高中数学苏教版选修2-1第2章《圆锥曲线与方程》(1)word学案

合集下载

高中数学苏教版选修2-1第2章《圆锥曲线与方程》(4.2)word学案

高中数学苏教版选修2-1第2章《圆锥曲线与方程》(4.2)word学案

2.4.2 抛物线的几何性质[学习目标] 1.掌握抛物线的几何性质.2.会用抛物线的标准方程和几何性质处理一些简单的实际问题.[知识链接]类比椭圆、双曲线的几何性质,结合图象,说出抛物线y 2=2px (p >0)的范围、对称性、顶点、离心率.怎样用方程验证? 答:(1)范围:x ≥0,y ∈R ;(2)对称性:抛物线y 2=2px (p >0)关于x 轴对称; (3)顶点:抛物线的顶点是坐标原点;(4)离心率:抛物线上的点M 到焦点的距离和它到准线的距离的比叫抛物线的离心率.用e 表示,由定义可知e =1. [预习导引]1.抛物线的几何性质标准方程y 2=2px (p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)图形性质范围x ≥0,y ∈Rx ≤0,y ∈Rx ∈R ,y ≥0x ∈R ,y ≤0对称轴 x 轴x 轴y 轴y 轴顶点 (0,0) 离心率e =1直线过抛物线y 2=2px (p >0)的焦点F ,与抛物线交于A (x 1,y 1)、B (x 2,y 2)两点,由抛物线的定义知,AF =x 1+p 2,BF =x 2+p2,故AB =x 1+x 2+p .3.直线与抛物线的位置关系直线y =kx +b 与抛物线y 2=2px (p >0)的交点个数决定于关于x 的方程k 2x 2+2(kb -p )x +b 2=0的解的个数.当k ≠0时,若Δ>0,则直线与抛物线有两个不同的公共点;当Δ=0时,直线与抛物线有一个公共点;当Δ<0时,直线与抛物线没有公共点.当k =0时,直线与抛物线的对称轴平行或重合,此时直线与抛物线有一个公共点.要点一 抛物线的几何性质例1 抛物线的顶点在原点,对称轴重合于椭圆9x 2+4y 2=36短轴所在的直线,抛物线焦点到顶点的距离为3,求抛物线的方程及抛物线的准线方程. 解 椭圆的方程可化为x 24+y 29=1,其短轴在x 轴上, ∴抛物线的对称轴为x 轴,∴设抛物线的方程为y 2=2px 或y 2=-2px (p >0). ∵抛物线的焦点到顶点的距离为3,即p2=3,∴p =6.∴抛物线的方程为y 2=12x 或y 2=-12x , 其准线方程分别为x =-3和x =3.规律方法 (1)注意抛物线各元素间的关系:抛物线的焦点始终在对称轴上,抛物线的顶点就是抛物线与对称轴的交点,抛物线的准线始终与对称轴垂直,抛物线的准线与对称轴的交点和焦点关于抛物线的顶点对称.(2)解决抛物线问题要始终把定义的应用贯彻其中,通过定义的运用,实现两个距离之间的转化,简化解题过程.跟踪演练1 已知双曲线方程是x 28-y 29=1,求以双曲线的右顶点为焦点的抛物线的标准方程及抛物线的准线方程.解 因为双曲线x 28-y 29=1的右顶点坐标为(22,0),所以p2=22,且抛物线的焦点在x 轴正半轴上,所以,所求抛物线方程为y 2=82x ,其准线方程为x =-2 2. 要点二 抛物线的焦点弦问题例2 已知抛物线y 2=6x ,过点P (4,1)引一条弦P 1P 2使它恰好被点P 平分,求这条弦所在的直线方程及P 1P 2.解 设直线上任意一点坐标为(x ,y ),弦两端点P 1(x 1,y 1),P 2(x 2,y 2).∵P 1,P 2在抛物线上,∴y 21=6x 1,y 22=6x 2.两式相减,得(y 1+y 2)(y 1-y 2)=6(x 1-x 2). ∵y 1+y 2=2,∴k =y 1-y 2x 1-x 2=6y 1+y 2=3,∴直线方程为y -1=3(x -4),即3x -y -11=0.由⎩⎪⎨⎪⎧y 2=6x ,y =3x -11,得y 2-2y -22=0, ∴y 1+y 2=2,y 1·y 2=-22. ∴P 1P 2=1+1922-4×(-22)=22303. 规律方法 (1)解决抛物线的焦点弦问题时,要注意抛物线定义在其中的应用,通过定义将焦点弦长度转化为端点的坐标问题,从而可借助根与系数的关系进行求解. (2)设直线方程时要特别注意斜率不存在的直线应单独讨论.跟踪演练2 已知直线l 经过抛物线y 2=6x 的焦点F ,且与抛物线相交于A 、B 两点. (1)若直线l 的倾斜角为60°,求AB 的值; (2)若AB =9,求线段AB 的中点M 到准线的距离. 解 (1)因为直线l 的倾斜角为60°, 所以其斜率k =tan60°=3, 又F (32,0).所以直线l 的方程为y =3(x -32).联立⎩⎪⎨⎪⎧y 2=6x ,y =3(x -32)消去y 得x 2-5x +94=0.若设A (x 1,y 1),B (x 2,y 2).则x 1+x 2=5, 而AB =AF +BF =x 1+p 2+x 2+p2=x 1+x 2+p .所以AB =5+3=8.(2)设A (x 1,y 1),B (x 2,y 2),由抛物线定义知 AB =AF +BF =x 1+p 2+x 2+p2=x 1+x 2+p =x 1+x 2+3=9,所以x 1+x 2=6,于是线段AB 的中点M 的横坐标是3, 又准线方程是x =-32,所以M 到准线的距离等于3+32=92.要点三 直线与抛物线的位置关系例3 已知抛物线的方程为y 2=4x ,直线l 过定点P (-2,1),斜率为k ,k 为何值时,直线l 与抛物线y 2=4x :只有一个公共点;有两个公共点;没有公共点? 解 由题意,设直线l 的方程为y -1=k (x +2).由方程组⎩⎪⎨⎪⎧y -1=k (x +2),y 2=4x ,(*)可得ky 2-4y +4(2k +1)=0.① (1)当k =0时,由方程①得y =1. 把y =1代入y 2=4x ,得x =14.这时,直线l 与抛物线只有一个公共点(14,1).(2)当k ≠0时,方程①的判别式为 Δ=-16(2k 2+k -1). 1°由Δ=0,即2k 2+k -1=0, 解得k =-1,或k =12.于是,当k =-1,或k =12时,方程①只有一个解,从而方程组(*)只有一个解.这时,直线l 与抛物线只有一个公共点. 2°由Δ>0,得2k 2+k -1<0, 解得-1<k <12.于是,当-1<k <12,且k ≠0时,方程①有两个解,从而方程组(*)有两个解.这时,直线l 与抛物线有两个公共点. 3°由Δ<0,即2k 2+k -1>0, 解得k <-1,或k >12.于是,当k <-1,或k >12时,方程①没有实数解,从而方程组(*)没有解.这时,直线l 与抛物线没有公共点. 综上,我们可得当k =-1,或k =12,或k =0时,直线l 与抛物线只有一个公共点;当-1<k <12,且k ≠0时,直线l 与抛物线有两个公共点;当k <-1,或k >12时,直线l 与抛物线没有公共点.规律方法 直线与抛物线交点的个数,等价于直线方程、抛物线方程联立得到的方程组解的个数.注意直线斜率不存在和得到的方程二次项系数为0的情况.跟踪演练3 如图,过抛物线y 2=x 上一点A (4,2)作倾斜角互补的两条直线AB ,AC 交抛物线于B ,C 两点,求证:直线BC 的斜率是定值.证明 设k AB =k (k ≠0),∵直线AB ,AC 的倾斜角互补,∴k AC =-k (k ≠0), ∵AB 的方程是y =k (x -4)+2.由方程组⎩⎪⎨⎪⎧y =k (x -4)+2,y 2=x ,消去y 后,整理得k 2x 2+(-8k 2+4k -1)x +16k 2-16k +4=0. ∵A (4,2),B (x B ,y B )是上述方程组的解. ∴4·x B =16k 2-16k +4k 2,即x B =4k 2-4k +1k 2.以-k 代换x B 中的k , 得x C =4k 2+4k +1k 2,∴k BC =y B -y C x B -x C =k (x B -4)+2-[-k (x C -4)+2]x B -x C=k (x B +x C -8)x B -x C =k (8k 2+2k 2-8)-8kk 2=-14.∴直线BC 的斜率为定值.1.以x 轴为对称轴的抛物线的通径(过焦点且与x 轴垂直的弦)长为8,若抛物线的顶点在坐标原点,则其方程为________________. 答案 y 2=8x 或y 2=-8x解析 设抛物线y 2=2px 或y 2=-2px (p >0),p =4.2.若抛物线y 2=x 上一点P 到准线的距离等于它到顶点的距离,则点P 的坐标为________. 答案 (18,±24)解析 由题意知,点P 到焦点F 的距离等于它到顶点O 的距离,因此点P 在线段OF 的垂直平分线上,而F (14,0),所以P 点的横坐标为18,代入抛物线方程得y =±24,故点P 的坐标为(18,±24). 3.若抛物线y =4x 2上一点到直线y =4x -5的距离最短,则该点坐标为________. 答案 (12,1)解析 因为y =4x 2与y =4x -5不相交,设与y =4x -5平行的直线方程为y =4x +m .则⎩⎪⎨⎪⎧y =4x 2,y =4x +m⇒4x 2-4x -m =0.① 设此直线与抛物线相切有Δ=0, 即Δ=16+16m =0,∴m =-1.将m =-1代入①式得x =12,从而y =14×4=1,所求点的坐标为(12,1).4.经过抛物线y 2=2x 的焦点且平行于直线3x -2y +5=0的直线l 的方程是________________. 答案 6x -4y -3=0解析 设直线l 的方程为3x -2y +c =0,抛物线y 2=2x 的焦点为F (12,0),所以3×12-2×0+c =0,所以c =-32,故直线l 的方程是6x -4y -3=0.1.讨论抛物线的几何性质,一定要利用抛物线的标准方程;利用几何性质,也可以根据待定系数法求抛物线的方程.2.直线与抛物线有一个交点,是直线与抛物线相切的必要不充分条件.3.直线与抛物线的相交弦问题共有两类,一类是过焦点的弦,一类是不过焦点的弦.解决弦的问题,大多涉及到抛物线的弦长、弦的中点、弦的斜率.常用的办法是将直线与抛物线联立,转化为关于x 或y 的一元二次方程,然后利用根与系数的关系,这样避免求交点.尤其是弦的中点问题,还应注意“点差法”的运用.一、基础达标1.设AB 为过抛物线y 2=2px (p >0)的焦点的弦,则AB 的最小值为________. 答案 2p解析 当AB 垂直于对称轴时,AB 取最小值,此时AB 即为抛物线的通径,长度等于2p . 2.已知抛物线y 2=2px (p >0),过其焦点且斜率为1的直线交抛物线于A ,B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为________. 答案 x =-1解析 抛物线的焦点为F (p 2,0),所以过焦点且斜率为1的直线方程为y =x -p 2,即x =y +p2,代入y 2=2px 得y 2=2p ⎝⎛⎭⎫y +p 2=2py +p 2,即y 2-2py -p 2=0,由根与系数的关系得y 1+y 22=p =2(y 1,y 2分别为点A ,B 的纵坐标),所以抛物线方程为y 2=4x ,准线方程为x =-1.3.过抛物线y 2=2px (p >0)的焦点F 的直线与抛物线交于A 、B 两点,若A 、B 在准线上的射影为A 1、B 1,则∠A 1FB 1等于________. 答案 90°解析 如图,由抛物线定义知AA 1=AF ,BB 1=BF ,所以∠AA 1F =∠AF A 1,又∠AA 1F =∠A 1FO , ∴∠AF A 1=∠A 1FO , 同理∠BFB 1=∠B 1FO ,于是∠AF A 1+∠BFB 1=∠A 1FO +∠B 1FO =∠A 1FB 1.故∠A 1FB 1=90°. 4.抛物线y 2=8x 的准线方程是________. 答案 x =-2解析 抛物线y 2=2px (p >0),p =4.5.过抛物线y 2=4x 的焦点作直线交抛物线于A ,B 两点,设A (x 1,y 1),B (x 2,y 2).若x 1+x 2=6,则AB =________. 答案 8解析 如图,作AA ′⊥l ,BB ′⊥l ,垂足分别为A ′,B ′. 由抛物线定义知 AF =AA ′=x 1+p2,BF =BB ′=x 2+p2.∴AB =AF +BF =x 1+x 2+p =6+2=8.6.已知O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 是抛物线上一点,若OA →·AF →=-4,则点A 的坐标是__________________. 答案 (1,2)或(1,-2)解析 ∵抛物线的焦点为F (1,0),设A (y 204,y 0),则OA →=(y 204,y 0),AF →=(1-y 204,-y 0),由OA →·AF →=-4,得y 0=±2, ∴点A 的坐标是(1,2)或(1,-2).7.如图所示,过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于点A 、B ,交其准线于点C ,若BC =2BF ,且AF =3,求此抛物线的方程. 解 过A 、B 分别作准线的垂线AA ′、BD , 垂足分别为A ′、D ,则BF =BD ,又2BF =BC ,∴在Rt △BCD 中,∠BCD =30°. 又AF =3,∴AA ′=3,AC =6,FC =3.∴F 到准线距离p =12FC =32.∴y 2=3x . 二、能力提升8.已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,则cos ∠AFB =________. 答案 -45解析 由⎩⎪⎨⎪⎧y 2=4x ,y =2x -4得x 2-5x +4=0,∴x =1或x =4.不妨设A (4,4),B (1,-2),则|F A →|=5,|FB →|=2,F A →·FB →=(3,4)·(0,-2)=-8, ∴cos ∠AFB =F A →·FB →|F A →|·|FB →|=-85×2=-45.9.已知直线y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A ,B 两点,F 为C 的焦点.若F A =2FB ,则k =________. 答案223解析 设A (x 1,y 1),B (x 2,y 2),易知x 1>0,x 2>0,y 1>0,y 2>0,由⎩⎪⎨⎪⎧y =k (x +2),y 2=8x ,得k 2x 2+(4k 2-8)x +4k 2=0, ∴x 1x 2=4,①∵F A =x 1+p2=x 1+2,FB =x 2+p2=x 2+2,且F A =2FB ,∴x 1=2x 2+2.② 由①②得x 2=1,∴B (1,22),代入y =k (x +2),得k =223.10.抛物线x 2=2py (p >0)的焦点为F ,其准线与双曲线x 23-y 23=1相交于A ,B 两点,若△ABF为等边三角形,则p =________. 答案 6解析 抛物线的焦点坐标F (0,p 2),准线方程为y =-p 2.代入x 23-y 23=1得|x |=3+p 24.若要使△ABF 为等边三角形,则tan π6=|x |p=3+p 24p =33,解得p 2=36,p =6. 11.已知抛物线的顶点在原点,它的准线过双曲线x 2a 2-y 2b 2=1的一个焦点,并且这条准线与双曲线的两焦点的连线垂直,抛物线与双曲线交点为P (32,6),求抛物线方程和双曲线方程.解 依题意,设抛物线方程为y 2=2px (p >0), ∵点(32,6)在抛物线上,∴6=2p ×32,∴p =2,∴所求抛物线方程为y 2=4x . ∵双曲线左焦点在抛物线的准线x =-1上, ∴c =1,即a 2+b 2=1, 又点(32,6)在双曲线上,∴94a 2-6b 2=1, 由⎩⎪⎨⎪⎧a 2+b 2=1,94a 2-6b 2=1, 解得:a 2=14,b 2=34.∴所求双曲线方程为4x 2-43y 2=1.12.已知顶点在原点,焦点在x 轴上的抛物线被直线y =2x +1截得的弦长为15,求抛物线的方程.解 设抛物线的方程为y 2=2ax ,则⎩⎪⎨⎪⎧y 2=2ax ,y =2x +1,消去y ,得 4x 2-(2a -4)x +1=0,设直线y =2x +1与抛物线交于A 、B 两点,其坐标为A (x 1,y 1),B (x 2,y 2),x 1+x 2=a -22,x 1x 2=14.AB =1+k 2|x 1-x 2|=5(x 1+x 2)2-4x 1x 2 =5(a -22)2-4×14=15. 则a 24-a =3,a 2-4a -12=0, a =-2或6.∴y 2=-4x 或y 2=12x . 三、探究与创新13.已知过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于A 、B 两点,设A (x 1,y 1),B (x 2,y 2),则称AB 为抛物线的焦点弦. 求证:(1)y 1y 2=-p 2;x1x 2=p 24; (2)1F A +1FB =2p; (3)以AB 为直径的圆与抛物线的准线相切. 证明 如图所示.(1)抛物线y 2=2px (p >0)的焦点F (p 2,0),准线方程:x =-p2.设直线AB 的方程为x =ky +p2,把它代入y 2=2px ,化简,得y 2-2pky -p 2=0.∴y 1y 2=-p 2,∴x 1x 2=y 212p ·y 222p =(y 1y 2)24p 2=(-p 2)24p 2=p 24.(2)根据抛物线定义知第- 11 -页 共11页 F A =AA 1=x 1+p 2,FB =BB 1=x 2+p 2, ∴1F A +1FB =1x 1+p 2+1x 2+p 2=22x 1+p +22x 2+p=2(2x 2+p )+2(2x 1+p )(2x 1+p )(2x 2+p )=4(x 1+x 2)+4p 4x 1x 2+2p (x 1+x 2)+p 2=4(x 1+x 2+p )2p (x 1+x 2+p )=2p . (3)设AB 中点为C (x 0,y 0),过A 、B 、C 分别作准线的垂线,垂足分别为A 1,B 1,C 1.则CC 1=12(AA 1+BB 1)=12(AF +BF )=12·AB . ∴以线段AB 为直径的圆与抛物线的准线相切.。

2019-2020年高中数学苏教版选修2-1第2章《圆锥曲线与方程》(5)word学案

2019-2020年高中数学苏教版选修2-1第2章《圆锥曲线与方程》(5)word学案

2019-2020年高中数学苏教版选修2-1第2章《圆锥曲线与方程》(5)word 学案 [学习目标] 1.了解圆锥曲线的统一定义.2.能用坐标法解决一些与圆锥曲线有关的简单几何问题和实际问题.[知识链接]1.椭圆上一点到准线距离与它到对应焦点距离之比等于多少? 答:1e. 2.动点M 到一个定点F 的距离与到一条定直线l 的距离之比为定值的轨迹一定是圆锥曲线吗? 答:当F ∉l 时,动点M 轨迹是圆锥曲线.当F ∈l 时,动点M 轨迹是过F 且与l 垂直的直线. [预习导引]1.圆锥曲线的统一定义平面内到一个定点F 和到一条定直线l (F 不在l 上)的距离的比等于常数e 的点的轨迹. 0<e <1时,它表示椭圆;e >1时,它表示双曲线;e =1时,它表示抛物线.2.对于椭圆x 2a 2+y 2b 2=1 (a >b >0)和双曲线x 2a 2-y 2b2=1(a >0,b >0)中,与F (c,0)对应的准线方程是l :x =a 2c ,与F ′(-c ,0)对应的准线方程是l ′:x =-a 2c;如果焦点在y 轴上,则两条准线方程为y =±a 2c.要点一 统一定义的简单应用例1 椭圆x 225+y 29=1上有一点P ,它到左准线的距离等于2.5,那么,P 到右焦点的距离为________.答案 8解析 如图所示,PF 1+PF 2=2a =10,e =c a =45, 而PF 12.5=e =45,∴PF 1=2,∴PF 2=10-PF 1=10-2=8.规律方法 椭圆的两个定义从不同角度反映了椭圆的特征,解题时要灵活运用.一般地,如果遇到有动点到两定点距离和的问题,应自然联想到椭圆的定义;如果遇到有动点到一定点及一定直线距离的问题,应自然联想到统一定义;若两者都涉及,则要综合运用两个定义才行.跟踪演练1 已知椭圆x 24b 2+y 2b 2=1上一点P 到右焦点F 2的距离为b (b >1),求P 到左准线的距离.解 方法一 由x 24b 2+y 2b 2=1,得a =2b ,c =3b ,e =32.由椭圆第一定义, PF 1+PF 2=2a =4b ,得PF 1=4b -PF 2=4b -b =3b .由椭圆第二定义,PF 1d 1=e ,d 1为P 到左准线的距离, ∴d 1=PF 1e =23b ,即P 到左准线的距离为23b . 方法二 ∵PF 2d 2=e ,d 2为P 到右准线的距离. e =c a =32,∴d 2=PF 2e =233b . 又椭圆的两准线的距离为2·a 2c =833b , ∴P 到左准线的距离为833b -233b =23b . 要点二 应用统一定义转化求最值例2 已知椭圆x 28+y 26=1内有一点P (1,-1),F 是椭圆的右焦点,在椭圆上求一点M ,使MP +2MF 之值为最小.解 设d 为M 到右准线的距离.∵e =c a =12,MF d =12, ∴MF 12=d ,即d =2MF (如图). 故MP +2MF =MP +MM ′.显然,当P 、M 、M ′三点共线时,所求的值为最小,从而求得点M 的坐标为(2315,-1).规律方法 本例中,利用统一定义,将椭圆上点M 到焦点F 的距离转化为到准线的距离,再利用图形的形象直观,使问题得到简捷的解决.跟踪演练2 已知双曲线x 29-y 216=1的右焦点为F ,点A (9,2),试在双曲线上求一点M ,使MA +35MF 的值最小,并求这个最小值. 解 过M 作MN 垂直于双曲线的右准线l 于N ,由第二定义可知MN =MF e(如图). 又a =3,b =4,c =5,e =53, ∴MN =35MF ,∴MA +35MF =MA +MN ,显然当M 、N 、A 三点共线时MA +MN =AN 为最小,即MA +35MF 取得最小值,此时AN =9-a 2c =9-95=365,∴MA +35MF 的最小值为365,此时点M (352,2). 要点三 圆锥曲线统一定义的综合应用例3 已知A 、B 是椭圆x 2a 2+y 2925a 2=1上的点,F 2是右焦点,且AF 2+BF 2=85a ,AB 的中点N 到左准线的距离等于32,求此椭圆方程. 解 设F 1为左焦点,则根据椭圆定义有:AF 1+BF 1=2a -AF 2+2a -BF 2=4a -(AF 2+BF 2)=4a -85a =125a . 再设A 、B 、N 三点到左准线距离分别为d 1,d 2,d 3,由梯形中位线定理有d 1+d 2=2d 3=3,而已知b 2=925a 2, ∴c 2=1625a 2,∴离心率e =45, 由统一定义AF 1=ed 1,BF 1=ed 2,∴AF 1+BF 1=125a =e (d 1+d 2)=125,∴a =1, ∴椭圆方程为x 2+y 2925=1. 规律方法 在圆锥曲线有关问题中,充分利用圆锥曲线的共同特征,将曲线上的点到准线的距离与到焦点的距离相互转化是一种常用方法.跟踪演练3 设P (x 0,y 0)是椭圆x 2a 2+y 2b 2=1(a >b >0)上任意一点,F 1为其左焦点. (1)求PF 1的最小值和最大值;(2)在椭圆x 225+y 25=1上求一点P ,使这点与椭圆两焦点的连线互相垂直. 解 (1)对应于F 1的准线方程为x =-a 2c, 根据统一定义:PF 1x 0+a 2c=e , ∴PF 1=a +ex 0.又-a ≤x 0≤a ,∴当x 0=-a 时,(PF 1)min =a +c a×(-a )=a -c ; 当x 0=a 时,(PF 1)max =a +c a·a =a +c . (2)∵a 2=25,b 2=5,∴c 2=20,e 2=45. ∵PF 21+PF 22=F 1F 22,∴(a +ex 0)2+(a -ex 0)2=4c 2. 将数据代入得25+45x 20=40.∴x 0=±532. 代入椭圆方程得P 点的坐标为⎝⎛⎭⎫532,52,⎝⎛⎭⎫532,-52,⎝⎛⎭⎫-532,52,⎝⎛⎭⎫-532,-52.1.已知方程(1+k )x 2-(1-k )y 2=1表示焦点在x 轴上的双曲线,则k 的取值范围为________. 答案 -1<k <1解析 由题意得⎩⎪⎨⎪⎧ 1+k >0,1-k >0,解得⎩⎪⎨⎪⎧ k >-1,k <1,即-1<k <1. 2.已知点F 1,F 2分别是椭圆x 2+2y 2=2的左,右焦点,点P 是该椭圆上的一个动点,那么|PF→1+PF →2|的最小值是________. 答案 2解析 设P (x 0,y 0),则PF →1=(-1-x 0,-y 0),PF →2=(1-x 0,-y 0),∴PF →1+PF →2=(-2x 0,-2y 0),∴|PF →1+PF →2|=4x 20+4y 20=22-2y 20+y 20=2-y 20+2.∵点P 在椭圆上,∴0≤y 20≤1,∴当y 20=1时,|PF →1+PF →2|取最小值为2.3.已知F 1、F 2是椭圆的两个焦点.满足MF 1→·MF 2→=0的点M 总在椭圆内部,则椭圆离心率的取值范围是________.答案 (0,22) 解析 ∵MF 1→·MF 2→=0,∴M 点轨迹方程为x 2+y 2=c 2,其中F 1F 2为直径,由题意知椭圆上的点在圆x 2+y 2=c 2外部,设点P 为椭圆上任意一点,则OP >c 恒成立,由椭圆性质知OP ≥b ,其中b 为椭圆短半轴长,∴b >c ,∴c 2<b 2=a 2-c 2,∴a 2>2c 2,∴(c a )2<12,∴e =c a <22. 又∵0<e <1,∴0<e <22. 4.已知椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 2n2=1(m >0,n >0),有相同的焦点(-c,0)和(c,0),若c 是a 、m 的等比中项,n 2是2m 2与c 2的等差中项,则椭圆的离心率是________.答案 12解析 由题意,得⎩⎪⎨⎪⎧ a 2-b 2=c 2, ①m 2+n 2=c 2,②c 2=am ,③2n 2=2m 2+c 2,④由②④可得m 2+n 2=2n 2-2m 2,即n 2=3m 2,⑤⑤代入②得4m 2=c 2⇒c =2m ,⑥⑥代入③得4m 2=am ⇒a =4m .所以椭圆的离心率e =c a =12.1.三种圆锥曲线的共同特征是曲线上的点到定点的距离与它到定直线距离的比是常数.2.利用圆锥曲线的统一定义可实现曲线上的点到焦点的距离与到准线距离的相互转化.一、基础达标1.若直线ax -y +1=0经过抛物线y 2=4x 的焦点,则实数a =______.答案 -1解析 焦点为(1,0),代入直线方程,可得a =-1.2.已知椭圆的准线方程为y =±4,离心率为12,则椭圆的标准方程为____________. 答案 x 23+y 24=1 解析 由⎩⎨⎧ a 2c =4,c a =12,解得⎩⎪⎨⎪⎧ a =2,c =1. 所以b 2=a 2-c 2=3,所以椭圆的标准方程为x 23+y 24=1. 3.双曲线3x 2-y 2=9,P 是双曲线上一点,则P 点到右焦点的距离与P 点到右准线的距离的比值为________.答案 2解析 由统一定义,所求距离之比即为双曲线的离心率.双曲线方程可化为x 23-y 29=1, 得a 2=3,b 2=9,c 2=a 2+b 2=12,所以e =c a =123=2. 4.椭圆x 225+y 216=1上一点P 到左焦点F 1的距离为3,则点P 到左准线的距离为________. 答案 5解析 依题意e =35,所以点P 到左准线的距离d =PF 1e=5. 5.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为3,右准线方程为x =33,则双曲线方程为__________.答案 x 2-y 22=1 解析 由⎩⎨⎧c a =3,a 2c =33,得⎩⎪⎨⎪⎧a =1,c =3,所以b 2=3-1=2. 所以双曲线方程为x 2-y 22=1. 6.已知抛物线y 2=2px 的准线与双曲线x 2-y 2=2的左准线重合,则抛物线的焦点坐标为________.答案 (1,0)解析 双曲线的左准线为x =-1,抛物线的准线为x =-p 2,所以p 2=1,所以p =2. 故抛物线的焦点坐标为(1,0).7.已知双曲线的渐近线方程为3x ±4y =0,一条准线方程为y =95,求该双曲线的标准方程. 解 由已知可设双曲线的标准方程为y 2a 2-x 2b2=1(a >0,b >0). 由题意有⎩⎨⎧a 2c =95,ab =34,a 2+b 2=c 2,解得⎩⎪⎨⎪⎧a 2=9,b 2=16. 所以所求双曲线方程为y 29-x 216=1. 二、能力提升8.已知点P 在椭圆x 216+y 225=1上,F 1、F 2是椭圆的上、下焦点,M 是PF 1的中点,OM =4,则点P 到下准线的距离为________.答案 403解析 因为OM 是△F 1F 2P 的中位线,所以PF 2=2OM =8.又e =35,所以P 到下准线的距离d =PF 2e =8×53=403. 9.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)上横坐标为3a 2的点到右焦点的距离大于它到左准线的距离,则双曲线的离心率的取值范围是________.答案 (2,+∞)解析 由已知得(3a 2-a 2c )e >3a 2+a 2c,即3c 2>5ac +2a 2, 所以3e 2-5e -2>0,解得e >2或e <-13(舍去). 10.在给定的椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应的准线的距离为1,则椭圆的离心率为________.答案 22解析 设椭圆的方程为x 2a 2+y 2b2=1(a >b >0), 则右焦点F (c,0),右准线l :x =a 2c. 把x =c 代入椭圆的方程得y 2=b 2(1-c 2a 2)=b 4a 2,即y =±b 2a. 依题设知2b 2a =2且a 2c -c =b 2c=1, 所以e =c a =b 2a ·c b 2=22×1=22. 11.已知双曲线过点(3,-2),且与椭圆4x 2+9y 2=36有相同的焦点.(1)求双曲线的标准方程;(2)求以双曲线的右准线为准线的抛物线的标准方程.解 (1)椭圆的焦点为(5,0),(-5,0),它也是双曲线的焦点.设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0). 则由题设得⎩⎪⎨⎪⎧ 9a 2-4b 2=1,a 2+b 2=5,解得⎩⎪⎨⎪⎧a 2=3,b 2=2. 所以双曲线的标准方程为x 23-y 22=1. (2)由(1)可知双曲线的右准线为x =a 2c =355. 它也是抛物线的准线,所以p 2=355, 故抛物线的标准方程为y 2=-1255x . 12.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1、F 2,离心率e =22,点F 2到右准线l 的距离为 2.(1)求a 、b 的值;(2)设M 、N 是l 上的两个动点,F 1M →·F 2N →=0,证明:当|MN →|取最小值时,F 2F 1→+F 2M →+F 2N →=0.(1)解 因为e =c a ,F 2到l 的距离d =a 2c-c , 所以由题设得⎩⎨⎧ c a =22,a 2c -c =2,解得c =2,a =2.由b 2=a 2-c 2=2,得b = 2.故a =2,b = 2.(2)证明 由c =2,a =2得F 1(-2,0),F 2(2,0),l 的方程为x =22, 故可设M (22,y 1),N (22,y 2).由F 1M →·F 2N →=0知(22+2,y 1)·(22-2,y 2)=0,得y 1y 2=-6,所以y 1y 2≠0,y 2=-6y 1. |MN →|=|y 1-y 2|=|y 1+6y 1|=|y 1|+6|y 1|≥26, 当且仅当y 1=±6时,上式取等号,此时y 2=-y 1,所以,F 2F 1→+F 2M →+F 2N →=(-22,0)+(2,y 1)+(2,y 2)=(0,y 1+y 2)=0.三、探究与创新13.如图所示,已知某椭圆的焦点是F 1(-4,0)、F 2(4,0),过点F 2作垂直于x 轴的直线与椭圆的一个交点为B ,且F 1B +F 2B =10,椭圆上不同的两点A (x 1,y 1),C (x 2,y 2)满足条件:F 2A 、F 2B 、F 2C 成等差数列.(1)求该椭圆的方程;(2)求弦AC 中点的横坐标.解 (1)由椭圆定义及条件知,2a =F 1B +F 2B =10,得a =5,又c =4,所以b =a 2-c 2=3.故椭圆方程为x 225+y 29=1.(2)由点B (4,y B )在椭圆上,得F 2B =y B =95. 因为椭圆右准线方程为x =254,离心率为45, 根据椭圆定义,有F 2A =45⎝⎛⎭⎫254-x 1,F 2C =45⎝⎛⎭⎫254-x 2,由F 2A 、F 2B 、F 2C 成等差数列,得 45⎝⎛⎭⎫254-x 1+45⎝⎛⎭⎫254-x 2=2×95,由此得出x 1+x 2=8.设弦AC 的中点为P (x 0,y 0),则x 0=x 1+x 22=4.。

