高中物理二轮复习资料

合集下载

物理二轮复习知识点总结

物理二轮复习知识点总结

物理二轮复习知识点总结第一章:力学1. 牛顿运动定律- 牛顿第一定律:物体在静止或匀速直线运动中,如果不受外力作用,将保持原来的状态。

- 牛顿第二定律:物体受到的合力等于物体的质量和加速度的乘积,即F=ma。

- 牛顿第三定律:任何两个物体互相作用的力,其大小相同、方向相反,且作用在互相作用的两个物体上。

2. 动能和动能定理- 动能:物体由于运动而具有的能量。

- 动能定理:外力对物体做功等于物体动能的增量。

3. 势能和机械能守恒定律- 势能:物体由于位置而具有的能量。

- 机械能守恒定律:系统的机械能守恒,即物体的总机械能在不受非弹性碰撞等非保守力的作用下保持不变。

4. 动能和势能转化- 弹性势能和弹簧振子:当弹簧伸长或压缩时,具有弹性势能。

- 重力势能和万有引力:物体由于位置而具有的能量。

- 动能和机械能转化:在运动的过程中,物体的动能和势能之间可以相互转化。

5. 简谐振动- 简谐振动的条件:受力恢复力与位移成正比,方向与位移成反比。

- 简谐振动的规律:周期T与振幅A、弹簧的劲度系数k以及物体的质量m有关,T=2π√(m/k);频率f与周期T成反比,f=1/T。

- 简谐振动的能量:弹性势能和动能随时间的变化。

6. 平衡- 极大静力学平衡:物体处于平衡时,受到的所有力合力为零,合力矩为零。

- 平衡的充要条件:合力为零,合力矩为零。

第二章:热学1. 热力学定律- 第一定律:能量守恒定律,即热量和功相互转化。

- 第二定律:熵增加原理,热量不能自发从低温物体传导到高温物体。

2. 理想气体定律- 理想气体状态方程:PV=nRT。

- 理想气体的内能:内能是系统的动能和势能的总和。

3. 热量传递和功- 热传递方式:传导、对流、辐射。

- 热功等价原理:热量可以做功。

4. 热力学循环- 卡诺循环:理论上最有效的热力学循环。

5. 热力学过程- 等温过程:温度不变,内能变化,但对外界做功。

- 绝热过程:没有热量交换,内能变化,但对外界不做功。

高三物理第二轮总复习全套精品(共10个专题)

高三物理第二轮总复习全套精品(共10个专题)

