交于A,B两点,与y轴交于C点.(1)求点A,B,C的坐标;(2)求抛物线y=x2+5x+4关于坐标原点O对称的抛物线的函数表达式;(3)设(2)中所求抛物线的顶点为M′,与x轴交于A′,B′两点,与y轴交于C′点,在以A,B,C,M,A′,B′,C′,M′这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积.【分析】(1)令y=0,求出x的值;令x=0,求出y,即可解答;(2)先求出A,B,C关于坐标原点O对称后的点为(4,0),(1,0),(0,﹣4),再代入解析式,即可解答;(3)取四点A,M,A′,M′,连接AM,MA′,A′M′,M′A,MM′,由中心对称性可知,MM′过点O,OA=OA′,OM=OM′,由此判定四边形AMA′M′为平行四边形,又知AA′与MM′不垂直,从而平行四边形AMA′M′不是菱形,过点M作MD⊥x 轴于点D,求出抛物线的顶点坐标M,根据,即可解答.【解答】解:(1)令y=0,得x2+5x+4=0,∴x1=﹣4,x2=﹣1,令x=0,得y=4,∴A(﹣4,0),B(﹣1,0),C(0,4).(2)∵A,B,C关于坐标原点O对称后的点为(4,0),(1,0),(0,﹣4),∴所求抛物线的函数表达式为y=ax2+bx﹣4,将(4,0),(1,0)代入上式,得解得:,∴y=﹣x2+5x﹣4.(3)如图,取四点A,M,A′,M′,连接AM,MA′,A′M′,M′A,MM′,由中心对称性可知,MM′过点O,OA=OA′,OM=OM′,∴四边形AMA′M′为平行四边形,又知AA′与MM′不垂直,∴平行四边形AMA′M′不是菱形,过点M作MD⊥x轴于点D,∵y=,∴M(),又∵A(﹣4,0),A′(4,0)∴AA′=8,MD=,∴=26.(12分)如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为24;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由.【分析】(1)如图①,过A作AE⊥BC,可得出四边形AECD为矩形,得到EC=AD,BE=BC﹣EC,在直角三角形ABE中,求出AE的长,即为三角形BMC的高,求出三角形BMC面积即可;(2)如图②,作点C关于直线AD的对称点C′,连接C′N,C′D,C′B交AD于点N′,连接CN′,则BN+NC=BN+NC′≥BC′=BN′+CN′,可得出△BNC周长的最小值为△B N′C的周长=BN′+CN′+BC=BC′+BC,求出即可;(3)如图③所示,存在点P,使得cos∠BPC的值最小,作BC的中垂线PQ交BC于点Q,交AD于点P,连接BP,CP,作△BPC的外接圆O,圆O与直线PQ 交于点N,则PB=PC,圆心O在PN上,根据AD与BC平行,得到圆O与AD相切,根据PQ=DC,判断得到PQ大于BQ,可得出圆心O在BC上方,在AD上任取一点P′,连接P′B,P′C,P′B交圆O于点M,连接MC,可得∠BPC=∠BMC≥∠BP′C,即∠BPC最大,cos∠BPC的值最小,连接OB,求出即可.【解答】解:(1)如图①,过A作AE⊥BC,∴四边形AECD为矩形,∴EC=AD=8,BE=BC﹣EC=12﹣8=4,在Rt△ABE中,∠ABE=60°,BE=4,∴AB=2BE=8,AE==4,=BC•AE=24;则S△BMC故答案为:24;(2)如图②,作点C关于直线AD的对称点C′,连接C′N,C′D,C′B交AD于点N′,连接CN′,则BN+NC=BN+NC′≥BC′=BN′+CN′,∴△BNC周长的最小值为△BN′C的周长=BN′+CN′+BC=BC′+BC,∵AD∥BC,AE⊥BC,∠ABC=60°,∴过点A作AE⊥BC,则CE=AD=8,∴BE=4,AE=BE•tan60°=4,∴CC′=2CD=2AE=8,∵BC=12,∴BC′==4,∴△BNC周长的最小值为4+12;(3)如图③所示,存在点P,使得cos∠BPC的值最小,作BC的中垂线PQ交BC于点Q,交AD于点P,连接BP,CP,作△BPC的外接圆O,圆O与直线PQ交于点N,则PB=PC,圆心O在PN上,∵AD∥BC,∴圆O与AD相切于点P,∵PQ=DC=4>6,∴PQ>BQ,∴∠BPC<90°,圆心O在弦BC的上方,在AD上任取一点P′,连接P′B,P′C,P′B交圆O于点M,连接MC,∴∠BPC=∠BMC≥∠BP′C,∴∠BPC最大,cos∠BPC的值最小,连接OB,则∠BON=2∠BPN=∠BPC,∵OB=OP=4﹣OQ,在Rt△BOQ中,根据勾股定理得:OQ2+62=(4﹣OQ)2,解得:OQ=,∴OB=,∴cos∠BPC=cos∠BOQ==,则此时cos∠BPC的值为.。

2015年陕西省中考数学试题及答案解析

2015年陕西省中考数学试题及答案解析

2015年陕西省中考数学试题及答案解析学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2015年)计算:( )A .1B .C .0D .2.(2015年)如图是一个螺母的示意图,它的俯视图是( )A .B .C .D .3.(2015年)下列计算正确的是( ) A .B .C .D .4.(2015年)如图,AB//CD,直线EF 分别交直线AB 、CD 于点E 、F,若∠1=46°30′,则∠2的度数为( )A .43°30′B .53°30′C .133°30′D .153°30′5.(2015年)设正比例函数y mx =的图象经过点(,4)A m ,且y 的值随x 值的增大而减小,则m =( ) A .2B .-2C .4D .-46.(2015年)如图,在△ABC 中,∠A =36°,AB =AC ,BD 是△ABC 的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有( )A.2个B.3个C.4个D.5个7.(2015年)不等式组的最大整数解为()A.8 B.6 C.5 D.48.(2015年)在平面直角坐标系中,将直线平移后,得到直线,则下列平移作法正确的是()A.将向右平移3个单位长度 B.将向右平移6个单位长度C.将向上平移2个单位长度 D.将向上平移4个单位长度9.(2015年)在□ABCD中,AB=10,BC=14,E、F分别为边BC、AD上的点,若四边形AECF为正方形,则AE的长为()A.7 B.4或10 C.5或9 D.6或8 10.(2015年)下列关于二次函数的图象与轴交点的判断,正确的是()A.没有交点B.只有一个交点,且它位于轴右侧C.有两个交点,且它们均位于轴左侧D.有两个交点,且它们均位于轴右侧二、填空题11.(2015年).将实数由小到大用“<”号连起来,可表示为_____.12.(2015年)请从以下两小题中任选一个作答,若多选,则按第一题计分.A.正八边形一个内角的度数为_____________.B.如图,有一滑梯AB,其水平宽度AC为5.3米,铅直高度BC为2.8米,则∠A的度数约为_________(用科学计算器计算,结果精确到0.1°)13.(2015年)如图,在平面直角坐标系中,过点M(-3,2)分别作轴、轴的垂线与反比例函数的图象交于A、B两点,则四边形MAOB的面积为___14.(2015年)如图,AB为⊙0的弦,AB=6,点C是⊙0上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN长的最大值是______.三、解答题15.(2015年)计算:16.(2015年)解分式方程:231 33xx x--= +-17.(2015年)如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC 分成面积相等的两部分,(保留作图痕迹,不写作法)18.(2015年)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在哪个等级?(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.19.(2015年)如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E,求证:AD=CE.20.(2015年)晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长(结果精确到0.01米).21.(2015年)胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费.假设组团参加甲、乙两家旅行社两日游的人数均为x人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你通过计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.22.(2015年)某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班一名代表参赛,九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛,经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1、2、3、4、5、6个小圆点的小正方体)23.(2015年)如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.(1)求证:∠BAD=∠E ;(2)若⊙O 的半径为5,AC=8,求BE 的长.24.(2015年)在平面直角坐标系中,抛物线y=x 2+5x+4的顶点为M ,与x 轴交于A 、B 两点与y 轴交于C 点。

2015年陕西省中考数学

2015年陕西省中考数学

页眉内容2015年陕西省中考数学试卷一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.(3分)(2015•陕西)计算:(﹣)0=( )2.(3分)(2015•陕西)如图是一个螺母的示意图,它的俯视图是( )B4.(3分)(2015•陕西)如图,AB ∥CD ,直线EF 分别交直线AB ,CD 于点E ,F .若∠1=46°30′,则∠2的度数为( )5.(3分)(2015•陕西)设正比例函数y=mx 的图象经过点A (m ,4),且y 的值随x 值的6.(3分)(2015•陕西)如图,在△ABC 中,∠A=36°,AB=AC ,BD 是△ABC 的角平分线.若在边AB 上截取BE=BC ,连接DE ,则图中等腰三角形共有( )7.(3分)(2015•陕西)不等式组的最大整数解为()8.(3分)(2015•陕西)在平面直角坐标系中,将直线l1:y=﹣2x﹣2平移后,得到直线l2:9.(3分)(2015•陕西)在▱ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,10.(3分)(2015•陕西)下列关于二次函数y=ax2﹣2ax+1(a>1)的图象与x轴交点的判二、填空题(共5小题,每小题3分,计12分,其中12、13题为选做题,任选一题作答)11.(3分)(2015•陕西)将实数,π,0,﹣6由小到大用“<”号连起来,可表示为.12.(3分)(2015•陕西)正八边形一个内角的度数为.13.(2015•陕西)如图,有一滑梯AB,其水平宽度AC为5.3米,铅直高度BC为2.8米,则∠A的度数约为(用科学计算器计算,结果精确到0.1°).14.(3分)(2015•陕西)如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A,B两点,则四边形MAOB的面积为.15.(3分)(2015•陕西)如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是.三、解答题(共11小题,计78分,解答时写出过程)16.(5分)(2015•陕西)计算:×(﹣)+|﹣2|+()﹣3.17.(5分)(2015•陕西)解分式方程:﹣=1.18.(5分)(2015•陕西)如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC 分成面积相等的两部分.(保留作图痕迹,不写作法)19.(5分)(2015•陕西)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.20.(7分)(2015•陕西)如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E,求证:AD=CE.21.(7分)(2015•陕西)晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长.(结果精确到0.01米)22.(7分)(2015•陕西)胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费,假设组团参加甲、乙两家旅行社两日游的人数均为x人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.23.(7分)(2015•陕西)某中学要在全校学生中举办“中国梦•我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)24.(8分)(2015•陕西)如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.(1)求证:∠BAD=∠E;(2)若⊙O的半径为5,AC=8,求BE的长.25.(10分)(2015•陕西)在平面直角坐标系中,抛物线y=x2+5x+4的顶点为M,与x轴交于A,B两点,与y轴交于C点.(1)求点A,B,C的坐标;(2)求抛物线y=x2+5x+4关于坐标原点O对称的抛物线的函数表达式;(3)设(2)中所求抛物线的顶点为M′,与x轴交于A′,B′两点,与y轴交于C′点,在以A,B,C,M,A′,B′,C′,M′这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积.26.(12分)(2015•陕西)如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由.。