高中数学苏教版选修2-1第2章《圆锥曲线与方程》(3.1)word学案

高中数学苏教版选修2-1第2章《圆锥曲线与方程》(3.1)word学案

2.3 双曲线2.3.1 双曲线的标准方程[学习目标] 1.了解双曲线的标准方程.2.会求双曲线的标准方程.3.会用双曲线的标准方程处理简单的实际问题.[知识链接]1.与椭圆类比,能否将双曲线定义中“动点M 到两定点F 1、F 2距离之差的绝对值为定值2a ”中,“绝对值”三个字去掉.答:不能.否则所得轨迹仅是双曲线一支.2.如何判断双曲线x 2a 2-y 2b 2=1(a >0,b >0)和y 2a 2-x 2b 2=1(a >0,b >0)的焦点位置?答:x 2系数是正的焦点在x 轴上,否则焦点在y 轴上. [预习导引] 1.双曲线的定义把平面内到两个定点F 1,F 2的距离的差的绝对值等于常数(小于F 1F 2的正数)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距. 2.双曲线的标准方程焦点在x 轴上 焦点在y 轴上 标准方程 x 2a 2-y 2b 2=1(a >0,b >0) y 2a 2-x 2b 2=1(a >0,b >0) 焦点 F 1(-c,0),F 2(c,0)F 1(0,-c ),F 2(0,c )焦距F 1F 2=2c ,c 2=a 2+b 2要点一 求双曲线的标准方程例1 根据下列条件,求双曲线的标准方程. (1)经过点P (3,154),Q (-163,5);(2)c =6,经过点(-5,2),焦点在x 轴上.解 (1)方法一 若焦点在x 轴上,设双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0),∴点P (3,154)和Q (-163,5)在双曲线上,∴⎩⎨⎧9a 2-22516b 2=1,2569a 2-25b 2=1,解得⎩⎪⎨⎪⎧a 2=-16,b 2=-9. (舍去)若焦点在y 轴上,设双曲线的方程为 y 2a 2-x 2b 2=1(a >0,b >0), 将P 、Q 两点坐标代入可得⎩⎨⎧22516a 2-9b 2=1,25a 2-2569b 2=1,解之得⎩⎪⎨⎪⎧a 2=9,b 2=16,∴双曲线的标准方程为y 29-x 216=1.方法二 设双曲线方程为x 2m +y 2n =1(mn <0).∵P 、Q 两点在双曲线上,∴⎩⎨⎧9m +22516n =1,2569m +25n =1,解得⎩⎪⎨⎪⎧m =-16,n =9.∴所求双曲线的标准方程为y 29-x 216=1.(2)方法一 依题意可设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0).依题设有⎩⎪⎨⎪⎧a 2+b 2=6,25a 2-4b 2=1,解得⎩⎪⎨⎪⎧a 2=5,b 2=1,∴所求双曲线的标准方程为x 25-y 2=1.方法二 ∵焦点在x 轴上,c =6,∴设所求双曲线方程为x 2λ-y 26-λ=1(其中0<λ<6).∵双曲线经过点(-5,2),∴25λ-46-λ=1,∴λ=5或λ=30(舍去). ∴所求双曲线的标准方程是x 25-y 2=1.规律方法 求双曲线的标准方程与求椭圆的标准方程的方法相似,可以先根据其焦点位置设出标准方程,然后用待定系数法求出a ,b 的值.若焦点位置不确定,可按焦点在x 轴和y 轴上两种情况讨论求解,此方法思路清晰,但过程复杂,注意到双曲线过两定点,可设其方程为mx 2+ny 2=1(mn <0),通过解方程组即可确定m 、n ,避免了讨论,实为一种好方法. 跟踪演练1 (1)已知双曲线的焦点在y 轴上,并且双曲线过点(3,-42)和(94,5),求双曲线的标准方程;(2)求与双曲线x 216-y 24=1有公共焦点,且过点(32,2)的双曲线方程.解(1)由已知可设所求双曲线方程为y 2a 2-x2b 2=1 (a >0,b >0),则⎩⎨⎧32a 2-9b 2=1,25a 2-8116b 2=1,解得⎩⎪⎨⎪⎧a 2=16,b 2=9, ∴双曲线的方程为y 216-x 29=1.(2)方法一 设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0).由题意易求得c =2 5.又双曲线过点(32,2),∴(32)2a 2-4b 2=1.又∵a 2+b 2=(25)2,∴a 2=12,b 2=8. 故所求双曲线方程为x 212-y 28=1.方法二 设双曲线方程为x 216-k -y 24+k =1 (-4<k <16),将点(32,2)代入得k =4, ∴所求双曲线方程为x 212-y 28=1.要点二 由方程判断曲线的形状例2 已知0°≤α≤180°,当α变化时,方程x 2cos α+y 2sin α=1表示的曲线怎样变化? 解 (1)当α=0°时,方程为x 2=1,它表示两条平行直线x =±1.(2)当0°<α<90°时,方程为x 21cos α+y 21sin α=1.①当0°<α<45°时0<1cos α<1sin α,它表示焦点在y 轴上的椭圆.②当α=45°时,它表示圆x 2+y 2= 2.③当45°<α<90°时,1cos α>1sin a >0,它表示焦点在x 轴上的椭圆.(3)当α=90°时,方程为y 2=1.它表示两条平行直线y =±1.(4)当90°<α<180°时,方程为y 21sin α-x 21-cos α=1,它表示焦点在y 轴上的双曲线.(5)当α=180°时,方程为x 2=-1,它不表示任何曲线.规律方法 像椭圆的标准方程一样,双曲线的标准方程也有“定型”和“定量”两个方面的功能:①定型:以x 2和y 2的系数的正负来确定;②定量:以a 、b 的大小来确定. 跟踪演练2 方程ax 2+by 2=b (ab <0)表示的曲线是____________________. 答案 焦点在y 轴上的双曲线解析 原方程可化为x 2b a +y 2=1,∵ab <0,∴ba <0,知曲线是焦点在y 轴上的双曲线.要点三 与双曲线有关的轨迹问题例3 如图,在△ABC 中,已知AB =42,且三内角A ,B ,C 满足2sin A +sin C =2sin B ,建立适当的坐标系,求顶点C 的轨迹方程.解 以AB 边所在的直线为x 轴,AB 的垂直平分线为y 轴,建立平面直角坐标系如图所示,则A (-22,0),B (22,0).由正弦定理,得sin A =a 2R ,sin B =b 2R ,sin C =c2R (R 为△ABC 的外接圆半径).∵2sin A +sin C =2sin B ,∴2a +c =2b ,即b -a =c2,从而有CA -CB =12AB =22<AB .由双曲线的定义知,点C 的轨迹为双曲线的右支(除去与x 轴的交点). ∵a =2,c =22,∴b 2=c 2-a 2=6,即所求轨迹方程为 x 22-y 26=1(x >2). 规律方法 求解与双曲线有关的点的轨迹问题,常见的方法有两种:(1)列出等量关系,化简得到方程;(2)寻找几何关系,由双曲线的定义,得出对应的方程.求解双曲线的轨迹问题时要特别注意:(1)双曲线的焦点所在的坐标轴;(2)检验所求的轨迹对应的是双曲线的一支还是两支.跟踪演练3 如图所示,已知定圆F 1:(x +5)2+y 2=1,定圆F 2:(x -5)2+y 2=42,动圆M 与定圆F 1,F 2都外切,求动圆圆心M 的轨迹方程.解 圆F 1:(x +5)2+y 2=1,圆心F 1(-5,0),半径r 1=1; 圆F 2:(x -5)2+y 2=42,圆心F 2(5,0),半径r 2=4. 设动圆M 的半径为R ,则有MF 1=R +1,MF 2=R +4, ∴MF 2-MF 1=3<10=F 1F 2.∴点M 的轨迹是以F 1,F 2为焦点的双曲线的左支,且a =32,c =5,于是b 2=c 2-a 2=914.∴动圆圆心M 的轨迹方程为x 294-y 2914=1(x ≤-32).1.椭圆x 234-y 2n 2=1和双曲线x 2n 2-y 216=1有相同的焦点,则实数n 的值是________.答案 ±3解析 由题意知34-n 2=n 2+16,∴2n 2=18,n 2=9.∴n =±3.2.若k >1,则关于x ,y 的方程(1-k )x 2+y 2=k 2-1所表示的曲线是________________________. 答案 焦点在y 轴上的双曲线解析 将已知方程化为标准形式,根据项的系数符号进行判断.原方程可化为y 2k 2-1-x 21+k =1.∵k >1,∴k 2-1>0,1+k >0.∴已知方程表示的曲线为焦点在y 轴上的双曲线. 3.过点(1,1)且ba =2的双曲线的标准方程是________________________.答案 x 212-y 2=1或y 212-x 2=1解析 由于b a =2,∴b 2=2a 2.当焦点在x 轴上时,设双曲线方程为x 2a 2-y 22a 2=1,代入(1,1)点,得a 2=12.此时双曲线方程为x 212-y 2=1.同理求得焦点在y 轴上时,双曲线方程为y 212-x 2=1.4.平面内有两个定点F 1(-5,0)和F 2(5,0),动点P 满足PF 1-PF 2=6,则动点P 的轨迹方程是______________. 答案 x 29-y 216=1(x ≥3)解析 根据双曲线的定义可得.1.双曲线定义中|PF 1-PF 2|=2a (2a <F 1F 2)不要漏了绝对值符号,当2a =F 1F 2时表示两条射线. 2.在双曲线的标准方程中,a >b 不一定成立.要注意与椭圆中a ,b ,c 的区别.在椭圆中a 2=b 2+c 2,在双曲线中c 2=a 2+b2.3.用待定系数法求双曲线的标准方程时,要先判断焦点所在的位置,设出标准方程后,由条件列出a ,b ,c 的方程组.如果焦点不确定要分类讨论,采用待定系数法求方程或用形如mx 2+ny 2=1 (mn <0)的形式求解.一、基础达标1.双曲线x 210-y 22=1的焦距为________.答案 43解析 由双曲线的标准方程可知,a 2=10,b 2=2.于是有c 2=a 2+b 2=12,则2c =4 3. 2.若方程y 24-x 2m +1=1表示双曲线,则实数m 的取值范围是________.答案 m >-1解析 依题意应有m +1>0,即m >-1.3.已知A (0,-5)、B (0,5),P A -PB =2a ,当a =3或5时,P 点的轨迹为________________. 答案 双曲线一支或一条射线解析 当a =3时,2a =6,此时AB =10, ∴点P 的轨迹为双曲线的一支(靠近点B ). 当a =5时,2a =10,此时AB =10,∴点P 的轨迹为射线,且是以B 为端点的一条射线.4.设双曲线C 的两个焦点为(-2,0),(2,0),一个顶点是(1,0),则C 的方程为________.答案 x 2-y 2=1解析 由题意可知,双曲线的焦点在x 轴上, 且c =2,a =1,则b 2=c 2-a 2=1, 所以双曲线C 的方程为x 2-y 2=1.5.已知动圆M 过定点B (-4,0),且和定圆(x -4)2+y 2=16相切,则动圆圆心M 的轨迹方程为________. 答案 x 24-y 212=1解析 设动圆M 的半径为r ,依题意有MB =r ,另设A (4,0),则有MA =r ±4,即MA -MB =±4.亦即动圆圆心M 到两定点A 、B 的距离之差的绝对值等于常数4,又4<AB ,因此动点M 的轨迹为双曲线,且c =4,2a =4,∴a =2,a 2=4,b 2=c 2-a 2=12,故轨迹方程是x 24-y 212=1. 6.若双曲线x 2-4y 2=4的左、右焦点分别是F 1、F 2,过F 2的直线交右支于A 、B 两点,若AB =5,则△AF 1B 的周长为________. 答案 18解析 由双曲线定义可知AF 1=2a +AF 2=4+AF 2; BF 1=2a +BF 2=4+BF 2,∴AF 1+BF 1=8+AF 2+BF 2=8+AB =13. △AF 1B 的周长为AF 1+BF 1+AB =18.7.已知△ABC 的一边的两个顶点B (-a,0),C (a,0)(a >0),另两边的斜率之积等于m (m ≠0).求顶点A 的轨迹方程,并且根据m 的取值情况讨论轨迹的图形. 解 设顶点A 的坐标为(x ,y ),则 k AB =y x +a ,k AC =y x -a. 由题意,得y x +a ·y x -a=m ,即x 2a 2-y 2ma 2=1(y ≠0).当m >0时,轨迹是中心在原点,焦点在x 轴上的双曲线(两顶点除外);当m <0且m ≠-1时,轨迹是中心在原点,以坐标轴为对称轴的椭圆(除去与x 轴的两个交点),其中当-1<m <0时,椭圆焦点在x 轴上;当m <-1时,椭圆焦点在y 轴上; 当m =-1时,轨迹是圆心在原点,半径为a 的圆(除去与x 轴的两个交点). 二、能力提升8.焦点在x 轴上的双曲线经过点P (42,-3),且Q (0,5)与两焦点的连线互相垂直,则此双曲线的标准方程为________. 答案 x 216-y 29=1解析 设焦点F 1(-c,0),F 2(c,0)(c >0),则由QF 1⊥QF 2,得kQF 1·kQF 2=-1, ∴5c ·5-c=-1,∴c =5, 设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),∵双曲线过点P (42,-3),∴32a 2-9b 2=1,又∵c 2=a 2+b 2=25,∴a 2=16,b 2=9, ∴双曲线的标准方程为x 216-y 29=1.9.在平面直角坐标系xOy 中,方程x 2k -1+y 2k -3=1表示焦点在x 轴上的双曲线,则k 的取值范围为________. 答案 (1,3)解析 将方程化为x 2k -1-y 23-k =1,若表示焦点在x 轴上的双曲线,则有k -1>0且3-k >0,即1<k <3.10.已知P 是双曲线x 264-y 236=1上一点,F 1,F 2是双曲线的两个焦点,若PF 1=17,则PF 2的值为________. 答案 33解析 由双曲线方程x 264-y 236=1知,a =8,b =6,则c =a 2+b 2=10.∵P 是双曲线上一点,∴|PF 1-PF 2|=2a =16, 又PF 1=17,∴PF 2=1或PF 2=33. 又PF 2≥c -a =2,∴PF 2=33.11.双曲线x 2m -y 2m -5=1的一个焦点到中心的距离为3,求m 的值.解 (1)当焦点在x 轴上时,有m >5, 则c 2=m +m -5=9,∴m =7; (2)当焦点在y 轴上时,有m <0, 则c 2=-m +5-m =9,∴m =-2; 综上,m =7或m =-2.12.已知方程kx 2+y 2=4,其中k ∈R ,试就k 的不同取值讨论方程所表示的曲线类型. 解 (1)当k =0时,方程变为y =±2,表示两条与x 轴平行的直线; (2)当k =1时,方程变为x 2+y 2=4表示圆心在原点,半径为2的圆;(3)当k <0时,方程变为y 24-x 2-4k =1,表示焦点在y 轴上的双曲线.(4)当0<k <1时,方程变为x 24k +y 24=1,表示焦点在x 轴上的椭圆;(5)当k >1时,方程变为x 24k +y 24=1,表示焦点在y 轴上的椭圆.三、探究与创新13.已知双曲线过点(3,-2)且与椭圆4x 2+9y 2=36有相同的焦点. (1)求双曲线的标准方程;(2)若点M 在双曲线上,F 1、F 2为左、右焦点,且MF 1+MF 2=63,试判断△MF 1F 2的形状. 解 (1)椭圆方程可化为x 29+y 24=1,焦点在x 轴上,且c =9-4=5,故设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0), 则有⎩⎪⎨⎪⎧9a 2-4b 2=1,a 2+b 2=5,解得a 2=3,b 2=2,所以双曲线的标准方程为x 23-y 22=1.(2)不妨设M 点在右支上,则有MF 1-MF 2=23, 又MF 1+MF 2=63,故解得MF 1=43,MF 2=23,又F 1F 2=25, 因此在△MF 1F 2中,MF 1边最长,而cos ∠MF 2F 1=MF 22+F 1F 22-MF 212·MF 2·F 1F 2<0,所以∠MF 2F 1为钝角,故△MF 1F 2为钝角三角形.。

选修2-1教案22-2椭圆的简单几何性质【5】

选修2-1教案22-2椭圆的简单几何性质【5】

选修2-1 第二章《圆锥曲线与方程》 2.2.2椭圆的简单几何性质第五课时:与椭圆相关的最值、范围问题有关椭圆的最值、范围问题,在近几年的高考试卷中频频出现,在各种题型中均有考查,其中以解答题为重,在平时的教学中需有所重视。

圆锥曲线最值问题具有综合性强、涉及知识面广而且常含有变量的一类难题,也是教学中的一个难点。

要解决这类问题往往利用函数与方程思想、数形结合思想、转化与化归等数学思想方法,将它转化为解不等式或求函数值域,以及利用函数单调性、各种平面几何中最值的思想来解决。

例1:在椭圆2288x y +=上求一点P ,使P 到直线l :40x y -+=的距离最小. 解:(法一:几何法)设与l 平行且与椭圆相切的直线l '方程为0x y m -+=,则由22880x y x y m ⎧+=⎨-+=⎩得229280y my m -+-=,22449(8)0m m ∆=-⨯⨯-=,∴3m =±,由图知,3m =时距离最小,此时P 点坐标为81(,)33-,此时,最短距离即为l 与l '间距离222d ==. (法二:三角换元)设点(22cos ,sin )P θθ,则有|22cos sin 4|22d θθ-+==,tan 22ϕ=, 当2πθϕ-=时,min 2d =,此时,22sin ϕ=,1cos 3θ=,∴22cos sin θϕ=-=-,1sin cos 3θϕ==,∴P 点坐标为81(,)33-.【练习】(1)把上例中距离“最小”改为“最大”;(2)求椭圆2212516x y +=的内接矩形的最大面积.例2.如图,点P 在圆22(6)2x y +-=上移动,点Q 在椭圆221010x y +=上移动,求||PQ 的最大值.xyOy x m =+xy OB A CD y x P o A M Q解:圆心M (0,6),设椭圆上的点为(,)Q x y ,则MQ ===当2[1,1]3y =-∈-时,max MQ =max PQ == 例3:如图,在直线09:=+-y x l 上任意取一点M ,经过M 点且以椭圆131222=+y x 的焦点作椭圆,问当M 在何处时,所作椭圆的长轴最短,并求出最短长轴为多少?分析:要使所作椭圆的长轴最短,当然想到椭圆的定义。