全册教案导学案说课稿试题高三物理二轮总复习全册教学案高三物理第二轮总复习目录第1专题力与运动 (1)第2专题动量和能量 (46)第3专题圆周运动、航天与星体问题 (76)第4专题带电粒子在电场和磁场中的运动 (94)第5专题电磁感应与电路的分析 (120)第6专题振动与波、光学、执掌、原子物理 (150)第7专题高考物理实验 (177)第8专题 (202)第9专题高中物理常见的物理模型 (221)第10专题计算题的答题规范与解析技巧 (240)第1专题 力与运动知识网络考点预测本专题复习三个模块的内容:运动的描述、受力分析与平衡、牛顿运动定律的运用.运动的描述与受力分析是两个相互独立的内容,它们通过牛顿运动定律才能连成一个有机的整体.虽然运动的描述、受力平衡在近几年都有独立的命题出现在高考中但由于理综考试题量的局限以及课改趋势,独立考查前两模块的命题在2013年高考中出现的概率很小,大部分高考卷中应该都会出现同时考查三个模块知识的试题,而且占不少分值.在综合复习这三个模块内容的时候,应该把握以下几点:1.运动的描述是物理学的重要基础,其理论体系为用数学函数或图象的方法来描述、推断质点的运动规律,公式和推论众多.其中,平抛运动、追及问题、实际运动的描述应为复习的重点和难点.2.无论是平衡问题,还是动力学问题,一般都需要进行受力分析,而正交分解法、隔离法与整体法相结合是最常用、最重要的思想方法,每年高考都会对其进行考查.3.牛顿运动定律的应用是高中物理的重要内容之一,与此有关的高考试题每年都有,题型有选择题、计算题等,趋向于运用牛顿运动定律解决生产、生活和科技中的实际问题.此外,它还经常与电场、磁场结合,构成难度较大的综合性试题.一、运动的描述 要点归纳(一)匀变速直线运动的几个重要推论和解题方法1.某段时间内的平均速度等于这段时间的中间时刻的瞬时速度,即v -t =v t 2. 2.在连续相等的时间间隔T 内的位移之差Δs 为恒量,且Δs =aT 2.3.在初速度为零的匀变速直线运动中,相等的时间T 内连续通过的位移之比为:s1∶s2∶s3∶…∶s n=1∶3∶5∶…∶(2n-1)通过连续相等的位移所用的时间之比为:t1∶t2∶t3∶…∶t n=1∶(2-1)∶(3-2)∶…∶(n-n-1).4.竖直上抛运动(1)对称性:上升阶段和下落阶段具有时间和速度等方面的对称性.(2)可逆性:上升过程做匀减速运动,可逆向看做初速度为零的匀加速运动来研究.(3)整体性:整个运动过程实质上是匀变速直线运动.5.解决匀变速直线运动问题的常用方法(1)公式法灵活运用匀变速直线运动的基本公式及一些有用的推导公式直接解决.(2)比例法在初速度为零的匀加速直线运动中,其速度、位移和时间都存在一定的比例关系,灵活利用这些关系可使解题过程简化.(3)逆向过程处理法逆向过程处理法是把运动过程的“末态”作为“初态”,将物体的运动过程倒过来进行研究的方法.(4)速度图象法速度图象法是力学中一种常见的重要方法,它能够将问题中的许多关系,特别是一些隐藏关系,在图象上明显地反映出来,从而得到正确、简捷的解题方法.(二)运动的合成与分解1.小船渡河设水流的速度为v1,船的航行速度为v2,河的宽度为d.(1)过河时间t仅由v2沿垂直于河岸方向的分量v⊥决定,即t=dv⊥,与v1无关,所以当v2垂直于河岸时,渡河所用的时间最短,最短时间t min=dv2.(2)渡河的路程由小船实际运动轨迹的方向决定.当v1<v2时,最短路程s min=d;当v1>v2时,最短路程s min=v1v2 d,如图1-1 所示.图1-12.轻绳、轻杆两末端速度的关系(1)分解法把绳子(包括连杆)两端的速度都沿绳子的方向和垂直于绳子的方向分解,沿绳子方向的分运动相等(垂直方向的分运动不相关),即v 1cos θ1=v 2cos_θ2.(2)功率法通过轻绳(轻杆)连接物体时,往往力拉轻绳(轻杆)做功的功率等于轻绳(轻杆)对物体做功的功率.3.平抛运动如图1-2所示,物体从O 处以水平初速度v 0抛出,经时间t 到达P 点.图1-2(1)加速度⎩⎪⎨⎪⎧ 水平方向:a x =0竖直方向:a y=g (2)速度⎩⎪⎨⎪⎧水平方向:v x =v 0竖直方向:v y =gt合速度的大小v =v 2x +v 2y =v 20+g 2t 2设合速度的方向与水平方向的夹角为θ,有:tan θ=v y v x =gt v 0,即θ=arctan gt v 0. (3)位移⎩⎪⎨⎪⎧ 水平方向:s x =v 0t 竖直方向:s y =12gt2 设合位移的大小s =s 2x +s 2y =(v 0t )2+(12gt 2)2 合位移的方向与水平方向的夹角为α,有: tan α=s y s x =12gt 2v 0t =gt 2v 0,即α=arctan gt 2v 0要注意合速度的方向与水平方向的夹角不是合位移的方向与水平方向的夹角的2倍,即θ≠2α,而是tan θ=2tan α.(4)时间:由s y =12gt 2得,t =2s y g,平抛物体在空中运动的时间t 只由物体抛出时离地的高度s y 决定,而与抛出时的初速度v 0无关.(5)速度变化:平抛运动是匀变速曲线运动,故在相等的时间内,速度的变化量(g =Δv Δt)相等,且必沿竖直方向,如图1-3所示.图1-3任意两时刻的速度与速度的变化量Δv 构成直角三角形,Δv 沿竖直方向.注意:平抛运动的速率随时间并不均匀变化,而速度随时间是均匀变化的.(6)带电粒子(只受电场力的作用)垂直进入匀强电场中的运动与平抛运动相似,出电场后做匀速直线运动,如图1-4所示.图1-4故有:y =(L ′+L 2)·tan α=(L ′+L 2)·qUL dm v 20. 热点、重点、难点(一)直线运动高考中对直线运动规律的考查一般以图象的应用或追及问题出现.这类题目侧重于考查学生应用数学知识处理物理问题的能力.对于追及问题,存在的困难在于选用哪些公式来列方程,作图求解,而熟记和运用好直线运动的重要推论往往是解决问题的捷径.●例1 如图1-5甲所示,A 、B 两辆汽车在笔直的公路上同向行驶.当B 车在A 车前s =84 m 处时,B 车的速度v B =4 m/s ,且正以a =2 m/s 2的加速度做匀加速运动;经过一段时间后,B 车的加速度突然变为零.A 车一直以v A =20 m/s 的速度做匀速运动,从最初相距84 m 时开始计时,经过t 0=12 s 后两车相遇.问B 车加速行驶的时间是多少?图1-5甲【解析】设B 车加速行驶的时间为t ,相遇时A 车的位移为:s A =v A t 0B 车加速阶段的位移为:s B 1=v B t +12at 2 匀速阶段的速度v =v B +at ,匀速阶段的位移为:s B 2=v (t 0-t )相遇时,依题意有:s A =s B 1+s B 2+s联立以上各式得:t 2-2t 0t -2[(v B -v A )t 0+s ]a =0 将题中数据v A =20 m/s ,v B =4 m/s ,a =2 m/s 2,t 0=12 s ,代入上式有:t 2-24t +108=解得:t 1=6 s ,t 2=18 s(不合题意,舍去)因此,B 车加速行驶的时间为6 s .[答案] 6 s【点评】①出现不符合实际的解(t 2=18 s)的原因是方程“s B 2=v (t 0-t )”并不完全描述B 车的位移,还需加一定义域t ≤12 s .②解析后可以作出v A -t 、v B -t 图象加以验证.图1-5乙根据v -t 图象与t 围成的面积等于位移可得,t =12 s 时,Δs =[12×(16+4)×6+4×6] m =84 m .(二)平抛运动平抛运动在高考试题中出现的几率相当高,或出现于力学综合题中,如2008年北京、山东理综卷第24题;或出现于带电粒子在匀强电场中的偏转一类问题中,如2008年宁夏理综卷第24题、天津理综卷第23题;或出现于此知识点的单独命题中,如2009年高考福建理综卷第20题、广东物理卷第17(1)题、2008年全国理综卷Ⅰ第14题.对于这一知识点的复习,除了要熟记两垂直方向上的分速度、分位移公式外,还要特别理解和运用好速度偏转角公式、位移偏转角公式以及两偏转角的关系式(即tan θ=2tan α).●例2 图1-6甲所示,m 为在水平传送带上被传送的小物体(可视为质点),A 为终端皮带轮.已知皮带轮的半径为r ,传送带与皮带轮间不会打滑.当m 可被水平抛出时,A 轮每秒的转数最少为( )图1-6甲A .12πg rB .g rC .grD .12πgr 【解析】解法一 m 到达皮带轮的顶端时,若m v 2r≥mg ,表示m 受到的重力小于(或等于)m 沿皮带轮表面做圆周运动的向心力,m 将离开皮带轮的外表面而做平抛运动又因为转数n =ω2π=v 2πr所以当v ≥gr ,即转数n ≥12πg r时,m 可被水平抛出,故选项A 正确. 解法二 建立如图1-6乙所示的直角坐标系.