2015年陕西省中考数学试卷附详细答案(原版+解析版)

2015年陕西省中考数学试卷附详细答案(原版+解析版)

2015年陕西省中考数学试卷一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.计算:(﹣)0=()2.(3分)(2015•陕西)如图是一个螺母的示意图,它的俯视图是()A.B.C.D.3.(3分)(2015•陕西)下列计算正确的是()4.(3分)(2015•陕西)如图,AB∥CD,直线EF分别交直线AB,CD于点E,F.若∠1=46°30′,则∠1的度数为()5.(3分)(2015•陕西)设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()6.(3分)(2015•陕西)如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()7.(3分)(2015•陕西)不等式组的最大整数解为()8.(3分)(2015•陕西)在平面直角坐标系中,将直线l1:y=﹣2x﹣2平移后,得到直线l2:y=﹣2x+4,则下列平移作法正确的是()9.(3分)(2015•陕西)在▱ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,若四边形AECF为正方形,则AE的长为()10.(3分)(2015•陕西)下列关于二次函数y=ax2﹣2ax+1(a>1)的图象与x轴交点的判断,正确的是()二、填空题(共5小题,每小题3分,计12分,其中12、13题为选做题,任选一题作答)11.(3分)(2015•陕西)将实数,π,0,﹣6由小到大用“<”号连起来,可表示为.12.(3分)(2015•陕西)正八边形一个内角的度数为.13.(2015•陕西)如图,有一滑梯AB,其水平宽度AC为5.3米,铅直高度BC为2.8米,则∠A的度数约为(用科学计算器计算,结果精确到0.1°).14.(3分)(2015•陕西)如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A,B两点,则四边形MAOB的面积为.15.(3分)(2015•陕西)如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是.三、解答题(共11小题,计78分,解答时写出过程)16.(5分)(2015•陕西)计算:×(﹣)+|﹣2|+()﹣3.17.(5分)(2015•陕西)解分式方程:﹣=1.18.(5分)(2015•陕西)如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC 分成面积相等的两部分.(保留作图痕迹,不写作法)19.(5分)(2015•陕西)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.20.(7分)(2015•陕西)如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E,求证:AD=CE.21.(7分)(2015•陕西)晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长.(结果精确到0.01米)22.(7分)(2015•陕西)胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费,假设组团参加甲、乙两家旅行社两日游的人数均为x人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.23.(7分)(2015•陕西)某中学要在全校学生中举办“中国梦•我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)24.(8分)(2015•陕西)如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.(1)求证:∠BAD=∠E;(2)若⊙O的半径为5,AC=8,求BE的长.25.(10分)(2015•陕西)在平面直角坐标系中,抛物线y=x2+5x+4的顶点为M,与x轴交于A,B两点,与y轴交于C点.(1)求点A,B,C的坐标;(2)求抛物线y=x2+5x+4关于坐标原点O对称的抛物线的函数表达式;(3)设(2)中所求抛物线的顶点为M′,与x轴交于A′,B′两点,与y轴交于C′点,在以A,B,C,M,A′,B′,C′,M′这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积.26.(12分)(2015•陕西)如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为24;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由.2015年陕西省中考数学试卷一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.计算:(﹣)0=(),求出(﹣)(﹣)2.(3分)(2015•陕西)如图是一个螺母的示意图,它的俯视图是()A.B.C.D.3.(3分)(2015•陕西)下列计算正确的是()4.(3分)(2015•陕西)如图,AB∥CD,直线EF分别交直线AB,CD于点E,F.若∠1=46°30′,则∠1的度数为()5.(3分)(2015•陕西)设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()6.(3分)(2015•陕西)如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()DBC=∠7.(3分)(2015•陕西)不等式组的最大整数解为()8.(3分)(2015•陕西)在平面直角坐标系中,将直线l1:y=﹣2x﹣2平移后,得到直线l2:y=﹣2x+4,则下列平移作法正确的是()9.(3分)(2015•陕西)在▱ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,若四边形AECF为正方形,则AE的长为()10.(3分)(2015•陕西)下列关于二次函数y=ax2﹣2ax+1(a>1)的图象与x轴交点的判断,正确的是()二、填空题(共5小题,每小题3分,计12分,其中12、13题为选做题,任选一题作答)11.(3分)(2015•陕西)将实数,π,0,﹣6由小到大用“<”号连起来,可表示为﹣6.≈6612.(3分)(2015•陕西)正八边形一个内角的度数为135°.每一个内角的度数为×13.(2015•陕西)如图,有一滑梯AB,其水平宽度AC为5.3米,铅直高度BC为2.8米,则∠A的度数约为27.8°(用科学计算器计算,结果精确到0.1°).A=≈14.(3分)(2015•陕西)如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y 轴的垂线与反比例函数y=的图象交于A,B两点,则四边形MAOB的面积为10.的图象过|ab|=2|cd|=2y=的图象过|ab|=2|cd|=2|ab|=2 |cd|=215.(3分)(2015•陕西)如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是3.MN=ACAD=6MN=AD=3.三、解答题(共11小题,计78分,解答时写出过程)16.(5分)(2015•陕西)计算:×(﹣)+|﹣2|+()﹣3.+2+8+2+2+8.17.(5分)(2015•陕西)解分式方程:﹣=1.,是分式方程的解.18.(5分)(2015•陕西)如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC 分成面积相等的两部分.(保留作图痕迹,不写作法)19.(5分)(2015•陕西)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在良好等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.20.(7分)(2015•陕西)如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E,求证:AD=CE.21.(7分)(2015•陕西)晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长.(结果精确到0.01米)22.(7分)(2015•陕西)胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费,假设组团参加甲、乙两家旅行社两日游的人数均为x人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.23.(7分)(2015•陕西)某中学要在全校学生中举办“中国梦•我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)∴小亮掷得向上一面的点数为奇数的概率是:=,24.(8分)(2015•陕西)如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.(1)求证:∠BAD=∠E;(2)若⊙O的半径为5,AC=8,求BE的长.,BE=.25.(10分)(2015•陕西)在平面直角坐标系中,抛物线y=x2+5x+4的顶点为M,与x轴交于A,B两点,与y轴交于C点.(1)求点A,B,C的坐标;(2)求抛物线y=x2+5x+4关于坐标原点O对称的抛物线的函数表达式;(3)设(2)中所求抛物线的顶点为M′,与x轴交于A′,B′两点,与y轴交于C′点,在以A,B,C,M,A′,B′,C′,M′这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积.,根据)代入上式,得解得:,MD=,26.(12分)(2015•陕西)如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为24;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由.=4,BC;;=4=2CD=2AE=8=4PQ=DC=4OB=OP=4,OB=BOQ==,的值为.。

2015年陕西省中考数学试卷(含解析)

2015年陕西省中考数学试卷(含解析)