高中数学苏教版选修2-1第2章《圆锥曲线与方程》(2.2(一))word学案

高中数学苏教版选修2-1第2章《圆锥曲线与方程》(2.2(一))word学案

2.2.2 椭圆的几何性质(一)[学习目标] 1.根据椭圆的方程研究曲线的几何性质,并正确地画出它的图形.2.根据几何条件求出曲线方程,并利用曲线的方程研究它的性质,画图.[知识链接]观察椭圆x 2a 2+y 2b 2=1 (a >b >0)的形状,你能从图中看出它的范围吗?它具有怎样的对称性?椭圆上哪些点比较特殊?答:(1)范围:-a ≤x ≤a ,-b ≤y ≤b ; (2)对称性:椭圆关于x 轴、y 轴、原点都对称;(3)特殊点:顶点A 1(-a,0),A 2(a,0),B 1(0,-b ),B 2(0,b ). [预习导引] 1.椭圆的几何性质2.离心率的作用当椭圆的离心率越接近于1,则椭圆越扁;当椭圆离心率越接近于0,则椭圆越接近于圆.要点一 椭圆的几何性质例1 求椭圆9x 2+16y 2=144的长轴长、短轴长、离心率、焦点和顶点坐标. 解 已知方程化成标准方程为x 216+y 29=1,于是a =4,b =3,c =16-9=7,∴椭圆的长轴长和短轴长分别是2a =8和2b =6, 离心率e =c a =74,又知焦点在x 轴上,∴两个焦点坐标分别是F 1(-7,0)和F 2(7,0),四个顶点坐标分别是A 1(-4,0),A 2(4,0),B 1(0,-3)和B 2(0,3).规律方法 解决此类问题的方法是将所给方程先化为标准形式,然后根据方程判断出椭圆的焦点在哪个坐标轴上,再利用a ,b ,c 之间的关系和定义,求椭圆的基本量.跟踪演练1 求椭圆m 2x 2+4m 2y 2=1 (m >0)的长轴长、短轴长、焦点坐标、顶点坐标和离心率.解 椭圆的方程m 2x 2+4m 2y 2=1 (m >0)可转化为x 21m 2+y 214m 2=1.∵m 2<4m 2,∴1m 2>14m 2,∴椭圆的焦点在x 轴上,并且长半轴长a =1m ,短半轴长b =12m ,半焦距长c =32m.∴椭圆的长轴长2a =2m ,短轴长2b =1m ,焦点坐标为(-32m ,0),(32m,0),顶点坐标为(1m ,0),(-1m ,0),(0,-12m ),(0,12m).离心率e =c a =32m 1m=32.要点二 由椭圆的几何性质求方程例2 求满足下列各条件的椭圆的标准方程.(1)已知椭圆的中心在原点,焦点在y 轴上,若其离心率为12,焦距为8;(2)短轴一个端点与两焦点组成一个正三角形,且焦点到同侧顶点的距离为 3. 解 (1)由题意知,2c =8,c =4, ∴e =c a =4a =12,∴a =8,从而b 2=a 2-c 2=48,∴椭圆的标准方程是y 264+x 248=1.(2)由已知得⎩⎨⎧ a =2c ,a -c =3,∴⎩⎨⎧a =23,c = 3.从而b 2=9,∴所求椭圆的标准方程为x 212+y 29=1或x 29+y 212=1.规律方法 在求椭圆方程时,要注意根据题目条件判断焦点所在的坐标轴,从而确定方程的形式;若不能确定焦点所在的坐标轴,则应进行讨论,然后列方程(组)确定a ,b . 跟踪演练2 已知椭圆过点(3,0),离心率e =63,求椭圆的标准方程. 解 ∵所求椭圆的方程为标准方程,又椭圆过点(3,0),∴点(3,0)为椭圆的一个顶点. ①当椭圆的焦点在x 轴上时,(3,0)为右顶点,则a =3, ∵e =c a =63,∴c =63a =63×3=6,∴b 2=a 2-c 2=32-(6)2=9-6=3, ∴椭圆的标准方程为x 29+y 23=1.②当椭圆的焦点在y 轴上时,(3,0)为右顶点,则b =3, ∵e =c a =63,∴c =63a ,∴b 2=a 2-c 2=a 2-23a 2=13a 2,∴a 2=3b 2=27,∴椭圆的标准方程为y 227+x 29=1.综上可知,椭圆的标准方程是x 29+y 23=1或y 227+x 29=1.要点三 求椭圆的离心率例3 如图所示,F 1,F 2分别为椭圆的左,右焦点,椭圆上点M 的横坐标等于右焦点的横坐标,其纵坐标等于短半轴长的23,求椭圆的离心率.解 设椭圆的长半轴、短半轴、半焦距长分别为a ,b ,c . 则焦点为F 1(-c,0),F 2(c,0),M 点的坐标为(c ,23b ),则△MF 1F 2为直角三角形.在Rt △MF 1F 2中,F 1F 22+MF 22=MF 21,即4c 2+49b 2=MF 21. 而MF 1+MF 2=4c 2+49b 2+23b =2a ,整理得3c 2=3a 2-2ab .又c 2=a 2-b 2,所以3b =2a .所以b 2a 2=49.所以e 2=c 2a 2=a 2-b 2a 2=1-b 2a 2=59,所以e =53.规律方法 求椭圆离心率的方法:①直接求出a 和c ,再求e =ca,也可利用e =1-b 2a2求解. ②若a 和c 不能直接求出,则看是否可利用条件得到a 和c 的齐次等式关系,然后整理成ca 的形式,并将其视为整体,就变成了关于离心率e 的方程,进而求解.跟踪演练3 如图所示,椭圆的中心在原点,焦点F 1,F 2在x 轴上,A ,B 是椭圆的顶点,P 是椭圆上一点,且PF 1⊥x 轴,PF 2∥AB ,求此椭圆的离心率. 解 设椭圆的方程为x 2a 2+y 2b2=1 (a >b >0).如题图所示,则有F 1(-c,0),F 2(c,0),A (0,b ),B (a,0), 直线PF 1的方程为x =-c ,代入方程x 2a 2+y 2b 2=1,得y =±b 2a ,∴P (-c ,b 2a ).又PF 2∥AB ,∴△PF 1F 2∽△AOB . ∴PF 1F 1F 2=AO OB ,∴b 22ac =ba ,∴b =2c . ∴b 2=4c 2,∴a 2-c 2=4c 2,∴c 2a 2=15.∴e 2=15,即e =55,∴椭圆的离心率为55.1.椭圆以两条坐标轴为对称轴,一个顶点是(0,13),另一个顶点是(-10,0),则焦点坐标为________. 答案 (0,±69)解析 由题意知椭圆焦点在y 轴上,且a =13,b =10,则c =a 2-b 2=69,故焦点坐标为(0,±69).2.若椭圆中心在原点,焦点在x 轴上,焦距为2,离心率为13,则椭圆的标准方程为____________. 答案 x 29+y 28=1解析 ∵c =1,e =13,∴a =3,b 2=32-1=8.∵焦点在x 轴上,∴椭圆的标准方程为x 29+y 28=1.3.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是________. 答案 35解析 由题意有2a +2c =2(2b ),即a +c =2b ,又c 2=a 2-b 2,消去b 整理得5c 2=3a 2-2ac ,即5e 2+2e -3=0,∴e =35或e =-1(舍去).4.设F 1,F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,P 为直线x =3a2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为________ 答案 34解析 由题意可得PF 2=F 1F 2,∴2(32a -c )=2c ,∴3a =4c ,∴e =34.1.已知椭圆的方程讨论性质时,若不是标准形式,应先化成标准形式.2.根据椭圆的几何性质,可以求椭圆的标准方程,其基本思路是“先定型,再定量”,常用的方法是待定系数法.在椭圆的基本量中,能确定类型的量有焦点、顶点,而不能确定类型的量有长轴长、短轴长、离心率e 、焦距.3.求椭圆的离心率要注意函数与方程的思想、数形结合思想的应用.一、基础达标1.已知点(3,2)在椭圆x 2a 2+y 2b2=1上,则下列说法正确的是________(填序号).①点(-3,-2)不在椭圆上;②点(3,-2)不在椭圆上;③点(-3,2)在椭圆上;④无法判断点(-3,-2)、(3,-2)、(-3,2)是否在椭圆上. 答案 ③解析 由椭圆的对称性知(-3,2)必在椭圆上.2.椭圆25x 2+9y 2=225的长轴长、短轴长、离心率依次是________. 答案 10、6、0.8解析 把椭圆的方程写成标准方程为x 29+y 225=1,知a =5,b =3,c =4.∴2a =10,2b =6,ca =0.8.3.椭圆x 2+4y 2=1的离心率为________. 答案32解析 将椭圆方程x 2+4y 2=1化为标准方程x 2+y 214=1,则a 2=1,b 2=14,即a =1,c =a 2-b 2=32,故离心率e =c a =32. 4.过椭圆x 2a 2+y 2b 2=1 (a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为________.答案33解析 记F 1F 2=2c ,则由题设条件, 知PF 1=2c 3,PF 2=4c 3, 则椭圆的离心率e =2c 2a =F 1F 2PF 1+PF 2=2c 2c 3+4c 3=33.5.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值是________. 答案 14解析 由题意可得21m =2×2,解得m =14. 6.椭圆x 2a 2+y 2b 2=1和x 2a 2+y 2b 2=k (k >0,a >0,b >0)具有相同的________.答案 离心率解析 不妨设a >b >0,则椭圆x 2a 2+y 2b 2=k 的离心率e 2=ka 2-kb 2ka 2=a 2-b 2a 2. 而椭圆x 2a 2+y 2b2=1的离心率e 1=a 2-b 2a 2. 7.已知椭圆方程为4x 2+9y 2=36,求椭圆的长轴长、短轴长、焦点坐标、顶点坐标和离心率.解 把椭圆的方程化为标准方程x 29+y 24=1.可知此椭圆的焦点在x 轴上,且长半轴长a =3, 短半轴长b =2;又得半焦距c =a 2-b 2=9-4= 5.因此,椭圆的长轴长2a =6,短轴长2b =4;两个焦点的坐标分别是(-5,0),(5,0);四个顶点的坐标分别是(-3,0),(3,0),(0,-2),(0,2);离心率e =c a =53.二、能力提升8.若椭圆x 2a 2+y 2b 2=1的焦点在x 轴上,过点(1,12)作圆x 2+y 2=1的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是________.答案 x 25+y 24=1解析 ∵x =1是圆x 2+y 2=1的一条切线.∴椭圆的右焦点为(1,0),即c =1.设P (1,12),则k OP =12,∵OP ⊥AB ,∴k AB =-2,则直线AB 的方程为y =-2(x -1),它与y轴的交点为(0,2).∴b =2,a 2=b 2+c 2=5,故椭圆的方程为x 25+y 24=1.9.若椭圆x 2+my 2=1的离心率为32,则m =________. 答案 14或4解析 方程化为x 2+y 21m=1,则有m >0且m ≠1.当1m <1时,依题意有1-1m 1=32,解得m =4; 当1m >1时,依题意有1m -11m=32,解得m =14. 综上,m =14或4.10.设椭圆的两个焦点分别为F 1、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是________. 答案2-1解析 因为△F 1PF 2为等腰直角三角形,所以PF 2=F 1F 2=2c ,PF 1=22c ,又由椭圆定义知PF 1+PF 2=2a ,所以22c +2c =2a ,即(2+1)c =a , 于是e =c a =12+1=2-1.11.分别求适合下列条件的椭圆的标准方程: (1)离心率是23,长轴长是6.(2)在x 轴上的一个焦点与短轴两个端点的连线互相垂直,且焦距为6. 解 (1)设椭圆的方程为x 2a 2+y 2b 2=1 (a >b >0)或y 2a 2+x 2b2=1 (a >b >0).由已知得2a =6,e =c a =23,∴a =3,c =2.∴b 2=a 2-c 2=9-4=5.∴椭圆方程为x 29+y 25=1或x 25+y 29=1.(2)设椭圆方程为x 2a 2+y 2b 2=1 (a >b >0).如图所示,△A 1F A 2为一等腰直角三角形,OF 为斜边A 1A 2上的中线(高),且OF =c ,A 1A 2=2b , ∴c =b =3,∴a 2=b 2+c 2=18, 故所求椭圆的方程为x 218+y 29=1.12.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点分别为F 1(-c,0),F 2(c,0)(c >0),过点E (a 2c ,0)的直线与椭圆相交于点A ,B 两点,且F 1A ∥F 2B ,F 1A =2F 2B ,求椭圆的离心率. 解 由F 1A ∥F 2B ,F 1A =2F 2B , 得EF 2EF 1=F 2B F 1A =12, 从而a 2c -c a 2c +c =12,整理,得a 2=3c 2.故离心率e =c a =33.三、探究与创新13.已知椭圆E 的中心是坐标原点O ,两个焦点分别为A (-1,0),B (1,0),一个顶点为H (2,0).(1)求椭圆E 的标准方程;(2)对于x 轴上的点P (t,0),椭圆E 上存在点M ,使得MP ⊥MH ,求实数t 的取值范围. 解 (1)由题意可得,c =1,a =2, ∴b = 3.∴所求椭圆E 的标准方程为x 24+y 23=1. (2)设M (x 0,y 0)(x 0≠±2),则x 204+y 203=1.① MP →=(t -x 0,-y 0),MH →=(2-x 0,-y 0),由MP ⊥MH 可得MP →·MH →=0,即(t -x 0)(2-x 0)+y 20=0.②由①②消去y 0,整理得t (2-x 0)=-14x 20+2x 0-3. ∵x 0≠2,∴t =14x 0-32. ∵-2<x 0<2,∴-2<t <-1.∴实数t 的取值范围为(-2,-1).。

高中数学第二章圆锥曲线与方程2.6曲线与方程2学案无答案苏教版选修(1)

高中数学第二章圆锥曲线与方程2.6曲线与方程2学案无答案苏教版选修(1)

2.6曲线与方程(2)一、预习检查1.过双曲线2222=-y x 右焦点的直线l ,交双曲线于点B A ,,若4=AB ,则这样的直线l 有 条.2.不论k 为何值,直线b x k y +-=)2(与双曲线122=-y x 总有公共点,则实数b 的取值范围是 .3.经过点)4,0(P ,且与抛物线x y 162=只有一个公共点的直线有几条?求出这样的直线方程.4.已知探照灯的轴截面是抛物线x y =2,平行于x 轴的光线照射到抛物线上的点)1,1(-P ,反射光线过抛物线焦点后又照射到抛物线上的点Q,试确定点Q的坐标.二、问题探究探究1. 已知曲线1C :0),(1=y x f 和曲线2C :0),(2=y x f ,如何求两曲线1C 与2C 的交点?探究2.一只酒杯的轴截面是抛物线的一部分,它的方程是)200(22≤≤=y y x .在杯内放入一个玻璃球,要使球触及酒杯底部,那么玻璃球的半径r 应满足什么条件?例1.直线2+=kx y 与双曲线622=-y x 的右支交于不同的两点,则k 的取值范围是 .例2.(理科)学校科技小组在计算机上模拟航天器变轨返回实验,设计方案如下图,航天器运行 (按顺时针方向)的轨迹方程为12510022=+y x ,变轨(即航天器运行轨迹由椭圆变为抛物线)后返回的轨迹是以y 轴为对称轴,)764,0(M 为顶点的抛物线的实线部分,降落点为)0,8(D ,观测点)0,6(),0,4(B A 同时跟踪航天器.(1) 求航天器变轨后的运行轨迹所在的曲线方程;(2) 试问:当航天器在x 轴上方时,观测点B A ,测得航天器的距离分别为多少时,应向航天器发出变轨指令?三、思维训练1.已知点)0,1(),0,1(-B A ,动点M 满足2=-MB MA ,则点M 的轨迹方程是 .2.以双曲线222=-y x 的右焦点为圆心,且与其右准线相切的圆的方程是 .3.若曲线)22(412≤≤--+=x x y 与直线4)2(+-=x k y 有两个交点,则实数k 的取值范围是 .4.过抛物线)0(2>=a ax y 的焦点F 任作一条直线交抛物线于Q P ,两点,若线段PF 与FQ 的长分别为q p ,,则qp 11+的值为 .四、课后巩固 1.设直线l :022=++y x 关于原点对称的直线为l ',若l '与椭圆1422=+y x 的交点为B A ,,点P 为椭圆上的动点,则使△PAB 的面积是21的点P 的个数是 .2.F 是双曲线191622=-y x 的右焦点,M 是双曲线右支上一动点,定点A 的坐标为)1,5(则MA MF 54+的最小值是 .3.试讨论方程b x x +=-12根的情况.4.直线kx y =与圆0104622=+--+y x y x 交于两个不同点B A ,,求AB 中点的轨迹方程.5.(理科)已知抛物线)0(22>p px y 上横坐标为4的点的焦点的距离是5.(1)求此抛物线方程;(2)若点C 是抛物线上的动点,以C 为圆心的圆在y 轴上截得的弦长为4,求证:圆C 恒过定点.6.(理科)如图,在平面直角坐标系xoy 中,过y 轴正方向上任一点),0(c C 任作一直线与抛物线2x y =相交于B A ,两点.一条垂直于x 轴的直线分别与线段AB 和直线l :c y -=交于点Q P ,. (1)若2=⋅,求c 的值;(2)若P 为线段AB 的中点,求证:QA 为此抛物线的切线;(3)试问(2)的逆命题是否成立?请说明理由.。

高中数学苏教版选修2-1第2章《圆锥曲线与方程》(6.2)word学案

高中数学苏教版选修2-1第2章《圆锥曲线与方程》(6.2)word学案

2.6.2求曲线的方程[学习目标] 1.掌握求轨迹方程建立坐标系的一般方法,熟悉求曲线方程的五个步骤.2.掌握求轨迹方程的几种常用方法.[知识链接]求曲线方程要“建立适当的坐标系”,这句话怎样理解.答:坐标系选取的适当,可使运算过程简化,所得方程也较简单,否则,如果坐标系选取不当,则会增加运算的烦杂程度.[预习导引]1.平面解析几何研究的主要问题(1)根据已知条件,求出表示平面曲线的方程.(2)通过方程,研究平面曲线的性质.2.求曲线(图形)的方程一般有下面几个步骤(1)建立适当的坐标系,用有序实数对(x,y)表示曲线上任意一点M的坐标.(2)写出适合条件P的点M的集合P={M|P(M)}.(3)用坐标表示条件P(M),列出方程f(x,y)=0.(4)化方程f(x,y)=0为最简形式.(5)证明以化简后的方程的解为坐标的点都在曲线上.3.求曲线方程(轨迹方程)的常用方法有直接法、代入法、定义法、参数法、待定系数法.要点一直接法求曲线方程例1已知一条直线l和它上方的一个点F,点F到l的距离是2.一条曲线也在l的上方,它上面的每一点到F的距离减去到l的距离的差都是2,建立适当的坐标系,求这条曲线的方程.解如图所示,取直线l为x轴,过点F且垂直于直线l的直线为y轴,建立坐标系xOy.设点M(x,y)是曲线上任意一点,作MB⊥x轴,垂足为B,那么点M属于集合P={M|MF-MB=2}.由两点间的距离公式,点M适合的条件可表示为x2+(y-2)2-y=2,①将①式移项后两边平方,得x2+(y-2)2=(y+2)2,化简得y =18x 2.因为曲线在x 轴的上方,所以y >0.虽然原点O 的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应是y =18x 2 (x≠0).规律方法 直接法是求轨迹方程的最基本的方法,根据所满足的几何条件,将几何条件{M |p (M )}直接翻译成x ,y 的形式F (x ,y )=0,然后进行等价变换,化简为f (x ,y )=0.要注意轨迹上的点不能含有杂点,也不能少点,也就是说曲线上的点一个也不能多,一个也不能少. 跟踪演练1 已知在直角三角形ABC 中,角C 为直角,点A (-1,0),点B (1,0),求满足条件的点C 的轨迹方程. 解 如图,设C (x ,y ),则AC →=(x +1,y ),BC →=(x -1,y ). ∵C 为直角,∴AC →⊥BC →,即AC →·BC →=0. ∴(x +1)(x -1)+y 2=0. 化简得x 2+y 2=1.∵A 、B 、C 三点要构成三角形, ∴A 、B 、C 不共线,∴y ≠0, ∴点C 的轨迹方程为x 2+y 2=1(y ≠0). 要点二 定义法求曲线方程例2 已知圆C :(x -1)2+y 2=1,过原点O 作圆的任意弦,求所作弦的中点的轨迹方程. 解 如图,设OQ 为过O 点的一条弦,P (x ,y )为其中点,则CP ⊥OQ ,设M 为OC 的中点,则M 的坐标为(12,0).∵∠OPC =90°,∴动点P 在以点M (12,0)为圆心,OC 为直径的圆上,由圆的方程得(x -12)2+y 2=14(0<x ≤1). 规律方法 如果动点的轨迹满足某种已知曲线的定义,则可依据定义结合条件写出动点的轨迹方程.利用定义法求轨迹要善于抓住曲线的定义特征.跟踪演练2 已知定长为6的线段,其端点A 、B 分别在x 轴、y 轴上移动,线段AB 的中点为M ,求M 点的轨迹方程.解 作出图象如图所示,根据直角三角形的性质可知 OM =12AB =3.所以M 点的轨迹为以原点O 为圆心,以3为半径的圆,故M 点的轨迹方程为x 2+y 2=9. 要点三 代入法求曲线方程例3 已知动点M 在曲线x 2+y 2=1上移动,M 和定点B (3,0)连线的中点为P ,求P 点的轨迹方程.解 设P (x ,y ),M (x 0,y 0),∵P 为MB 的中点.∴⎩⎨⎧x =x 0+32,y =y2,即⎩⎪⎨⎪⎧x 0=2x -3,y 0=2y ,又∵M 在曲线x 2+y 2=1上,∴(2x -3)2+4y 2=1,即⎝⎛⎭⎫x -322+y 2=14. ∴P 点的轨迹方程为⎝⎛⎭⎫x -322+y 2=14. 规律方法 代入法求轨迹方程就是利用所求动点P (x ,y )与相关动点Q (x 0,y 0)坐标间的关系式,且Q (x 0,y 0)又在某已知曲线上,则可用所求动点P 的坐标(x ,y )表示相关动点Q 的坐标(x 0,y 0),即利用x ,y 表示x 0,y 0,然后把x 0,y 0代入已知曲线方程即可求得所求动点P 的轨迹方程.跟踪演练3 已知圆C :x 2+(y -3)2=9.过原点作圆C 的弦OP ,求OP 的中点Q 的轨迹方程. 解 方法一(直接法)如图,因为Q 是OP 的中点,所以∠OQC =90°. 设Q (x ,y ),由题意,得OQ 2+QC 2=OC 2, 即x 2+y 2+[x 2+(y -3)2]=9, 所以x 2+⎝⎛⎭⎫y -322=94(x ≠0). 方法二(定义法)如图所示,因为Q 是OP 的中点,所以∠OQC =90°,则Q 在以OC 为直径的圆上,故Q 点的轨迹方程为x 2+⎝⎛⎭⎫y -322=94(x ≠0). 方法三(代入法)设P (x 1,y 1),Q (x ,y ),由题意,得⎩⎨⎧x =x 12,y =y12,即⎩⎪⎨⎪⎧x 1=2x ,y 1=2y .又因为P 点在圆C 上,所以x 21+(y 1-3)2=9,所以4x 2+4(y -32)2=9,即x 2+(y -32)2=94(x ≠0).1.已知等腰三角形ABC 底边两端点是A (-3,0),B (3,0),顶点C 的轨迹是__________________.答案 一条直线(C 不与A 、B 共线)解析 注意当点C 与A 、B 共线时,不符合题意,应去掉.2.在第四象限内,到原点的距离等于2的点M 的轨迹方程是________________. 答案 y =-4-x 2(0<x <2)解析 设M (x ,y ),由MO =2得,x 2+y 2=4, 又∵点M 在第四象限, ∴y =-4-x 2(0<x <2).3.到直线4x +3y -5=0的距离为1的点的轨迹方程为________________________. 答案 4x +3y -10=0和4x +3y =0 解析 可设动点坐标为(x ,y ), 则|4x +3y -5|5=1, 即|4x +3y -5|=5.∴所求轨迹为4x +3y -10=0和4x +3y =0.4.设A 为圆(x -1)2+y 2=1上的动点,P A 是圆的切线,且P A =1,则动点P 的轨迹方程是________________. 答案 (x -1)2+y 2=2解析 圆(x -1)2+y 2=1的圆心为B (1,0),半径r =1, 则PB 2=P A 2+r 2.∴PB 2=2. ∴P 的轨迹方程为(x -1)2+y 2=2.1.坐标系建立的不同,同一曲线的方程也不相同.2.一般地,求哪个点的轨迹方程,就设哪个点的坐标是(x ,y ),而不要设成(x 1,y 1)或(x ′,y ′)等.3.方程化简到什么程度,课本上没有给出明确的规定,一般指将方程f (x ,y )=0化成x ,y 的整式.如果化简过程破坏了同解性,就需要剔除不属于轨迹上的点,找回属于轨迹而遗漏的点.求轨迹时需要说明所表示的是什么曲线,求轨迹方程则不必说明.4.“轨迹”与“轨迹方程”是两个不同的概念:求轨迹方程只要求出方程即可;而求轨迹则应先求出轨迹方程,再说明轨迹的形状.一、基础达标1.平面内有两定点A ,B ,且AB =4,动点P 满足|P A →+PB →|=4,则点P 的轨迹是________. 答案 圆解析 以AB 的中点为原点,以AB 所在的直线为x 轴建立直角坐标系,则A (-2,0)、B (2,0).设P (x ,y ),则P A →+PB →=2PO →=2(-x ,-y ).∴x 2+y 2=4.2.已知动点P 到点(1,-2)的距离为3,则动点P 的轨迹方程是________________. 答案 (x -1)2+(y +2)2=9解析 设P (x ,y ),由题设得(x -1)2+(y +2)2=3, ∴(x -1)2+(y +2)2=9.3.已知M (-2,0),N (2,0),则以MN 为斜边的直角三角形的直角顶点P 的轨迹方程是________________. 答案 x 2+y 2=4 (x ≠±2)解析 设P (x ,y ),∵△MPN 为直角三角形, ∴MP 2+NP 2=MN 2,∴(x +2)2+y 2+(x -2)2+y 2=16,整理得,x 2+y 2=4. ∵M ,N ,P 不共线,∴x ≠±2, ∴轨迹方程为x 2+y 2=4 (x ≠±2).4.与点A (-1,0)和点B (1,0)的连线的斜率之积为-1的动点P 的轨迹方程是________________. 答案 x 2+y 2=1(x ≠±1) 解析 设P (x ,y ),则k P A =y x +1,k PB =yx -1, 所以k P A ·k PB =y x +1·yx -1=-1.整理得x 2+y 2=1,又k P A 、k PB 存在,所以x ≠±1.所以所求轨迹方程为x 2+y 2=1(x ≠±1).5.已知A (-1,0),B (2,4),△ABC 的面积为10,则动点C 的轨迹方程是_______________. 答案 4x -3y -16=0或4x -3y +24=0解析 由两点式,得直线AB 的方程是y -04-0=x +12+1,即4x -3y +4=0,线段AB 的长度AB =(2+1)2+42=5.设C 点的坐标为(x ,y ),则12×5×|4x -3y +4|5=10,即4x -3y -16=0或4x -3y +24=0.6.已知△ABC ,A (-2,0),B (0,-2),第三个顶点C 在曲线y =3x 2-1上移动,则△ABC 的重心的轨迹方程是__________________. 答案 y =9x 2+12x +3解析 设△ABC 的重心为G (x ,y ),顶点C 的坐标为(x 1,y 1),由重心坐标公式得⎩⎨⎧x =-2+0+x13,y =0-2+y 13,∴⎩⎪⎨⎪⎧x 1=3x +2,y 1=3y +2. ∵点C (x 1,y 1)在曲线y =3x 2-1上, ∴3y +2=3(3x +2)2-1.∴y =9x 2+12x +3即为所求轨迹方程.7.等腰三角形ABC 中,若一腰的两个端点分别为A (4,2),B (-2,0),A 为顶点,求另一腰的一个端点C 的轨迹方程. 解 设点C 的坐标为(x ,y ),∵△ABC 为等腰三角形,且A 为顶点.∴AB =AC . 又∵AB =(4+2)2+22=210, ∴AC =(x -4)2+(y -2)2=210. ∴(x -4)2+(y -2)2=40.又∵点C 不能与B 重合,也不能使A 、B 、C 三点共线. ∴x ≠-2且x ≠10.∴点C 的轨迹方程为(x -4)2+(y -2)2=40 (x ≠-2且x ≠10). 二、能力提升8.以(5,0)和(0,5)为端点的线段的方程是____________. 答案 x +y -5=0(0≤x ≤5)解析 由截距式可得直线为x 5+y5=1,则线段方程为x +y -5=0(0≤x ≤5).9.已知两定点A (-2,0),B (1,0),如果动点P 满足P A =2PB ,则点P 的轨迹所包围的图形的面积等于________. 答案 4π解析 设P 点的坐标为(x ,y ),则(x +2)2+y 2=4[(x -1)2+y 2],即(x -2)2+y 2=4,所以点P 的轨迹所包围的图形的面积等于4π.10.设动直线l 垂直于x 轴,且与椭圆x 2+2y 2=4交于A 、B 两点,P 是l 上满足P A →·PB →=1的点,则点P 的轨迹方程是________________________. 答案 x 26+y 23=1(-2<x <2)解析 如图,设P 点的坐标为(x ,y ),则由方程x 2+2y 2=4得 2y 2=4-x 2, ∴y =±4-x 22, ∴A 、B 两点的坐标分别为⎝ ⎛⎭⎪⎫x , 4-x 22,⎝ ⎛⎭⎪⎫x ,- 4-x 22. 又P A →·PB →=1,∴⎝⎛⎭⎪⎫0, 4-x 22-y ·⎝ ⎛⎭⎪⎫0,- 4-x 22-y =1, 即y 2-4-x 22=1,∴x 26+y 23=1. 又直线l 与椭圆交于两点, ∴-2<x <2,∴点P 的轨迹方程为x 26+y 23=1(-2<x <2).11.若动点P 在y =2x 2+1上移动,则点P 与点Q (0,-1)连线的中点的轨迹方程是什么? 解 设PQ 的中点为M (x ,y ),P (x 0,y 0), 则⎩⎨⎧x =x 0+02,y =y 0-12,∴⎩⎪⎨⎪⎧x 0=2x ,y 0=2y +1, 又∵点P 在y =2x 2+1上,∴y 0=2x 20+1, 即2y +1=8x 2+1,即y =4x 2为所求的轨迹方程.12.如图,过点P (2,4)作两条互相垂直的直线l 1、l 2,若l 1交x 轴于A 点,l 2交y 轴于B 点,求线段AB 的中点M 的轨迹方程. 解 方法一 设点M 的坐标为(x ,y ). ∵M 为线段AB 的中点,∴A 的坐标为(2x,0),B 的坐标为(0,2y ). ∵l 1⊥l 2,且l 1、l 2过点P (2,4), ∴P A ⊥PB ,k P A ·k PB =-1. 而k P A =4-02-2x (x ≠1),k PB =4-2y 2-0,∴21-x ·2-y1=-1 (x ≠1).整理,得x +2y -5=0 (x ≠1). ∵当x =1时,A 、B 的坐标分别为(2,0)、(0,4), ∴线段AB 的中点坐标是(1,2),它满足方程x +2y -5=0. 综上所述,点M 的轨迹方程是x +2y -5=0.方法二 设M 的坐标为(x ,y ),则A 、B 两点的坐标分别是(2x,0)、(0,2y ),连结PM .∵l 1⊥l 2,∴2PM =AB . 而PM =(x -2)2+(y -4)2, AB =(2x )2+(2y )2,∴2(x -2)2+(y -4)2=4x 2+4y 2,化简,得x +2y -5=0,即为所求轨迹方程. 方法三 ∵l 1⊥l 2,OA ⊥OB ,∴O 、A 、P 、B 四点共圆,且该圆的圆心为M , ∴MP =MO ,∴点M 的轨迹为线段OP 的垂直平分线. ∵k OP =4-02-0=2,OP 的中点坐标为(1,2), ∴点M 的轨迹方程是y -2=-12(x -1),即x +2y -5=0. 三、探究与创新13.如图所示,圆O 1和圆O 2的半径都等于1,O 1O 2=4,过动点P 分别作圆O 1、圆O 2的切线PM 、PN (M 、N 为切点),使得PM =2PN .试建立平面直角坐标系,并求动点P 的轨迹方程.解 以O 1O 2的中点O 为原点,O 1O 2所在直线为x 轴,建立如图所示的坐标系, 则O 1(-2,0),O 2(2,0). 由已知PM =2PN , ∴PM 2=2PN 2.又∵两圆的半径均为1,∴PO21-1=2(PO22-1).设P(x,y),则(x+2)2+y2-1=2[(x-2)2+y2-1],即(x-6)2+y2=33.∴所求动点P的轨迹方程为(x-6)2+y2=33 (或x2+y2-12x+3=0).。