当m 到达皮带轮的顶端有一速度时,若没有皮带轮在下面,m 将做平抛运动,根据速度的大小可以作出平抛运动的轨迹.若轨迹在皮带轮的下方,说明m 将被皮带轮挡住,先沿皮带轮下滑;若轨迹在皮带轮的上方,说明m 立即离开皮带轮做平抛运动.图1-6乙又因为皮带轮圆弧在坐标系中的函数为:当y 2+x 2=r 2初速度为v 的平抛运动在坐标系中的函数为:y =r -12g (x v )2 平抛运动的轨迹在皮带轮上方的条件为:当x >0时,平抛运动的轨迹上各点与O 点间的距离大于r ,即y 2+x 2>r 即[r -12g (x v )2]2+x 2>r 解得:v ≥gr又因皮带轮的转速n 与v 的关系为:n =v 2πr 可得:当n ≥12πg r时,m 可被水平抛出. [答案] A【点评】“解法一”应用动力学的方法分析求解;“解法二”应用运动学的方法(数学方法)求解,由于加速度的定义式为a =Δv Δt ,而决定式为a =F m,故这两种方法殊途同归. ★同类拓展1 高台滑雪以其惊险刺激而闻名,运动员在空中的飞跃姿势具有很强的观赏性.某滑雪轨道的完整结构可以简化成如图1-7所示的示意图.其中AB 段是助滑雪道,倾角α=30°,BC 段是水平起跳台,CD 段是着陆雪道,AB 段与BC 段圆滑相连,DE 段是一小段圆弧(其长度可忽略),在D 、E 两点分别与CD 、EF 相切,EF 是减速雪道,倾角θ=37°.轨道各部分与滑雪板间的动摩擦因数均为μ=0.25,图中轨道最高点A 处的起滑台距起跳台BC 的竖直高度h =10 m .A 点与C 点的水平距离L 1=20 m ,C 点与D 点的距离为32.625 m .运动员连同滑雪板的总质量m =60 kg .滑雪运动员从A 点由静止开始起滑,通过起跳台从C 点水平飞出,在落到着陆雪道上时,运动员靠改变姿势进行缓冲使自己只保留沿着陆雪道的分速度而不弹起.除缓冲外运动员均可视为质点,设运动员在全过程中不使用雪杖助滑,忽略空气阻力的影响,取重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:图1-7(1)运动员在C 点水平飞出时的速度大小.(2)运动员在着陆雪道CD 上的着陆位置与C 点的距离. (3)运动员滑过D 点时的速度大小.【解析】(1)滑雪运动员从A 到C 的过程中,由动能定理得:mgh -μmg cos αhsin α-μmg (L 1-h cot α)=12m v 2C解得:v C =10 m/s .(2)滑雪运动员从C 点水平飞出到落到着陆雪道的过程中做平抛运动,有: x =v C t y =12gt 2 yx=tan θ 着陆位置与C 点的距离s =x cos θ解得:s =18.75 m ,t =1.5 s .(3)着陆位置到D 点的距离s ′=13.875 m ,滑雪运动员在着陆雪道上做匀加速直线运动.把平抛运动沿雪道和垂直雪道分解,可得着落后的初速度v 0=v C cos θ+gt sin θ加速度为:mg sin θ-μmg cos θ=ma运动到D 点的速度为:v 2D =v 20+2as ′ 解得:v D =20 m/s .[答案] (1)10 m/s (2)18.75 m (3)20 m/s 互动辨析 在斜面上的平抛问题较为常见,“位移与水平面的夹角等于倾角”为着落条件.同学们还要能总结出距斜面最远的时刻以及这一距离.二、受力分析要点归纳(一)常见的五种性质的力(二)力的运算、物体的平衡1.力的合成与分解遵循力的平行四边形定则(或力的三角形定则).2.平衡状态是指物体处于匀速直线运动或静止状态,物体处于平衡状态的动力学条件是:F合=0或F x=0、F y=0、F z=0.注意:静止状态是指速度和加速度都为零的状态,如做竖直上抛运动的物体到达最高点时速度为零,但加速度等于重力加速度,不为零,因此不是平衡状态.3.平衡条件的推论(1)物体处于平衡状态时,它所受的任何一个力与它所受的其余力的合力等大、反向.(2)物体在同一平面上的三个不平行的力的作用下处于平衡状态时,这三个力必为共点力.物体在三个共点力的作用下而处于平衡状态时,表示这三个力的有向线段组成一封闭的矢量三角形,如图1-8所示.图1-84.共点力作用下物体的平衡分析热点、重点、难点(一)正交分解法、平行四边形法则的应用1.正交分解法是分析平衡状态物体受力时最常用、最主要的方法.即当F合=0时有:F x合=0,F y合=0,F z合=0.2.平行四边形法有时可巧妙用于定性分析物体受力的变化或确定相关几个力之比.●例3举重运动员在抓举比赛中为了减小杠铃上升的高度和发力,抓杠铃的两手间要有较大的距离.某运动员成功抓举杠铃时,测得两手臂间的夹角为120°,运动员的质量为75 kg,举起的杠铃的质量为125 kg,如图1-9甲所示.求该运动员每只手臂对杠铃的作用力的大小.(取g=10 m/s2)图1-9甲【分析】由手臂的肌肉、骨骼构造以及平时的用力习惯可知,伸直的手臂主要沿手臂方向发力.取手腕、手掌为研究对象,握杠的手掌对杠有竖直向上的弹力和沿杠向外的静摩擦力,其合力沿手臂方向,如图1-9乙所示.图1-9乙【解析】手臂对杠铃的作用力的方向沿手臂的方向,设该作用力的大小为F,则杠铃的受力情况如图1-9丙所示图1-9丙由平衡条件得:2F cos 60°=mg解得:F=1250 N.[答案] 1250 N●例4两个可视为质点的小球a和b,用质量可忽略的刚性细杆相连放置在一个光滑的半球面内,如图1-10甲所示.已知小球a和b的质量之比为3,细杆长度是球面半径的 2 倍.两球处于平衡状态时,细杆与水平面的夹角θ是[2008年高考·四川延考区理综卷]()图1-10甲A.45°B.30°C.22.5°D.15°【解析】解法一设细杆对两球的弹力大小为T,小球a、b的受力情况如图1-10乙所示图1-10乙其中球面对两球的弹力方向指向圆心,即有: cos α=22R R =22解得:α=45°故F N a 的方向为向上偏右,即β1=π2-45°-θ=45°-θF N b 的方向为向上偏左,即β2=π2-(45°-θ)=45°+θ两球都受到重力、细杆的弹力和球面的弹力的作用,过O 作竖直线交ab 于c 点,设球面的半径为R ,由几何关系可得:m a g Oc =F N aR m b g Oc =F N bR解得:F N a =3F N b取a 、b 及细杆组成的整体为研究对象,由平衡条件得: F N a ·sin β1=F N b ·sin β2 即 3F N b ·sin(45°-θ)=F N b ·sin(45°+θ) 解得:θ=15°.解法二 由几何关系及细杆的长度知,平衡时有: sin ∠Oab =22R R =22故∠Oab =∠Oba =45°再设两小球及细杆组成的整体重心位于c 点,由悬挂法的原理知c 点位于O 点的正下方,且ac bc =m am b= 3即R ·sin(45°-θ)∶R ·sin(45°+θ)=1∶ 3解得:θ=15°. [答案] D【点评】①利用平行四边形(三角形)定则分析物体的受力情况在各类教辅中较常见.掌握好这种方法的关键在于深刻地理解好“在力的图示中,有向线段替代了力的矢量”.②在理论上,本题也可用隔离法分析小球a 、b 的受力情况,根据正交分解法分别列平衡方程进行求解,但是求解三角函数方程组时难度很大.③解法二较简便,但确定重心的公式ac bc =m am b=3超纲.(二)带电粒子在复合场中的平衡问题 在高考试题中,也常出现带电粒子在复合场中受力平衡的物理情境,出现概率较大的是在正交的电场和磁场中的平衡问题及在电场和重力场中的平衡问题.在如图1-11所示的速度选择器中,选择的速度v =EB ;在如图1-12所示的电磁流量计中,流速v =u Bd ,流量Q =πdu 4B.图1-11 图1-12●例5 在地面附近的空间中有水平方向的匀强电场和匀强磁场,已知磁场的方向垂直纸面向里,一个带电油滴沿着一条与竖直方向成α角的直线MN 运动,如图1-13所示.由此可判断下列说法正确的是( )图1-13A .如果油滴带正电,则油滴从M 点运动到N 点B .如果油滴带正电,则油滴从N 点运动到M 点C .如果电场方向水平向右,则油滴从N 点运动到M 点D .如果电场方向水平向左,则油滴从N 点运动到M 点【解析】油滴在运动过程中受到重力、电场力及洛伦兹力的作用,因洛伦兹力的方向始终与速度方向垂直,大小随速度的改变而改变,而电场力与重力的合力是恒力,所以物体做匀速直线运动;又因电场力一定在水平方向上,故洛伦兹力的方向是斜向上方的,因而当油滴带正电时,应该由M 点向N 点运动,故选项A 正确、B 错误.若电场方向水平向右,则油滴需带负电,此时斜向右上方与MN 垂直的洛伦兹力对应粒子从N 点运动到M 点,即选项C 正确.同理,电场方向水平向左时,油滴需带正电,油滴是从M 点运动到N 点的,故选项D 错误.