2015年陕西省中考数学试卷一、选择题1、计算:(-)0=()A.1B.-C.0D.2、如图是一个螺母的示意图,它的俯视图是()A.B.C.D.3、下列计算正确的是()A.a2•a3=a6B.(-2ab)2=4a2b2C.(a2)3=a5D.3a3b2÷a2b2=3ab4、如图,AB∥CD,直线EF分别交直线AB,CD于点E,F.若∠1=46°30′,则∠2的度数为()A.43°30′B.53°30′C.133°30′D.153°30′5、设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2B.-2C.4D.-46、如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个7、不等式组的最大整数解为()A.8B.6C.5D.48、在平面直角坐标系中,将直线l1:y=-2x-2平移后,得到直线l2:y=-2x+4,则下列平移作法正确的是()A.将l1向右平移3个单位长度B.将l1向右平移6个单位长度C.将l1向上平移2个单位长度D.将l1向上平移4个单位长度9、在▱ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,若四边形AECF为正方形,则AE的长为()A.7B.4或10C.5或9D.6或810、下列关于二次函数y=ax2-2ax+1(a>1)的图象与x轴交点的判断,正确的是()A.没有交点B.只有一个交点,且它位于y轴右侧C.有两个交点,且它们均位于y轴左侧D.有两个交点,且它们均位于y轴右侧二、填空题11、将实数,π,0,-6由小到大用“<”号连起来,可表示为 __________ .12、正八边形一个内角的度数为 __________ .13、如图,有一滑梯AB,其水平宽度AC为5.3米,铅直高度BC为2.8米,则∠A的度数约为 __________ (用科学计算器计算,结果精确到0.1°).14、如图,在平面直角坐标系中,过点M(-3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A,B两点,则四边形MAOB的面积为 __________ .15、如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是 __________ .三、解答题16、计算:×(-)+|-2|+()-3.17、解分式方程:-=1.18、如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC分成面积相等的两部分.(保留作图痕迹,不写作法)19、某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在 __________ 等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.20、如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E,求证:AD=CE.21、晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长.(结果精确到0.01米)22、胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费,假设组团参加甲、乙两家旅行社两日游的人数均为x人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.23、某中学要在全校学生中举办“中国梦•我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)24、如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.(1)求证:∠BAD=∠E;(2)若⊙O的半径为5,AC=8,求BE的长.25、在平面直角坐标系中,抛物线y=x2+5x+4的顶点为M,与x轴交于A,B两点,与y轴交于C点.(1)求点A,B,C的坐标;(2)求抛物线y=x2+5x+4关于坐标原点O对称的抛物线的函数表达式;(3)设(2)中所求抛物线的顶点为M′,与x轴交于A′,B′两点,与y轴交于C′点,在以A,B,C,M,A′,B′,C′,M′这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积.26、如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为__________ ;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由.2015年陕西省中考数学试卷的答案和解析一、选择题1、答案:A试题分析:根据零指数幂:a0=1(a≠0),求出(-)0的值是多少即可.试题解析:(-)0=1.故选:A.2、答案:B试题分析:根据从上面看得到的图形是俯视图,可得答案.试题解析:从上面看外面是一个正六边形,里面是一个没有圆心的圆,故选:B.3、答案:B试题分析:根据同底数幂的乘法、积的乘方、幂的乘方、整式的除法,即可解答.试题解析:A、a2•a3=a5,故正确;B、正确;C、(a2)3=a6,故错误;D、3a2b2÷a2b2=3,故错误;故选:B.4、答案:C试题分析:先根据平行线的性质求出∠EFD的度数,再根据补角的定义即可得出结论.试题解析:∵AB∥CD,∠1=46°30′,∴∠EFD=∠1=46°30′,∴∠2=180°-46°30′=133°30′.故选C.5、答案:B试题分析:直接根据正比例函数的性质和待定系数法求解即可.试题解析:把x=m,y=4代入y=mx中,可得:m=±2,因为y的值随x值的增大而减小,所以m=-2,故选B6、答案:D试题分析:根据已知条件分别求出图中三角形的内角度数,再根据等腰三角形的判定即可找出图中的等腰三角形.试题解析:∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=∠ABC=36°,∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形;在△BCD中,∵∠BDC=180°-∠DBC-∠C=180°-36°-72°=72°,∴∠C=∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形;∵BE=BC,∴BD=BE,∴△BDE是等腰三角形;∴∠BED=(180°-36°)÷2=72°,∴∠ADE=∠BED-∠A=72°-36°=36°,∴∠A=∠ADE,∴DE=AE,∴△ADE是等腰三角形;∴图中的等腰三角形有5个.故选D.C试题分析:先求出各个不等式的解集,再求出不等式组的解集,最后求出答案即可.试题解析:∵解不等式①得:x≥-8,解不等式②得:x<6,∴不等式组的解集为-8≤x<6,∴不等式组的最大整数解为5,故选C.8、答案:A试题分析:利用一次函数图象的平移规律,左加右减,上加下减,得出即可.试题解析:∵将直线l1:y=-2x-2平移后,得到直线l2:y=-2x+4,∴-2(x+a)-2=-2x+4,解得:a=-3,故将l1向右平移3个单位长度.故选:A.9、答案:D试题分析:设AE的长为x,根据正方形的性质可得BE=14-x,根据勾股定理得到关于x的方程,解方程即可得到AE的长.试题解析:如图:设AE的长为x,根据正方形的性质可得BE=14-x,在△ABE中,根据勾股定理可得x2+(14-x)2=102,解得x1=6,x2=8.故AE的长为6或8.故选:D.D试题分析:根据函数值为零,可得相应的方程,根据根的判别式,公式法求方程的根,可得答案.试题解析:当y=0时,ax2-2ax+1=0,∵a>1∴△=(-2a)2-4a=4a(a-1)>0,ax2-2ax+1=0有两个根,函数与有两个交点,x=>0,故选:D.二、填空题11、答案:试题分析:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.试题解析:≈2.236,π≈3.14,∵-6<0<2.236<3.14,∴-6.故答案为:-6.12、答案:试题分析:首先根据多边形内角和定理:(n-2)•180°(n≥3且n为正整数)求出内角和,然后再计算一个内角的度数.试题解析:正八边形的内角和为:(8-2)×180°=1080°,每一个内角的度数为×1080°=135°.故答案为:135°.13、答案:试题分析:直接利用坡度的定义求得坡角的度数即可.试题解析:∵tan∠A==≈0.5283,∴∠A=27.8°,故答案为:27.8°.14、答案:试题分析:设点A的坐标为(a,b),点B的坐标为(c,d),根据反比例函数y=的图象过A,B两点,所以ab=4,cd=4,进而得到S△AOC=|ab|=2,S△BOD=|cd|=2,S矩形MCDO=3×2=6,根据四边形MAOB的面积=S△AOC+S△BOD+S矩形MCDO,即可解答.试题解析:如图,设点A的坐标为(a,b),点B的坐标为(c,d),∵反比例函数y=的图象过A,B两点,∴ab=4,cd=4,∴S△AOC=|ab|=2,S△BOD=|cd|=2,∵点M(-3,2),∴S矩形MCDO=3×2=6,∴四边形MAOB的面积=S△AOC+S△BOD+S矩形MCDO=2+2+6=10,故答案为:10.15、答案:试题分析:根据中位线定理得到MN的最大时,AC最大,当AC最大时是直径,从而求得直径后就可以求得最大值.试题解析:∵点M,N分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC时直径时,最大,如图,∵∠ACB=∠D=45°,AB=6,∴AD=6,∴MN=AD=3故答案为:3.三、解答题16、答案:试题分析:根据二次根式的乘法法则和负整数整数幂的意义得到原式=-+2+8,然后化简后合并即可.试题解析:原式=-+2+8=-3+2+8=8-.17、答案:试题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.试题解析:去分母得:x2-5x+6-3x-9=x2-9,解得:x=,经检验x=是分式方程的解.18、答案:试题分析:作BC边上的中线,即可把△ABC分成面积相等的两部分.试题解析:如图,直线AD即为所求:19、答案:试题分析:(1)根据各个等级的百分比得出答案即可;(2)根据中位数的定义知道中位数是第25和26个数的平均数,由此即可得出答案;(3)首先根据扇形图得出优秀人数占的百分比,条形统计图可以求出平均数的最小值,然后即可求出答案.试题解析:(1);(2)∵13+20+12+5=50,50÷2=25,25+1=26,∴中位数落在良好等级,故答案为:良好;(3)650×26%=169(人),即该年级女生中1分钟“仰卧起坐”个数达到优秀的人数是169.20、答案:试题分析:根据平行线的性质得出∠EAC=∠ACB,再利用ASA证出△ABD≌△CAE,从而得出AD=CE.试题解析:证明:∵AE∥BD,∴∠EAC=∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠B=∠EAC,在△ABD和△CAE中,,∴△ABD≌△CAE,∴AD=CE.21、答案:试题分析:先证明△CAD~△MND,利用相似三角形的性质求得MN=9.6,再证明△EFB~△MFN,即可解答.试题解析:由题意得:∠CAD=∠MND=90°,∠CDA=MDN,∴△CAD~△MND,∴,∴,∴MN=9.6,又∵∠EBF=∠MNF=90°,∠EFB=∠MFN,∴△EFB~△MFN,∴,∴∴EB≈1.75,∴小军身高约为1.75米.22、答案:试题分析:(1)根据总费用等于人数乘以打折后的单价,易得y甲=640×0.85x,对于乙两家旅行社的总费用,分类讨论:当0≤x≤20时,y乙=640×0.9x;当x>20时,y乙=640×0.9×20+640×0.75(x-20);(2)把x=32分别代入(1)中对应得函数关系计算y甲和y乙的值,然后比较大小即可.试题解析:(1)甲两家旅行社的总费用:y甲=640×0.85x=544x;乙两家旅行社的总费用:当0≤x≤20时,y乙=640×0.9x=576x;当x>20时,y乙=640×0.9×20+640×0.75(x-20)=480x+1920;(2)当x=32时,y甲=544×32=17408(元),y乙=480×32+1920=17280,因为y甲>y乙,所以胡老师选择乙旅行社.23、答案:试题分析:(1)首先判断出向上一面的点数为奇数有3种情况,然后根据概率公式,求出小亮掷得向上一面的点数为奇数的概率是多少即可.(2)首先应用列表法,列举出所有可能的结果,然后分别判断出小亮、小丽获胜的概率是多少,再比较它们的大小,判断出该游戏是否公平即可.试题解析:(1)∵向上一面的点数为奇数有3种情况,∴小亮掷得向上一面的点数为奇数的概率是:.(2)填表如下:1 2 3 4 5 61(1,1(1,2(1,3)(1,4(1,(1,6))))5)2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)由上表可知,一共有36种等可能的结果,其中小亮、小丽获胜各有9种结果.∴P(小亮胜)=,P(小丽胜)==,∴游戏是公平的.24、答案:试题分析:(1)根据切线的性质,和等角的余角相等证明即可;(2)根据勾股定理和相似三角形进行解答即可.试题解析:(1)证明:∵AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,∴∠ABE=90°,∴∠BAE+∠E=90°,∵∠DAE=90°,∴∠BAD+∠BAE=90°,∴∠BAD=∠E;(2)连接BC,如图:∵AB是⊙O的直径,∴∠ACB=90°,∵AC=8,AB=2×5=10,∴BC=,∵∠BCA=∠ABE=90°,∠BAD=∠E,∴△ABC∽△EAB,∴,∴,∴BE=.25、答案:试题分析:(1)令y=0,求出x的值;令x=0,求出y,即可解答;(2)先求出A,B,C关于坐标原点O对称后的点为(4,0),(1,0),(0,-4),再代入解析式,即可解答;(3)取四点A,M,A′,M′,连接AM,MA′,A′M′,M′A,MM′,由中心对称性可知,MM′过点O,OA=OA′,OM=OM′,由此判定四边形AMA′M′为平行四边形,又知AA′与MM′不垂直,从而平行四边形AMA′M′不是菱形,过点M作MD⊥x轴于点D,求出抛物线的顶点坐标M,根据,即可解答.试题解析:(1)令y=0,得x2+5x+4=0,∴x1=-4,x2=-1,令x=0,得y=4,∴A(-4,0),B(-1,0),C(0,4).(2)∵A,B,C关于坐标原点O对称后的点为(4,0),(1,0),(0,-4),∴所求抛物线的函数表达式为y=ax2+bx-4,将(4,0),(1,0)代入上式,得解得:,∴y=-x2+5x-4.(3)如图,取四点A,M,A′,M′,连接AM,MA′,A′M′,M′A,MM′,由中心对称性可知,MM′过点O,OA=OA′,OM=OM′,∴四边形AMA′M′为平行四边形,又知AA′与MM′不垂直,∴平行四边形AMA′M′不是菱形,过点M作MD⊥x轴于点D,∵y=,∴M(),又∵A(-4,0),A′(4,0)∴AA′=8,MD=,∴=26、答案:试题分析:(1)如图①,过A作AE⊥BC,可得出四边形AECF为矩形,得到EC=AD,BE=BC-EC,在直角三角形ABE中,求出AE的长,即为三角形BMC的高,求出三角形BMC面积即可;(2)如图②,作点C关于直线AD的对称点C′,连接C′N,C′D,C′B交AD于点N′,连接CN′,则BN+NC=BN+NC′≥BC′=BN′+CN′,可得出△BNC周长的最小值为△BN′C的周长=BN′+CN′+BC=BC′+BC,求出即可;(3)如图③所示,存在点P,使得cos∠BPC的值最小,作BC的中垂线PQ交BC于点Q,交AD于点P,连接BP,CP,作△BPC的外接圆O,圆O与直线PQ交于点N,则PB=PC,圆心O在PN上,根据AD与BC平行,得到圆O与AD相切,根据PQ=DC,判断得到PQ大于BQ,可得出圆心O在BC上方,在AD上任取一点P′,连接P′B,P′C,P′B交圆O于点M,连接MC,可得∠BPC=∠BMC≥∠BP′C,即∠BPC最小,cos∠BPC的值最小,连接OB,求出即可.试题解析:(1)如图①,过A作AE⊥BC,∴四边形AECD为矩形,∴EC=AD=8,BE=BC-EC=12-8=4,在Rt△ABE中,∠ABE=60°,BE=4,∴AB=2BE=8,AE==4,则S△BMC=BC•AE=24;故答案为:24;(2)如图②,作点C关于直线AD的对称点C′,连接C′N,C′D,C′B交AD于点N′,连接CN′,则BN+NC=BN+NC′≥BC′=BN′+CN′,∴△BNC周长的最小值为△BN′C的周长=BN′+CN′+BC=BC′+BC,∵AD∥BC,AE⊥BC,∠ABC=60°,∴过点A作AE⊥BC,则CE=AD=8,∴BE=4,AE=BE•tan60°=4,∴CC′=2CD=2AE=8,∵BC=12,∴BC′==4,∴△BNC周长的最小值为4+12;(3)如图③所示,存在点P,使得cos∠BPC的值最小,作BC的中垂线PQ交BC于点Q,交AD于点P,连接BP,CP,作△BPC的外接圆O,圆O与直线PQ交于点N,则PB=PC,圆心O在PN上,∵AD∥BC,∴圆O与AD相切于点P,∵PQ=DC=4>6,∴PQ>BQ,∴∠BPC<90°,圆心O在弦BC的上方,在AD上任取一点P′,连接P′B,P′C,P′B交圆O于点M,连接MC,∴∠BPC=∠BMC≥∠BP′C,∴∠BPC最大,cos∠BPC的值最小,连接OB,则∠BON=2∠BPN=∠BPC,∵OB=OP=4-OQ,在Rt△BOQ中,根据勾股定理得:OQ2+62=(4-OQ)2,解得:OQ=,∴OB=,∴cos∠BPC=cos∠BOQ==,则此时cos∠BPC的值为.。