高中数学选修2-1《圆锥曲线》教案

高中数学选修2-1《圆锥曲线》教案

4. 待定系数法求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求. 例4 已知抛物线y2=4x和以坐标轴为对称轴、实轴在y轴上的双曲曲线方程.分析:因为双曲线以坐标轴为对称轴,实轴在y轴上,所以可设双曲线方ax2-4b2x+a2b2=0•••抛物线和双曲线仅有两个公共点,根据它们的对称性,这两个点的横坐标应相等,因此方程ax2-4b 2x+a2b2=0 应有等根.•••△ =1664-4Q4b2=0,即卩a2=2b.(以下由学生完成)由弦长公式得:即a2b2=4b2-a 2.(三)巩固练习用十多分钟时间作一个小测验,检查一下教学效果•练习题用一小黑板给出.1 .△ ABC-边的两个端点是B(0 , 6)和C(0 , -6),另两边斜率的2. 点P与一定点F(2 , 0)的距离和它到一定直线x=8的距离的比是1 : 2,求点P的轨迹方程,并说明轨迹是什么图形?3. 求抛物线y2=2px(p >0)上各点与焦点连线的中点的轨迹方程. 答案:义法)由中点坐标公式得:(四)小结求曲线的轨迹方程一般地有直接法、定义法、相关点法、待定系数法,还有参数法、复数法也是求曲线的轨迹方程的常见方法,这等到讲了参数方程、复数以后再作介绍.五、布置作业1. 两定点的距离为6,点M到这两个定点的距离的平方和为26,求点M的轨迹方程.2. 动点P到点F1(1 , 0)的距离比它到F2(3 , 0)的距离少2,求P点的轨迹.3. 已知圆x2+y2=4上有定点A(2 , 0),过定点A作弦AB,并延长到点P,使3|AB|=2|AB|,求动点P的轨迹方程.作业答案:1. 以两定点A、B所在直线为x轴,线段AB的垂直平分线为y轴建立直角坐标系,得点M的轨迹方程x2+y2=4 2. v |PF2|-|PF|=2 ,且|F1F2| • P点只能在x轴上且x V 1,轨迹是一条射线六、板书设计教学反思:4斜率之积为4,9程.分析:由椭圆的标准方程的定义及给出的条件,容易求出a,b,c .引导学生用其他方法来解.另解:设椭圆的标准方程为2 25 31 a b 0,因点一,一在椭圆上,a b2 225 9 则 4a 2 4b 22 2a b 4;10<6例2如图,在圆x 24上任取一点P ,过点P 作x 轴的垂线段 PD , D 为垂足•当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?分析: 点P 在圆x 2 y 2 4上运动,由点 P 移动引起点 M 的运动,则称点 M 是点P 的伴随点,因点M 为线段 PD 的中点,则点 M 的坐标可由点P 来表示,从而能求点 M 的轨迹方程.引申: 设定点2xA 6,2 , P 是椭圆x252y1上动点,求线段 AP 中点M 的轨迹方程.9解法剖析:①(代入法求伴随轨迹)设M x, y , P x 1,y 1 :②(点与伴随点的关系): M为线段AP 的中点,X i y i2x 6;③(代入已知轨迹求出伴随轨迹)2y 22..X 1 '252y11 , •••点M9x的轨迹方程为一25④伴随轨迹表示的范围.例3如图,设A , B 的坐标分别为 5,0 , 5,0 .直线 AM , BM 相交于点M ,且它们的分析:若设点x, y ,则直线AM,BM 的斜率就可以用含 x, y 的式子表示,由于直线AM ,BM 的斜率之积是4 ,因此,可以求出9x, y 之间的关系式,即得到点M 的轨迹方程.解法剖析:设点M x, y ,则 k AM-^― x 5 , k BMx 5 ;x 5x 5代入点M 的集合有4-,化简即可得点 M 的轨迹方程. 9引申:如图,设△ ABC 的两个顶点 A a,0 , B a,0,顶点C 在移动,且k AC k BC k , 且k 0,试求动点C 的轨迹方程.引申目的有两点:①让学生明白题目涉及问题的一般情形;②当 色也是从椭圆的长轴T 圆的直径T 椭圆的短轴.练习:第45页1、2、3、4、 作业:第53页2、3、k 值在变化时,线段 AB 的角求点M 的轨迹方程.分析与解决问题的能力:通过学生的积极参与和积极探究,培养学生的分析问题和解决 问题的能力.思维能力:会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问 题来思考;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能 力.实践能力:培养学生实际动手能力,综合利用已有的知识能力.创新意识能力:培养学生思考问题、并能探究发现一些问题的能力,探究解决问题的 一般的思想、方法和途径.♦过程与方法目标(1 )复习与引入过程引导学生复习由函数的解析式研究函数的性质或其图像的特点,在本节中不仅要注意通过对 椭圆的标准方程的讨论, 研究椭圆的几何性质的理解和应用,而且还注意对这种研究方法的培养.①由椭圆的标准方程和非负实数的概念能得到椭圆的范围;②由方程的性质得到椭圆的对称性;③先 定义圆锥曲线顶点的概念,容易得出椭圆的顶点的坐标及长轴、短轴的概念;④通过 题,探究椭圆的扁平程度量椭圆的离心率. 〖板书〗§ 2. 1. 2椭圆的简单几何性质.(2) 新课讲授过程(i )通过复习和预习,知道对椭圆的标准方程的讨论来研究椭圆的几何性质. 提问:研究曲线的几何特征有什么意义?从哪些方面来研究?通过对曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、 从范围、对称性、顶点及其他特征性质来研究曲线的几何性质.(ii )椭圆的简单几何性质2x一2 0,进一步得:a xax 代x ,且以 y 代y 这三个方面来研究椭圆的标准 y 轴为对称轴,原点为对称中心;即圆锥曲线的对称轴与圆锥曲线的交点叫做圆 锥曲线的顶点.因此椭圆有四个顶点,由于椭圆的对称轴有长短之分,较长的对称轴叫做长轴,较 短的叫做短轴;c④离心率: 椭圆的焦距与长轴长的比e 叫做椭圆的离心率(0 e 1 ),a当 e1 时,c a ,,b0.; 椭圆图形越扁(iii )例题讲解与引申、扩展400的长轴和短轴的长、离心率、焦点和顶点的坐标.分析:由椭圆的方程化为标准方程,容易求出a,b,c •弓I 导学生用椭圆的长轴、短轴、离心率、 焦点和顶点的定义即可求相关量.确度要求进行,没有作说明的按给定的有关量的有效数字处理;让学生参与并掌握利用信息技术探 究点的轨迹问题,培养学生学习数学的兴趣和掌握利用先进教学辅助手段的技能.♦能力目标(1)(3) (4)大小和位置.要巳8的思考冋①范围:由椭圆的标准方程可得,y 2 b 2b y b ,即椭圆位于直线x② 对称性:由以 x 代x ,以 方程发生变化没有,从而得到椭圆是以③ 顶点:先给出圆锥曲线的顶点的统一定义,y 代y 和 x 轴和 a ,同理可得:b 所围成的矩当 e 0 时,c 0,b a 椭圆越接近于圆例4求椭圆I6x 225y 2/Tn扩展:已知椭圆血5y2 5m m 0的离心率为e—,求m的值.解法剖析:依题意,m0,m 5,但椭圆的焦点位置没有确定, 应分类讨论: ①当焦点在x轴上,即0 m 5时,有a品 b 丽,c 75 ~m,二_—:得m 3;②当焦点在y轴上,即m例5如图,応b 岳c J m 5 , ••• J:5V m一种电影放映灯的反射镜面是旋转椭圆面的一部分.过对对称的截口5时,有a105253BAC是椭圆的一部分,灯丝位于椭圆的一个焦点F1上,片门位于另一个焦点F2上, 由椭圆一个焦点F1发出的光线,经过旋转椭圆面反射后集中到另一个焦点F2.已知BC F1F2,RB 2.8cm,F1F24.5cm .建立适当的坐标系,求截口BAC所在椭圆的方程.解法剖析:建立适当的直角坐标系,设椭圆的标准方程为1,算出a,b,c的值;此题应注意两点:①注意建立直角坐标系的两个原则;②关于a,b,c的近似值,原则上在没有注意精确度时,看题中其他量给定的有效数字来决定.引申:如图所示,“神舟”截人飞船发射升空,进入预定轨道开始巡天飞行,其轨道是以地球的中心F2为一个焦点的椭圆,近地点A距地面200km,远地点B距地面350km,已知地球的半径R 6371km •建立适当的直角坐标系,求出椭圆的轨迹方程.例6如图,设M x, y与定点F 4,0的距离和它到直线I : 兰的距离的比是常数4点M的轨迹方程./ 2 2 「亠「■25匚亠2MF(x 4 y ,到直线I:x 的距离d x44分析:若设点M x, y,则则容易得点M的轨迹方程.引申:(用《几何画板》探究)若点M x, y与定点F c,0的距离和它到定直线l :c距离比是常数e aac 0 ,则点M 的轨迹方程是椭圆.其中定点F c,0是焦点,2x —相应于F的准线;c由椭圆的对称性, 另一焦点F c,0 ,相应于F的准线l :练习:第52页1、作业:第53页4、教学反思:2、3、4、5、6、75ac4,求52a的c定直线l :类比椭圆:设参量b的意义:第一、便于写出双曲线的标准方程;第二、的几何意义.2 类比:写出焦点在y轴上,中心在原点的双曲线的标准方程召b (iii )例题讲解、引申与补充例1已知双曲线两个焦点分别为F15,0 , F25,0,双曲线上一点绝对值等于6,求双曲线的标准方程.分析:由双曲线的标准方程的定义及给出的条件,容易求出a,b,c的关系有明显P到R , F2距离差的2x2a1 a 0,b 0 . a,b, c.补充:求下列动圆的圆心M 的轨迹方程:① 与O C :2 22 y 2内切,且过点 A 2,0 :②与O C 1 : x 2 y 12 21 和O C2 : x y 4都外切;③与O C i :2 y 9外切,且与O C 2: x 223 y 1内切.解题剖析 半径为r :这表面上看是圆与圆相切的问题, 实际上是双曲线的定义问题•具体解: 设动圆•/ O C 与O M 内切,点A 在O C 外,• MC| r /2 MA,因此有MA 2x 2 •••点 MC 2,•点M 的轨迹是以C 、 A 为焦点的双曲线的左支,即M 的轨迹方程是MC i •••O M 与O c 1、O C 2 均外切,•••|MC 1| r 1, MC 2 r 2,因此有的轨迹是以C 2、C i 为焦点的双曲线的上支,• M 的轨迹方程是4y••• e M MC 2MC 24x 2 3MC i 1 ,与eG 外切,且e M 与e C 2内切,•- MC j4,•点M 的轨迹是以C i 、C 2为焦点的双曲线的右支,• MC 2r 1,因此M 的轨迹方程是例2已知A , B 两地相距800m ,在A 地听到炮弹爆炸声比在 B 地晚2s ,且声速为340m / s ,求炮弹爆炸点的轨迹方程. 分析:首先要判断轨迹的形状,由声学原理:由声速及 A , B 两地听到爆炸声的时间差,即可知A , B 两地与爆炸点的距离差为定值•由双曲线的定义可求出炮弹爆炸点的轨迹方程. 扩展:某中心接到其正东、正西、正北方向三个观察点的报告:正西、正北两个观察点同时听 到了一声巨响,正东观察点听到该巨响的时间比其他两个观察点晚 4s .已知各观察点到该中心的 距离都是1020m •试确定该巨响发生的位置(假定当时声音传播的速度为 340m/s ;相关点均在 同一平面内)• 解法剖析:因正西、正北同时听到巨响,则巨响应发生在西北方向或东南方向,以因正东比正西晚 4s ,则巨响应在以这两个观察点为焦点的双曲线上. 如图,以接报中心为原点 0,正东、正北方向分别为 x 轴、y 轴方向,建立直角坐标系,设 B 、C 分别是西、东、北观察点,则 A 1020,0 , B 1020,0 , C 0,1020 • 设P x,y 为巨响发生点,•/ A 、C 同时听到巨响,•OP 所在直线为y x ……①,又因B 点比A 点晚4s 听到巨响声,• PB PA 4 340 1360 m •由双曲线定义知,a 680 ,2 2c 1020 ,••• b 340^5 ,••• P点在双曲线方程为X 2y2 1 x 680……②.联立680 5 340①、②求出P点坐标为P 680 ;5,680 ,'5 •即巨响在正西北方向680、、10m处.探究:如图,设A,B的坐标分别为5,0,5,0 •直线AM,BM相交于点M,且它们4的斜率之积为,求点M的轨迹方程,并与§ 2. 1.例3比较,有什么发现?9探究方法:若设点M x,y,则直线AM , BM的斜率就可以用含x, y的式子表示,由于直线AM , BM的斜率之积是4,因此,可以求出x, y之间的关系式,即得到点M的轨迹方程.9练习:第60页1、2、3、作业:第66页1、2、2 . 3. 2双曲线的简单几何性质♦知识与技能目标了解平面解析几何研究的主要问题:(1)根据条件,求出表示曲线的方程;(2 )通过方程,研究曲线的性质.理解双曲线的范围、对称性及对称轴,对称中心、离心率、顶点、渐近线的概念;掌握双曲线的标准方程、会用双曲线的定义解决实际问题;通过例题和探究了解双曲线的第二定义,准线及焦半径的概念,利用信息技术进一步见识圆锥曲线的统一定义♦过程与方法目标(1 )复习与引入过程引导学生复习得到椭圆的简单的几何性质的方法,在本节课中不仅要注意通过对双曲线的标准方程的讨论,研究双曲线的几何性质的理解和应用,而且还注意对这种研究方法的进一步地培养.①由双曲线的标准方程和非负实数的概念能得到双曲线的范围;②由方程的性质得到双曲线的对称性;③由圆锥曲线顶点的统一定义,容易得出双曲线的顶点的坐标及实轴、虚轴的概念;④应用信息技术的《几何画板》探究双曲线的渐近线问题;⑤类比椭圆通过F56的思考问题,探究双曲线的扁平程度量椭圆的离心率. 〖板书〗§ 2. 2. 2双曲线的简单几何性质.(2) 新课讲授过程(i )通过复习和预习,对双曲线的标准方程的讨论来研究双曲线的几何性质.提问:研究双曲线的几何特征有什么意义?从哪些方面来研究?通过对双曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、大小和位置.要从范围、对称性、顶点、渐近线及其他特征性质来研究曲线的几何性质.(ii )双曲线的简单几何性质2 2①范围:由双曲线的标准方程得, 1 0,进一步得:x a ,或xa .这说b a明双曲线在不等式 x a ,或x a 所表示的区域;② 对称性:由以 x 代x ,以y 代y 和 x 代x ,且以 y 代y 这三个方面来研究双曲线的标准方程发生变化没有,从而得到双曲线是以x 轴和y 轴为对称轴,原点为对称中心;③ 顶点:圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线 的顶点.因此双曲线有两个顶点,由于双曲线的对称轴有实虚之分,焦点所在的对称轴叫做实轴, 焦点不在的对称轴叫做虚轴;c⑤ 离心率:双曲线的焦距与实轴长的比 e —叫做双曲线的离心率(e 1).a④渐近线:直线ybx 2x 叫做双曲线一 aa 2yb 2 1的渐近线;y 轴上的渐近线是扩展:求与双曲线x 2 162y —1共渐近线,2. 3, 3点的双曲线的标准方及离心率.解法剖析 :双曲线2x16291的渐近4x .①焦点在x 轴上时,设所求的双曲2线为X 216k 2 2 y 9k 2A 2;3, 3点在双曲线上,••• k 21,无解;4②焦点在y 轴上时,设所求的双曲线2x 16k 229:2 1,―A2 3, 3点在双曲线上,• k21,因此,所求双曲线42的标准方程为y9 41,离心率e5.这个要进行分类讨论,但只有一种情形有解,事实上, 3可直接设所求的双曲线的方程为2x162y一 mm R,m 0 .9(iii )例题讲解与引申、扩展例3求双曲线9y2 16x2 144的实半轴长和虚半轴长、焦点的坐标、离心率、渐近线方程.分析:由双曲线的方程化为标准方程,容易求出a,b,c.引导学生用双曲线的实半轴长、虚半轴长、离心率、焦点和渐近线的定义即可求相关量或式子,但要注意焦点在例4双曲线型冷却塔的外形,半径为12m,上口半径为13m,下口半径为25m,高为55m .试选择适当的坐标系,求出双曲线的方程(各长度量精确到1m).是双曲线的一部分绕其虚轴旋转所成的曲面如图(1),它的最小解法剖析:建立适当的直角坐标系,设双曲线的标准方程为2 2七七 1,算出a,b,c的值;a b此题应注意两点:①注意建立直角坐标系的两个原则;②关于 精确度时,看题中其他量给定的有效数字来决定.引申:如图所示,在 P 处堆放着刚购买的草皮,现要把这些草皮沿着道路 PA 或PB 送到呈矩形的足球场 ABCD 中去铺垫,已知|Ap 150m ,|Bp 100m,| BC| 60m , APB 60o •能否在足球场上画一条 “等距离”线,在“等距离”线的两侧的区域应该选择怎样的线路?说明理由.解题剖析:设M 为“等距离”线上任意一点,则|PA |AM点M 的轨迹方程.♦情感、态度与价值观目标在合作、互动的教学氛围中,通过师生之间、学生之间的交流、合作、互动实现共同探究,教 学相长的教学活动情境,结合教学内容,培养学生科学探索精神、审美观和科学世界观,激励学生 创新.必须让学生认同和掌握:双曲线的简单几何性质,能由双曲线的标准方程能直接得到双曲线 的范围、对称性、顶点、渐近线和离心率;必须让学生认同与理解:已知几何图形建立直角坐标系 的两个原则,①充分利用图形对称性,②注意图形的特殊性和一般性;必须让学生认同与熟悉:取 近似值的两个原则:①实际问题可以近似计算,也可以不近似计算,②要求近似计算的一定要按要 求进行计算,并按精确度要求进行,没有作说明的按给定的有关量的有效数字处理;让学生参与并 掌握利用信息技术探究点的轨迹问题, 培养学生学习数学的兴趣和掌握利用先进教学辅助手段的技能.♦能力目标(1) 分析与解决问题的能力:通过学生的积极参与和积极探究 ,培养学生的分析问题和解决 问题的能力.(2)思维能力:会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问 题来思考;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能MF I 1 ^2 2 .16 ,16 J X 5y ,到直线l:x 一的距离dx — 15 5分析:若设点M x, y ,则a,b,c 的近似值,原则上在没有注意PB BM ,即BM | |AM | |Ap |Bp 50 (定值),“等距离”线是以A 、B 为焦点的双曲线的左支上的2部分,容易“等距离”线方程为x y1 35 x 625 375025,0 y 60 .理由略.例5如图,设M x, y 与定点F 5,0的距离和它到直线 15的距离的比是常数5,求4则容易得点M 的轨迹方程. 引申:《几何画板》探究点的轨迹:双曲线x, y 与定点 F c,0 的距离和它到定直线2a——的距离 c比是常数0,则点M 的轨迹方程是双曲线. 其中定点F c,02是焦点,定直线l : x —相c应于F 的准线; 另一焦点 F c,0,相应于F 的准线I : xx2力.(3) 实践能力:培养学生实际动手能力,综合利用已有的知识能力.(4)创新意识能力:培养学生思考问题、并能探究发现一些问题的能力,探究解决问题的 一般的思想、方法和途径.练习:第66页1、2、3、4、5 作业:第3、4、6补充:3.课题:双曲线第二定义教学目标:1•知识目标:掌握双曲线第二定义与准线的概念,并会简单的应用。