[答案] AC 【点评】对于带电粒子在复合场中做直线运动的问题要注意受力分析.因为洛伦兹力的方向与速度的方向垂直,而且与磁场的方向、带电粒子的电性都有关,分析时更要注意.本题中重力和电场力均为恒力,要保证油滴做直线运动,两力的合力必须与洛伦兹力平衡,粒子的运动就只能是匀速直线运动.★同类拓展2 如图1-14甲所示,悬挂在O 点的一根不可伸长的绝缘细线下端挂有一个带电荷量不变的小球A .在两次实验中,均缓慢移动另一带同种电荷的小球B .当B 到达悬点O 的正下方并与A 在同一水平线上,A 处于受力平衡时,悬线偏离竖直方向的角度为θ.若两次实验中B 的电荷量分别为q 1和q 2,θ分别为30°和45°,则q 2q 1为 [2007年高考·重庆理综卷]( )图1-14甲A.2B.3C.23D.3 3【解析】对A球进行受力分析,如图1-14 乙所示,图1-14乙由于绳子的拉力和点电荷间的斥力的合力与A球的重力平衡,故有:F电=mg tan θ,又F电=k qQ Ar2.设绳子的长度为L,则A、B两球之间的距离r=L sin θ,联立可得:q=mL2g tan θsin2θkQ A,由此可见,q与tan θsin 2θ成正比,即q2q1=tan 45°sin245°tan 30°sin230°=23,故选项C正确.[答案] C互动辨析本题为带电体在重力场和电场中的平衡问题,解题的关键在于:先根据小球的受力情况画出平衡状态下的受力分析示意图;然后根据平衡条件和几何关系列式,得出电荷量的通解表达式,进而分析求解.本题体现了新课标在知识考查中重视方法渗透的思想.三、牛顿运动定律的应用要点归纳(一)深刻理解牛顿第一、第三定律1.牛顿第一定律(惯性定律)一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止.(1)理解要点①运动是物体的一种属性,物体的运动不需要力来维持.②它定性地揭示了运动与力的关系:力是改变物体运动状态的原因,是使物体产生加速度的原因.③牛顿第一定律是牛顿第二定律的基础,不能认为它是牛顿第二定律合外力为零时的特例.牛顿第一定律定性地给出了力与运动的关系,第二定律定量地给出力与运动的关系.(2)惯性:物体保持原来的匀速直线运动状态或静止状态的性质叫做惯性.①惯性是物体的固有属性,与物体的受力情况及运动状态无关.②质量是物体惯性大小的量度.2.牛顿第三定律(1)两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上,可用公式表示为F=-F′.(2)作用力与反作用力一定是同种性质的力,作用效果不能抵消.(3)牛顿第三定律的应用非常广泛,凡是涉及两个或两个以上物体的物理情境、过程的解答,往往都需要应用这一定律.(二)牛顿第二定律1.定律内容物体的加速度a跟物体所受的合外力F合成正比,跟物体的质量m成反比.2.公式:F合=ma理解要点①因果性:F合是产生加速度a的原因,它们同时产生,同时变化,同时存在,同时消失.②方向性:a与F合都是矢量,方向严格相同.③瞬时性和对应性:a为某时刻某物体的加速度,F合是该时刻作用在该物体上的合外力.3.应用牛顿第二定律解题的一般步骤:(1)确定研究对象;(2)分析研究对象的受力情况,画出受力分析图并找出加速度的方向;(3)建立直角坐标系,使尽可能多的力或加速度落在坐标轴上,并将其余的力或加速度分解到两坐标轴上;(4)分别沿x轴方向和y轴方向应用牛顿第二定律列出方程;(5)统一单位,计算数值.热点、重点、难点一、正交分解法在动力学问题中的应用当物体受到多个方向的外力作用产生加速度时,常要用到正交分解法.1.在适当的方向建立直角坐标系,使需要分解的矢量尽可能少.2.F x合=ma x合,F y合=ma y合,F z合=ma z合.3.正交分解法对本章各类问题,甚至对整个高中物理来说都是一重要的思想方法.●例6如图1-15甲所示,在风洞实验室里,一根足够长的细杆与水平面成θ=37°固定,质量m=1 kg的小球穿在细杆上静止于细杆底端O点.现有水平向右的风力F作用于小球上,经时间t 1=2 s 后停止,小球沿细杆运动的部分v -t 图象如图1-15乙所示.试求:(取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8)图1-15(1)小球在0~2 s 内的加速度a 1和2~4 s 内的加速度a 2.(2)风对小球的作用力F 的大小.【解析】(1)由图象可知,在0~2 s 内小球的加速度为:a 1=v 2-v 1t 1=20 m/s 2,方向沿杆向上 在2~4 s 内小球的加速度为:a 2=v 3-v 2t 2=-10 m/s 2,负号表示方向沿杆向下. (2)有风力时的上升过程,小球的受力情况如图1-15丙所示图1-15丙在y 方向,由平衡条件得:F N1=F sin θ+mg cos θ在x 方向,由牛顿第二定律得:F cos θ-mg sin θ-μF N1=ma1停风后上升阶段,小球的受力情况如图1-15丁所示图1-15丁在y方向,由平衡条件得:F N2=mg cos θ在x方向,由牛顿第二定律得:-mg sin θ-μF N2=ma2联立以上各式可得:F=60 N.【点评】①斜面(或类斜面)问题是高中最常出现的物理模型.②正交分解法是求解高中物理题最重要的思想方法之一.二、连接体问题(整体法与隔离法)高考卷中常出现涉及两个研究对象的动力学问题,其中又包含两种情况:一是两对象的速度相同需分析它们之间的相互作用,二是两对象的加速度不同需分析各自的运动或受力.隔离(或与整体法相结合)的思想方法是处理这类问题的重要手段.1.整体法是指当连接体内(即系统内)各物体具有相同的加速度时,可以把连接体内所有物体组成的系统作为整体考虑,分析其受力情况,运用牛顿第二定律对整体列方程求解的方法.2.隔离法是指当研究对象涉及由多个物体组成的系统时,若要求连接体内物体间的相互作用力,则应把某个物体或某几个物体从系统中隔离出来,分析其受力情况及运动情况,再利用牛顿第二定律对隔离出来的物体列式求解的方法.3.当连接体中各物体运动的加速度相同或要求合外力时,优先考虑整体法;当连接体中各物体运动的加速度不相同或要求物体间的作用力时,优先考虑隔离法.有时一个问题要两种方法结合起来使用才能解决.●例7如图1-16所示,在光滑的水平地面上有两个质量相等的物体,中间用劲度系数为k的轻质弹簧相连,在外力F1、F2的作用下运动.已知F1>F2,当运动达到稳定时,弹簧的伸长量为()图1-16A .F 1-F 2kB .F 1-F 22kC .F 1+F 22kD .F 1+F 2k【解析】取A 、B 及弹簧整体为研究对象,由牛顿第二定律得:F 1-F 2=2ma取B 为研究对象:kx -F 2=ma(或取A 为研究对象:F 1-kx =ma )可解得:x =F 1+F 22k. [答案] C【点评】①解析中的三个方程任取两个求解都可以.②当地面粗糙时,只要两物体与地面的动摩擦因数相同,则A 、B 之间的拉力与地面光滑时相同.★同类拓展3 如图1-17所示,质量为m 的小物块A 放在质量为M 的木板B 的左端,B 在水平拉力的作用下沿水平地面匀速向右滑动,且A 、B 相对静止.某时刻撤去水平拉力,经过一段时间,B 在地面上滑行了一段距离x ,A 在B 上相对于B 向右滑行了一段距离L (设木板B 足够长)后A 和B 都停了下来.已知A 、B 间的动摩擦因数为μ1,B 与地面间的动摩擦因数为μ2,且μ2>μ1,则x 的表达式应为( )图1-17A .x =M m LB .x =(M +m )L mC .x =μ1ML (μ2-μ1)(m +M )D .x =μ1ML (μ2+μ1)(m +M ) 【解析】设A 、B 相对静止一起向右匀速运动时的速度为v ,撤去外力后至停止的过程中,A 受到的滑动摩擦力为:f 1=μ1mg其加速度大小a 1=f 1m=μ1g B 做减速运动的加速度大小a 2=μ2(m +M )g -μ1mg M由于μ2>μ1,所以a 2>μ2g >μ1g =a 1即木板B 先停止后,A 在木板上继续做匀减速运动,且其加速度大小不变对A 应用动能定理得:-f 1(L +x )=0-12m v 2 对B 应用动能定理得:μ1mgx -μ2(m +M )gx =0-12M v 2 解得:x =μ1ML (μ2-μ1)(m +M ). [答案] C【点评】①虽然使A 产生加速度的力由B 施加,但产生的加速度a 1=μ1g 是取大地为参照系的.加速度是相对速度而言的,所以加速度一定和速度取相同的参照系,与施力物体的速度无关.②动能定理可由牛顿第二定律推导,特别对于匀变速直线运动,两表达式很容易相互转换.三、临界问题●例8 如图1-18甲所示,滑块A 置于光滑的水平面上,一细线的一端固定于倾角为45°、质量为M 的光滑楔形滑块A 的顶端P 处,细线另一端拴一质量为m 的小球B .现对滑。