2015年陕西中考数学真题卷含答案解析

2015年陕西中考数学真题卷含答案解析

2015年陕西省初中毕业学业考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共30分)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.计算:(-23)0=( )A.1B.-32C.0 D.232.如图是一个螺母的示意图,它的俯视图是( )3.下列计算正确的是( )A.a2·a3=a6B.(-2ab)2=4a2b2C.(a2)3=a5D.3a3b2÷a2b2=3ab4.如图,AB∥CD,直线EF分别交直线AB、CD于点E、F,若∠1=46°30',则∠2的度数为( )A.43°30'B.53°30'C.133°30'D.153°30'5.设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=( )A.2B.-2C.4D.-46.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连结DE,则图中等腰三角形共有( )A.2个B.3个C.4个D.5个7.不等式组{12x +1≥-3,x -2(x -3)>0的最大整数解为( )A.8B.6C.5D.48.在平面直角坐标系中,将直线l 1:y=-2x-2平移后,得到直线l 2:y=-2x+4,则下列平移作法正确的是( )A.将l 1向右平移3个单位长度B.将l 1向右平移6个单位长度C.将l 1向上平移2个单位长度D.将l 1向上平移4个单位长度9.在▱ABCD 中,AB=10,BC=14,E 、F 分别为边BC 、AD 上的点.若四边形AECF 为正方形,则AE 的长为( ) A.7B.4或10C.5或9D.6或810.下列关于二次函数y=ax 2-2ax+1(a>1)的图象与x 轴交点的判断,正确的是( ) A.没有交点B.只有一个交点,且它位于y 轴右侧C.有两个交点,且它们均位于y 轴左侧D.有两个交点,且它们均位于y 轴右侧第Ⅱ卷(非选择题,共90分)二、填空题(共4小题,每小题3分,计12分)11.将实数√5,π,0,-6由小到大用“<”连起来,可表示为 . 12.请从以下两个小题中任选一个····作答,若多选,则按第一题计分.A.正八边形一个内角的度数为 .B.如图,有一滑梯AB,其水平宽度AC 为 5.3米,铅直高度BC 为 2.8米,则∠A 的度数约为 .(用科学计算器计算,结果精确到0.1°)13.如图,在平面直角坐标系中,过点M(-3,2)分别作x 轴、y 轴的垂线与反比例函数y=4x的图象交于A 、B 两点,则四边形MAOB 的面积为 .14.如图,AB 是☉O 的弦,AB=6,点C 是☉O 上的一个动点,且∠ACB=45°.若点M 、N 分别是AB 、BC 的中点,则MN 长的最大值是 .三、解答题(共11小题,计78分.解答应写出过程)15.(本题满分5分)计算:√3×(-√6)+|-2√2|+(12)-3.16.(本题满分5分)解分式方程:x -2x+3-3x -3=1.17.(本题满分5分)如图,已知△ABC,请用尺规过点A 作一条直线,使其将△ABC 分成面积相等的两部分.(保留作图痕迹,不写作法)18.(本题满分5分)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育教师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x).现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.请你根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.19.(本题满分7分)如图,在△ABC中,AB=AC.作AD⊥AB交BC的延长线于点D,作AE∥BD、CE⊥AC,且AE、CE相交于点E.求证:AD=CE.20.(本题满分7分)晚饭后,小聪和小军在社区广场散步.小聪问小军:“你有多高?”小军一时语塞,小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长.(结果精确到0.01米)21.(本题满分7分)胡老师计划组织朋友暑假去革命圣地延安两日游.经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人折收费;乙旅行社表示,若人数不超过20人,每人都按九.折收费,超过20人,则超出都按八五··部分每人按七五折收费.假设组团参加甲、乙两家旅行社两日游的人数均为x人.··(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你通过计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.22.(本题满分7分)某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1、2、3、4、5、6个小圆点的小正方体)23.(本题满分8分)如图,AB是☉O的直径,AC是☉O的弦,过点B作☉O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.(1)求证:∠BAD=∠E;(2)若☉O的半径为5,AC=8,求BE的长.24.(本题满分10分)在平面直角坐标系中,抛物线y=x2+5x+4的顶点为M,与x轴交于A、B两点,与y轴交于C点.(1)求点A、B、C的坐标;(2)求抛物线y=x2+5x+4关于坐标原点O对称的抛物线的函数表达式;(3)设(2)中所求抛物线的顶点为M',与x轴交于A'、B'两点,与y轴交于C'点.在以A、B、C、不是菱形的平行M、A'、B'、C'、M'这八个点中的四个点为顶点的平行四边形中,求其中一个··四边形的面积.25.(本题满分12分)如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,在四边形ABCD 的边AD 上,是否存在一点P,使得cos ∠BPC 的值最小?若存在,求出此时cos ∠BPC 的值;若不存在,请说明理由.答案全解全析:一、选择题1.A(-23)0=1.故选A.2.B 从上往下看得到的图形是由正六边形和没有圆心的圆组成的,故选B.3.B 对于A,a 2·a 3=a 2+3=a 5;对于B,(-2ab)2=(-2)2a2b2=4a2b2;对于C,(a2)3=a2×3=a6;对于D,3a3b2÷a2b2=3a.故选B.4.C∵AB∥CD,∴∠EFD=∠1=46°30',∴∠2=180°-∠EFD=180°-46°30'=133°30',故选C.5.B将点A(m,4)代入y=mx,得4=m2,则m=±2,又∵y的值随x值的增大而减小,∴m<0,∴m=-2,故选B.6.D依题意,可知题图中的△ABC,△AED,△BDC,△BDE,△ADB为等腰三角形,则共有5个等腰三角形.故选D.7.C解不等式组{12x+1≥-3,x-2(x-3)>0得-8≤x<6,则其最大整数解为5.故选C.8.A设将直线l1向右平移a个单位长度后得到直线l2,则有-2(x-a)-2=-2x+4,解得a=3,故将直线l1向右平移3个单位长度后得到直线l2,故选A.9.D如图,设AE=x,则BE=14-x,在Rt△AEB中,x2+(14-x)2=102,整理得x2-14x+48=0,解得x1=6,x2=8.故选D.评析本题考查了平行四边形的性质,正方形的性质,勾股定理,关键是根据勾股定理得到关于AE的方程.10.D依题意得,Δ=4a2-4a=4a(a-1),∵a>1,∴Δ>0,故二次函数图象与x轴有两个交点,选项A、B错误.设二次函数图象与x轴的交点的横坐标分别为x1,x2,显然x 1,x 2是方程ax 2-2ax+1=0的两根,则x 1+x 2=2>0,x 1x 2=1a>0,故x 1>0,x 2>0,则二次函数y=ax 2-2ax+1的图象与x 轴的两个交点均位于y 轴右侧,故选项C 错误,选项D 正确.故选D.二、填空题11.答案 -6<0<√5<π解析 ∵√4<√5<√9,∴2<√5<3,又∵π>3, ∴-6<0<√5<π.评析 此题主要考查了实数大小的比较方法.要熟练掌握:负实数<0<正实数,两个负实数比较大小,绝对值大的反而小. 12.答案 A.135° B.27.8° 解析 A.正八边形一个内角的度数为(8-2)×180°8=135°. B.tan A=BC AC =2.85.3≈0.528 3,∴∠A ≈27.8°. 13.答案 10解析 如图,设MA 与x 轴交于点C,MB 与y 轴交于点D.由题意可知点A 的坐标为(-3,-43),点B 的坐标为(2,2),则点C 的坐标为(-3,0),点D 的坐标为(0,2).∴S 四边形MAOB =S 矩形MCOD +S △ACO +S △BDO =3×2+12×3×43+12×2×2 =6+2+2=10. 14.答案 3√2解析 依题意,知MN=12AC,且当AC 为☉O 的直径时,MN 的长度最大.连结OB,∵∠ACB=45°,∴∠AOB=90°,设☉O的半径为r,则√2r=6,解得r=3√2,故MN的最大值为3√2.评析本题考查了三角形的中位线、等腰直角三角形的性质及圆周角定理,解题的关键是了解MN取最大值时AC的位置.难度不大.三、解答题15.解析原式=-√18+2√2+8(3分)=-3√2+2√2+8(4分)=8-√2.(5分)16.解析(x-2)(x-3)-3(x+3)=(x+3)(x-3),x2-5x+6-3x-9=x2-9,(2分)-8x=-6,x=3.(4分)是原方程的根.(5分)经检验,x=3417.解析如图,直线AD即为所求.(5分) 18.解析(1)补全的两幅统计图如图所示.(2分)(2)良好.(3分) (3)650×26%=169(人).∴该年级女生中1分钟“仰卧起坐”个数达到优秀的人数为169人.(5分) 19.证明 ∵AE ∥BD, ∴∠EAC=∠ACB. ∵AB=AC, ∴∠B=∠ACB. ∴∠EAC=∠B.(4分) 又∵∠BAD=∠ACE=90°, ∴△ABD ≌△CAE.(6分) ∴AD=CE.(7分)20.解析 由题意得∠CAD=∠MND=90°,∠CDA=∠MDN, ∴△CAD ∽△MND. ∴CA MN =ADND .(2分) ∴1.6MN =1×0.8(5+1)×0.8. ∴MN=9.6.(3分)又∵∠EBF=∠MNF=90°,∠EFB=∠MFN. ∴△EBF ∽△MNF. ∴EB MN =BFNF .(5分) ∴EB9.6=2×0.8(2+9)×0.8. ∴EB ≈1.75.∴小军的身高约为1.75米.(7分)21.解析 (1)甲旅行社:y=640×0.85x=544x.(1分) 乙旅行社:当x ≤20时,y=640×0.9x=576x;当x>20时,y=640×0.9×20+640×0.75(x -20)=480x+1 920.(4分) (2)甲旅行社:当x=32时,y=544×32=17 408.乙旅行社:∵32>20,∴当x=32时,y=480×32+1 920=17 280. ∵17 408>17 280,∴胡老师应选择乙旅行社.(7分) 22.解析 (1)所求概率P=36=12.(2分) (2)游戏公平.(3分) 理由如下:小丽 小亮1 2 3 4 5 6 1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) 3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) 4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) 5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) 6 (6,1)(6,2)(6,3)(6,4)(6,5)(6,6)由上表可知,共有36种等可能的结果,其中小亮、小丽获胜各有9种结果. ∴P(小亮胜)=936=14,P(小丽胜)=936=14.∴该游戏是公平的.(7分)23.解析 (1)证明:∵☉O 与DE 相切于点B,AB 为☉O 的直径, ∴∠ABE=90°.(1分) ∴∠BAE+∠E=90°. 又∵∠DAE=90°, ∴∠BAD+∠BAE=90°. ∴∠BAD=∠E.(3分) (2)连结BC.∵AB 为☉O 的直径, ∴∠ACB=90°.∵AC=8,AB=2×5=10, ∴BC=√AB 2-AC 2=6.(5分)又∵∠BCA=∠ABE=90°,∠BAD=∠E, ∴△ABC ∽△EAB. ∴AC EB =BCAB . ∴8EB =610. ∴BE=403.(8分)24.解析 (1)令y=0,得x 2+5x+4=0, ∴x 1=-4,x 2=-1. 令x=0,得y=4.∴A(-4,0),B(-1,0),C(0,4).(A(-1,0),B(-4,0),C(0,4)也正确)(3分)(2)不妨令A 在B 的左侧.∵A,B,C 关于坐标原点O 对称的点为(4,0),(1,0),(0,-4), ∴所求抛物线的函数表达式可设为y=ax 2+bx-4.(5分) 将(4,0),(1,0)代入上式,得a=-1,b=5. ∴y=-x 2+5x-4即为所求.(7分)(y =-(x-52)2+94或y =-(x-1)(x-4)也正确)(3)如图,取四点A 、M 、A'、M'.连结AM,MA',A'M',M'A,MM'.由中心对称性可知, MM'过点O,OA=OA',OM=OM', ∴四边形AMA'M'为平行四边形. 又知AA'与MM'不垂直,∴▱AMA'M'不是菱形.(8分) 过点M 作MD ⊥x 轴于点D. ∵y=x 2+5x+4=(x +52)2-94,∴M (-52,-94).又∵A(-4,0),A'(4,0), ∴AA'=8,MD=94.∴S ▱AMA'M'=2S △AMA'=2×12×8×94=18.(10分)求得符合题意的▱BMB'M'的面积为92或▱CMC'M'的面积为20亦正确25.解析 (1)24√3.(3分)(2)如图①,作点C 关于直线AD 的对称点C',连结C'N 、C'D 、C'B,C'B 交AD 于点N',连结CN',则BN+NC=BN+NC'≥BC'=BN'+CN'.∴△BNC 周长的最小值为△BN'C 的周长=BN'+CN'+BC=BC'+BC.(4分) ∵AD ∥BC,CD ⊥BC,∠ABC=60°, ∴过点A 作AE ⊥BC 于点E,则CE=AD=8. ∴BE=4,AE=BE ·tan 60°=4√3. ∴CC'=2CD=2AE=8√3. 又∵BC=12,∴BC'=√BC 2+CC'2=4√21.(6分) ∴△BNC 周长的最小值为4√21+12.(7分)图①(3)如图②,存在点P,使得cos ∠BPC 的值最小.(8分)作BC 的中垂线PQ 交BC 于点Q,交AD 于点P,连结BP 、CP,作△BPC 的外接圆☉O,圆心O 在PN 上.图②∵AD ∥BC,∴☉O 与AD 正好相切于点P, ∵PQ=DC=4√3>5, ∴PQ>BQ.∴∠BPC<90°,圆心O 在弦BC 的上方.在AD 上任取一点P',连结P'B 、P'C,P'B 交☉O 于点M,连结MC. ∴∠BPC=∠BMC ≥∠BP'C.∴∠BPC 最大,cos ∠BPC 的值最小.(10分) 连结OB,则∠BON=2∠BPN=∠BPC. ∵OB=OP=4√3-OQ,在Rt △BOQ 中,OQ 2+62=(4√3-OQ)2.∴OQ=√32.∴OB=7√32. ∴cos ∠BPC=cos ∠BOQ=OQ OB =17. ∴此时cos ∠BPC 的值是17.(12分)。

2015年陕西省中考数学试题(word版,含扫描答案)

2015年陕西省中考数学试题(word版,含扫描答案)

2015年陕西省初中毕业学业考试试题数学第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的) 1.计算:=-032)(( ) A.1 B.23-C.0D.32 2.如图是一个螺母的示意图,它的俯视图是( )3.下列计算正确的是( )A.632a a a =• B.2224)2(b a ab =- C.532)(a a = D.ab b a b a 332223=÷4.如图,AB //CD ,直线EF 分别交直线AB 、CD 于点E 、F ,若∠1=46°30′,则∠2的度数为( )A.43°30′B.53°30′C.133°30′D.153°30′5.设正比例函数mx y =的图象经过点)4,(m A ,且y 的值随x 值的增大而减小,则=m ( ) A.2 B.-2 C.4 D.-46.如图,在△ABC 中,∠A =36°,AB =AC ,BD 是△ABC 的角平分线,若在边AB 上截取BE =BC ,连接DE ,则图中等腰三角形共有( )A.2个B.3个C.4个D.5个7.不等式组⎪⎩⎪⎨⎧---≥+)3(23121>xxx的最大整数解为()A.8B.6C.5D.48.在平面直角坐标系中,将直线22:1--=xyl平移后,得到直线42:2+-=xyl,则下列平移作法正确的是()A.将1l向右平移3个单位长度 B.将1l向右平移6个单位长度C.将1l向上平移2个单位长度D. 将1l向上平移4个单位长度9.在□ABCD中,AB=10,BC=14,E、F分别为边BC、AD上的点,若四边形AECF为正方形,则AE的长为()A.7B.4或10C.5或9D.6或810.下列关于二次函数)>1(122aaxaxy+-=的图象与x轴交点的判断,正确的是()A.没有交点B.只有一个交点,且它位于y轴右侧C.有两个交点,且它们均位于y轴左侧D.有两个交点,且它们均位于y轴右侧二、填空题(共4小题,每小题3分,计12分)11.将实数65-,,,π由小到大用“<” 号连起来,可表示为_________________。

