石油地质学复习参考题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、名词解释

01.生物化学气:在低温(<75℃)还原环境下,厌氧细菌对沉积物有机质进行生物化学降解作用所形成的富含甲烷气体称为生物化学气。

02.油气聚集带:同一个二级构造带中,互有成因联系、油气聚集条件相似的一系列油气田的总和。03.油气田:受单一局部构造单位所控制的同一面积内的油藏、气藏、油气藏的总和。

04.干酪根:沉积岩中所有不溶于非氧化性的酸、碱和非极性有机溶剂的分散有机质。

05.油气运移输导系统:指各种油气运移通道在空间上构成交织状的结构。

06.生油门限:指在埋藏深度增大,达到有机质开始大量转化为石油时的温度。

07.生油窗:指热催化作用下,有机质能够大量转化为石油和湿气的生油时期。

08.相渗透率:岩石对其中每种相流的渗透率。

09.异常压力:

10.岩性圈闭:指储集层岩性变化所形成的圈闭。

11.流体势:将地下单位质量流体具有的机械能的总和定义为流体的势;把单位体积的流体从基准面运输到地下某点所需做的功。

12.排替压力:非润湿相流体排替润湿相流体所需要的最小压力。

13.有效孔隙度:是指那些互相连通的,且在一般压力条件下,可以允许流体在其中流动的孔隙体积之和与岩石总体积的比值,以百分数表示之。

14.氯仿沥青“A”:用氯仿抽提岩石样品所获得的可溶有机质。

15.固态气体水合物:气体分子被天然封存在水的冰晶结构中,是低温高压环境条件下形成的固态产物。16.地层超覆不整合油气藏:指由于水体的渐近在原来沉积了较好的砂体的上方再超覆沉积不渗透泥岩形成的圈闭。

17.油气藏的充满系数:含油高度与闭合高度的比值。

18.次生油气藏:油气藏被破坏,油气再次运移聚集形成的油气藏。

二、基本理论、基本观点

01.生油岩具有什么特点?

生油岩一般是粒细、色暗、富含有机质和微体生物化石、常含原生分散状黄铁矿、偶见原生油苗。02.通过哪些方法划分干酪根的类型?比较不同类型干酪根的基本差异。

光学分类:藻质、无定形、草质、木质和煤质五种组分。

根据元素组成及演化划分为三种主要类型:Ⅰ、Ⅱ、Ⅲ型。

(1)I型干酪根:原始氢含量高和氧含量低,H/C原子比介于1.25-1.75,O/C原子比介于0.026-0.12。以含类脂化合物为主,直链烷烃很多,多环芳香烃及含氧官能团很少;它可以来自藻类堆积物,也可能是各种有机质被细菌强烈改造,留下原始物质的类脂化合物馏分和细菌的类脂化合物;生油潜能大,相当于浅层未成熟样品重量的80%。

(2)Ⅱ型干酪根:原始氢含量较高,但稍低于I型干酪根,H/C原子比0.65-1.25,O/C原子比0.04-0.13。属高度饱和的多环碳骨架,含中等长度直链烷烃和环烷烃甚多,也含多环芳香烃及杂原子官能团;来源于海相浮游生物(以浮游植物为主)和微生物的混合有机质;生油潜能中等。

(3)III型干酪根:原始氢含量低和氧含量高,H/C原子比0.46-0.93,O/C原子比0.05-0.30,以含多环芳香烃及含氧官能团为主,饱和烃链很少,被联接在多环网格结构上;来源于陆地高等植物,含可鉴别的植物碎屑甚多,可被河流带入海、湖成三角洲或大陆边缘。

03.沉积有机质向油气转化的一般阶段及特点。

生物化学生气阶段(未熟-低熟阶段)

深度范围是从沉积界面到数百乃至1500m深处;温度介于10-60℃,以细菌活动为主;与沉积物的成

岩作用阶段基本相符,相当于碳化作用的泥炭-褐煤阶段。

热催化生油气阶段(成熟阶段)

沉积物埋藏深度超过1500-2500m,进入后生作用阶段前期;有机质经受的地温升至60-180℃,相当于长焰煤-焦煤阶段;促使有机质转化的最活跃因素是热催化作用,温度因素是主要的。

热裂解生凝析气阶段(高成熟阶段)

埋藏深度超过3500-4000m;地温达到180-250℃;后生作用阶段后期,相当于碳化作用的瘦煤-贫煤阶段。有机质高成熟时期

深部高温生气阶段(过程熟阶段)

深度超过6000-7000m,温度超过了250℃,沉积物已进入变生作用阶段,相当于半无烟煤-无烟煤的高度碳化阶段。已形成的液态烃和重质气态烃强烈裂解,变成热力学上最稳定的甲烷;干酪根残渣释出甲烷后进一步缩聚,H/C原子比降至0.45-0.3。

04.碳酸盐岩储层与碎屑岩储层的孔隙成因和主控因素比较。

碎屑岩储层原生孔隙发育的影响因素:

(1)矿物成分对原生孔隙的影响

矿物成份主要以石英、长石、云母。矿物成份对储集物性的影响主要两个方面:

矿物的润湿性:润湿性强,亲水的矿物,表面束缚薄膜较厚,缩小孔隙空间,渗透性变差。

矿物的抗风化能力:抗风化能力弱,易风化成粘土矿物充填孔隙或表面形成风化层减小孔隙空间。因此,长石砂岩较石英砂岩物性差。

(2)岩石结构对原生孔隙的影响

包括粒度大小、分选、磨圆、排列方式。

粒度和分选系数的影响

粒度:总孔隙度随粒径加大而减小。

分选:粒度中值一定时,分选差的岩石,小颗粒充填大孔隙,使孔隙度、渗透率降低;分选好的岩石,孔渗增高

(3)杂基含量对原生孔隙的影响

杂基:指颗粒直径小于0.0315mm的非化学沉淀颗粒。代表沉积环境能量

杂基含量高,一般代表分选差,平均粒径也较小,喉道小,多为杂基支撑,孔隙结构差,其孔隙、渗透性也差。

碎屑岩储层原生孔隙度发育程度,归根结底是由其沉积环境所决定。

沉积环境的影响在于水动力条件、物源供给条件的影响,它们影响矿物成分、结构和杂基含量。

沉积环境不仅决定储层孔隙度的发育,而且决定储层的渗透率,储层厚度和储层的分布范围。

影响碳酸盐岩溶洞的因素:

溶孔和溶洞的发育程度,主要决定于岩石本身的溶解度和地下水的溶解能力。

(1)碳酸盐岩的溶解度

⏹碳酸盐岩溶解度与其成分的Ca/Mg比值、其中所含粘土的数量、颗粒大小、白云岩化程度、重结

晶程度等因素有关。

⏹在地下水富含CO2的情况下,溶解度与Ca/Mg比值成正比关系,即石灰岩比白云岩易溶。

⏹地下水中富含硫酸根离子时,白云石的溶解度会大于方解石。

⏹随着颗粒变小,溶解度降低。

(2)地下水的溶解能力

地下水的溶解能力是由地下水的性质和运动状态决定的;随着CO2含量的增加,溶液的pH值降低,对碳酸盐岩的溶解能力大大增强;动水条件容易溶解;地下水的温度升高,容易溶解。溶蚀程度可能增加两倍。

(3)地貌、气候和构造的影响

相关文档
最新文档