高考物理二轮复习资料

高考物理二轮复习资料

高考物理二轮复习资料高考物理二轮复习资料高考是每个学生人生中的一次重要考试,而物理作为一门重要的科目,对于考生来说同样至关重要。

在备战高考物理二轮复习阶段,合理利用好复习资料将是提高成绩的关键。

本文将为大家介绍一些高考物理二轮复习的资料和方法。

首先,我们需要明确物理复习的重点和难点。

高考物理主要考察学生对物理知识的掌握和应用能力,因此复习的重点是理解和掌握基础知识,并能够熟练运用。

在复习过程中,我们要重点关注高频考点,比如力学中的牛顿定律和动量守恒定律,电学中的电路和电磁感应等。

同时,我们也要注意解题思路和方法的训练,因为高考物理试题往往涉及到多学科的综合运用。

其次,我们可以选择一些优质的复习资料来帮助我们复习物理。

这里推荐几种常见的复习资料。

首先是教材,高中物理教材是复习的基础,我们要仔细研读教材中的重点知识点和例题,并进行思考和总结。

其次是习题集,高考物理习题集中的题目往往是经过精选的,涵盖了各个考点和难度层次,做好习题集可以帮助我们巩固知识和提高解题能力。

此外,还可以寻找一些高质量的辅导资料,比如名师讲义、复习指南和模拟试卷等,这些资料通常会有针对性的解析和答案,可以帮助我们更好地理解和应用知识。

除了上述的复习资料,我们还可以利用一些在线资源来辅助复习。

比如,可以通过观看一些优质的物理教学视频,这些视频通常会以图文并茂的方式讲解物理知识,有助于我们更好地理解和记忆。

此外,还可以参加一些物理学习社群或者论坛,与其他物理学习者进行交流和讨论,这样可以拓宽我们的思路和视野,提高解题的能力。

在进行物理复习的过程中,我们还要注意一些方法和技巧。

首先,要有计划性地进行复习,制定一个合理的复习计划,按部就班地进行,不要盲目地追求速度。

其次,要注重理论与实践的结合,物理是一门实验科学,我们要通过实验来验证和巩固理论知识。

可以利用学校实验室或者在线模拟实验平台进行实验操作,加深对物理现象的理解。

此外,还要进行大量的练习,通过做题来检验和提高自己的理解能力和解题技巧。

高三物理二轮复习专题

高三物理二轮复习专题

高三物理二轮复习专题3-5重难点突破一、关于光电效应问题1、分析方法(1)常见电路(2)两条线索(a)通过频率分析:光子频率高→光子能量大→产生光电子的最大初动能大.(b)通过光的强度分析:由I 光强=Nh ν可知,频率一定时,入射光强度大→光子数目多→产生的光电子多→光电流大;光强一定时,频率越高→光子数目少→产生的光电子数越少→光电流小.2、典型图象(1)光电流与电压的关系说明:频率的比较:E km =h ν-W 0= eU c 可知遏止电压越大,频率越高,遏止电压相同,频率相同,从图可知ν甲=ν乙<ν丙。

光强的比较:饱和光电流与单位时间逸出的光电子数有关,单位时间逸出的光电子数与光强和光的频率有关,由I 光强=Nh ν可知,甲的强度大于乙的强度。

(2)反向遏止电压与入射光频率的关系说明:由e W h U C 0-=ν可知,根据横坐标交点可求金属的极限频率ν0=w 0/h ,根据斜率可以算出普朗克恒量,斜率h/e,根据纵轴截距可以推算出金属的逸出功,w 0/e 。

(3)最大初动能与入射光频率的关系说明:由0W h E K -=ν可知,图线与横轴的交点坐标是极限频率ν0,图线与纵轴的交点数值是逸出功w 0,图象的斜率就是普朗克恒量h 。

例、如图所示电路可研究光电效应规律。

图中标有A 和K 的为光电管,其中A 为阴极,K 为阳极。

理想电流计可检测通过光电管的电流,理想电压表用来指示光电管两端的电压。

现接通电源,用光子能量为10.5eV 的光照射阴极A ,电流计中有示数,若将滑动变阻器的滑片P 缓慢向右滑动,电流计的读数逐渐减小,当滑至某一位置时电流计的读数恰好为零,读出此时电压表的示数为6.0V ;现保持滑片P 位置不变,以下判断正确的是(AC )A.光电管阴极材料的逸出功为4.5eVB .若增大入射光的强度,电流计的读数不为零C .若用光子能量为12eV 的光照射阴极A ,光电子的最大初动能一定变大D .若用光子能量为9.5eV 的光照射阴极A ,同时把滑片P向左移动少许,电流计的读数一定不为零二、关于原子跃迁问题1、注意“一个原子”还是“一群原子”一群氢原子处于量子数为n 的激发态时,可能辐射出的光谱条数为N =n (n -1)2=C 2n ,而一个氢原子处于量子数为n 的激发态上时,最多可辐射出n -1条光谱线.例、现有1200个氢原子被激发到量子数为4的能级上,若这些受激氢原子最后都回到基态,则在此过程中发出的光子总数是多少?假定处在量子数为n的激发态的氢原子跃迁到各较低能级的原子数都是处在该激发态能级上的原子总数的11n(A)A. 2200B. 2000C. 1200D. 24002、注意是“跃迁”还是“电离”不管是吸收还是辐射光子,其光子的能量都必须等于这两个能级的能量差,欲想把处于某一定态的原子的电子电离出去,就需要给原子一定的能量。

高三物理二轮复习要点

高三物理二轮复习要点

第一讲:多运动过程的三大模型(1.31)一:0−v −0模型 1、运动学量比例关系:221121211221212,t x t x v t t x x a a x x t t ===++==拓展, 2、力的比例关系:①全程动能定理1211f 0)(x x F x x f Fx 总=⇒=+-,②动量定理:12110)(t t f F t t f Ft 总=⇒=+-,③能量/动量问题(两线平行,说明a 相等,),⑴全程法: W F1-fx 总1=0;W F2-fx 总2=0,根据x 面积大小,判断出F1,F2,做功大小。

⑵I F1-ft 总1=0,I F2-ft 总2=0,根据v-t 图像,判断出F1,F2冲量大小。

二:等时往反模型:已知地面光滑,F 1作用时间t 0,位移x 1,撤去外力F 1后,F 2作用相同时间t 0,物块回到原出发点。

⑴x 1和x 2的关系:x 1=-x 2(方向相反),⑵v 1和v 2的关系:V 2=-2V 1方向相反),位移采用平均速度法,⑶1212021201132,,a a v v t a v v t a v -=⇒-=-==,1、三:周期性运动模型:规定t=0时刻的受力方向为正方向,0~内释放4T ,43T ~T 内释放,正向走,4T~43T内释放,反向走。

第二讲:板块模型中的3种分析思路(2.1)1、内力公式:(署假知识点中有),2、高级内力公式:同向减反向加(署假知识) 2、共速无外力时,μ上大一起走,μ下大就分手。

(m 1在上,m 2在下),g m u f g m m u f f m m f 11max 12212211,)(m =+=+=地,地内,当f 内<f 12max 时,即u 2<u 1,相对静止,共速,当f 内>f 12max 时,即u 2>u 1,分离3、动量能量分析:共速所用时间:,:对对共共Mv umgt M mv mv umgt m =-=-;:从开始运动到相对静止的过程中:①木板的对地位移:板,(动能定理)共板x Mv fx 0-212=,②物块的对地位移x 物:物共物动能定理)x mv mv (21-21fx -22=,4、一:完全非弹性碰撞:⑴动碰静,碰后共速,动量守恒,能量损失Ek 损=2212121ov m m m m +⑵动碰动,碰后共速:动量守恒,Ek 损=2212121)21v v m m m m -+(, 第三讲:弹簧的3个必会模型(2.2)1、蹦极模型:①原长点、平衡点、最低点。

高考物理二轮复习资料

高考物理二轮复习资料

AB高考物理二轮复习资料A(成功)=X(艰苦的劳动)十Y(正确的方法)十Z(少说空话多干实事)(最基础的概念,公式,定理,定律最重要);每一题中要弄清楚(对象、条件、状态、过程)是解题关健物理学习的核心在于思维,要在平常的复习和做题时注意思考、注意总结、善于归纳整理,对于课堂上老师所讲的例题做到触类旁通,举一反三,把知识和解题能力变成自己的知识和解题能力,并养成规范答题的习惯,这样,同学们一定就能笑傲考场,考出理想的成绩!力学问题中的“过程”、“状态”的分析和建立及应用物理模型在物理学习中是至关重要的。