苏教版高中数学选修2-1第2章圆锥曲线与方程2.1含答案

苏教版高中数学选修2-1第2章圆锥曲线与方程2.1含答案

§2.1圆锥曲线学习目标 1.了解当一个平面截一个圆锥面时,所截得的图形的各种情况.2.初步掌握椭圆、双曲线、抛物线的定义及其几何特征.3.通过平面截圆锥面的实验和对有关天体运动轨道的了解,知道圆锥曲线在我们身边广泛存在.知识点一椭圆的定义观察图形,思考下列问题:思考1如图,把细绳两端拉开一段距离,分别固定在图板上的两点F1,F2处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么图形?答案椭圆思考2图中移动的笔尖始终满足怎样的几何条件?答案PF1+PF2是常数(大于F1F2).梳理平面内到两个定点F1,F2的距离的和等于常数(大于F1F2)的点的轨迹叫做椭圆,两个定点F1,F2叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.知识点二双曲线的定义观察图示,若固定拉链上一点F1或F2,拉开或闭拢拉链,拉链头M经过的点可画出一条曲线,思考下列问题:思考1图中动点M的几何性质是什么?答案|MF1-MF2|为一个正常数.思考2若MF1-MF2=F1F2,则动点M的轨迹是什么?答案以F2为端点,向F2右边延伸的射线.梳理平面内到两个定点F1,F2的距离的差的绝对值等于常数(小于F1F2的正数)的点的轨迹叫做双曲线,两个定点F1,F2叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.知识点三抛物线的定义观察图形,思考下列问题:思考如图,定点C和定直线EF,用三角板画出到定点的距离等于到定直线的距离的动点D的轨迹.则动点D的轨迹是什么?其满足什么条件?答案抛物线,动点D到定点C和定直线EF距离相等,且C不在EF上.梳理平面内到一个定点F和一条定直线l(F不在l上)的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.椭圆、双曲线、抛物线统称为圆锥曲线.1.平面内到两定点的距离之和为常数的点的轨迹是椭圆.(×)2.平面内到两定点的距离之差的绝对值为常数的点的轨迹是双曲线.(×)3.抛物线上的点到焦点的距离与到准线的距离相等.(√)类型一 圆锥曲线定义的理解例 1 平面内动点 M 到两点 F 1(-3,0),F 2(3,0)的距离之和为 3m ,问 m 取何值时 M 的轨迹 是椭圆?解 ∵MF 1+MF 2=3m ,∴M 到两定点的距离之和为常数,当 3m 大于 F 1F 2 时,由椭圆定义知,M 的轨迹为椭圆, ∴3m >F 1F 2=3-(-3)=6,∴m >2,∴当 m >2 时,M 的轨迹是椭圆.反思与感悟 在深刻理解圆锥曲线的定义的过程中,一定要注意定义中的约束条件(1)在椭圆中,和为定值且大于 F 1F 2.(2)在双曲线中,差的绝对值为定值且小于 F 1F 2. (3)在抛物线中,点 F 不在定直线上.跟踪训练 1 (1)命题甲:动点 P 到两定点 A ,B 的距离之和 P A +PB =2a (a >0,a 为常数);命题乙:P 点轨迹是椭圆,则命题甲是命题乙的________条件.(2)动点 P 到两个定点 A (-2,0),B(2,0)构成的三角形的周长是 10,则点 P 的轨迹是________. 答案 (1)必要不充分 (2)椭圆解析 (1)若 P 点轨迹是椭圆,则 PA +PB =2a (a >0,且为常数),∴甲是乙的必要条件.反之,若 P A +PB =2a (a >0,且是常数),不能推出 P 点轨迹是椭圆.因为仅当 2a >AB 时,P 点轨迹才是椭圆;而当 2a =AB 时,P 点轨迹是线段 AB ;当 2a <AB时,P 点无轨迹,∴甲不是乙的充分条件.综上,甲是乙的必要不充分条件.(2)由题意知 P A +PB +AB =10,又 AB =4,∴PA +PB =6>4.∴点 P 的轨迹是椭圆.类型二 圆锥曲线轨迹的探究例 2 如图,已知动圆 C 与圆 F 1,F 2 均外切(圆 F 1 与圆 F 2 相离),试问:动点 C 的轨迹是什 么曲线?解 设动圆 C 的半径为 R ,圆 F 1,F 2 的半径分别为 r 1,r 2,则 CF 1=R +r 1,CF 2=R +r 2. 所以 CF 1-CF 2=r 1-r 2.跟踪训练 3 在△ABC 中,BC 固定,顶点 A 移动.设 BC =m ,且|sin C -sin B |= sin A ,则解 因为|sin C -sin B |= sin A ,由正弦定理可得|AB -AC |= BC = m ,且 m <BC ,又 CF 1-CF 2=r 1-r 2<F 1F 2,故动圆圆心 C 的轨迹是以 F 1,F 2 为焦点的双曲线靠近 F 2 的一支. 引申探究若把原题中“外切”换成“内切”再求解,结论如何?解 动点 C 的轨迹是以 F 1,F 2 为焦点的双曲线靠近 F 1 的一支.反思与感悟 紧扣圆锥曲线的定义,写出动点满足的条件,然后得到相应的轨迹.跟踪训练 2 已知动点 P 到点 A (-3,0)的距离比它到直线 x =1 的距离大 2,试判断动点 P 的轨迹.解 因点 P 到 A 的距离比它到直线 x =1 的距离大 2,所以点 P 到点 A 的距离等于它到直线 x =3 的距离.因为点 A 不在直线 x =3 上,所以点 P 的轨迹是抛物线.类型三 圆锥曲线定义的应用例 3 在△ABC 中,B (-6,0),C (0,8),且 sin B ,sin A ,sin C 成等差数列.(1)顶点 A 的轨迹是什么? (2)指出轨迹的焦点和焦距.解 (1)由 sin B ,sin A ,sin C 成等差数列,得 sin B +sin C =2sin A .由正弦定理可得 AB +AC=2BC .又 BC =10,所以 AB +AC =20,且 20>BC ,所以点 A 的轨迹是椭圆(除去直线 BC 与椭圆的交点).(2)椭圆的焦点为 B ,C ,焦距为 10.反思与感悟 利用圆锥曲线的定义可以判定动点的轨迹,在判定时要注意定义本身的限制条件,如得到 MF 1+MF 2=2a (a 为大于零的常数)时,还需要看 2a 与 F 1F 2 的大小,只有 2a >F 1F 2 时,所求轨迹才是椭圆.若得到MF 1-MF 2=2a (0<2a <F 1F 2),轨迹仅为双曲线的一支.除了 圆锥曲线定义本身的限制条件外,还要注意题目中的隐含条件.12顶点 A 的轨迹是什么?121 1 12 2 2所以点 A 的轨迹是双曲线(除去双曲线与 BC 的两交点).F FF1.设F1,2是两个定点,1F2=6,动点M满足MF1+MF2=10,则动点M的轨迹是________.答案椭圆解析因MF1+MF2=10>F1F2=6,由椭圆的定义得动点的轨迹是椭圆.2.若F1,2是两个定点且动点P1满足PF1-PF2=1,又F1F2=3,则动点P的轨迹是________.答案双曲线靠近点F2的一支解析因PF1-PF2=1<F1F2=3,故由双曲线定义判断,动点P的轨迹是双曲线靠近点F2的一支.3.到定点(1,0)和定直线x=-1距离相等的点的轨迹是________.答案抛物线解析依据抛物线定义可得.4.到两定点F1(-3,0),F2(3,0)的距离之差的绝对值等于6的点M的轨迹是________.答案两条射线解析据题|MF1-MF2|=F1F2,得动点M的轨迹是两条射线.5.如图,在正方体ABCD-A1B1C1D1中,P是侧面BB1C1C内一动点,若点P到直线BC与直线C1D1的距离相等,则动点P的轨迹是________.答案抛物线解析由正方体的性质可知,点P到C1D1的距离为PC1,故动点P到定点C1和到定直线BC的距离相等,且点C1不在直线BC上,符合抛物线的定义,所以动点P的轨迹是抛物线.1.若MF1+MF2=2a(2a>F1F2),则动点M的轨迹是椭圆.若点M在椭圆上,则MF1+MF2=2a.2.若|MF1-MF2|=2a(0<2a<F1F2),则动点M的轨迹为双曲线.若动点M在双曲线上,则|MF1-MF2|=2a.3.抛物线定义中包含三个定值,分别为一个定点,一条定直线及一个确定的比值.2”一、填空题1.平面内到两定点F1(-3,0),F2(3,0)的距离的和等于6的点P的轨迹是________.答案线段F1F2解析依题意得PF1+PF2=6=F1F2,故动点P的轨迹是线段F1F2.2.到定点(0,7)和到定直线y=7的距离相等的点的轨迹是________.答案直线解析因定点(0,7)在定直线y=7上,故符合条件的点的轨迹是直线.3.已知定点F1(-2,0),F2(2,0),在满足下列条件的平面内,动点P的轨迹为双曲线的是________.(填序号)①|PF1-PF2|=3;②|PF1-PF2|=4;③|PF1-PF2|=5;④PF1-PF2=±4.答案①解析根据双曲线定义知P到F1,F2的距离之差的绝对值要小于F1F2.4.到定点A(2,0)和B(4,0)的距离之差为2的点的轨迹是________.答案一条射线解析要注意两点:一是“差”而不是“差的绝对值;二是“常数”等于两定点间的距离.5.已知△ABC的顶点A(-5,0),B(5,0),△ABC的内切圆圆心在直线x=3上,则顶点C的轨迹是____________.答案以A,B为焦点的双曲线的右支(除去点(3,0))解析如图,AD=AE=8.BF=BE=2,CD=CF,所以CA-CB=8-2=6<AB=10.根据双曲线定义,所求轨迹是以A,B为焦点的双曲线的右支(除去点(3,0)).6.已知点M(x,y)的坐标满足(x-1)2+(y-1)2-(x+3)2+(y+3)2=±4,则动点M的轨迹是________.答案双曲线解析点(x,y)到(1,1)点及到(-3,-3)点的距离之差的绝对值为4,而(1,1)与(-3,-3)距3 10.已知点 A (-1,0),B (1,0).曲线 C 上任意一点 P 满足P A 2-PB 2=4(|P A |-|PB |)≠0.则曲线解析 由P A 2-PB 2=4(|P A |-|PB |)≠0,得|P A |+|PB |=4,且 4>AB .| 离为 4 2,由定义知动点 M 的轨迹是双曲线.7.下列说法中正确的有________.(填序号)①已知 F 1(-6,0),F 2(6,0),到 F 1,F 2 两点的距离之和等于 12 的点的轨迹是椭圆; ②已知 F 1(-6,0),F 2(6,0),到 F 1,F 2 两点的距离之和等于 8 的点的轨迹是椭圆;③到点 F 1(-6,0),F 2(6,0)两点的距离之和等于点 M (10,0)到 F 1,F 2 的距离之和的点的轨迹 是椭圆;④到点 F 1(-6,0),F 2(6,0)距离相等的点的轨迹是椭圆. 答案 ③解析 椭圆是到两个定点 F 1,F 2 的距离之和等于常数(大于 F 1F 2)的点的轨迹,应特别注意 椭圆的定义的应用.①中 F 1F 2=12,故到 F 1,F 2 两点的距离之和为常数 12 的点的轨迹是线段 F 1F 2. ②中点到 F 1,F 2 两点的距离之和 8 小于 F 1F 2,故这样的点不存在.③中点 M (10,0)到 F 1,F 2 两点的距离之和为 (10+6)2+02+ (10-6)2+02=20>F 1F 2=12, 故③中点的轨迹是椭圆.④中点的轨迹是线段 F 1F 2 的垂直平分线. 故正确的是③.8.若动点 P 到定点 F (1,1)和到直线 l :x +y -4=0 的距离相等,则动点 P 的轨迹是________. 答案 直线解析设动点 P 的坐标为(x ,y ),则 (x -1)2+(y -1)2=|3x +y -4|.整理,得 x -3y +2=0,10所以动点 P 的轨迹为直线.9.平面内有两个定点 F 1,F 2 及动点 P ,设命题甲:PF 1-PF 2|是非零常数,命题乙:动点P 的轨迹是以 F 1,F 2 为焦点的双曲线,则甲是乙的________条件.(“充分不必要”“必要不 充分”“充要”“既不充分又不必要”)答案 必要不充分解析 由双曲线的定义可知,若动点 P 的轨迹是以 F 1,F 2 为焦点的双曲线,则|PF 1-PF 2| 是非零常数,反之则不成立.→ → → →C 的轨迹是______.答案 椭圆→ → → →→ →故曲线 C 的轨迹是椭圆.(解析把轨迹方程5x2+y2=|3x+4y-12|写成x2+y2=,∴动点M到原点的=BD,MC=CE,于是MB+MC=BD+CE=(BD+CE)=×39=26>24=BC. 11.已知动圆M过定点A(-3,0),并且在定圆B:(x-3)2+y2=64的内部与其相内切,则动圆圆心M的轨迹为________.答案椭圆解析设动圆M的半径为r.因为动圆M与定圆B内切,所以MB=8-r.又动圆M过定点A,MA=r,所以MA+MB=8>AB=6,故动圆圆心M的轨迹是椭圆.二、解答题12.点M到点F(0,-2)的距离比它到直线l:y-3=0的距离小1,试确定点M的轨迹.解由题意得点M与点F的距离等于它到直线y-2=0的距离,且点F不在直线l上,所以点M的轨迹是抛物线.13.如图所示,已知点P为圆R:x+c)2+y2=4a2上一动点,Q(c,0)为定点(c>a>0,为常数),O为坐标原点,求线段PQ的垂直平分线与直线RP的交点M的轨迹.解由题意,得MP=MQ,RP=2a.MR-MQ=MR-MP=RP=2a<RQ=2c.∴点M的轨迹是以R,Q为两焦点,2a为实轴长的双曲线的右支.三、探究与拓展14.已知动点M的坐标满足方程5x2+y2=|3x+4y-12|,则动点M的轨迹是__________.答案抛物线|3x+4y-12|5距离与到直线3x+4y-12=0的距离相等.∵原点不在直线3x+4y-12=0上,∴点M的轨迹是以原点为焦点,直线3x+4y-12=0为准线的抛物线.△15.在ABC中,BC=24,AC,AB边上的中线长之和等于△39,求ABC的重心的轨迹.解如图所示,以BC的中点O为坐标原点,线段BC所在直线为x轴,线段BC的中垂线为y轴建立平面直角坐标系xOy.设M为△ABC的重心,BD是AC边上的中线,CE是AB边上的中线,由重心的性质知M B 222222333333根据椭圆的定义知,点M的轨迹是以B,C为两焦点,26为实轴长的椭圆去掉点(-13,0),(13,0).。

高中数学 第二章《圆锥曲线与方程》2.1圆锥曲线学案 新人教版选修2-1

高中数学 第二章《圆锥曲线与方程》2.1圆锥曲线学案 新人教版选修2-1

第2章圆锥曲线与方程2.1 圆锥曲线二、预习指导1.预习目标(1)认识用平面截圆锥面得到的各种曲线;(2)掌握椭圆、双曲线、抛物线的定义;(3)会根据不同的已知条件,利用圆锥曲线的定义判断动点的轨迹.2.预习提纲(1)查找有关轨迹的概念,回答下列问题:①平面内到线段两端点距离相等的点的轨迹是____________;②平面内到定点的距离等于定长的点的轨迹是____________;③空间中到定点的距离等于定长的点的轨迹是____________.(2)阅读教材选修4-1的71页到78页,教材选修2-1的25页到27页写下列空格:①一个平面截一个圆锥面,改变平面的位置,可得到如下图形____________,____________,____________,____________,____________;②平面内到两个定点F1,F2的距离_____等于常数(__________)的点的轨迹叫做椭圆,两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的__________;③平面内到两个定点F1,F2的距离____________等于常数(______________)的点的轨迹叫做双曲线,两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距;④平面内到一个定点F和一条定直线l(________________)的距离________的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的_________.(3)阅读课本例1,动手实践借助细绳画椭圆,结合课本27页习题2.1第3题,动手实践借助拉链画双曲线,并说明理由,以此加深对椭圆、双曲线定义的认识.3.典型例题例1 动点P(x,y)与两个定点A(-2,0)、B(2,0)构成的三角形周长为10.(1)试证:动点P在一个椭圆上运动;(2)写出这个椭圆的焦点坐标.分析:找动点P满足的条件,利用圆锥曲线的定义.解:(1)由题意得:PA+PB+AB=10,AB=4,故PA+PB=6>4.由椭圆的定义得:动点P在以A(-2,0)、B(2,0)为焦点的椭圆上运动.(2)由(1)得:这个椭圆的两个焦点坐标为A(-2,0)、B(2,0).点评:在圆锥曲线(椭圆、双曲线、抛物线)的定义中,条件都有特定的限制,如在具体问题中不加以判断,会造成错解.如本题中PA+PB=6>4是十分必要的.在椭圆的定义中,PF1+PF2等于常数,常数大于F1F2的判断是必不可少的.若常数等于F 1F 2,则轨迹是线段F 1F 2;若常数小于F 1F 2,则不表示任何图形.在双曲线的定义中,注意两个限制:一是常数小于F 1F 2,二是差的绝对值,两者缺一不可.若PF 1-PF 2是正常数且常数小于F 1F 2,则点的轨迹是双曲线以F 2为焦点的一支;若PF 2-PF 1是正常数且常数小于F 1F 2,则点的轨迹是双曲线以F 1为焦点的一支;若|PF 1-PF 2|是常数且等于F 1F 2,则点的轨迹是两条射线;若PF 1-PF 2是常数且等于F 1F 2,则点的轨迹是以F 2为端点与F 1F 2同向的射线;若PF 2-PF 1是常数且等于F 1F 2,则点的轨迹是以F 1为端点与F 1F 2反向的射线. 在抛物线的定义中,当点F 在直线l 上时,则点P 的轨迹是过点F 与直线l 垂直的直线.例2 已知圆()221:31C x y ++=和圆()222:39C x y -+=,动圆M 同时与圆C 1及圆C 2相外切,试问动圆圆心M 在怎样的曲线上运动?分析:两圆外切,则圆心距等于半径之和.解: 设动圆的半径为R ,则由动圆M 同时与圆C 1及圆C 2相外切得:1213MC R MC R =+⎧⎨=+⎩ 消去R 得:MC 2-MC 1=2,故可知动点M 到两定点C 1,C 2的距离之差是常数2.由双曲线的定义得:动圆圆心M 在双曲线的一支(左边的一支)上运动.点评:本题由于动点M 到两定点C 1,C 2的距离之差是常数,而不是差的绝对值为常数,因此其轨迹只能是双曲线的一支.这一点在应用过程中要特别注意.4.自我检测(1)已知点A (1,0)、B (-1,0),动点P 满足:PA +PB =4,则动点P 的轨迹是__ .(2)已知点A (-2,0)、B (2,0),动点M 满足:|MA -MB |=2,则动点M 的轨迹是 ____ ,其两个焦点分别为 .(3)已知定点A (1,0)和定直线l :x = -3,若点N 到定点A 与到定直线l 的距离相等,则点N 的轨迹是 ,其焦点为 ,准线为 .(4)已知点A (-2,0)、B (2,0),动点M 满足:|MA -MB |=4,则动点M 的轨迹是 _.(5)在△ABC 中,B (0,-3),C (0,3),且AB ,BC ,AC 成等差数列,试证:点A 在以B 、C 为焦点的椭圆上运动.三、课后巩固练习A 组1.用合适的选项填写下列轨迹 ( 要求只填写序号 )①直线;②圆;③椭圆;④双曲线;⑤双曲线的一支;⑥抛物线;⑦线段(1)动点P 到两定点F 1(-4,0)、F 2(4,0)的距离和是8,则动点P 的轨迹为_______; (2)已知椭圆的焦点为F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得PQ =PF 2,那么动点Q 的轨迹是_________;(3)动点P 到直线x +4=0的距离减去它到M (2,0)的距离之差等于2,则动点P 的轨迹是___________;(4)经过定圆外一定点,并且与定圆外切的动圆圆心的轨迹是__________.2.已知O (0,0)、A0)为平面内两个定点,动点P 满足:PO +PA =2,求动点P 的轨迹.3.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,且b ,a ,c 成等差数列,b ≥c .已知顶点B 、C 的坐标为B (-1,0),C (-1,0).试证:点A 在以B 、C 为焦点的左半椭圆上运动.4.在△ABC 中,A 为动点,(,0)(,0)(0)22a a B C a ->、为定点,且满足:1s i n s i n s i n 2C B A -=,试问动点A 在怎样的曲线上运动?B 组5.圆O 1与圆O 2的半径分别为1和2,O 1O 2=4,动圆与圆O 1内切而与圆O 2外切,则动圆圆心的轨迹是_____________________.6.已知定点A (-3,3)和定直线l :x =-3,若点N 到定点A 与到定直线l 的距离相等,则点N 的轨迹是 .7.已知圆的方程为22100x y +=,点A 的坐标为(-6,0),M 是圆O 上的任意一点,AM 的垂直平分线交OM 于点P ,试证明:点P 在以A 、O 为焦点的椭圆上运动.C 组8.已知A(0,7)、B(0,-7)、C(12,2),以C 为一个焦点作过A 、B 的椭圆,记椭圆的另一个焦点为F ,证明:点F 在以A(0,7)、B(0,-7)为焦点的双曲线的一支上运动.9.已知两个同心圆,其半径分别为R ,r (R >r ),AB 为小圆的一条定直径,求证:以大圆切线为准线,且过A 、B 两点的抛物线的焦点F 在以A 、B 为焦点的椭圆上.10.若一个动点P (x ,y )到定点F 1(-1,0),F 2(1,0)距离之和为定值m (m ≥0),试讨论点P 的轨迹.题号我们身边的圆锥曲线圆锥曲线的发现确实是一个伟大的发现.在笛卡尔直角坐标系中,这些曲线的方程是二次方程,所以圆锥曲线又叫做二次曲线.对于二次曲线的价值大概还没有人会估计得过高.在我们的实际生活中处处都有圆锥曲线.例如,我们的地球绕太阳运行的轨道是椭圆,太阳系的其他行星的运行轨道都是椭圆.这个事实是由开普勒第一定律确定的,之所以沿着椭圆轨道运动,是因为每一个行星在每一个瞬间都有不超过某一个值的速度.事实证明,假如这个速度过大了,运动就会沿着抛物线或双曲线轨道运行.相对于一个静止的物体,并按照万有引力定律受它吸引的物体运动,不可能有任何其他的轨道.因此,二次曲线实际上是以我们的宇宙为基础的.又如,如果让抛物线绕其轴旋转,就得到一个叫做旋转抛物面的曲面.在抛物面的轴上,有一个具有美妙性质的焦点,任何一条通过该点的直线由抛物面上反射出来之后,在指向上都平行于抛物面的轴.而这意味着如果把探照灯做成抛物面的形状,并且把灯泡放在焦点上,那么从抛物面上反射回来的所有光线就形成一束平行光束.这显然是一个很大的优点,因为正是这样一束光线在空间中,甚至于在离光源距离相当大的情况下,很少扩散.当然,实际上我们得不到理想的平行光束,因为灯泡不是一个点,但对于实用的目的来说,只要接近于这样的光束就够了.天文望远镜上的反射镜也是利用抛物面的形状制作的.它的作用刚好和探照灯的作用相反:探照灯的反射镜把光线反射到空间,天文望远镜的反射面则把来自宇宙的光线聚焦到自己的焦点上.只要用放大镜组瞄准这个焦点就行了,这样,我们就会得到聚焦到其光线的那个星球的信息,这比肉眼观察所能提供的信息要多得多.那条不穿过双曲线的对称轴叫做双曲线的虚轴.如果使双曲线绕这条轴旋转,那么,形成的曲面(这样的曲面称为单叶双曲面)也有许多实际用处.单叶双曲面是直纹曲面.上面有两组母直线族,各组内母线彼此不相交,而与另一组母线永远相交.正是这种性质在技术中得到了应用.例如,用直立木杆造水塔,如果把这些杆垂直地放置,那就只能得到一个很不牢固的建筑物,他会因为非常小的负荷而损坏.如果立杆时,使他们构成一个单叶双曲面(就是两组母线族),并使他们的交点处连接在一起,就会得到一个非常轻巧而又非常坚固的建筑物.许多化工厂或热电厂的冷却塔就是利用了这个原理.在尝试解决古代名题的过程中,所发现的各种美妙曲线远不限于螺线,蚌线和圆锥曲线.可是,不管找到了多少美妙的曲线,他们还是解决不了古代名题.要知道,正像我们还记得的那样,要求不只是解出这些名题,而是除了直尺和圆规外,不准利用其他任何工具.而仅仅利用这两种工具能否解决其中任何一个问题呢?这个问题该如何回答呢?如果这个答案存在的话,对这个问题给与肯定的回答,原则上显得比给与否定的回答更容易,只不过需要尝试才能找到这个答案.经过或多或少接连不断的寻找,这种题解通常可以找到.在题解不存在的情况下,事情则难办的多.这时,只停留在普通的几何直观上,几乎不可能得到所需要的答案.在这种情况下,可以对问题进行精确的代数分析,以便归结为完成某些代数方程的不可能性证明解答这个问题的不可能性.这样,就要求助于代数!2.1 圆锥曲线自我检测(1)以A,B为焦点的椭圆 (2) 以A,B为焦点的双曲线,A(-2,0)、B(2,0) (3)抛物线,A(1,0) ,l:x= -3 (4) 以A,B为端点的两条射线(5)因为AB,BC,AC成等差数列,所以AB+AC =2BC=12>BC,因此点A在以B、C为焦点的椭圆上运动.课后巩固练习A组1.(1)⑦;(2)②;(3)⑥;(4)⑤ 2.以O,A为焦点的椭圆3.证明略 4.点A在以B,C为焦点的双曲线的右支上B组5.以O1,O2为焦点的双曲线的一支 6.过点A且垂直于l的直线7.8.证明略C组9.证明略10.当m<2时,轨迹不存在;当m=2是,轨迹是以F1F2为端点的线段;当m>2时,轨迹是以F1F2为焦点的椭圆。