陕西省2015年中考数学试题含答案

陕西省2015年中考数学试题含答案

2015年陕西省初中毕业学业考试试题数学第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.计算:=-032)(( ) A.1 B.23- C.0 D.322.如图是一个螺母的示意图,它的俯视图是( )3.下列计算正确的是( )A.632a a a =∙B.2224)2(b a ab =-C.532)(a a =D.ab b a b a 332223=÷ 4.如图,AB//CD,直线EF 分别交直线AB 、CD 于点E 、F,若∠1=46°30′,则∠2的度数为( )A.43°30′B.53°30′C.133°30′D.153°30′5.设正比例函数mx y =的图象经过点)4,(m A ,且y 的值随x 值的增大而减小,则=m ( )A.2B.-2C.4D.-4 6.如图,在△ABC 中,∠A=36°,AB=AC ,BD 是△ABC 的角平分线,若在边AB 上截取BE=BC ,连接DE,则图中等腰三角形共有( )A.2个B.3个C.4个D.5个7.不等式组⎪⎩⎪⎨⎧---≥+0)3(23121>x x x 的最大整数解为( )A.8B.6C.5D.48.在平面直角坐标系中,将直线22:1--=x y l 平移后,得到直线42:2+-=x y l ,则下列平移作法正确的是( )A.将1l 向右平移3个单位长度B.将1l 向右平移6个单位长度C.将1l 向上平移2个单位长度D. 将1l 向上平移4个单位长度 9.在□ABCD 中,AB=10,BC=14,E 、F 分别为边BC 、AD 上的点,若四边形AECF为正方形,则AE 的长为( )A.7B.4或10C.5或9D.6或810.下列关于二次函数)>1(122a ax ax y +-=的图象与x 轴交点的判断,正确的是( )A.没有交点B.只有一个交点,且它位于y 轴右侧C.有两个交点,且它们均位于y 轴左侧D.有两个交点,且它们均位于y 轴右侧 二、填空题(共4小题,每小题3分,计12分)11.将实数605-,,,π由小到大用“<” 号连起来,可表示为_________________。

2015年陕西中考数学试题及答案word版

2015年陕西中考数学试题及答案word版

2015年陕西中考数学试题及答案word版一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2是偶数B. 2是奇数C. 1是质数D. 1不是质数答案:A2. 绝对值最小的数是:A. 0B. 1C. -1D. 2答案:A3. 以下哪个表达式等于0?A. 3-3B. 2+2C. 4-4D. 5+5答案:C4. 一个数的相反数是它本身,这个数是:A. 0B. 1C. -1D. 2答案:A5. 以下哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/10答案:A6. 一个数的平方是9,这个数是:A. 3B. -3C. 3或-3D. 以上都不是答案:C7. 以下哪个图形是轴对称图形?A. 圆B. 正方形C. 等边三角形D. 所有以上答案:D8. 一个数的立方是8,这个数是:A. 2B. -2C. 2或-2D. 以上都不是答案:A9. 以下哪个选项是正确的?A. π是一个有理数B. π是一个无理数C. π是一个整数D. π是一个分数答案:B10. 以下哪个选项是正确的?A. 1/2 < 1/3B. 1/2 > 1/3C. 1/2 = 1/3D. 以上都不是答案:B二、填空题(每题3分,共15分)11. 一个数的平方根是2,这个数是______。