说明:凡矢量式中用“+”号都为合成符号,把矢量运算转化为代数运算的前提是先规定正方向。

答题技巧:“基础题,全做对;一般题,一分不浪费;尽力冲击较难题,即使做错不后悔”。

“容易题不丢分,难题不得零分。

“该得的分一分不丢,难得的分每分必争”,“会做⇒做对⇒不扣分”在学习物理概念和规律时不能只记结论,还须弄清其中的道理,知道物理概念和规律的由来。

Ⅰ。

力的种类:(13个性质力) 这些性质力是受力分析不可少的“是受力分析的基础” 力的种类:(13个性质力)有18条定律、2条定理1重力: G = mg (g 随高度、纬度、不同星球上不同) 2弹力:F= Kx3滑动摩擦力:F 滑= μN4静摩擦力: O ≤ f 静≤ f m (由运动趋势和平衡方程去判断)5浮力: F 浮= ρgV 排 6压力: F= PS = ρghs 7万有引力: F 引=G 221r m m8库仑力: F=K221r q q (真空中、点电荷)9电场力: F 电=q E =qdu 10安培力:磁场对电流的作用力F= BIL (B ⊥I) 方向:左手定则11洛仑兹力:磁场对运动电荷的作用力f=BqV (B ⊥V) 方向:左手定则12分子力:分子间的引力和斥力同时存在,都随距离的增大而减小,随距离的减小而增大,但斥力变化得快.。

13核力:只有相邻的核子之间才有核力,是一种短程强力。

高中物理大二轮物理复习专题目录

高中物理大二轮物理复习专题目录

二轮物理
选择题48分专练(一) 选择题48分专练(二) 实验题15分专练(一) 实验题15分专练(二) 计算题32分专练(一) 计算题32分专练(二) 选考题15分专练(一) 选考题15分专练(二)
第二部分 考前冲刺增分练
二轮物理
小卷冲刺抢分练(一)——(8+2实验) 小卷冲刺抢分练(二)——(8+2实验) 小卷冲刺抢分练(三)——(8+2计算) 小卷冲刺抢分练(四)——(8+2计算) 高考模拟标准练
大二轮专题复习与测试
物理
二轮物理
第一部分 专题一 力与运动 第1讲 物体的平衡 考向一 力学中的平衡问题 考向二 电学中的平衡问题 考向三 平衡中的临界极值问题 第2讲 牛顿运动定律和直线运动 考向一 运动图象的理解及应用 考向二 匀变速直线运动应用规律 考向三 牛顿运动定律的综合应用
专题整合突破
二轮物理
第2讲 电学实验与创新 考向一 电表改装与读数、多用电表原理与使用 考向二 以伏安法测电阻为核心的实验 考向三 以测电源电动势和内阻为核心的实验 考向四 电学创新设计实验
二轮物理
专题七 选考部分 第1讲 (选修3-3) 分子动理论、气体及热力学定律 考向一 热学基础知识与气体实验定律的组合 考向二 热学基础知识、热力学定律与气体定律的组合 第2讲 (选修3-4) 机械振动和机械波 光 电磁波 考向一 振动(或波动)与光的折射、全反射的组合 考向二 光学基础知识与波动(或振动)的组合 考向三 电磁波、光学、波动(或振动)的组合
二轮物理
第三部分 一、物理学史和物理思想方法 (一)高中物理的重要物理学史 (二)高中物理的重要思想方法 二、高考必知的五大解题思想 (一)守恒的思想 (二)等效的思想 (三)分解的思想 (四)对称的思想 (五)数形结合的思想

高考物理第二轮复习【精品课件】

高考物理第二轮复习【精品课件】

(mA m B )gsinα - (μ A m A μ Bm B )gcosα =μ A m A gcosα - m A gsinα mA m A mB mA (μ A m A μ B m B )gcosα (μ A μ B )mA m Bgcosα =μ A m A gcosα = m A mB m A mB
二、力与运动的关系 力与运动关系的习题通常分为两大类: 一类是已知物体的受力情况,求解其运动 情况;另一类是已知物体的运动情况,求 解物体所受的未知力或与力有关的未知量. 在这两类问题中,加速度a都起着桥梁的 作用.而对物体进行正确的受力分析和运 动状态及运动过程分析是解决这类问题的 突破口和关键.
六合实验高中
例与练
2、如图所示,质量为m的物体放在水平桌面上,物体与桌 面的滑动摩擦因数为μ,对物体施加一个与水平方向成θ角 的斜向右上方的拉力F。 (1)求物体在水平面上运动时力F的取值范围。 (2)力F一定,θ角取什么值时,物体在水平面上运动的加 速度最大? (3)求物体在水平面上运动所获得的最大加速度的数值。
N=mgcos-masinθ .
六合实验高中
解析
当a ≥ a 0时,对小球的受力分析 如图所示
据牛顿第二定律得
Tcosα-mg=0,Tsinα=ma.
求得绳子的张力为
T=m g a .
2 2
六合实验高中
方法小结
运用牛顿第二定律解题时可以将力沿物体运动方向和垂 直运动方向分解,垂直运动方向合力为0,沿运动方向合 力提供物体的加速度。 也可以将物体的加速度沿两个互相垂直的方向分解,这 两个方向的合力分别提供这两个方向的加速度。
六合实验高中
匀变速直线运动
自由落体 特例:

高中物理高三二轮复习三大部分+12个专题

高中物理高三二轮复习三大部分+12个专题

高中物理高三二轮复习三大部分
+12个专题
高中物理——高三二轮复习(课件+练习+讲义)三大部分+12个专题 -
高考第一轮以基础知识扫描为主,第二轮以专题形式复习。

第二轮复习其实就是把第一轮没有复习的内容复习清楚。

第二轮复习重在提炼物理模型,量变导致质变。

学生每做一道题,就相当于看到了一个模型,积累和提炼这个模型,这样就不会看到题就慌,把能得的分丢掉。

从第二轮开始,要针对小问题进行专项训练。

4-6月,每天一套,不间断。

刚开始会很慢很费时间,但是你会庆幸自己在高考的时候做了这些训练。

所以今天社长给同学们整理了高中物理——高三二轮复习(课件+练习+讲义)三大部分+12个专题。

包含高考物理的所有专题知识,每个专题按考点整理了讲义和训练题,同学们寒假在家可以看一看,希望同学们能够逐个突破各个专题!
篇幅有限,文章只是信息展示的一部分。

接下来进入正题。

目录:
讲义内容:
限时训练:
专题突破:
少年最好的一点就是,虽然嘴上说放弃,心里却一直憋着一口气。

——社长今日语录。

高中物理第二轮专题复习

高中物理第二轮专题复习

典型例题---动量能量结合
【例】质量为M的小车A左端固定一根轻弹簧, 车静止在光滑水平面上,一质量为m的小物块B从 右端以速度v0 冲上小车并压缩弹簧,然后又被弹 回,回到车右端时刚好与车保持相对静止。求这 过程弹簧的最大弹性势能EP 和全过程系统增加的 内能Q.
A
B
典型例题--动量能量结合--多个物体
功能关系—重要知识回顾 (1)WG=-ΔEP
(2)W弹=-ΔE弹
(4)WF除G=ΔE机 (6)W安=ΔE电
(3)W合=ΔEK (5)W滑=ΔE内
典型例题---功能关系
例.质量为M的木板在光滑的水平面上做速度 为V0的匀速直线运动,在右端静止放上一个质量 为m的小木块,为了使木板保持以原来的速度运动, 需在木板的左端施加一个恒力作用,直到木块获 得木板相同的速度时撤去,设木板的长度足够长, 木板与木块间的动摩擦因数为μ,求恒力的大小 m 和做功的多少.
机械能守恒—知识回顾
1.内容: 在只有重力或弹力做功的情况下,物体的 动能和势能发生相互转化,但机械能的总量保 持不变. 2.公式: EK 1 EP1 EK 2 EP 2 3.条件: (1) 只有重力或弹力做功,物体的其他力不做 功或做的总功为零 (2)只有动能和势能发生相互转化,没有其他 能之间的转化.
典型例题—冲量
例.质量为m的小球由高为H的、倾角为θ光滑 斜面顶端无初速滑到底端过程中,重力、弹力、 合力的冲量各是多大?
t
2H 1 2 g sin sin
2H g
IG
m 2 gH sin
,IN
m 2 gH tan
, I 合 m 2 gH
典型例题—单个物体的动量定理
例.两辆完全相同的平板小车,长为1m, 质量为4kg,A车最右端有一质量为2kg的铁块。 在光滑水平面上,A车与铁块以初速度v0= 5m/s向左运动,与静止在正前方的B车相撞, 碰撞时间极短,若两车碰后粘在一起,小铁 块恰能滑到B车的最左端。求铁块与平板小车 的动摩擦因数。 v0 B A