高中数学苏教版选修2-1第2章《圆锥曲线与方程》(3.2)word学案

高中数学苏教版选修2-1第2章《圆锥曲线与方程》(3.2)word学案

2.3.2双曲线的几何性质[学习目标] 1.了解双曲线的几何性质,如范围、对称性、顶点、渐近线和离心率等.2.能用双曲线的几何性质解决一些简单问题.3.能区别椭圆与双曲线的性质.[知识链接]类比椭圆的几何性质,结合图象,你能得到双曲线x 2a 2-y2b2=1 (a>0,b>0)的哪些几何性质?答:(1)范围:x≥a或x≤-a;(2)对称性:双曲线关于x轴、y轴和原点都是对称的;(3)顶点:双曲线有两个顶点A1(-a,0),A2(a,0).[预习导引]1.双曲线的几何性质标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)图形性质范围x≥a或x≤-a y≥a或y≤-a对称性对称轴:坐标轴对称中心:原点顶点坐标A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)渐近线y=±ba x y=±ab x离心率e=ca,e∈(1,+∞)2.实轴和虚轴等长的双曲线叫做等轴双曲线,它的渐近线是y=±x.要点一 已知双曲线的标准方程求其几何性质例1 求双曲线9y 2-16x 2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程. 解 把方程9y 2-16x 2=144化为标准方程y 242-x 232=1.由此可知,实半轴长a =4,虚半轴长b =3;c =a 2+b 2=42+32=5,焦点坐标是(0,-5),(0,5); 离心率e =c a =54;渐近线方程为y =±43x .规律方法 讨论双曲线的几何性质,先要将双曲线方程化为标准形式,然后根据双曲线两种形式的特点得到几何性质.跟踪演练1 求双曲线x 2-3y 2+12=0的实轴长、虚轴长、焦点坐标、顶点坐标、渐近线方程、离心率. 解 将方程x 2-3y 2+12=0化为标准方程y 24-x 212=1,∴a 2=4,b 2=12,∴a =2,b =23,∴c =a 2+b 2=16=4. ∴双曲线的实轴长2a =4,虚轴长2b =4 3.焦点坐标为F 1(0,-4),F 2(0,4),顶点坐标为A 1(0,-2),A 2(0,2),渐近线方程为y =±33x ,离心率e =2.要点二 根据双曲线的几何性质求标准方程 例2 求适合下列条件的双曲线的标准方程: (1)一个焦点为(0,13),且离心率为135;(2)渐近线方程为y =±12x ,且经过点A (2,-3).解 (1)依题意可知,双曲线的焦点在y 轴上,且c =13,又c a =135,∴a =5,b =c 2-a 2=12,故其标准方程为y 252-x 2122=1. (2)方法一 ∵双曲线的渐近线方程为y =±12x ,若焦点在x 轴上,设所求双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),则b a =12.①∵A (2,-3)在双曲线上,∴4a 2-9b2=1.②由①②联立,无解.若焦点在y 轴上,设所求双曲线的标准方程为y 2a 2-x 2b 2=1(a >0,b >0),则a b =12.③∵A (2,-3)在双曲线上,∴9a 2-4b 2=1.④由③④联立,解得a 2=8,b 2=32. ∴所求双曲线的标准方程为y 28-x 232=1.方法二 由双曲线的渐近线方程为y =±12x ,可设双曲线方程为x 222-y 2=λ(λ≠0),∵A (2,-3)在双曲线上, ∴2222-(-3)2=λ,即λ=-8. ∴所求双曲线的标准方程为y 28-x 232=1.规律方法 由双曲线的几何性质求双曲线的标准方程,一般用待定系数法.当双曲线的焦点不明确时,方程可能有两种形式,此时应注意分类讨论,为了避免讨论,也可设双曲线方程为mx 2-ny 2=1 (mn >0),从而直接求得.若已知双曲线的渐近线方程为y =±b a x ,还可以将方程设为x 2a2-y 2b2=λ (λ≠0),避免讨论焦点的位置. 跟踪演练2 求中心在原点,对称轴为坐标轴,且满足下列条件的双曲线方程: (1)双曲线过点(3,92),离心率e =103; (2)过点P (2,-1),渐近线方程是y =±3x . 解(1)e 2=109,得c 2a 2=109,设a 2=9k , 则c 2=10k ,b 2=c 2-a 2=k (k >0). 于是,设所求双曲线方程为x 29k -y 2k =1,①或y 29k -x 2k=1,② 把(3,92)代入①,得k =-161与k >0矛盾,无解; 把(3,92)代入②,得k =9, 故所求双曲线方程为y 281-x 29=1.(2)方法一 首先确定所求双曲线的标准类型,可在图中判断一下点P (2,-1)在渐近线y =-3x 的上方还是下方.如图所示,x =2与y =-3x 交点为Q (2,-6),P (2,-1)在Q (2,-6)的上方,所以焦点在x 轴上. 设双曲线方程为x 2a 2-y 2b2=1 (a >0,b >0).依题意,得⎩⎨⎧ba=3,4a 2-1b 2=1,解得⎩⎪⎨⎪⎧a 2=359,b 2=35.∴所求双曲线方程为x 2359-y 235=1.方法二 由渐近线方程y =±3x , 可设所求双曲线方程为x 2-y 29=λ (λ≠0),(*) 将点P (2,-1)代入(*),得λ=359,∴所求双曲线方程为x 2359-y 235=1.要点三 直线与双曲线的位置关系例3 直线l 在双曲线x 23-y 22=1上截得的弦长为4,其斜率为2,求l 的方程.解 设直线l 的方程为y =2x +m ,由⎩⎪⎨⎪⎧y =2x +m x 23-y 22=1得10x 2+12mx +3(m 2+2)=0.(*) 设直线l 与双曲线交于A (x 1,y 1),B (x 2,y 2)两点, 由根与系数的关系,得x 1+x 2=-65m ,x 1x 2=310(m 2+2).又y 1=2x 1+m ,y 2=2x 2+m , ∴y 1-y 2=2(x 1-x 2),∴AB 2=(x 1-x 2)2+(y 1-y 2)2=5(x 1-x 2)2 =5[(x 1+x 2)2-4x 1x 2] =5[3625m 2-4×310(m 2+2)].∵AB =4,∴365m 2-6(m 2+2)=16.∴3m 2=70,m =±2103. 由(*)式得Δ=24m 2-240, 把m =±2103代入上式,得Δ>0, ∴m 的值为±2103. ∴所求l 的方程为y =2x ±2103. 规律方法 直线与双曲线相交的题目,一般先联立方程组,消去一个变量,转化成关于x 或y 的一元二次方程.要注意根与系数的关系,根的判别式的应用.若与向量有关,则将向量用坐标表示,并寻找其坐标间的关系,结合根与系数的关系求解.跟踪演练3 设双曲线C :x 2a 2-y 2=1(a >0)与直线l :x +y =1相交于两个不同的点A 、B .(1)求实数a 的取值范围;(2)设直线l 与y 轴的交点为P ,若P A →=512PB →,求a 的值.解 (1)将y =-x +1代入双曲线方程x 2a2-y 2=1(a >0)得(1-a 2)x 2+2a 2x -2a 2=0.依题意⎩⎪⎨⎪⎧1-a 2≠0,Δ=4a 4+8a 2(1-a 2)>0,所以0<a <2且a ≠1.(2)设A (x 1,y 1),B (x 2,y 2),P (0,1), 因为P A →=512PB →,所以(x 1,y 1-1)=512(x 2,y 2-1).由此得x 1=512x 2.由于x 1,x 2是方程(1-a 2)x 2+2a 2x -2a 2=0的两根, 且1-a 2≠0,所以1712x 2=-2a 21-a 2,512x 22=-2a 21-a 2.消去x 2得-2a 21-a 2=28960.由a >0,解得a =1713.1.双曲线x 24-y 212=1的焦点到渐近线的距离为________.答案 23解析 ∵双曲线x 24-y 212=1的一个焦点为F (4,0),其中一条渐近线方程为y =3x ,∴点F 到3x -y =0的距离为432=2 3.2.双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m 的值为________. 答案 -14解析 由双曲线方程mx 2+y 2=1,知m <0,则双曲线方程可化为y 2-x 2-1m=1,则a 2=1, a =1,又虚轴长是实轴长的2倍,∴b =2,∴-1m =b 2=4,∴m =-14.3.若在双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的右支上到原点O 和右焦点F 距离相等的点有两个,则双曲线的离心率的取值范围是________. 答案 (2,+∞)解析 由于到原点O 和右焦点F 距离相等的点在线段OF 的垂直平分线上,其方程为x =c2.依题意,在双曲线x 2a 2-y 2b2=1 (a >0,b >0)的右支上到原点和右焦点距离相等的点有两个,所以直线x =c 2与右支有两个交点,故应满足c 2>a ,即ca>2,得e >2.4.已知双曲线C :x 2a 2-y 2b 2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为________.答案 x 220-y 25=1解析 双曲线C 的渐近线方程为x 2a 2-y 2b 2=0及点P (2,1)在渐近线上,∴4a 2-1b 2=0,即a 2=4b 2,又a 2+b 2=c 2=25,解得b 2=5,a 2=20.1.渐近线是双曲线特有的性质.两方程联系密切,把双曲线的标准方程x 2a 2-y 2b 2=1 (a >0,b >0)右边的常数1换为0,就是渐近线方程.反之由渐近线方程ax ±by =0变为a 2x 2-b 2y 2=λ,再结合其他条件求得λ就可得双曲线方程.2.准确画出几何图形是解决解析几何问题的第一突破口.对圆锥曲线来说,渐近线是双曲线特有的性质.利用双曲线的渐近线来画双曲线特别方便,而且较为精确,只要作出双曲线的两个顶点和两条渐近线,就能画出它的近似图形.一、基础达标1.双曲线2x 2-y 2=8的实轴长是________. 答案 4 解析2x 2-y 2=8可变形为x 24-y 28=1,则a 2=4,a =2,2a =4.2.双曲线3x 2-y 2=3的渐近线方程是____________ 答案 y =±3x解析 双曲线方程可化为标准形式:x 21-y 23=1,∴a =1,b =3,∴双曲线的渐近线方程为y =±3x .3.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线的方程为________. 答案 x 24-y 212=1解析 依题意焦点在x 轴上,c =4,ca =2,∴a =2.b 2=c 2-a 2=12.故方程为x 24-y 212=1. 4.已知中心在原点的双曲线C 的右焦点为F (3,0),离心率等于32,则双曲线C 的方程是________.答案 x 24-y 25=1解析 依题意得c =3,e =32,所以a =2,从而a 2=4,b 2=c 2-a 2=5.故方程为x 24-y 25=1.5.双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的左、右焦点分别是F 1、F 2,过F 1作倾斜角为30°的直线,交双曲线右支于M 点,若MF 2垂直于x 轴,则双曲线的离心率为________. 答案3解析 如图,在Rt △MF 1F 2中,∠MF 1F 2=30°. 又F 1F 2=2c , ∴MF 1=2c cos30°=433c , MF 2=2c ·tan30°=233c .∴2a =MF 1-MF 2=233c .∴e =ca= 3.6.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为________.答案 y =±12x解析 已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,故有a 2+b 2a 2=54,所以b 2a 2=14,解得b a =12.故C 的渐近线方程为y =±12x . 7.根据下列条件,求双曲线的标准方程.(1)与双曲线x 29-y 216=1有共同的渐近线,且过点(-3,23);(2)F 1、F 2是双曲线的左、右焦点,P 是双曲线上一点,且∠F 1PF 2=60°,S △PF 1F 2=123,其离心率为2.解 (1)设所求双曲线方程为x 29-y 216=λ (λ≠0),将点(-3,23)代入得λ=14,所以双曲线方程为x 29-y 216=14,即4x 29-y 24=1.(2)设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0).因为F 1F 2=2c ,而e =ca =2.由双曲线的定义,得 |PF 1-PF 2|=2a =c . 由余弦定理,得(2c )2=PF 21+PF 22-2PF 1·PF 2·cos ∠F 1PF 2=(PF 1-PF 2)2+2PF 1·PF 2(1-cos60°), 化简,得4c 2=c 2+PF 1·PF 2.又S △PF 1F 2=12PF 1·PF 2·sin60°=12 3.所以PF 1·PF 2=48.即3c 3=48,c 2=16,得a 2=4,b 2=12. 故所求双曲线的方程为x 24-y 212=1.二、能力提升8.已知圆C 过双曲线x 29-y 216=1的一个顶点和一个焦点,且圆心在此双曲线上,则圆心到双曲线中心的距离是________. 答案163解析 由双曲线的几何性质,易知圆C 过双曲线同一支上的顶点和焦点,所以圆C 的圆心的横坐标为±4.故圆心坐标为(4,±473)或(-4,±473).易求得它到双曲线中心的距离为163.9.双曲线x 24+y 2k =1的离心率e ∈(1,2),则k 的取值范围是________.答案 (-12,0)解析 双曲线方程可变为x 24-y 2-k =1,则a 2=4,b 2=-k ,c 2=4-k ,e =ca =4-k 2,又∵e ∈(1,2),则1<4-k2<2,解得-12<k <0. 10.已知双曲线C :x 24-y 2m =1的开口比等轴双曲线的开口更开阔,则实数m 的取值范围是________. 答案 (4,+∞)解析 ∵等轴双曲线的离心率为2,且双曲线C 的开口比等轴双曲线的开口更开阔,∴双曲线C :x 24-y 2m =1的离心率e >2,即4+m 4>2.∴m >4.11.已知双曲线3x 2-y 2=3,直线l 过右焦点F 2,且倾斜角为45°,与双曲线交于A 、B 两点,试问A 、B 两点是否位于双曲线的同一支上?并求弦AB 的长. 解 双曲线方程可化为x 21-y 23=1,c 2=a 2+b 2=4,∴c =2. ∴F 2(2,0),又l 的斜率为1. ∴直线l 的方程为y =x -2, 代入双曲线方程,得2x 2+4x -7=0. 设A (x 1,y 1)、B (x 2,y 2),∵x 1·x 2=-72<0,∴A 、B 两点不位于双曲线的同一支上. ∵x 1+x 2=-2,x 1·x 2=-72,∴AB =1+k 2|x 1-x 2| =1+k 2(x 1+x 2)2-4x 1x 2 =2·(-2)2-4×(-72)=6.12.已知双曲线的一条渐近线为x +3y =0,且与椭圆x 2+4y 2=64有相同的焦距,求双曲线的标准方程.解 椭圆方程为x 264+y 216=1,可知椭圆的焦距为8 3.①当双曲线的焦点在x 轴上时, 设双曲线方程为x 2a 2-y 2b 2=1 (a >0,b >0),∴⎩⎪⎨⎪⎧ a 2+b 2=48,b a =33, 解得⎩⎪⎨⎪⎧a 2=36,b 2=12. ∴双曲线的标准方程为x 236-y 212=1.②当双曲线的焦点在y 轴上时, 设双曲线方程为y 2a 2-x 2b 2=1 (a >0,b >0),∴⎩⎪⎨⎪⎧a 2+b 2=48,a b =33,解得⎩⎪⎨⎪⎧a 2=12,b 2=36. ∴双曲线的标准方程为y 212-x 236=1.由①②可知,双曲线的标准方程为 x 236-y 212=1或y 212-x 236=1. 三、探究与创新 13.给定双曲线x 2-y 22=1,过点B (1,1)是否能作直线m ,使它与所给的双曲线交于两点Q 1及Q 2,且点B 是线段Q 1Q 2的中点?这样的m 如果存在,求出它的方程,如果不存在,请说明理由.解 方法一 设存在直线m 过B 与双曲线交于Q 1、Q 2,且B 是Q 1Q 2的中点,当直线m 的斜率不存在时,显然只与双曲线有一个交点; 当直线m 的斜率存在时,设直线m 的方程为 y -1=k (x -1), 由⎩⎪⎨⎪⎧y -1=k (x -1),x 2-y 22=1得 (2-k 2)x 2+(2k 2-2k )x -(k 2-2k +3)=0, 设该方程的两根为x 1、x 2, 由根与系数的关系,第- 11 -页 共11页 得x 1+x 2=2k 2-2k k 2-2=2,解得k =2. 当k =2时,Δ=(2k 2-2k )2+4(2-k 2)(k 2-2k +3)=-8<0,因此不存在满足题意的直线.方法二 假设这样的直线l 存在,设Q 1(x 1,y 1),Q 2(x 2,y 2),则有x 1+x 22=1,y 1+y 22=1. ∴x 1+x 2=2,y 1+y 2=2,且⎩⎪⎨⎪⎧2x 21-y 21=2,2x 22-y 22=2, 两式相减,得(2x 21-2x 22)-(y 21-y 22)=0, ∴2(x 1-x 2)(x 1+x 2)-(y 1-y 2)(y 1+y 2)=0,∴2(x 1-x 2)-(y 1-y 2)=0.若直线Q 1Q 2⊥Ox ,则线段Q 1Q 2的中点不可能是点Q (1,1),∴直线Q 1Q 2有斜率,于是k =y 1-y 2x 1-x 2=2. ∴直线Q 1Q 2的方程为y -1=2(x -1),即y =2x -1.由⎩⎪⎨⎪⎧y =2x -1,2x 2-y 2=2 得2x 2-(2x -1)2=2, 即2x 2-4x +3=0,∴Δ=16-24<0.这就是说,直线l 与双曲线没有公共点,因此这样的直线不存在.。

高中数学苏教版选修2-1第2章《圆锥曲线与方程》(6.3)word学案

高中数学苏教版选修2-1第2章《圆锥曲线与方程》(6.3)word学案

2.6.3 曲线的交点[学习目标] 1.掌握求直线与圆锥曲线的交点坐标的方法.2.会判断直线与圆锥曲线的位置关系.3.进一步体会数形结合的思想方法.[知识链接]1.直线与椭圆有几个交点? 答:两个交点、一个交点和无交点.2.直线与双曲线和抛物线何时仅有一个交点?答:直线与双曲线和抛物线相切或直线与双曲线渐近线平行以及直线与抛物线对称轴平行时仅有一个交点. [预习导引]1.两曲线的交点个数与对应的方程组的实数解组数相同.2.设斜率为k 的直线与圆锥曲线交于两点P 1(x 1,y 1)、P 2(x 2,y 2),则弦长P 1P 2=1+k 2|x 1-x 2|.要点一 直线与圆锥曲线的交点问题例1 k 为何值时,直线y =kx +2和曲线2x 2+3y 2=6有两个公共点?有一个公共点?没有公共点?解 依题意得方程组⎩⎪⎨⎪⎧y =kx +2, ①2x 2+3y 2=6,②①代入②整理得(2+3k 2)x 2+12kx +6=0. ∵Δ=(12k )2-4×6(2+3k 2)=24(3k 2-2), ∴当3k 2-2>0,即k >63或k <-63时,直线与曲线有两个公共点; 当3k 2-2=0,即k =±63时,直线与曲线仅有一个公共点; 当3k 2-2<0,即-63<k <63时,直线与曲线没有公共点. 规律方法 直线与圆锥曲线的公共点问题,往往解由直线方程与圆锥曲线的方程组成的方程组并消去x (或y )后,得到一个形式上为一元二次的方程,这个方程是否为二次方程要看二次项的系数是否为零(有时需讨论),是二次方程时还要判断“Δ”与“0”的大小关系. 跟踪演练1 直线l :y =kx +1,抛物线C :y 2=4x ,当k 为何值时,l 与C 分别相切、相交、相离?解 将直线l 和抛物线C 的方程联立⎩⎪⎨⎪⎧ y =kx +1,y 2=4x ,①②①式代入②式,并整理,得k 2x 2+(2k -4)x +1=0. (1)当k ≠0时,是一元二次方程, ∴Δ=(2k -4)2-4k 2=16(1-k ). 当Δ=0,即k =1时,l 与C 相切. 当Δ>0,即k <1时,l 与C 相交. 当Δ<0,即k >1时,l 与C 相离.(2)当k =0时,直线l :y =1与曲线C :y 2=4x 相交.综上所述,当k <1时,l 与C 相交,当k =1时,l 与C 相切,当k >1时,l 与C 相离. 要点二 弦长问题例2 顶点在原点,焦点在y 轴上的抛物线被直线x -2y -1=0截得的弦长为15,求抛物线方程.解 设抛物线方程为x 2=ay (a ≠0),由方程组⎩⎪⎨⎪⎧x 2=ay ,x -2y -1=0.消去y 得:2x 2-ax +a =0,∵直线与抛物线有两个交点, ∴Δ=(-a )2-4×2×a >0,即a <0或a >8. 设两交点坐标为A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=a 2,x 1x 2=a 2,y 1-y 2=12(x 1-x 2),弦长为AB =(x 1-x 2)2+(y 1-y 2)2 =54(x 1-x 2)2=54[(x 1+x 2)2-4x 1x 2] =145(a 2-8a ). ∵AB =15, ∴145(a 2-8a )=15, 即a 2-8a -48=0,解得a =-4或a =12. ∴所求抛物线方程为x 2=-4y 或x 2=12y .规律方法 求直线被双曲线截得的弦长,一般利用弦长公式AB =1+k 2|x 1-x 2|=1+1k2|y 1-y 2|及公式|x 1-x 2|=b 2-4ac|a |较为简单.跟踪演练2 已知直线y =2x +b 与曲线xy =2相交于A 、B 两点,若AB =5,求实数b 的值. 解 设A (x 1,y 1),B (x 2,y 2).联立方程组⎩⎪⎨⎪⎧y =2x +b ,xy =2,消去y ,整理得2x 2+bx -2=0.①∵x 1、x 2是关于x 的方程①的两根, ∴x 1+x 2=-b2,x 1x 2=-1.又AB =1+k 2(x 1+x 2)2-4x 1x 2,其中k =2,代入则有 AB =1+22·b 2+162=5,∴b 2=4,则b =±2. 故所求b 的值为±2.要点三 与弦的中点有关的问题例3 抛物线y 2=8x 上有一点P (2,4),以点P 为一个顶点,作抛物线的内接△PQR ,使得△PQR 的重心恰好是抛物线的焦点,求QR 所在直线的方程. 解 抛物线y 2=8x 的焦点为F (2,0).∵F 为△PQR 的重心,∴QR 的中点为M (2,-2),如图所示. 设Q (x 1,y 1)、R (x 2,y 2),则有⎩⎪⎨⎪⎧y 21=8x 1, ①y 22=8x 2,②①-②,得y 21-y 22=8(x 1-x 2).又y 1+y 2=-4,∴直线QR 的斜率为k =y 1-y 2x 1-x 2=8y 1+y 2=8-4=-2.∴QR 所在直线的方程为y +2=-2(x -2), 即2x +y -2=0.规律方法 本题设出Q 、R 的坐标,得出y 21=8x 1,y 22=8x 2,再作差的解法称为点差法,点差法是解决圆锥曲线的中点弦问题的有效方法,应熟练掌握它.跟踪演练3 直线l 与抛物线y 2=4x 交于A 、B 两点,AB 中点坐标为(3,2),求直线l 的方程.解 设A (x 1,y 1)、B (x 2,y 2),则y 21=4x 1,y 22=4x 2,相减,得(y 1-y 2)(y 1+y 2)=4(x 1-x 2),又因为y 1+y 2=4,所以k AB =y 1-y 2x 1-x 2=1. 所以直线l 的方程为y -2=x -3,即x -y -1=0.1.以椭圆的焦距为直径并过两焦点的圆,交椭圆于四个不同的点,顺次连结这四个点和两个焦点恰好组成一个正六边形,那么这个椭圆的离心率为________. 答案3-1解析 2a =c +3c ,e =ca=3-1.2.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1、F 2.过F 1作倾斜角为30°的直线与椭圆的一个交点P ,且PF 2⊥x 轴,则此椭圆的离心率e 为________. 答案33解析 由题意得PF 2=b 2a ,PF 1=2b 2a ,由椭圆定义得3b 2a =2a,3b 2=3a 2-3c 2=2a 2,则此椭圆的离心率e 为33. 3.双曲线的焦点在y 轴上,且它的一个焦点在直线5x -2y +20=0上,两焦点关于原点对称,离心率e =53,则此双曲线的方程是____________.答案 y 236-x 264=1解析 焦点坐标为(0,10), 故c =10,a =6,b =8.4.抛物线x 2=-4y 与过焦点且垂直于对称轴的直线交于A ,B 两点,则AB =________. 答案 4解析 由抛物线方程x 2=-4y 得p =2,且焦点坐标为(0,-1),故A ,B 两点的纵坐标都为-1,从而AB =|y 1|+|y 2|+p =1+1+2=4.1.解方程组⎩⎪⎨⎪⎧Ax +By +C =0,f (x ,y )=0时,若消去y ,得到关于x 的方程ax 2+bx +c =0,这时,要考虑a =0和a ≠0两种情况,对双曲线和抛物线而言,一个公共点的情况要考虑全面,除a ≠0,Δ=0外,当直线与双曲线的渐近线平行时,只有一个交点;当直线与抛物线的对称轴平行时,只有一个交点(Δ=0不是直线和抛物线只有一个公共点的充要条件).2.求解与弦长有关的问题,一般用“根与系数的关系”来处理,即联立方程组⎩⎪⎨⎪⎧Ax +By +C =0,f (x ,y )=0消去y ,得ax 2+bx +c =0(a ≠0),设其两根为x 1,x 2,则P 1P 2=1+k 2||x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2]=(1+k 2)(b 2a 2-4ca).3.求解与弦的中点有关的问题,除可用“根与系数的关系”外,还可以用“平方差法”(设而不求).即设P 1(x 1,y 1)、P 2(x 2,y 2)是圆锥曲线mx 2+ny 2=1上两点,P 0(x 0,y 0)是弦P 1P 2的中点,则由mx 21+ny 21=1,mx 22+ny 22=1相减,得m (x 1+x 2)(x 1-x 2)+n (y 1+y 2)(y 1-y 2)=0,从而kP 1P 2=y 1-y 2x 1-x 2=-mx 0ny 0.一、基础达标1.若直线l 过点(3,0)且与双曲线4x 2-9y 2=36只有一个公共点,则这样的直线共有________条. 答案 3解析 有两条与渐近线平行的直线:y =±23(x -3),另外,还有一条切线x =3.2.抛物线y 2=2px 与直线ax +y -4=0的一个交点为(1,2),则抛物线的焦点到该直线的距离是________. 答案255解析 由交点坐标为(1,2),求得a 、p 的值,利用点到直线距离求得焦点到该直线的距离为255.3.曲线x 2+y 2=9与曲线x 2=8y 的交点坐标是________. 答案 (±22,1)解析 由⎩⎪⎨⎪⎧ x 2+y 2=9,x 2=8y ,得⎩⎨⎧y =1,x =±22,∴交点坐标为(±22,1).4.过点(0,1)且与抛物线y 2=x 只有一个公共点的直线有______条. 答案 3解析 一条与抛物线的对称轴平行,两条相切,共3条. 5.已知直线x -y -1=0与抛物线y =ax 2相切,则a =________. 答案 14解析 由⎩⎪⎨⎪⎧x -y -1=0,y =ax 2,消去y 得方程ax 2-x +1=0.令Δ=1-4a =0,得a =14.6.直线y =kx -k +1与椭圆x 29+y 24=1的位置关系为________.答案 相交解析 因为直线过的定点(1,1)恒在椭圆内,所以,直线与椭圆相交. 7.如图,斜率为1的直线l 过椭圆x 24+y 2=1的右焦点,交椭圆于A 、B 两点,求弦AB 的长.解 设A 、B 两点的坐标分别为A (x 1,y 1)、B (x 2,y 2),由椭圆方程知a 2=4,b 2=1,c 2=3,所以F (3,0),直线l 的方程为y =x - 3.将其代入x 2+4y 2=4,化简整理,得5x 2-83x +8=0. 所以x 1+x 2=835,x 1x 2=85.所以AB =1+k 2|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2 =2×(83)2-4×5×85=85.二、能力提升8.若抛物线y 2=2px (p >0)上一点到准线和抛物线的对称轴的距离分别为10和6,则该点横坐标为________. 答案 9或19.直线y =x +1被椭圆x 24+y 22=1所截得的弦的中点坐标是____________.答案 (-23,13)解析 由⎩⎪⎨⎪⎧y =x +1,x 24+y 22=1,消去y 得3x 2+4x -2=0,所以x 1+x 2=-43,所以弦的中点的横坐标为-23,代入y =x +1,得中点坐标是(-23,13).10.已知抛物线y =-x 2+3上存在关于直线x +y =0对称的相异两点A 、B ,则AB =________. 答案 32解析 设AB 的方程为y =x +b ,与y =-x 2+3联立得: x 2+x +b -3=0,∴Δ=1-4(b -3)>0,x 1+x 2=-1,x 1x 2=b -3.∴AB 的中点C ⎝⎛⎭⎫-12,b -12在x +y =0上: 即-12+b -12=0,解得b =1符合Δ>0,∴弦长AB =1+1·1-4×(-2)=3 2.11.过抛物线y 2=2px (p >0)的焦点F 作倾斜角为θ的直线交抛物线于A 、B 两点.设△AOB 的面积为S (O 为原点),若S 的最小值为8,求此时的抛物线方程.解 如题干图,设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为x =my +p2,代入y 2=2px ,得y 2-2pmy -p 2=0,∴y 1y 2=-p 2.又S △AOB =S △OAF +S △OBF =12·p 2·|y 1|+12·p 2·|y 2|=p 4(|y 1|+|y 2|)≥p 4·2|y 1y 2|=p 22.当且仅当|y 1|=|y 2|=p 时等号成立.故S min =p 22.由题意有p 22=8,∴p =4.故所求的抛物线方程为y 2=8x .12.已知抛物线C :y =2x 2,直线y =kx +2交C 于A ,B 两点,M 是线段AB 的中点,过M 作x 轴的垂线交抛物线C 于点N .(1)证明:抛物线C 在点N 处的切线与AB 平行;(2)是否存在实数k 使NA →·NB →=0?若存在,求k 的值;若不存在,请说明理由.(1)证明 如图所示,设A (x 1,2x 21),B (x 2,2x 22)把y =kx +2代入y =2x 2,得2x 2-kx -2=0, 由根与系数的关系得x 1+x 2=k2,x 1x 2=-1,∴x N =x M =x 1+x 22=k4,∴N 点的坐标为(k 4,k 28).设抛物线在点N 处的切线l 的方程为 y -k 28=m (x -k 4),将y =2x 2代入上式得2x 2-mx +mk 4-k 28=0. ∵直线l 与抛物线C 相切,∴Δ=m 2-8(mk 4-k 28)=m 2-2mk +k 2=(m -k )2=0,∴m =k ,即l ∥AB .故抛物线C 在点N 处的切线与AB 平行. (2)解 假设存在实数k ,使NA →·NB →=0, 则NA ⊥NB .又∵M 是AB 的中点,∴MN =12AB .由(1)知y M =12(y 1+y 2)=12(kx 1+2+kx 2+2)=12[k (x 1+x 2)+4]=12(k 22+4)=k 24+2. ∵MN ⊥x 轴,∴MN =|y M -y N | =k 24+2-k 28=k 2+168. 又AB =1+k 2·|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2 =1+k 2·(k 2)2-4×(-1)=12k 2+1·k 2+16. ∴k 2+168=14k 2+1·k 2+16,解得k =±2.即存在k =±2,使NA →·NB →=0. 三、探究与创新13.已知抛物线C :y =-x 2+mx -1,点A (3,0)、B (0,3),求C 与线段AB 有两个不同交点时m 的取值范围.解 线段AB :x +y -3=0(0≤x ≤3).由⎩⎪⎨⎪⎧x +y -3=0,y =-x 2+mx -1.消去y ,得x 2-(m +1)x +4=0. 令f (x )=x 2-(m +1)x +4,则方程f (x )=0在[0,3]内有两个不同实数根的充要条件是⎩⎪⎨⎪⎧Δ=(m +1)2-4×1×4>0,0<m +12<3,f (0)=4>0,f (3)=32-3(m +1)+4≥0,解得3<m ≤103.故所求m 的取值范围为{m |3<m ≤103}.。

