边坡稳定分析的极限平衡方法研究综述
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.绪论
1.1边坡的灾害
在人类工程中的自然边坡和人工边坡经常考虑边坡稳定性,边坡失稳会造成巨大的人员伤害和经济损失,正如一些专家们所说的那样,边坡失稳产生的滑坡现象已变成同地震和火山相并列的全球性三大地质灾害之一。据统计,我国每年由于滑坡所造成的损失达数亿元,严重危害着人民的生命和财产安全,由于这些严重事实的存在,致使人类与滑坡灾害作斗争的努力始终没有中断。由于人们不懈的努力,在认识滑坡机理、完善边坡稳定分析理论和方法、开发滑坡治理技术和滑坡预报等方面不断取得新的研究成果和进展。因此有必要进行边坡的变形和破坏进行研究,对可能出现失稳或者已经失稳的边坡工程进行稳定分析,保证边坡工程的稳定性。
边坡岩、土体在一定坡高和坡角条件下的稳定程度。按照成因、边坡稳定性,边坡分为天然斜坡和人工边坡两类,后者又分为开挖边坡和堤坝边坡等。按照物质组成,边坡分为岩体边坡、土体边坡,以及岩、土体复合边坡3种。按照稳定程度,分为稳定边坡、不稳定边坡,以及极限平衡状态边坡。不稳定的天然斜坡和设计坡角过大的人工边坡,在岩、土体重力,水压力,振动力以及其他外力作用下,常发生滑动或崩塌破坏。大规模的边坡岩、土体破坏能引起交通中断,建筑物倒塌,江河堵塞,水库淤填,给人民生命财产带来巨大损失。研究边坡稳定性的目的,在于预测边坡失稳的破坏时间、规模,以及危害程度,事先采取防治措施,减轻地质灾害,使人工边坡的设计达到安全、经济的目的。
1.2我国边坡稳定性分析的发展及防治
边坡破坏的类型很多,常见的是崩塌和滑坡。陡坡前缘部分岩、土体突然与母体分离,翻滚跳动崩坠崖底或塌落而下的过程和现象,称为崩塌。边坡部分岩、土体沿着先前存在的地质界面,或新形成的剪切破坏面向下滑动的过程和现象,称为滑坡。在边坡破坏中,滑破是最常见,危害最严重的一类。所有的边坡失稳,均涉及到边坡岩、土体在剪切应力作用下的破坏。因此,影响剪切应力和岩、土体抗剪强度的因素,都影响边坡的稳定性。例如,构成边坡岩、土体的工程地质性质及其变化;边坡中断层、层面、不整合面等不连续面的产状与坡面倾向、倾角之间的关系;边坡尺寸和形态的改变;坡脚遭受水的侵蚀或人工开挖;边坡上天然或人工加载;边坡岩、土体中地下水位的升降,以及地震和爆破引起的瞬时振动等,均会在一定程度上改变边坡的稳定性。
目前,对于自然边坡防护网的稳定性评价是研究的最多的问题,理论方法也相对比较成熟,然而,对边坡防护网进行加固后,加固的效果到底如何,分析其
稳定性是比较困难的,支护措施的施加使得本来就复杂的边坡防护网变得更加复杂,我们不能简单的把锚固力看作是一个施加在条块底面上或顶面上的一个力,按照自然边坡防护网稳定性分析的方法进行分析计算,这会造成很大的误差。
锚固措施对边坡防护网稳定性影响机理的研究一直不断,但还不能很好的反映出它们的作用,因为不确定因素实在是太多了,我们所能作的更好的就是把不确定因素减到最少,使得理论更加的符合实际。对边坡防护网进行加固后到底效果如何,稳定性该如何评价计算,国内外也有不少这方面的研究成果。
土钉边坡支护的稳定分析(包括内部稳定分析和外部稳定分析)一般采用的是极限平衡分析方法,滑动面或破坏面的形状常假定为双折线、圆弧线、抛物线或对数螺线中的一种,比较著名的分析方法国外有法国的Schlosser方法、美国的Davis方法、德国的Stocker方法、英国的Bridle方法等。
国内有太原煤矿设计院方法、北京工业大学方法、洛阳总参科研三所方法、清华大学方法和北京治建总院方法等;这些方法从各个不同的角度满足了部分工程实践的需要〔中国科学院成都山地灾害与环境研究所的李新坡、何思明等人针对预应力锚索加固边坡防护网的稳定性分析问题,基于极限分析上限定理,把锚索锚固作用简化为边坡防护网表面上的外力,推导了预应力锚索加固土质边坡防护网的安全系数计算公式。
1.3边坡稳定分析的研究方法
1.3.1极限平衡法