高中物理二轮复习知识点梳理

高中物理二轮复习知识点梳理

本专题知识点讲1节,例题讲1节专题一力与场内物体的平衡专题定位 本专题解决的是受力分析和共点力平衡问题.高考对本专题内容的考查主要有:①对各种性质力特点的理解;②共点力作用下平衡条件的应用.考查的主要物理思想和方法有:①整体法和隔离法;②假设法;③合成法;④正交分解法;⑤矢量三角形法;⑥相似三角形法;⑦等效思想;⑧分解思想. 应考策略 深刻理解各种性质力的特点.熟练掌握分析共点力平衡问题的各种方法.1.弹力(1)大小:弹簧在弹性限度内,弹力的大小可由胡克定律F =kx 计算;一般情况下物体间相互作用的弹力可由平衡条件或牛顿运动定律来求解.(2)方向:一般垂直于接触面(或切面)指向形变恢复的方向;绳的拉力沿绳指向绳收缩的方向.2.摩擦力(1)大小:滑动摩擦力f =μN ,与接触面的面积无关;静摩擦力0<f ≤f max ,具体值根据牛顿运动定律或平衡条件来求.(2)方向:沿接触面的切线方向,并且跟物体的相对运动或相对运动趋势的方向相反.3.电场力(1)大小:F =qE .若为匀强电场,电场力则为恒力;若为非匀强电场,电场力则与电荷所处的位置有关;点电荷的库仑力F =k Q 1Q 2r 2. (2)方向:正电荷所受电场力方向与场强方向一致,负电荷所受电场力方向与场强方向相反.4.安培力(1)大小:F =BIl ,此式只适用于B ⊥I 的情况,且l 是导线的有效长度,当B ∥I 时F =0.(2)方向:用左手定则判断,安培力垂直于B 、I 决定的平面.5.洛伦兹力(1)大小:F 洛=q v B ,此式只适用于B ⊥v 的情况.当B ∥v 时F 洛=0.(2)方向:用左手定则判断,洛伦兹力垂直于B 、v 决定的平面,洛伦兹力总不做功.6.共点力的平衡(1)平衡状态:静止或匀速直线运动.(2)平衡条件:F 合=0或F x =0,F y =0.(3)常用推论:①若物体受n 个作用力而处于平衡状态,则其中任意一个力与其余(n -1)个力的合力大小相等、方向相反.②若三个共点力的合力为零,则表示这三个力的有向线段首尾相接组成一个封闭三角形.1.处理平衡问题的基本思路:确定平衡状态(加速度为零)→巧选研究对象(整体法或隔离法)→受力分析→建立平衡方程→求解或作讨论.2.常用的方法(1)在判断弹力或摩擦力是否存在以及确定方向时常用假设法.(2)求解平衡问题时常用二力平衡法、矢量三角形法、正交分解法、相似三角形法、图解法等.3.带电体的平衡问题仍然满足平衡条件,只是要注意准确分析场力——电场力、安培力或洛伦兹力.4.如果带电粒子在重力场、电场和磁场三者组成的复合场中做直线运动,则一定是匀速直线运动,因为F 洛⊥v.题型1整体法和隔离法在受力分析中的应用以题说法 1.在分析两个或两个以上物体间的相互作用时,一般采用整体法与隔离法进行分析.2.采用整体法进行受力分析时,要注意各个物体的状态应该相同.3.当直接分析一个物体的受力不方便时,可转移研究对象,先分析另一个物体的受力,再根据牛顿第三定律分析该物体的受力,此法叫“转移研究对象法”.题型2共点力作用下的静态平衡问题题型3共点力作用下的动态平衡问题以题说法动态平衡问题分析的三个常用方法1.解析法:一般把力进行正交分解,两个方向上列平衡方程,写出所要分析的力与变化角度的关系,然后判断各力的变化趋势.2.图解法:能用图解法分析动态变化的问题有三个显著特征:一、物体一般受三个力作用;二、其中有一个大小、方向都不变的力;三、还有一个方向不变的力.3.相似三角形法:物体一般受三个力作用而平衡,系统内一定总存在一个与矢量三角形相似的结构三角形,这种情况下采用相似三角形法解决问题简单快捷.以题说法.电场和重力场内的平衡问题,仍然是力学问题.力学中用到的图解法和正交分解法仍然可以用在电场和重力场中.2.当涉及多个研究对象时,一般采用整体法和隔离法结合的方法求解.如本题分析地面对b的支持力和作用力F的变化时应用整体法可以非常方便地得出结论.1.应用平衡条件解决电学平衡问题审题示例如图8所示,在倾角为θ的斜面上固定两根足够长的光滑平行金属导轨PQ 、MN ,相距为L ,导轨处于磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向下.有两根质量均为m 的金属棒a 、b ,先将a 棒垂直导轨放置,用跨过光滑定滑轮的细线与物块c 连接,连接a 棒的细线平行于导轨,由静止释放c ,此后某时刻,将b 也垂直导轨放置,a 、c 此刻起做匀速运动,b 棒刚好能静止在导轨上,a 棒在运动过程中始终与导轨垂直,两棒与导轨接触良好,导轨电阻不计.则( )A .物块c 的质量是m sin θB .回路中电流方向俯视为顺时针C .b 棒放上后,a 棒受到的安培力为2mg sin θD .b 棒放上后,a 棒中电流大小是mg sin θBL审题模板点睛之笔 此题为力电综合问题,考查了力学知识的平衡问题和电磁感应知识.两问题的连接点是安培力.安培力及其他力的共同作用使物体处于平衡状态,由平衡条件可推出安培力的大小,进而得到电路的电流.因此,在解决力电综合问题时,找准问题的连接点是解题的关键.本专题动力学观点在力学中的应用专题二 力与物体的直线运动知识点1课时、例题1课时动力学观点在电学中的应用知识点、例题共1课时专题定位 本专题解决的是物体(或带电体)在力的作用下的匀变速直线运动问题.高考对本专题考查的内容主要有:①匀变速直线运动的规律及运动图象问题;②行车安全问题;③物体在传送带(或平板车)上的运动问题;④带电粒子(或带电体)在电场、磁场中的匀变速直线运动问题;⑤电磁感应中的动力学分析.考查的主要方法和规律有:动力学方法、图象法、运动学的基本规律、临界问题的处理方法等.应考策略 抓住“两个分析”和“一个桥梁”.“两个分析”是指“受力分析”和“运动情景或运动过程分析”.“一个桥梁”是指加速度是联系运动和受力的桥梁.综合应用牛顿运动定律和运动学公式解决问题.第1课时 动力学观点在力学中的应用1.物体或带电粒子做匀变速直线运动的条件是:物体所受合力为恒力,且与速度方向共线.2.匀变速直线运动的基本规律为速度公式:v t =v 0+at位移公式:s =v 0t +12at 2 速度和位移公式的推论为:v 2t -v 20=2as中间时刻的瞬时速度为v t 2=s t =v 0+v t 2任意相邻两个连续相等的时间内的位移之差是一个恒量,即Δs =s n +1-s n =a ·(Δt )2.3.速度—时间关系图线的斜率表示物体运动的加速度,图线与时间轴所包围的面积表示物体运动的位移.匀变速直线运动的v -t 图象是一条倾斜直线.4.位移—时间关系图线的斜率表示物体的速度,匀变速直线运动的s -t 图象是一条抛物线.5.超重或失重时,物体的重力并未发生变化,只是物体对支持物的压力(或对悬挂物的拉力)发生了变化.物体发生超重或失重现象与物体的运动方向无关,只决定于物体的加速度方向.当a 有竖直向上的分量时,超重;当a 有竖直向下的分量时,失重;当a =g 且竖直向下时,完全失重.1.动力学的两类基本问题的处理思路2.解决动力学问题的常用方法(1)整体法与隔离法.(2)正交分解法:一般沿加速度方向和垂直于加速度方向进行分解,有时根据情况也可以把加速度进行正交分解.(3)逆向思维法:把运动过程的末状态作为初状态的反向研究问题的方法,一般用于匀减速直线运动问题,比如刹车问题、竖直上抛运动.题型1运动学图象问题以题说法解图象类问题的关键在于将图象与物理过程对应起来,通过图象的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题.题型2整体法与隔离法在连接体问题中的应用以题说法1、在应用牛顿运动定律分析连接体问题时,要灵活交替使用整体法和隔离法.各部分以及整体的共同特点是加速度相同,但与物体间作用力有关的问题必须隔离出受力最简单或未知量最少的物体来研究.2、掌握常见的物理模型,如轻绳、轻杆等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理二轮复习资料
1 物体带电的标志:能够吸引轻小物体。