高中数学选修2-1第二章圆锥曲线

高中数学选修2-1第二章圆锥曲线
双曲线的标准方程: 双曲线的标准方程:
2
2
y x + 2 =1 (a > b > 0) 2 a b
2
2
x2 y2 − 2 =1 (a > 0,b > 0) 2 a b
抛物线的标准方程: 抛物线的标准方程:
y2 x2 − 2 =1 (a > 0,b > 0) 2 a b
y2 = ±2px ( p > 0)
动 M 一 定 F的 离 它 一 定 线的 离 比 点 与 个 点 距 和 到 条 直 l 距 的 是 数e, 常 l d .M
l
d
.M .
F
l
d.M
.
.
e >1
F
F
0 <e <1
e =1
定点是焦点,定直线叫做准线,常数e是离心率 .
椭圆的标准方程: 椭圆的标准方程:
x y + 2 =1 (a > b > 0) 2 a b
3.双曲线的几何性质:以 .双曲线的几何性质: x2/a2-y2/b2=1(a、b>0)表示的双曲线为例,其几 表示的双曲线为例, > 表示的双曲线为例 何性质如下: 何性质如下: (1)范围:x≤-a,或x≥a 范围: 范围 , (2)关于 轴、y轴、原点对称, 关于x轴 轴 原点对称, 关于 (3)两顶点是 ±a,0)(4)离心率 两顶点是(± 两顶点是 离心率 e=c/a∈(1,+∞).c=√a2+b2(5)渐近线方程为 ∈ 渐近线方程为 y=±bx/a,准线方程是 ±a2/c ± ,准线方程是x=±
椭圆 圆 锥 曲 线
定义 标准方程
双曲线
几何性质
抛物线
直线与圆锥曲线 的位置关系

高中数学第2章圆锥曲线与方程2.3.2双曲线的几何性质学案苏教版选修2-1(2021年整理)

高中数学第2章圆锥曲线与方程2.3.2双曲线的几何性质学案苏教版选修2-1(2021年整理)

2018-2019高中数学第2章圆锥曲线与方程2.3.2 双曲线的几何性质学案苏教版选修2-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019高中数学第2章圆锥曲线与方程2.3.2 双曲线的几何性质学案苏教版选修2-1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019高中数学第2章圆锥曲线与方程2.3.2 双曲线的几何性质学案苏教版选修2-1的全部内容。

2.3。

2 双曲线的几何性质学习目标1。

了解双曲线的几何性质(范围、对称性、顶点、实轴长和虚轴长等)。

2。

理解离心率的定义、取值范围和渐近线方程。

3。

掌握标准方程中a,b,c,e间的关系.知识点一双曲线的性质标准方程错误!-错误!=1(a〉0,b〉0)错误!-错误!=1 (a>0,b>0)图形性质范围x≥a或x≤-a,y∈R x∈R,y≤-a或y≥a 对称性对称轴:坐标轴;对称中心:原点顶点顶点坐标:A1(-a,0),A2(a,0)顶点坐标:A1(0,-a),A2(0,a)渐近线y=±错误!x y=±错误!x离心率e=错误!,e∈(1,+∞),其中c=错误!a,b,c间的关系c2=a2+b2(c〉a〉0,c>b>0)知识点二等轴双曲线思考求下列双曲线的实半轴长、虚半轴长,并分析其共同点.(1)x2-y2=1;(2)4x2-4y2=1.答案(1)的实半轴长为1,虚半轴长为1(2)的实半轴长为错误!,虚半轴长为错误!。

它们的实半轴长与虚半轴长相等.梳理实轴和虚轴等长的双曲线叫作等轴双曲线,其渐近线方程为y=±x,离心率为 2.1.双曲线错误!-错误!=1与错误!-错误!=1(a>0,b>0)的形状相同.(√)2.双曲线x2a2-错误!=1与错误!-错误!=1(a>0,b>0)的渐近线相同.(×)3.等轴双曲线的离心率为错误!。

高中数学苏教版选修21第2章《圆锥曲线与方程》(4.1)word学案

高中数学苏教版选修21第2章《圆锥曲线与方程》(4.1)word学案

2.4 抛物线 2. 抛物线的标准方程[学习目标] 1.运用抛物线的定义推导标准方程.2.掌握抛物线的标准方程.3.会求抛物线的标准方程.[知识链接]1.抛物线定义中的定点F 若在定直线l 上,动点轨迹还是抛物线吗? 答:不是.是过定点F 且与l 垂直的直线. 2.函数y =x 的图象是抛物线吗?答:不是.由于y 2=x 的图象是抛物线,且由y 2=x 得y =±x ,所以y =x 的图象是抛物线的一部分.[预习导引] 1.抛物线的定义平面内到一个定点F 和一条定直线l (F 不在l 上)的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线. 2.抛物线标准方程的几种形式图形标准方程焦点坐标 准线方程y 2=2px (p >0)(p2,0) x =-p 2y 2=-2px (p >0)(-p2,0) x =p 2x 2=2py (p >0)(0,p 2)y =-p 2x 2=-2py (p >0)(0,-p 2)y =p 2要点一 求抛物线的标准方程例1 分别求满足下列条件的抛物线的标准方程: (1)焦点为(-2,0); (2)准线为y =-1; (3)过点A (2,3); (4)焦点到准线的距离为52.解 (1)∵焦点在x 轴的负半轴上,且p2=2,∴p =4,∴抛物线标准方程为y 2=-8x . (2)∵焦点在y 轴正半轴上,且p2=1,∴p =2,∴抛物线标准方程为x 2=4y .(3)由题意,抛物线方程可设为y 2=mx (m ≠0)或x 2=ny (n ≠0), 将点A (2,3)代入,得32=m ·2或22=n ·3, ∴m =92或n =43.∴所求抛物线方程为y 2=92x 或x 2=43y .(4)∵焦点到准线的距离为52,∴p =52.∴所求抛物线方程为y 2=5x 或y 2=-5x 或x 2=5y 或x 2=-5y .规律方法 求抛物线方程,通常用待定系数法,若能确定抛物线的焦点位置,则可设出抛物线的标准方程,求出p 值即可.若抛物线的焦点位置不确定,则要分情况讨论.焦点在x 轴上的抛物线方程可设为y 2=ax (a ≠0),焦点在y 轴上的抛物线方程可设为x 2=ay (a ≠0). 跟踪演练1 分别求满足下列条件的抛物线的标准方程. (1) 过点(3,-4);(2) 焦点在直线x +3y +15=0上.解 (1)方法一 ∵点(3,-4)在第四象限,∴设抛物线的标准方程为y 2=2px (p >0)或x 2=-2p 1y (p 1>0).把点(3,-4)分别代入y 2=2px 和x 2=-2p 1y , 得(-4)2=2p ·3,32=-2p 1·(-4), 即2p =163,2p 1=94.∴所求抛物线的标准方程为y 2=163x 或x 2=-94y .方法二 ∵点(3,-4)在第四象限,∴抛物线的方程可设为y 2=ax (a ≠0)或x 2=by (b ≠0). 把点(3,-4)分别代入,可得a =163,b =-94.∴所求抛物线的标准方程为y 2=163x 或x 2=-94y .(2)令x =0得y =-5;令y =0得x =-15. ∴抛物线的焦点为(0,-5)或(-15,0).∴所求抛物线的标准方程为x 2=-20y 或y 2=-60x . 要点二 抛物线定义的应用例2 如图,已知抛物线y 2=2x 的焦点是F ,点P 是抛物线上的动点,又有点A (3,2),求P A +PF 的最小值,并求此时P 点坐标.解 如图,作PQ ⊥l 于Q ,由定义知,抛物线上点P 到焦点F 的距离等于点P 到准线l 的距离d ,由图可知,求P A +PF 的最小值的问题可转化为求P A +d 的最小值的问题.将x =3代入抛物线方程y 2=2x ,得y =±6. ∵6>2,∴A 在抛物线内部.设抛物线上点P 到准线l :x =-12的距离为d ,由定义知P A +PF =P A +d .由图可知,当P A ⊥l时,P A +d 最小,最小值为72.即P A +PF 的最小值为72,此时P 点纵坐标为2,代入y 2=2x ,得x=2.∴点P坐标为(2,2).规律方法抛物线的定义在解题中的作用,就是灵活地进行抛物线上的点到焦点的距离与到准线距离的转化,另外要注意平面几何知识的应用,如两点之间线段最短,三角形中三边间的不等关系,点与直线上点的连线中垂线段最短等.跟踪演练2已知点P是抛物线y2=2x上的一个动点,则点P到点A(0,2)的距离与P到该抛物线准线的距离之和的最小值为________.答案17 2解析如图,由抛物线定义知P A+PQ=P A+PF,则所求距离之和的最小值转化为求P A+PF的最小值,则当A、P、F三点共线时,P A+PF取得最小值.又A(0,2),F(12,0),∴(P A+PF)min=AF=(0-12)2+(2-0)2=172.要点三抛物线的实际应用例3喷灌的喷头装在直立管柱OA的顶点A处,喷出水流的最高点B高5m,且与OA所在的直线相距4m,水流落在以O为圆心,半径为9m的圆上,则管柱OA的长是多少?解如图所示,建立直角坐标系,设水流所形成的抛物线的方程为x2=-2py(p>0),因为点C(5,-5)在抛物线上,所以25=-2p·(-5),因此2p=5,所以抛物线的方程为x2=-5y,点A(-4,y0)在抛物线上,所以16=-5y0,即y0=-165,所以OA的长为5-165=(m).所以管柱OA 的长为1.8m.规律方法 在建立抛物线的标准方程时,常以抛物线的顶点为坐标原点,对称轴为一条坐标轴建立坐标系,这样可使得标准方程不仅具有对称性,而且曲线过原点,方程不含常数项,形式更为简单,便于应用.跟踪演练3 某河上有一座抛物线形的拱桥,当水面距拱顶5m 时,水面宽8m ,一木船宽4m ,高2m ,载货的木船露在水面上的部分为,当水面上涨到与拱顶相距多少时,木船开始不能通航?解 以桥的拱顶为坐标原点,拱高所在的直线为y 轴建立直角坐标系.(如图)设抛物线的方程是x 2=-2py (p >0), 由题意知A (4,-5)在抛物线上, 故:16=-2p ×(-5)⇒p =85,则抛物线的方程是x 2=-165y (-4≤x ≤4),设水面上涨,木船面两侧与抛物线形拱桥接触于B 、B ′时,木船开始不能通航. 设B (2,y ′),∴22=-165y ′⇒y ′=-54.∴54+=2.故当水面上涨到与抛物线形的拱顶相距2m 时,木船开始不能通航.1.已知抛物线的准线方程为x =-7,则抛物线的标准方程为________. 答案 y 2=28x解析 抛物线开口向右,方程为y 2=2px (p >0)的形式,又p2=7,所以2p =28,方程为y 2=28x .2.已知抛物线的顶点在原点,对称轴为x 轴,焦点在双曲线x 24-y 22=1上,则抛物线方程为________.答案 y 2=±8x解析 由题意知抛物线的焦点为双曲线x 24-y 22=1的顶点,即为(-2,0)或(2,0),所以抛物线的方程为y 2=8x 或y 2=-8x .3.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是________. 答案 2解析 如图所示,动点P 到l 2:x =-1的距离可转化为P 、F 间的距离,由图可知,距离和的最小值,即F 到直线l 1的距离 d =|4+6|(-3)2+42=2.4.抛物线y =4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是________. 答案1516解析 抛物线方程化为x 2=14y ,准线为y =-116,由于点M 到焦点距离为1, 所以M 到准线距离也为1, 所以M 点的纵坐标等于1-116=1516.1.抛物线的定义中不要忽略条件:点F 不在直线l 上.2.确定抛物线的标准方程,从形式上看,只需求一个参数p ,但由于标准方程有四种类型,因此,还应确定开口方向,当开口方向不确定时,应进行分类讨论.有时也可设标准方程的统一形式,避免讨论,如焦点在x 轴上的抛物线标准方程可设为y 2=2mx (m ≠0),焦点在y 轴上的抛物线标准方程可设为x 2=2my (m ≠0).一、基础达标1.抛物线y 2=-8x 的焦点坐标是________. 答案 (-2,0)解析 ∵y 2=-8x ,∴p =4,∴焦点坐标为(-2,0).2.若动点P 与定点F (1,1)和直线l :3x +y -4=0的距离相等,则动点P 的轨迹是________. 答案 直线解析 设动点P 的坐标为(x ,y ). 则(x -1)2+(y -1)2=|3x +y -4|10. 整理,得x 2+9y 2+4x -12y -6xy +4=0, 即(x -3y +2)2=0,∴x -3y +2=0. 所以动点P 的轨迹为直线.3.已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为________. 答案 2解析 抛物线y 2=2px 的准线方程为x =-p 2,它与圆相切,所以必有p2=1,p =2.4.抛物线方程为7x +4y 2=0,则焦点坐标为________. 答案 (-716,0)解析 方程化为y 2=-74x ,抛物线开口向左,2p =74,p 2=716,故焦点坐标为(-716,0).5.动点到点(3,0)的距离比它到直线x =-2的距离大1,则动点的轨迹是________. 答案 抛物线解析 已知条件可等价于“动点到点(3,0)的距离等于它到直线x =-3的距离”,由抛物线的定义可判断,动点的轨迹为抛物线.6.已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,AF +BF =3,则线段AB 的中点到y 轴的距离为________. 答案 54解析 ∵AF +BF =x A +x B +12=3,∴x A +x B =52.∴线段AB 的中点到y 轴的距离为x A +x B 2=54.7.已知动圆M 经过点A (3,0),且与直线l :x =-3相切,求动圆圆心M 的轨迹方程. 解 方法一 设动点M (x ,y ),设⊙M 与直线l :x =-3的切点为N ,则MA =MN ,即动点M 到定点A 和定直线l :x =-3的距离相等,∴点M 的轨迹是抛物线,且以A (3,0)为焦点,以直线l :x =-3为准线, ∴p2=3,∴p =6. ∴圆心M 的轨迹方程是y 2=12x .方法二 设动点M (x ,y ),则点M 的轨迹是集合 P ={M |MA =MN }, 即(x -3)2+y 2=|x +3|,化简,得y 2=12x .∴圆心M 的轨迹方程为y 2=12x . 二、能力提升8.以双曲线x 216-y 29=1的右顶点为焦点的抛物线的标准方程为________.答案 y 2=16x解析 ∵双曲线的方程为x 216-y 29=1,∴右顶点为(4,0).设抛物线的标准方程为y 2=2px (p >0), 则p2=4,即p =8,∴抛物线的标准方程为y 2=16x . 9.已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B 两点,若MA →·MB →=0,则k 等于________. 答案 2解析 由抛物线C :y 2=8x 得焦点(2,0),由题意可知:斜率k ≠0,设直线AB 为my =x -2,其中m =1k.联立⎩⎪⎨⎪⎧my =x -2,y 2=8x得到y 2-8my -16=0,Δ>0,设A (x 1,y 1),B (x 2,y 2),所以y 1+y 2=8m ,y 1y 2=-16. 又MA →=(x 1+2,y 1-2),MB →=(x 2+2,y 2-2),所以MA →·MB →=(x 1+2)(x 2+2)+(y 1-2)(y 2-2)=(my 1+4)(my 2+4)+(y 1-2)(y 2-2) =(m 2+1)y 1y 2+(4m -2)(y 1+y 2)+20=-16(m 2+1)+(4m -2)×8m +20=4(2m -1)2. 由4(2m -1)2=0,解得m =12.所以k =1m=2.10.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足,如果直线AF 的斜率为-3,那么PF =________. 答案 8解析 如图所示,直线AF 的方程为y =-3(x -2),与准线方程x =-2联立得A (-2,43).设P (x 0,43),代入抛物线y 2=8x ,得8x 0=48,∴x 0=6, ∴PF =x 0+2=8.11.已知定长为3的线段AB 的两个端点在抛物线y 2=2x 上移动,M 为AB 的中点,求M 点到y 轴的最短距离.解 如图所示,抛物线y 2=2x 的准线为l :x =-12,过A 、B 、M 分别作AA ′、BB ′、MM ′垂直于l ,垂足分别为A ′、B ′、M ′.由抛物线定义知AA ′=F A ,BB ′=FB .又M 为AB 中点,由梯形中位线定理得MM ′=12(AA ′+BB ′)=12(F A +FB )≥12AB =12×3=32,则M 到y 轴的距离d ≥32-12=1 (当且仅当AB 过抛物线的焦点时取“=”),所以d min =1,即M 点到y 轴的最短距离为1.12.一辆卡车高3m ,宽,欲通过断面为抛物线型的隧道,已知拱口宽恰好是拱高的4倍,若拱口宽为a m ,求使卡车通过的a 的最小整数值.解 以隧道顶点为原点,拱高所在直线为y 轴建立直角坐标系,则点B 的坐标为⎝⎛⎭⎫a 2,-a4,如图所示.设隧道所在抛物线方程为x 2=my ,则⎝⎛⎭⎫a 22=m ·⎝⎛⎭⎫-a 4,∴m =-a . 即抛物线方程为x 2=-ay .将(,y )代入抛物线方程,得2=-ay , 即y =-2a. 欲使卡车通过隧道,应有y -⎝⎛⎭⎫-a4>3, 即a 4-2a>3. ∵a >0,∴a >12.21.∴a 应取13. 三、探究与创新13.已知抛物线C 的顶点在原点,焦点F 在x 轴的正半轴上,设A ,B 是抛物线C 上的两个动点(AB 不垂直于x 轴),且AF +BF =8,线段AB 的垂直平分线恒经过点Q (6,0),求抛物线的方程.解 设抛物线的方程为y 2=2px (p >0), 则其准线为x =-p2.设A (x 1,y 1),B (x 2,y 2),∵AF +BF =8,∴x 1+p 2+x 2+p2=8,即x 1+x 2=8-p .∵Q (6,0)在线段AB 的垂直平分线上, ∴QA =QB , 即(6-x 1)2+(-y 1)2=(6-x 2)2+(-y 2)2,又y 21=2px 1,y 22=2px 2,∴(x 1-x 2)(x 1+x 2-12+2p )=0. ∵AB 与x 轴不垂直,∴x 1≠x 2.故x 1+x 2-12+2p =8-p -12+2p =0,即p =4. 从而抛物线方程为y 2=8x .。

选修2-1第二章《直线与圆锥曲线的位置关系》

选修2-1第二章《直线与圆锥曲线的位置关系》

学科教师辅导讲义讲义编号学员编号:年级:高二课时数:5学员姓名:辅导科目:学科教师:学科组长签名及日期教务长签名及日期课题直线与圆锥曲线的位置关系授课时间:备课时间:教学目标1、掌握直线与圆锥曲线的位置关系的判断方法;2、正确熟练地解决直线与圆锥曲线的位置关系的问题;重点、难点1、直线与圆锥曲线的问题转化为方程组的问题,判断位置关系及相关问题;2、能够熟练的运用函数方程思想、数形结合思想、分类讨论思想及转化化归的思想解决直线与圆锥曲线的相关问题;考点及考试要求能用坐标法解决简单的直线与椭圆、抛物线的位置关系等问题。

教学内容一.知识梳理【课标要求】1. 掌握直线与圆锥曲线的位置关系的判断方法;2. 能够正确熟练的解决直线与圆锥曲线的位置关系的一些问题。

【重点难点】1. 能够把直线与圆锥曲线的位置关系的问题转化为方程组解的问题,判断位置关系及解决相关问题;由于过A、B的直线只有一条,故所求直线方程为x+2y-4=0【反思与小结】法一是着眼于求直线的斜率K,利用=2,构造关于K的方程。

法二是一种“设而不求”的思想。

但要注意的一点是,法一、法二都是在的前提下,所以求出K值后都要代入方程中验证。

法三是求轨迹方程的一般方法---求点满足的关系式。

【变式训练】已知双曲线x2-=1,试问过点A(1,1)能否作直线L,使L与双曲线交于两点P1,P2,且点A是线段P1P2的中点?这样的直线存在吗,若存在,求出直线L 的方程,若不存在,说明理由。

【解法1】假设存在满足条件的直线L,设P1(x1,y1),P2(x2,y2)则x1+x2=2, y1+y2=2因为点P1,P2在双曲线上所以有 =1 =1两式相减,得K L==2所以有 y-1=2(x-1)…………但将式代入双曲线方程,故这样的直线L不存在。