答案:412. 如果一个数的相反数是-5,那么这个数是______。

答案:513. 一个数的绝对值是5,这个数可能是______或______。

答案:5或-514. 一个数的立方根是3,这个数是______。

答案:2715. 如果一个数除以2的商是3,那么这个数是______。

答案:6三、解答题(共55分)16. 计算下列表达式的值:(3+2)×(5-4)。

答案:517. 解下列方程:2x - 3 = 7。

答案:x = 518. 证明:如果a > b,那么2a > 2b。

答案:根据不等式的性质,如果a > b,那么两边同时乘以2,得到2a > 2b。

2015年陕西省中考数学试卷含答案

2015年陕西省中考数学试卷含答案

2015年陕西省中考数学试卷一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.计算:(﹣)0=()A.1 B.﹣C.0 D.2.如图是一个螺母的示意图,它的俯视图是()A.B.C.D.3.下列计算正确的是()A.a2•a3=a6B.(﹣2ab)2=4a2b2C.(a2)3=a5D.3a3b2÷a2b2=3ab4.如图,AB∥CD,直线EF分别交直线AB,CD于点E,F.若∠1=46°30′,则∠2的度数为()A.43°30′B.53°30′C.133°30′D.153°30′5.设正比例函数y=mx的图像经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2 B.﹣2 C.4 D.﹣46.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个7.不等式组的最大整数解为()A.8 B.6 C.5 D.48.在平面直角坐标系中,将直线l1:y=﹣2x﹣2平移后,得到直线l2:y=﹣2x+4,则下列平移作法正确的是()A.将l1向右平移3个单位长度B.将l1向右平移6个单位长度C.将l1向上平移2个单位长度D.将l1向上平移4个单位长度9.在▱ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,若四边形AECF为正方形,则AE的长为()A.7 B.4或10 C.5或9 D.6或810.下列关于二次函数y=ax2﹣2ax+1(a>1)的图像与x轴交点的判断,正确的是()A.没有交点B.只有一个交点,且它位于y轴右侧C.有两个交点,且它们均位于y轴左侧D.有两个交点,且它们均位于y轴右侧二、填空题(共5小题,每小题3分,计12分,其中12,13题为选做题,任选一题作答)11.将实数,π,0,﹣6由小到大用“<”号连起来,可表示为.12.正八边形的一个内角的度数为.13.如图,有一滑梯AB,其水平宽度AC为5.3米,铅直高度BC为2.8米,则∠A的度数约为(用科学计算器计算,结果精确到0.1°).14.如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y=的图像交于A,B两点,则四边形MAOB的面积为.15.如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是.三、解答题(共11小题,计78分,解答时写出过程)16.(5分)计算:×(﹣)+|﹣2|+()﹣3.17.(5分)解分式方程:﹣=1.18.(5分)如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC分成面积相等的两部分.(保留作图痕迹,不写作法)19.(5分)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.20.(7分)如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E,求证:AD=CE.21.(7分)晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC 为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长.(结果精确到0.01米)22.(7分)胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费,假设组团参加甲、乙两家旅行社两日游的人数均为x人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.23.(7分)某中学要在全校学生中举办“中国梦•我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)24.(8分)如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC 的延长线交于点D,作AE⊥AC交DE于点E.(1)求证:∠BAD=∠E.(2)若⊙O的半径为5,AC=8,求BE的长.25.(10分)在平面直角坐标系中,抛物线y=x2+5x+4的顶点为M,与x轴交于A,B两点,与y轴交于C点.(1)求点A,B,C的坐标;(2)求抛物线y=x2+5x+4关于坐标原点O对称的抛物线的函数表达式;(3)设(2)中所求抛物线的顶点为M′,与x轴交于A′,B′两点,与y轴交于C′点,在以A,B,C,M,A′,B′,C′,M′这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积.26.(12分)如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为.(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC的周长的最小值.(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由.2015年陕西省中考数学试卷参考答案与解析一、1.A 解析:(﹣)0=1.故选A.点评:此题主要考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.2.B 解析:从上面看外面是一个正六边形,里面是一个没有圆心的圆.故选B.点评:此题考查了简单组合体的三视图,从上面看得到的图形是俯视图.3.B 解析:A.a2•a3=a5,故A正确;B正确;C.(a2)3=a6,故C错误;D.3a2b2÷a2b2=3,故D错误.故选B.点评:此题考查了同底数幂的乘法、积的乘方、幂的乘方、整式的除法,解决此题的关键是熟记同底数幂的乘法、积的乘方、幂的乘方、整式的除法法则.4.C 解析:∵AB∥CD,∠1=46°30′,∴∠EFD=∠1=46°30′,∴∠2=180°﹣46°30′=133°30′.故选C.点评:此题考查的是平行线的性质,用到的知识点:两直线平行,同位角相等.5.B 解析:把x=m,y=4代入y=mx,可得m=±2.因为y的值随x值的增大而减小,所以m=﹣2.故选B.点评:此题考查了正比例函数的性质:正比例函数y=kx(k≠0)的图像为直线,当k>0时,图像经过第一、三象限,y随x的增大而增大;当k<0时,图像经过第二、四象限,y随x 的增大而减小.6.D 解析:∵AB=AC,∴△ABC是等腰三角形.∵AB=AC,∠A=36°,∴∠ABC=∠C=72°.∵BD是△ABC的角平分线,∴∠ABD=∠DBC=∠ABC=36°,∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形.在△BCD中,∵∠BDC=180°﹣∠DBC﹣∠C=180°﹣36°﹣72°=72°,∴∠C=∠BDC=72°,∴BD=BC.∴△BCD是等腰三角形.∵BE=BC,∴BD=BE,∴△BDE是等腰三角形.∴∠BED=(180°﹣36°)÷2=72°,∴∠ADE=∠BED﹣∠A=72°﹣36°=36°,∴∠A=∠ADE.∴DE=AE.∴△ADE是等腰三角形.∴图中的等腰三角形有5个.故选D.点评:此题考查了等腰三角形的判定,用到的知识点是等腰三角形的判定、三角形内角和定理、三角形外角的性质、三角形的角平分线的定义等,解题时要找出所有的等腰三角形,不要遗漏.7.C 解析:.解不等式①,得x≥﹣8;解不等式②,得x<6.∴不等式组的解集为﹣8≤x<6,∴不等式组的最大整数解为5.故选C.8.A 解析:∵将直线l1:y=﹣2x﹣2平移后,得到直线l2:y=﹣2x+4,∴﹣2(x+a)﹣2=﹣2x+4,解得a=﹣3.故将l1向右平移3个单位长度.故选A.9.D 解析:如图.设AE的长为x,根据正方形的性质可得BE=14﹣x.在Rt△ABE中,根据勾股定理可得x2+(14﹣x)2=102,解得x1=6,x2=8.故AE的长为6或8.故选D.点评:考查了平行四边形的性质、正方形的性质、勾股定理,关键是根据勾股定理得到关于AE的方程.10.D 解析:当y=0时,ax2﹣2ax+1=0.∵a>1,∴△=(﹣2a)2﹣4a=4a(a﹣1)>0,∴ax2﹣2ax+1=0有两个根,∴x=>0.点评:此题考查了抛物线与x轴的交点,利用了函数与方程的关系,方程的求根公式.二、11.﹣6解析:≈2.236,π≈3.14.∵﹣6<0<2.236<3.14,∴﹣6.点评:此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.12.135°解析:正八边形的内角和为:(8﹣2)×180°=1080°,每一个内角的度数为×1080°=135°.点评:此题主要考查了多边形内角和定理,关键是熟练掌握计算公式:(n﹣2)•180 (n≥3,且n为整数).13.27.8°解析:∵tanA==≈0.5283,∴∠A=27.8°.