(带电体的性质)
2 摩擦起电:用摩擦的方法使物体带电,叫摩擦起电。

3 摩擦起电的原因:不同物质的原子核束缚电子的能力不同,在摩擦时,束缚电子能力强的物质就得到电子带负电,束缚电子能力差的物质就失去电子带正电。

4 正电荷:绸子摩擦过的玻璃棒上带的电荷叫做正电荷。

负电荷:毛皮摩擦过的橡胶棒上带的电荷叫做负电荷。

5 电荷的相互作用规律:同种电荷相互排斥,异种电荷相互吸引。

6 验电器的作用:用来检验物体是否带电。

验电器的工作原理:利用同种电荷相互排斥的原理工作的。

7 电量:电荷的多少叫做电量。

电量的单位是库仑,简称库。

8 电子电量:一个电子所带的电量叫电子电量。

它是*10-19库。

9 中和:放在一起的等量异种电荷完全抵消的现象,叫做中和。

10 1897年英国科学家汤姆逊发现了电子。

11 电流方向:把正电荷移动的方向规定为电流的方向。

电子移动方向与它正好相反。

12 导体:容易导电的物体叫导体。

如金属、石墨、人体、大地及酸碱盐水液。

绝缘体:不容易导电的物体叫绝缘体。

如橡胶、玻璃、陶瓷、塑料、油等。

13 电源:能够提供持续电流的装置。

在干电池中电能是以化学能的形式存在。

14 自由电子:在金属导体中能脱离原子核束缚而在金属内部自由移动的电子。

15 电路:把用电器、电源、开关用导线连接起来的电流路径。

电路图:用符号表示电路连接情况的图。

16 通路:处处接通的电路。

开路:某处断开的电路。

短路:不经过用电器直接把导线接在电源两端的电路。

17 串联电路:把电路元件逐个顺次连接起来的电路。

特点:电流依次通过每个用电器。

并联电路:把电路元件并列连接起来的电路。

特点电流在某处分支,再在某处会合。

对于定滑轮,动滑轮和滑轮组明确以下5个关系对于分析问题是很重要的(以竖直向上提升重物的滑轮、滑轮组为例)
(1)当不考虑动滑轮重及绳与滑轮之间摩擦时,拉力与
被提升的物重的关系.
(2)若考虑动滑轮重,不计摩擦时,拉力与被提升物重关系.
(3)若考虑摩擦,拉力与被提升物关系.
(4)绳子自由端(即:拉力作用点)移动的距离S与重物被提升的距离h的关系:
S=nh(n为向上提升物体绳的段数)
(5)绳子自由端(即拉力作用点)移动速度VF,重物被提升的速度VG关系.
一、光的传播
1、光源:能够发光的物体可分为
(1)自然光源如:太阳,萤火虫
(2)人造光源如:蜡烛,电灯
2、光的传播:
(1)光在同种均匀介质中是沿直线传播的
(2)直线传播现象
①影子的形成:日食、月食、无影灯
②小孔成像:倒立、实像
3、光的传播速度:
(1)光在真空中的传播速度是×108
(2)光在水中的传播速度是真空中的3/4
(3)光在玻璃中的传播速度是真空中的2/3
二、光的反射
1、反射现象:光射到物体的表面被反射出去的现象
2、概念:
(1)一点:入射点
(2)二角:
①入射角:入射光线与法线的夹角
②反射角:反射光学分与法线的夹角
(3)三线:入射光线、反射光线、法线
3、反射定律:
(1)入射光线、反射光线、法线在同一平面内(三线共面)
(2)入射光线、反射光线分居法线两侧(两线异侧)
(3)反射角等于入射角(两角相等)
4、反射分类:遵循光的反射定律。

(1)镜面反射:入射光线平行,反射光线也平行
(2)漫反射:入射光线平行,反射光线不平行
5、平面镜成像:平面镜成的像是虚像,像与物体的大小相等,像到平面镜的距离与物体到平面镜的距离相等,像与物体关于平面镜对称(等大,正立,虚像)
三、光的折射
1、折射现象:光由一种介质射入另一种介质时,在介面上将发生光路改变的现象。

常见现象:筷子变“弯”、池水变浅、海市蜃楼。

2、光的折射初步规律:(1)光从空气斜射入其他介质,折射角小于反射角(2)光从其他介质斜射入空气,折射角大于入射角(3)光从一种介质垂直射入另一种介质,传播方向不变(4)当入射角增大时,折射角随之增大
3、光路是可逆的
四、光的色散
1、定义:白光经过三棱镜时被分解为红、橙、黄、绿、蓝、靛、紫七种色光的现象叫光的色散。

2、色光三基色:红、绿、蓝。

混合后为白色
3、颜料三原色:红、黄、蓝。

混合后为黑色
4、颜色
(1)透明体的颜色决定于物体透过的色光。

(透明物体让和它颜色的光通过,把其它光都吸收)。

(2)不透明体的颜色决定于物体反射的色光。

(有色不通明物体反射与它颜色相同的光,吸收其它颜色的光,白色物体反射各种色光,黑色物体吸收所有的光)。

五、光学探究凸透镜成像
1、凸透镜:对光有会聚作用。

2、相关概念:①主光轴②焦点(F) ③光心(O)④焦距
(f)
3、经过凸透镜的三条特殊光线:
①平行于主光轴的光线经凸透镜折射后过异侧焦点;
②经过光心的光线传播方向不改变;
③经过凸透镜焦点经凸透镜折射后平行于主光轴射出。

4、凹透镜:对光有发散作用。

5、平行于主光轴的光线经凹透镜折射后折射光线反向延长线过同侧焦点。

6、凸透镜成像(1)原理:光的折射。

(2)成像规律:物近像远像变大,二倍焦距见大小,一倍焦距分虚实
六、眼睛与视力的矫正
1、眼睛
(1)晶状体和角膜的共同作用相当于一个凸透镜,视网膜相当于光屏。

(2)成像原理:当物距大于两倍焦距时,凸透镜成倒立、缩小的实像。

2、视力的矫正
(1)近视眼
①、特点:看不清远处物体。

②、矫正:利用凹透镜来矫正。

(2)远视眼(老花眼)
①、特点:看不清近处物体。

②、矫正:利用凸透镜来矫正
(3)眼镜的度数= 100/f (f以米作为单位)
七、神奇的“眼睛”
1、放大镜的成像原理:物体在焦距以内,凸透镜成正立、放大的虚像。

2、显微镜
①结构:目镜、物镜。

②成像原理:物镜成倒立、放大的实像,目镜相当于普通放大镜,把实像再次放大成虚像。

3、望远镜
①结构:目镜、物镜。

②成像原理:物镜成倒立、缩小的实像,目镜相当于普通放大镜,把实像再次放大成虚像。

4、照相机
①结构:镜头、光圈、快门、胶片。

②成像原理:当物距大于两倍焦距时,凸透镜成倒立、缩小的实像。

5、投影仪
①结构:凸透镜、平面镜、屏幕。

②成像原理:当物距在焦距与两倍焦距之间时,凸透镜成倒立、放大的实像。

相关文档
最新文档