【解法2】同例2的法一。

【反思与小结】这是一个存在性问题,思路跟例1是相同的。

错解原因主要是在求出=2,得到方程y-1=2(x-1)后,没有代入双曲线去验证,从而产生截然相反的结果。

高中数学苏教版选修2-1第2章《圆锥曲线与方程》(6.1)word学案

高中数学苏教版选修2-1第2章《圆锥曲线与方程》(6.1)word学案

2.6曲线与方程2.6.1曲线与方程[学习目标] 1.了解曲线与方程的对应关系.2.掌握证明已知曲线C的方程是f(x,y)=0的方法和步骤.[知识链接]1.直线y=x上任一点M到两坐标轴距离相等吗?答:相等.2.到两坐标轴距离相等的点都在直线y=x上,对吗?答:不对.3.到两坐标轴距离相等的点的轨迹方程是什么?为什么?答:y=±x.在直角坐标系中,到两坐标轴距离相等的点的坐标(x0,y0)满足y0=x0或y0=-x0;即(x0,y0)是方程y=±x的解;反之,如果(x0,y0)是方程y=x或y=-x的解,那么以(x0,y0)为坐标的点到两坐标轴距离相等.[预习导引]1.曲线与方程一般地,在直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立如下关系:(1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程,这条曲线叫做方程的曲线.2.点与曲线如果曲线C的方程是f(x,y)=0,那么点P(x0,y0)在曲线C上的充要条件是f(x0,y0)=0.要点一曲线与方程的概念例1证明与两条坐标轴的距离的积是常数k(k>0)的点的轨迹方程是xy=±k.证明①如图,设M(x0,y0)是轨迹上的任意一点.因为点M与x轴的距离为|y0|,与y轴的距离为|x0|,所以|x0|·|y0|=k,即(x0,y0)是方程xy=±k的解.②设点M1的坐标(x1,y1)是方程xy=±k的解,则x1y1=±k,即|x1|·|y1|=k.而|x1|,|y1|正是点M1到纵轴、横轴的距离,因此点M1到这两条直线的距离的积是常数k,点M1是曲线上的点.由①②可知,xy=±k是与两条坐标轴的距离的积为常数k(k>0)的点的轨迹方程.规律方法解决此类问题要从两方面入手:(1)曲线上的点的坐标都是这个方程的解,即直观地说“点不比解多”称为纯粹性;(2)以这个方程的解为坐标的点都在曲线上,即直观地说“解不比点多”,称为完备性,只有点和解一一对应,才能说曲线是方程的曲线,方程是曲线的方程.跟踪演练1判断下列命题是否正确.(1)以坐标原点为圆心,半径为r的圆的方程是y=r2-x2;(2)过点A(2,0)平行于y轴的直线l的方程为|x|=2.解(1)不正确.设(x0,y0)是方程y=r2-x2的解,则y0=r2-x20,即x20+y20=r2.两边开平方取算术平方根,得x20+y20=r即点(x0,y0)到原点的距离等于r,点(x0,y0)是这个圆上的点.因此满足以方程的解为坐标的点都是曲线上的点.但是,以原点为圆心、半径为r的圆上的一点如点(r2,-32r r)在圆上,却不是y=r2-x2的解,这就不满足曲线上的点的坐标都是方程的解.所以,以原点为圆心,半径为r的圆的方程不是y=r2-x2,而应是y=±r2-x2. (2)不正确.直线l上的点的坐标都是方程|x|=2的解.然而,坐标满足|x|=2的点不一定在直线l上,因此|x|=2不是直线l的方程,直线l的方程为x=2.要点二由方程判断曲线例2下列方程表示如图所示的直线,对吗?为什么?不对请改正.(1)x-y=0;(2)x2-y2=0;(3)|x|-y=0.解(1)中,曲线上的点不全是方程x-y=0的解,如点(-1,-1)等,即不符合“曲线上的点的坐标都是方程的解”这一结论;(2)中,尽管“曲线上点的坐标都是方程的解”,但以方程x 2-y 2=0的解为坐标的点不全在曲线上,如点(2,-2)等,即不符合“以方程的解为坐标的点都在曲线上”这一结论; (3)中,类似(1)(2)得出不符合“曲线上的点的坐标都是方程的解”,“以方程的解为坐标的点都在曲线上”.事实上,(1)(2)(3)中各方程表示的曲线应该是下图的三种情况:规律方法 判断方程表示什么曲线,必要时要对方程适当变形,变形过程中一定要注意与原方程等价,否则变形后的方程表示的曲线就不是原方程的曲线. 跟踪演练2 求方程(x +y -1)x -1=0所表示的曲线.解 依题意可得⎩⎪⎨⎪⎧x +y -1=0,x -1≥0,或x -1=0,即x +y -1=0(x ≥1)或x =1.综上可知,原方程所表示的曲线是射线x +y -1=0(x ≥1)和直线x =1. 要点三 曲线与方程关系的应用例3 若曲线y 2-xy +2x +k =0过点(a ,-a ) (a ∈R ),求k 的取值范围. 解 ∵曲线y 2-xy +2x +k =0过点(a ,-a ), ∴a 2+a 2+2a +k =0.∴k =-2a 2-2a =-2(a +12)2+12.∴k ≤12,∴k 的取值范围是(-∞,12].规律方法 (1)判断点是否在某个方程表示的曲线上,就是检验该点的坐标是不是方程的解,是否适合方程.若适合方程,就说明点在曲线上;若不适合,就说明点不在曲线上. (2)已知点在某曲线上,可将点的坐标代入曲线的方程,从而可研究有关参数的值或范围问题. 跟踪演练3 已知方程x 2+(y -1)2=10.(1)判断点P (1,-2),Q (2,3)是否在此方程表示的曲线上; (2)若点M (m2,-m )在此方程表示的曲线上,求m 的值.解 (1)∵12+(-2-1)2=10,(2)2+(3-1)2=6≠10,∴P (1,-2)在方程x 2+(y -1)2=10表示的曲线上,Q (2,3)不在此曲线上.(2)∵M (m 2,-m )在方程x 2+(y -1)2=10表示的曲线上,∴(m2)2+(-m -1)2=10.解得m =2或m =-185.1.“点M 在曲线y 2=4x 上”是“点M 的坐标满足方程y =-2x ”的________条件. 答案 必要不充分解析 ∵y =-2x ≤0,而y 2=4x 中y 可正可负,∴点M 在曲线y 2=4x 上,但M 不一定在y =-2x 上.反之点M 在y =-2x 上时,一定在y 2=4x 上. 2.方程(x 2-4)2+(y 2-4)2=0表示的图形是________. 答案 四个点解析 由已知得⎩⎪⎨⎪⎧ x 2-4=0,y 2-4=0,∴⎩⎪⎨⎪⎧x =±2,y =±2.即⎩⎪⎨⎪⎧ x =2,y =2,或⎩⎪⎨⎪⎧ x =2,y =-2或⎩⎪⎨⎪⎧x =-2,y =2, 或⎩⎪⎨⎪⎧x =-2,y =-2. 3.下列四个图形中,图形下面的方程是图形中曲线的方程的是________.答案 ④解析 对于①,点(0,-1)满足方程,但不在曲线上,排除①; 对于②,点(1,-1)满足方程,但不在曲线上,排除②;对于③,曲线上第三象限的点,由于x <0,y <0,不满足方程,排除③.4.已知方程y =a |x |和y =x +a (a >0)所确定的两条曲线有两个交点,则a 的取值范围是________. 答案 a >1解析 ∵a >0,∴方程y =a |x |和y =x +a 的图象大致如图,要使方程y =a |x |和y =x +a 所确定的两条曲线有两个交点,则要求y =a |x |在y 轴右侧的斜率大于y =x +a 的斜率,∴a >1.1.曲线的方程和方程的曲线必须满足两个条件:曲线上点的坐标都是方程的解,以方程的解为坐标的点都在曲线上.2.点(x 0,y 0)在曲线C 上的充要条件是点(x 0,y 0)适合曲线C 的方程.一、基础达标1.方程y =3x -2 (x ≥1)表示的曲线为________. 答案 一条射线解析 方程y =3x -2表示的曲线是一条直线,当x ≥1时,它表示一条射线. 2.方程x 2+xy =x 表示的曲线是________. 答案 两条直线解析 由x 2+xy =x ,得x (x +y -1)=0,即x =0或x +y -1=0.由此知方程x 2+xy =x 表示两条直线.3.曲线C 的方程为y =x (1≤x ≤5),则下列四点中在曲线C 上的是________. ①(0,0) ②(15,15) ③(1,5) ④(4,4)答案 ④解析 (4,4)适合方程y =x 且满足1≤x ≤5.4.方程x 2+y 2=1 (xy <0)表示的曲线形状是________.答案 ③解析 由x 2+y 2=1可知方程表示的曲线为圆. 又∵xy <0,∴图象在第二、四象限内.5.下面各对方程中,表示相同曲线的一对方程是________(填序号).①y =x 与y =x 2 ②(x -1)2+(y +2)2=0与(x -1)(y +2)=0 ③y =1x 与xy =1 ④y =lg x 2与y=2lg x 答案 ③解析 y =1x 与xy =1表示双曲线.6.下列命题正确的是________(填序号).①方程xy -2=1表示斜率为1,在y 轴上的截距是2的直线;②△ABC 的顶点坐标分别为A (0,3),B (-2,0),C (2,0),则中线AO 的方程是x =0; ③到x 轴距离为5的点的轨迹方程是y =5;④曲线2x 2-3y 2-2x +m =0通过原点的充要条件是m =0. 答案 ④解析 对照曲线和方程的概念,①中,方程需满足y ≠2;②中,“中线AO 的方程是x =0 (0≤y ≤3)”;而③中,动点的轨迹方程为|y |=5,从而只有④是正确的. 7.(1)方程|x |-1=1-(y -1)2表示什么曲线? (2)方程2x 2+y 2-4x +2y +3=0表示什么曲线? 解 (1)|x |-1=1-(y -1)2⇔ ⎩⎪⎨⎪⎧|x |-1≥0,1-(y -1)2≥0,(|x |-1)2=1-(y -1)2,⇔⎩⎪⎨⎪⎧ |x |-1≥0,(|x |-1)2=1-(y -1)2, ⇔⎩⎪⎨⎪⎧ x ≥1或x ≤-1,(|x |-1)2+(y -1)2=1, ⇔⎩⎪⎨⎪⎧x ≥1,(x -1)2+(y -1)2=1,或⎩⎪⎨⎪⎧x ≤-1,(x +1)2+(y -1)2=1, 故方程表示两个半圆.(2)方程左边配方得2(x -1)2+(y +1)2=0, ∵2(x -1)2≥0,(y +1)2≥0,∴⎩⎪⎨⎪⎧ 2(x -1)2=0,(y +1)2=0,∴⎩⎪⎨⎪⎧x =1,y =-1.∴方程表示的图形是点A (1,-1). 二、能力提升8.点A (1,-2)在曲线x 2-2xy +ay +5=0上,则a =________. 答案 5解析 由题意可知点(1,-2)是方程x 2-2xy +ay +5=0的一组解,即1+4-2a +5=0,解得a =5.9.已知定点P (x 0,y 0)不在直线l :f (x ,y )=0上,则方程f (x ,y )-f (x 0,y 0)=0表示的直线是________(填序号).①过点p 且垂直于l 的直线;②过点p 且平行于l 的直线; ③不过点P 但垂直于l 的直线; ④不过点P 但平行于l 的直线. 答案 ②解析 点P 的坐标(x 0,y 0)满足方程f (x ,y )-f (x 0,y 0)=0,因此方程表示的直线过点P .又∵f (x 0,y 0)为非零常数,∴方程可化为f (x,ry )=f (x 0,y 0),方程表示的直线与直线l 平行.10.已知方程①x -y =0;②x -y =0;③x 2-y 2=0;④xy =1,其中能表示直角坐标系的第一、三象限的角平分线C 的方程的序号是________. 答案 ①解析 ①是正确的;②不正确.如点(-1,-1)在第三象限的角平分线上,但其坐标不满足方程x -y =0;③不正确.如点(-1,1)满足方程x 2-y 2=0,但它不在曲线C 上;④不正确.如点(0,0)在曲线C 上,但其坐标不满足方程xy =1.11.方程(x +y -1)x 2+y 2-4=0表示什么曲线? 解 由(x +y -1)x 2+y 2-4=0可得⎩⎪⎨⎪⎧x +y -1=0,x 2+y 2-4≥0,或x 2+y 2-4=0, 即⎩⎪⎨⎪⎧x +y -1=0,x 2+y 2≥4,或x 2+y 2=4, 由圆x 2+y 2=4的圆心到直线x +y -1=0的距离d =12=22<2得直线与圆相交,所以⎩⎪⎨⎪⎧x +y -1=0,x 2+y 2≥4, 表示直线x +y -1=0在圆x 2+y 2=4上和外面的部分,x 2+y 2=4表示圆心在坐标原点,半径为2的圆.所以原方程表示圆心在坐标原点,半径为2的圆和直线x +y -1=0在圆x 2+y 2=4的外面的部分,如图所示.12.证明圆心为坐标原点,半径等于5的圆的方程是x 2+y 2=25,并判断点M 1(3,-4),M 2(-25,2)是否在这个圆上.证明 ①设M (x 0,y 0)是圆上任意一点,因为点M 到原点的距离等于5,所以x 20+y 20=5,也就是x 20+y 20=25,即(x 0,y 0)是方程x 2+y 2=25的解.②设(x 0,y 0)是方程x 2+y 2=25的解,那么x 20+y 20=25,两边开方取算术平方根,得x 20+y 20=5,即点M (x 0,y 0)到原点的距离等于5,点M (x 0,y 0)是这个圆上的点. 由①、②可知,x 2+y 2=25是圆心为坐标原点,半径等于5的圆的方程.把点M 1(3,-4)代入方程x 2+y 2=25,左右两边相等,(3,-4)是方程的解,所以点M 1在这个圆上;把点M 2(-25,2)代入方程x 2+y 2=25,左右两边不相等,(-25,2)不是方程的解,所以点M 2不在这个圆上. 三、探究与创新13.已知曲线C 的方程为x =4-y 2,说明曲线C 是什么样的曲线,并求该曲线与y 轴围成的图形的面积.解 由x =4-y 2,得x 2+y 2=4. 又x ≥0,所以方程x =4-y 2表示的曲线是以原点为圆心,2为半径的右半圆,从而该曲线C 与y 轴围成的图形是半圆,其面积S =12π·4=2π.所以所求图形的面积为2π.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1圆锥曲线[学习目标] 1.了解圆锥曲线的实际背景.2.经历从具体情境中抽象出圆锥曲线的过程.3.掌握椭圆、抛物线的定义和几何图形.4.了解双曲线的定义和几何图形.[知识链接]1.若动点M到两个定点F1、F2距离之和满足MF1+MF2=F1F2,则动点M轨迹是椭圆吗?答:不是,是线段F1F2.2.若动点M到两个定点F1、F2距离之差满足MF1-MF2=2a(2a<F1F2),则动点M轨迹是什么?答:是双曲线一支.[预习导引]1.椭圆的定义平面内到两个定点F1,F2的距离的和等于常数(大于F1F2)的点的轨迹叫做椭圆,两个定点F1,F2叫做椭圆的焦点.两焦点间的距离叫做椭圆的焦距.2.双曲线的定义平面内到两个定点F1,F2的距离的差的绝对值等于常数(小于F1F2的正数)的点的轨迹叫做双曲线,两个定点F1,F2叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.3.抛物线的定义平面内到一个定点F和一条定直线l(F不在l上)的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l叫做抛物线的准线.4.椭圆、双曲线、抛物线统称为圆锥曲线.要点一椭圆定义的应用例1在△ABC中,B(-6,0),C(0,8),且sin B,sin A,sin C成等差数列.(1)顶点A的轨迹是什么?(2)指出轨迹的焦点和焦距.解(1)由sin B,sin A,sin C成等差数列,得sin B+sin C=2sin A.由正弦定理可得AB+AC=2BC.又BC=10,所以AB+AC=20,且20>BC,所以点A的轨迹是椭圆(除去直线BC与椭圆的交点).(2)椭圆的焦点为B、C,焦距为10.规律方法本题求解的关键是把已知条件转化为三角形边的关系,找到点A满足的条件.注意A、B、C三点要构成三角形,轨迹要除去两点.跟踪演练1已知圆A:(x+3)2+y2=100,圆A内一定点B(3,0),动圆M过B点且与圆A内切,求证:圆心M的轨迹是椭圆.证明设MB=r.∵圆M与圆A内切,圆A的半径为10,∴两圆的圆心距MA=10-r,即MA+MB=10(大于AB).∴圆心M的轨迹是以A、B两点为焦点的椭圆.要点二双曲线定义的应用例2已知圆C1:(x+2)2+y2=1和圆C2:(x-2)2+y2=9,动圆M同时与圆C1及圆C2相外切,求动圆圆心M的轨迹.解由已知得,圆C1的圆心C1(-2,0),半径r1=1,圆C2的圆心C2(2,0),半径r2=3.设动圆M的半径为r.因为动圆M与圆C1相外切,所以MC1=r+1.①又因为动圆M与圆C2相外切,所以MC2=r+3.②②-①得MC2-MC1=2,且2<C1C2=4.所以动圆圆心M的轨迹为双曲线的左支,且除去点(-1,0).规律方法设动圆半径为r,利用动圆M同时与圆C1及圆C2相外切得两个等式,相减后消去r,得到点M的关系式.注意到MC2-MC1=2中没有绝对值,所以轨迹是双曲线的一支,又圆C1与圆C2相切于点(-1,0),所以M的轨迹不过(-1,0).跟踪演练2在△ABC中,BC固定,顶点A移动.设BC=m,且|sin C-sin B|=12sin A,则顶点A的轨迹是什么?解因为|sin C-sin B|=12sin A,由正弦定理可得|AB-AC|=12BC=12m,且12m<BC,所以点A的轨迹是双曲线(除去双曲线与BC的两交点).要点三抛物线定义的应用例3已知动点M的坐标(x,y)满足方程2(x-1)2+2(y-1)2=(x+y+6)2,试确定动点M的轨迹.解方程可变形为(x-1)2+(y-1)2|x+y+6|2=1,∵(x-1)2+(y-1)2表示点M到点(1,1)的距离,|x+y+6|2表示点M到直线x+y+6=0的距离,又由(x-1)2+(y-1)2|x+y+6|2=1知点M到定点(1,1)的距离等于点M到直线x+y+6=0的距离.由抛物线的定义知点M的轨迹是抛物线.规律方法若将方程两边展开整理,然后通过方程的特点来判断,将很难得到结果,而利用方程中表达式的几何意义,再由抛物线定义,问题就变得非常简单.跟踪演练3点P到点F(4,0)的距离比它到直线l:x=-6的距离小2,则点P的轨迹为________.答案抛物线解析将直线l:x=-6向右平移2个单位,得直线l′:x=-4.依题意知,点P到F(4,0)的距离等于点P到l′:x=-4的距离,可见点P的轨迹是抛物线.1.设定点F1(0,-3),F2(0,3),动点P(x,y)满足条件PF1+PF2=a(a>0),则动点P的轨迹是__________________.答案椭圆或线段或不存在解析当a<6时,轨迹不存在;当a=6时,轨迹为线段;当a>6时,轨迹为椭圆.2.已知△ABC的项点A(-5,0)、B(5,0),△ABC的内切圆圆心在直线x=3上,则顶点C的轨迹是____________.答案以A、B为焦点的双曲线的右支解析如图,AD=AE=8.BF=BE=2,CD=CF,所以CA-CB=8-2=6<AB=10.根据双曲线定义,所求轨迹是以A、B为焦点的双曲线的右支.3.如图,圆O的半径为定长r,A是圆O内一个定点,P是圆上任意一点.线段AP的垂直平分线l和半径OP相交于点Q,当点P在圆上运动时,点Q的轨迹是________________.答案以O、A为焦点的椭圆解析∵QA=QP,∴QO+QA=r>OA.∴点Q的轨迹是以O、A为焦点的椭圆.4.到定直线x=-2的距离比到定点(1,0)的距离大1的点的轨迹是________________.答案以(1,0)为焦点的抛物线解析到定点(1,0)和定直线x=-1的距离相等,所以点的轨迹是以(1,0)为焦点的抛物线.1.一个平面截一个圆锥面,当平面经过圆锥面的顶点时,可得到两条相交直线;当平面不经过顶点与圆锥面的轴垂直时,截得的图形是一个圆.改变平面的位置,观察截得的图形变化情况,可得到三种重要的曲线,即椭圆、双曲线和抛物线,统称为圆锥曲线.2.椭圆定义中,常数>F1F2不可忽视,若常数<F1F2,则这样的点不存在;若常数=F1F2,则动点的轨迹是线段F1F2.3.双曲线定义中,若常数>F1F2,则这样的点不存在;若常数=F1F2,则动点的轨迹是以F1、F2为端点的两条射线.4.抛物线定义中F∉l,若F∈l,则点的轨迹是经过点F且垂直于l的直线.一、基础达标1.已知定点F1(-3,0)和F2(3,0),动点M满足MF1+MF2=10,则动点轨迹是________.答案椭圆解析因为MF1+MF2=10,且10>F1F2,所以动点M轨迹是椭圆.2.已知点M(x,y)的坐标满足(x-1)2+(y-1)2-(x+3)2+(y+3)2=±4,则动点M的轨迹是________.答案双曲线解析点(x,y)到(1,1)点及到(-3,-3)点的距离之差的绝对值为4,而(1,1)与(-3,-3)距离为42,由定义知动点M的轨迹是双曲线.3.到两定点F1(-3,0),F2(3,0)的距离之差的绝对值等于6的点M的轨迹是__________.答案两条射线解析MF1-MF2=±6,而F1F2=6,轨迹为两条射线.4.若点M到F(4,0)的距离比它到直线x+5=0的距离小1,则点M的轨迹表示的曲线是________.答案抛物线解析由题意知M到F的距离与到x=-4的距离相等,由抛物线定义知,M点的轨迹是抛物线.5.下列说法中正确的有________(填序号).①已知F1(-6,0)、F2(6,0),到F1、F2两点的距离之和等于12的点的轨迹是椭圆;②已知F 1(-6,0)、F 2(6,0),到F 1、F 2两点的距离之和等于8的点的轨迹是椭圆;③到点F 1(-6,0)、F 2(6,0)两点的距离之和等于点M (10,0)到F 1、F 2的距离之和的点的轨迹是椭圆;④到点F 1(-6,0)、F 2(6,0)距离相等的点的轨迹是椭圆.答案 ③解析 椭圆是到两个定点F 1、F 2的距离之和等于常数(大于F 1F 2)的点的轨迹,应特别注意椭圆的定义的应用.①中F 1F 2=12,故到F 1、F 2两点的距离之和为常数12的点的轨迹是线段F 1F 2.②中点到F 1、F 2两点的距离之和8小于F 1F 2,故这样的点不存在.③中点M (10,0)到F 1、F 2两点的距离之和为(10+6)2+02+(10-6)2+02=20>F 1F 2=12,故③中点的轨迹是椭圆.④中点的轨迹是线段F 1F 2的垂直平分线.故正确的是③.6.△ABC 中,若B ,C 的坐标分别是(-2,0),(2,0),中线AD 的长度为3,则A 点的轨迹方程是________________________________________________________________________. 答案 x 2+y 2=9(y ≠0)解析 ∵B (-2,0),C (2,0),∴BC 的中点为D (0,0).设A (x ,y ),又∵AD =3,∴x 2+y 2=3(y ≠0),∴A 点的轨迹方程是x 2+y 2=9(y ≠0).7.已知动圆M 过定点A (-3,0),并且在定圆B :(x -3)2+y 2=64的内部与其相内切,判断动圆圆心M 的轨迹.解 设动圆M 的半径为r .因为动圆M 与定圆B 内切,所以MB =8-r .又动圆M 过定点A ,MA =r ,所以MA +MB =8>AB =6,故动圆圆心M 的轨迹是椭圆.二、能力提升8.已知动点M 的坐标满足方程5x 2+y 2=|3x +4y -12|,则动点M 的轨迹是__________. 答案 抛物线解析 把轨迹方程5x 2+y 2=|3x +4y -12|写成x 2+y 2=|3x +4y -12|5.∴动点M 到原点的距离与到直线3x +4y -12=0的距离相等.∴点M 的轨迹是以原点为焦点,直线3x +4y -12=0为准线的抛物线.9.在正方体ABCD —A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点.若点P 到直线BC 与直线C 1D 1的距离相等,则动点P 的轨迹是__________.答案 抛物线的一部分解析 点P 到直线C 1D 1的距离就是点P 到点C 1的距离,所以动点P 的轨迹就是动点到直线BC 与到点C 1的距离相等的点的轨迹,是抛物线的一部分.10.已知点A (-1,0)、B (1,0).曲线C 上任意一点P 满足P A →2-PB →2=4(|P A →|-|PB →|)≠0.则曲线C的轨迹是______.答案 椭圆解析 由P A →2-PB →2=4(|P A →|-|PB →|)≠0,得|P A →|+|PB →|=4,且4>AB .故曲线C 的轨迹是椭圆.11.已知动圆与圆C :(x +2)2+y 2=2相内切,且过点A (2,0),求动圆圆心M 的轨迹. 解 设动圆M 的半径为r ,∵圆C 与圆M 内切,点A 在圆C 外,∴MC =r -2,MA =r ,∴MA -MC =2,又∵AC =4>2,∴点M 的轨迹是以C 、A 为焦点的双曲线的左支.12.如图所示,已知点P 为圆R :(x +c )2+y 2=4a 2上一动点,Q (c,0)为定点(c >a >0,为常数),O 为坐标原点,求线段PQ 的垂直平分线与直线RP 的交点M 的轨迹.解 由题意,得MP =MQ ,RP =2a .MR -MQ =MR -MP =RP =2a <RQ =2c .∴点M 的轨迹是以R 、Q 为两焦点,实轴长为2a 的双曲线的右支.三、探究与创新13.设Q 是圆x 2+y 2=4上的动点,点A (3,0),线段AQ 的垂直平分线交半径OQ 于点P .当Q 点在圆周上运动时,求点P 的轨迹.解 因为线段AQ 的垂直平分线交半径OQ 于点P ,所以P A =PQ .而半径OQ =OP +PQ ,所以OP +P A =2,且2>3=OA ,故点P 的轨迹为椭圆(除去与x 轴相交的两点).。

相关文档
最新文档