点评:此题考查了坡度和坡角的知识,解题时注意坡角的正切值等于铅直高度与水平宽度的比值,难度不大.14.10 解析:如图.设点A的坐标为(a,b),点B的坐标为(c,d).∵反比例函数y=的图像过A,B两点,∴ab=4,cd=4,∴S△AOC=|ab|=2,S△BOD=|cd|=2.∵点M(﹣3,2),∴S矩形MCDO=3×2=6.∴四边形MAOB的面积为S△AOC+S△BOD+S矩形MCDO=2+2+6=10.点评:此题主要考查反比例函数的对称性和k的几何意义,根据条件得出S△AOC=|ab|=2,S△BOD=|cd|=2是解题的关键,注意k的几何意义的应用.15.3解析:∵M,N分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC是直径时,最大.如图.∵∠ACB=∠D=45°,AB=6,∴AD=6,∴MN=AD=3.点评:此题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN的值最大,难度不大.三、16.解:原式=﹣+2+8=﹣3+2+8=8﹣.点评:此题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,最后合并同类二次根式.也考查了负整数指数幂.17.解:去分母,得x2﹣5x+6﹣3x﹣9=x2﹣9,解得x=.经检验x=是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.解:如图,直线AD即为所求.点评:此题主要考查三角形中线的作法,同时要掌握若两个三角形等底等高,则它们的面积相等.19.解:(1)如图.(2)∵13+20+12+5=50,50÷2=25,25+1=26,∴中位数落在良好等级.(3)650×26%=169(人),即该年级女生中1分钟“仰卧起坐”个数达到优秀的人数是169.点评:此题难度中等,主要考查统计图表的识别;解此题要懂得频率分布直方图的意义.同时考查了平均数和中位数的定义.20.证明:∵AE∥BD,∴∠EAC=∠ACB.∵AB=AC,∴∠B=∠ACB,∴∠B=∠EAC.在△ABD和△CAE中,,∴△ABD≌△CAE.∴AD=CE.点评:此题考查了全等三角形的判定与性质,用到的知识点是全等三角形的判定与性质、平行线的性质,关键是利用ASA证出△ABD≌△CAE.21.解:由题意,得∠CAD=∠MND=90°,∠CDA=∠MDN,∴△CAD~△MND.∴,∴,∴MN=9.6.又∵∠EBF=∠MNF=90°,∠EFB=∠MFN,∴△EFB~△MFN,∴.∴,∴EB≈1.75,∴小军的身高约为1.75米.点评:此题考查的是相似三角形的判定及性质,解答此题的关键是相似三角形的判定.22.解:(1)甲家旅行社的总费用:y甲=640×0.85x=544x;乙家旅行社的总费用:当0≤x≤20时,y乙=640×0.9x=576x;当x>20时,y乙=640×0.9×20+640×0.75(x﹣20)=480x+1920.(2)当x=32时,y甲=544×32=17408(元),y乙=480×32+1920=17280.因为y甲>y乙,所以胡老师选择乙旅行社.点评:此题考查了一次函数的应用:利用实际问题中的数量关系建立一次函数关系,特别对乙旅行社的总费用要采用分段函数解决问题.23.解:(1)∵向上一面的点数为奇数有3种情况,∴小亮掷得向上一面的点数为奇数的概率是:.(2)填表如下:由上表可知,一共有36种等可能的结果,其中小亮、小丽获胜分别有9种结果.∴P(小亮胜)=,P(小丽胜)==,∴游戏是公平的.点评:(1)此题主要考查了判断游戏公平性问题,要熟练掌握,首先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.(2)此题主要考查了列举法(画树状图法)求概率问题,解答此类问题的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树状图.24.(1)证明:∵AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,∴∠ABE=90°,∴∠BAE+∠E=90°.∵∠DAE=90°,∴∠BAD+∠BAE=90°,∴∠BAD=∠E.(2)解:连接BC,如图.∵AB是⊙O的直径,∴∠ACB=90°.∵AC=8,AB=2×5=10,∴BC=.∵∠BCA=∠ABE=90°,∠BAD=∠E,∴△ABC∽△EAB,∴.∴,∴BE=.点评:此题考查了切线的性质、相似三角形等知识点,关键是根据切线的性质和相似三角形的性质分析.25.解:(1)令y=0,得x2+5x+4=0,∴x1=﹣4,x2=﹣1.令x=0,得y=4,∴A(﹣4,0),B(﹣1,0),C(0,4).(2)∵A,B,C关于坐标原点O对称后的点为(4,0),(1,0),(0,﹣4),∴所求抛物线的函数表达式为y=ax2+bx﹣4.解得.将(4,0),(1,0)分别代入上式,得,∴y=﹣x2+5x﹣4.(3)如图,取四点A,M,A′,M′,连接AM,MA′,A′M′,M′A,MM′.由中心对称性可知,MM′过点O,OA=OA′,OM=OM′.∴四边形AMA′M′为平行四边形.又知AA′与MM′不垂直,∴平行四边形AMA′M′不是菱形.如图,过点M作MD⊥x轴于点D.∵y=,∴M().又∵A(﹣4,0),A′(4,0),∴AA′=8,MD=,∴=.点评:此题考查了二次函数的性质与图像、中心对称、平行四边形的判定、菱形的判定,综合性较强,解决此题的关键是根据中心对称,求出抛物线的解析式,在(3)中注意菱形的判定与数形结合思想的应用.26.解:(1)如图①,过点A作AE⊥BC,∴四边形AECD为矩形,∴EC=AD=8,BE=BC﹣EC=12﹣8=4.在Rt△ABE中,∠ABE=60°,BE=4,∴AB=2BE=8,AE==4,则S△BMC=BC•AE=24.(2)如图②,作点C关于直线AD的对称点C′,连接C′N,C′D,C′B交AD于点N′,连接CN′,则BN+NC=BN+NC′≥BC′=BN′+CN′.∴△BNC的周长的最小值为△BN′C的周长=BN′+CN′+BC=BC′+BC.∵AD∥BC,AE⊥BC,∠ABC=60°,∴过点A作AE⊥BC,则CE=AD=8,∴BE=4,AE=BE•tan60°=4.∴CC′=2CD=2AE=8.∵BC=12,∴BC′==4.∴△BNC的周长的最小值为4+12.(3)如图③,存在点P,使得cos∠BPC的值最小,作BC的中垂线PQ交BC于点Q,交AD于点P,连接BP,CP,作△BPC的外接圆O,圆O与直线PQ交于点N,则PB=PC,圆心O在PN上.∵AD∥BC,∴圆O与AD相切于点P.∵PQ=DC=4>6,∴PQ>BQ,∴∠BPC<90°,圆心O在弦BC的上方.在AD上任取一点P′,连接P′B,P′C,P′B交圆O于点M,连接MC.∴∠BPC=∠BMC≥∠BP′C,∴∠BPC最大,cos∠BPC的值最小.连接OB,则∠BON=2∠BPN=∠BPC.∵OB=OP=4﹣OQ,∴在Rt△BOQ中,根据勾股定理,得OQ2+62=(4﹣OQ)2,解得OQ=.∴OB=,∴cos∠BPC=cos∠BOQ==.则此时cos∠BPC的值为.点评:此题属于四边形的综合题,涉及的知识有:勾股定理、矩形的判定与性质、对称的性质、圆的切线的判定与性质以及锐角三角函数的定义,熟练掌握定理及性质是解此题的关键.。

陕西省2015年中考数学真题试题(含扫描答案)

陕西省2015年中考数学真题试题(含扫描答案)

2015年陕西省初中毕业学业考试试题数学第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.计算:=-032)(( ) A.1 B.23-C.0D.322.如图是一个螺母的示意图,它的俯视图是( )3.下列计算正确的是( )A.632a a a =∙B.2224)2(b a ab =-C.532)(a a =D.ab b a b a 332223=÷ 4.如图,AB//CD,直线EF 分别交直线AB 、CD 于点E 、F,若∠1=46°30′,则∠2的度数为( )A.43°30′B.53°30′C.133°30′D.153°30′5.设正比例函数mx y =的图象经过点)4,(m A ,且y 的值随x 值的增大而减小,则=m ( ) A.2 B.-2 C.4 D.-46.如图,在△ABC 中,∠A=36°,AB=AC ,BD 是△ABC 的角平分线,若在边AB 上截取BE=BC ,连接DE,则图中等腰三角形共有( ) A.2个 B.3个 C.4个 D.5个7.不等式组⎪⎩⎪⎨⎧---≥+0)3(23121>x x x 的最大整数解为( )A.8B.6C.5D.48.在平面直角坐标系中,将直线22:1--=x y l 平移后,得到直线42:2+-=x y l ,则下列平移作法正确的是( )C.将1l 向上平移2个单位长度D. 将1l 向上平移4个单位长度9.在□ABCD 中,AB=10,BC=14,E 、F 分别为边BC 、AD 上的点,若四边形AECF 为正方形,则AE 的长为( )A.7B.4或10C.5或9D.6或810.下列关于二次函数)>1(122a ax ax y +-=的图象与x 轴交点的判断,正确的是( ) A.没有交点 B.只有一个交点,且它位于y 轴右侧 C.有两个交点,且它们均位于y 轴左侧 D.有两个交点,且它们均位于y 轴右侧 二、填空题(共4小题,每小题3分,计12分)11.将实数605-,,,π由小到大用“<” 号连起来,可表示为_________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