极限平衡法是边坡稳定分析的传统方法,通过安全系数定量评价边坡的稳定性,由于安全系数的直观性,被工程界广泛应用。该法基于刚塑性理论,只注重土体破坏瞬间的变形机制,而不关心土体变形过程,只要求满足力和力矩的平衡、Mohr-Coulomb准则。其分析问题的基本思路:先根据经验和理论预设一个可能形状的滑动面,通过分析在临近破坏情况下,土体外力与内部强度所提供抗力之间的平衡,计算土体在自身荷载作用下的边坡稳定性过程。极限平衡法没有考虑土体本身的应力—应变关系,不能反映边坡变形破坏的过程,但由于其概念简单明了,且在计算方法上形成了大量的计算经验和计算模型,计算结果也已经达到了很高的精度。因此,该法目前仍为边坡稳定性分析最主要的分析方法。在工程实践中,可根据边坡破坏滑动面的形态来选择相应的极限平衡法。目前常用的极限平衡法有瑞典条分法、Bishop法、Janbu法、Spencer法、Sarma法Morgenstern-Price 法和不平衡推力法等。
1.3.2滑移线场法
上述极限平衡的垂直条分法获得的是一个满足静力平衡条件的应力场。同时要求滑裂面上每一点的应力状态均在摩尔圆上或以内,但是并不要求滑体内每一
点的应力状态均在摩尔圆上,即处于极限平衡状态。因此,所获得得解应小于或
等于使边坡发生破坏的真实荷载。在塑性力学领域,属于下限解。而滑移线法使
假定土的破坏区内各点均达到了极限平衡条件,这样,在破坏区域的每一点,除
了可以建立静力平衡条件之外,还可以增加一个摩尔一库仑破坏条件,在一定的
边界条件下,可以用特征线法求解由此形成的方程组。在一些简化的边界和土质
条件下,可以获得闭合解,解的特征就是土力学中滑移线,其中一组就是滑移面。
在土压力领域,朗肯理论便是在边界条件非常简单的情况下的一个特例。
1.3.3极限分析法
极限分析理论是在20世纪50年代初由Durcker和Prager等人将静力场和运动场结合起来并提出极值原理以后建立起来的,为土坡塑性极限分析方法开辟了新的途径。极限分析法应用理想塑性体或刚塑性体处于极限状态的极小值原理和极大值原理来求解理想塑性体的极限荷载的一种分析方法。它在土坡稳定分析时,假定土体为刚塑性体,且不必了解变形的全过程,当土体应力小于屈服应力时,它不产生变形,但达到屈服应力,即使应力不变,土体将产生无限制的变形,造成土坡失稳而发生破坏。其最大优点是考虑了材料应力—应变关系,以极限状态时自重和外荷载所做的功等于滑裂面上阻力所消耗的功为条件,结合塑性极限分析的上、下限定理求得边坡极限荷载与安全系数。门玉明[68]应用塑性力学中的极限分析法原理,推导了滑动面为折线形状土坡稳定性极限分析公式,采用了屈服准则的概念,考虑了与应力—应变关系相适应的流动法则,求出了滑动面为折线时的土坡稳定性分析公式(上限解)。通过实例分析证明,这一公式可有效地用于斜坡的稳定性评价。陈祖煜等[69]系统分析了土力学理论中的极限分析上、下限解,认为边坡稳定极限分析的垂直条分法和斜条分法分别建立于塑性力学下限和上限原理之上,常用的斯宾塞法、Morgenstern-Price法等总在提供一个偏安全的解,同时认为上、下限解的安全系数偏差在3%左右。如果极限分析的上限解理论能在数学上得到证明,将对工程上一直采用的竖直条分法提出具有深远意义的改进,这对边坡稳定性分析具有更实际的价值。李小强等[70]依据平衡体系势能变化最小的原理,从整个边坡的势能变化求得一个满足势能的最小位移,并直接求出滑面上的法向力分布,用此分布可求出合理的安全系数。陈佳等[71]在危岩体崩塌稳定性极限分析上限法分析中,从变形协调条件出发,通过建立优化的斜分条机动许可速度场,依据外力功率和内能耗散率相平衡的原理以此得到危岩体崩塌的稳定系数。
1.3.4其他数值方法
数值分析方法也是目前岩土力学计算中使用较普遍的分析方法。它分析边坡稳定的本质是单元离散,即通过计算网格将岩体分成若干个小单元体。对于二维问题可采用三节点三角形单元、四节点四边形单元等;三维情况主要运用四节点四面体单元、六节点五面体单元、八节点六面体单元等。离散后,将任一可能滑动面分成若干微段,根据每一微段的方位,通过应力张量变换,运用追踪法或位移法或强度比值法或平面应力投影法来求得相应微段的正应力和切向剪应力,再建立力矩平衡。
该法以土坡在失稳之前伴随的较大变形为依据,将稳定和变形紧密的联系起来。并考虑到土的非线性本构关系,然后求出每一计算单元的应力及应变,根据不同的强度指标确定破坏区的位置及其扩展情况,并设法将局部破坏和整体破坏