点 M,N 分别是 AB,BC 的中点,则 MN 长的最大值是

三、解答题(共 11 小题,计 78 分,解答时写出过程) 16.(5 分)计算: ×(﹣ )+|﹣2 |+( )﹣3.
17.(5 分)解分式方程: ﹣ =1. 18.(5 分)如图,已知△ABC,请用尺规过点 A 作一条直线,使其将△ABC 分成面积相等
所以 m=﹣2,
故选:B.
【点评】本题考查了正比例函数的性质:正比例函数 y=kx(k≠0)的图象为直线,当 k
>0 时,图象经过第一、三象限,y 值随 x 的增大而增大;当 k<0 时,图象经过第二、
四象限,y 值随 x 的增大而减小.
6.(3 分)如图,在△ABC 中,∠A=36°,AB=AC,BD 是△ABC 的角平分线.若在边
CE⊥AC,且 AE,CE 相交于点 E,求证:AD=CE.
21.(7 分)晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语 塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两 人在灯下沿直线 NQ 移动,如图,当小聪正好站在广场的 A 点(距 N 点 5 块地砖长)时, 其影长 AD 恰好为 1 块地砖长;当小军正好站在广场的 B 点(距 N 点 9 块地砖长)时, 其影长 BF 恰好为 2 块地砖长.已知广场地面由边长为 0.8 米的正方形地砖铺成,小聪的 身高 AC 为 1.6 米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高 BE 的长.(结果精确到 0.01 米)
A.
B.
C.
D.
【分析】根据从上面看得到的图形是俯视图,可得答案.
【解答】解:从上面看外面是一个正六边形,里面是一个没有圆心的圆,
故选:B.
【点评】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.
3.(3 分)下列计算正确的是( ) A.a2•a3=a6 C.(a2)3=a5
B.(﹣2ab)2=4a2b2 D.3a3b2÷a2b2=3ab
25.(10 分)在平面直角坐标系中,抛物线 y=x2+5x+4 的顶点为 M,与 x 轴交于 A,B 两点, 与 y 轴交于 C 点. (1)求点 A,B,C 的坐标; (2)求抛物线 y=x2+5x+4 关于坐标原点 O 对称的抛物线的函数表达式;
第 5页(共 26页)
(3)设(2)中所求抛物线的顶点为 M′,与 x 轴交于 A′,B′两点,与 y 轴交于 C′
二、填空题(共 5 小题,每小题 3 分,计 12 分,其中 12、13 题为选做题,任选一题作答)
11.(3 分)将实数 ,π,0,﹣6 由小到大用“<”号连起来,可表示为

12.(3 分)正八边形一个内角的度数为

13.如图,有一滑梯 AB,其水平宽度 AC 为 5.3 米,铅直高度 BC 为 2.8 米,则∠A 的度数
【分析】根据同底数幂的乘法、积的乘方、幂的乘方、整式的除法,即可解答.
【解答】解:A、a2•a3=a5,故正确;
B、正确; C、(a2)3=a6,故错误; D、3a2b2÷a2b2=3,故错误;
故选:B.
第 7页(共 26页)
【点评】本题考查了同底数幂的乘法、积的乘方、幂的乘方、整式的除法,解决本题的 关键是熟记同底数幂的乘法、积的乘方、幂的乘方、整式的除法的法则. 4.(3 分)如图,AB∥CD,直线 EF 分别交直线 AB,CD 于点 E,F.若∠1=46°30′, 则∠2 的度数为( )
22.(7 分)胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅 行社比较合适,报价均为每人 640 元,且提供的服务完全相同,针对组团两日游的游客,
第 4页(共 26页)
甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过 20 人,每人都按九 折收费,超过 20 人,则超出部分每人按七五折收费,假设组团参加甲、乙两家旅行社两 日游的人数均为 x 人. (1)请分别写出甲、乙两家旅行社收取组团两日游的总费用 y(元)与 x(人)之间的 函数关系式; (2)若胡老师组团参加两日游的人数共有 32 人,请你计算,在甲、乙两家旅行社中, 帮助胡老师选择收取总费用较少的一家. 23.(7 分)某中学要在全校学生中举办“中国梦•我的梦”主题演讲比赛,要求每班选一名 代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想 代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜 者参赛). 规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都 是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局, 继续上述游戏,直至分出胜负为止. 如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题: (1)小亮掷得向上一面的点数为奇数的概率是多少? (2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有 1, 2,3,4,5,6 个小圆点的小正方体) 24.(8 分)如图,AB 是⊙O 的直径,AC 是⊙O 的弦,过点 B 作⊙O 的切线 DE,与 AC 的 延长线交于点 D,作 AE⊥AC 交 DE 于点 E. (1)求证:∠BAD=∠E; (2)若⊙O 的半径为 5,AC=8,求 BE 的长.
约为
(用科学计算器计算,结果精确到 0.1°).
14.(3 分)如图,在平面直角坐标系中,过点 M(﹣3,2)分别作 x 轴、y 轴的垂线与反比
例函数 y= 的图象交于 A,B 两点,则四边形 MAOB 的面积为

第 2页(共 26页)
15.(3 分)如图,AB 是⊙O 的弦,AB=6,点 C 是⊙O 上的一个动点,且∠ACB=45°.若
2015 年陕西省中考数学试卷
一、选择题(共 10 小题,每小题 3 分,计 30 分,每小题只有一个选项是符合题意的) 1.(3 分)计算:(﹣ )0=( )
A.1
B.﹣
C.0
D.
2.(3 分)如图是一个螺母的示意图,它的俯视图是( )
A.
B.
C.
D.
3.(3 分)下列计算正确的是( )
A.a2•a3=a6
则 m=( )
A.2
B.﹣2
C.4
D.﹣4
6.(3 分)如图,在△ABC 中,∠A=36°,AB=AC,BD 是△ABC 的角平分线.若在边
AB 上截取 BE=BC,连接 DE,则图中等腰三角形共有( )
A.2 个
B.3 个
C.4 个
第 1页(共 26页)
D.5 个
7.(3 分)不等式组
的最大整数解为( )
A.8
B.6
C.5
D.4
8.(3 分)在平面直角坐标系中,将直线 l1:y=﹣2x﹣2 平移后,得到直线 l2:y=﹣2x+4, 则下列平移作法正确的是( )
A.将 l1 向右平移 3 个单位长度 B.将 l1 向右平移 6 个单位长度 C.将 l1 向上平移 2 个单位长度 D.将 l1 向上平移 4 个单位长度 9.(3 分)在▱ABCD 中,AB=10,BC=14,E,F 分别为边 BC,AD 上的点,若四边形 AECF

(2)如图②,点 N 是四边形 ABCD 边 AD 上的任意一点,请你求出△BNC 周长的最小
值;
(3)如图③,在四边形 ABCD 的边 AD 上,是否存在一点 P,使得 cos∠BPC 的值最小?
若存在,求出此时 cos∠BPC 的值;若不存在,请说明理由.
第 6页(共 26页)
2015 年陕西省中考数学试卷
为正方形,则 AE 的长为( )
A.7
B.4 或 10
C.5 或 9
D.6 或 8
10.(3 分)下列关于二次函数 y=ax2﹣2ax+1(a>1)的图象与 x 轴交点的判断,正确的是
()
A.没有交点
B.只有一个交点,且它位于 y 轴右侧
C.有两个交点,且它们均位于 y 轴左侧
D.有两个交点,且它们均位于 y 轴右侧
第 9页(共 26页)
故选:D.
【点评】此题考查了等腰三角形的判定,用到的知识点是等腰三角形的判定、三角形内 角和定理、三角形外角的性质、三角形的角平分线定义等,解题时要找出所有的等腰三 角形,不要遗漏.
参考答案与试题解析
一、选择题(共 10 小题,每小题 3 分,计 30 分,每小题只有一个选项是符合题意的) 1.(3 分)计算:(﹣ )0=( )
A.1
B.﹣
C.0
D.
【分析】根据零指数幂:a0=1(a≠0),求出(﹣ )0 的值是多少即可.
【解答】解:(﹣ )0=1.
故选:A. 【点评】此题主要考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0 =1(a≠0);②00≠1. 2.(3 分)如图是一个螺母的示意图,它的俯视图是( )
∴∠ABC=∠C=72°,
∵BD 是△ABC 的角平分线,
∴∠ABD=∠DBC= ∠ABC=36°,
∴∠A=∠ABD=36°, ∴BD=AD, ∴△ABD 是等腰三角形; 在△BCD 中,∵∠BDC=180°﹣∠DBC﹣∠C=180°﹣36°﹣72°=72°, ∴∠C=∠BDC=72°, ∴BD=BC, ∴△BCD 是等腰三角形; ∵BE=BC, ∴BD=BE, ∴△BDE 是等腰三角形; ∴∠BED=(180°﹣36°)÷2=72°, ∴∠ADE=∠BED﹣∠A=72°﹣36°=36°, ∴∠A=∠ADE, ∴DE=AE, ∴△ADE 是等腰三角形; ∴图中的等腰三角形有 5 个.
5.(3 分)设正比例函数 y=mx 的图象经过点 A(m,4),且 y 的值随 x 值的增大而减小,
相关文档
最新文档