红外光谱测试精品资料
红外光谱试题
红外光谱试题一、引言红外光谱是一种重要的分析方法,广泛应用于化学、材料科学、生物医学和环境科学等领域。
在此次红外光谱试题中,将探讨红外光谱的理论基础、仪器设备以及其在研究和应用中的具体应用。
二、红外光谱的理论基础红外光谱是指物质分子吸收或发射红外辐射时的光谱现象。
物质分子在红外区域通过振动、转动和声子等进行能量转换,因此在红外光谱中会出现一系列振动波数吸收峰。
通过观测和分析这些吸收峰,我们可以获得物质的结构信息和化学特性。
三、红外光谱仪器设备红外光谱仪是进行红外光谱实验的关键设备。
一般红外光谱仪包括光源、样品室、光谱仪和检测器等组成部分。
光源可以是发射连续红外光线的热辐射源或者通过离散发射频率的光源。
样品室用于放置待测试样品,一般由透明的红外窗口构成,以确保红外光线可以通过样品。
光谱仪是将入射光按照波数分散开来的设备,可以分析出样品中不同频率对应的振动现象。
最后,检测器用于接收和转换红外光信号,在数字显示屏上显示红外光谱图。
四、红外光谱在有机化学中的应用红外光谱在有机化学中有着广泛的应用。
通过红外光谱可以确定化合物的官能团,判断分子中存在的取代基或官能团类型。
例如,羰基化合物会表现出特定的C=O峰,而羟基化合物则会表现出特定的OH 峰。
通过观测这些峰的位置和强度,我们可以初步确定化合物的结构类型,并进行分子结构的推测。
五、红外光谱在材料科学中的应用红外光谱在材料科学中的应用也非常重要。
例如,红外光谱可以用来研究和分析材料中的晶体结构和化学键性质。
红外光谱能够探测到晶体中的谐振模式和禁戒带隙,从而提供关于材料晶格、键长和键强度等信息。
此外,红外光谱还可以用于分析材料中杂质的存在和分子结构的变化。
六、红外光谱在生物医学中的应用红外光谱在生物医学中具有很大的潜力。
通过红外光谱,可以对生物样品中的蛋白质、脂肪、糖类等进行定性和定量分析。
红外光谱还可以用于研究生物组织的病理学变化,如肿瘤的形成和生长,以及病毒感染的影响等。
红外光谱实验报告
红外光谱实验报告一、实验目的1、了解红外光谱的基本原理和应用。
2、学习红外光谱仪的操作方法。
3、通过对样品的红外光谱分析,确定样品的化学结构和官能团。
二、实验原理红外光谱是一种基于分子振动和转动能级跃迁而产生的吸收光谱。
当一束具有连续波长的红外光通过物质时,物质分子中的某些基团会吸收与其振动和转动频率相同的红外光,从而在红外光谱图上出现特征吸收峰。
不同的官能团具有不同的振动频率,因此可以通过分析红外光谱图中的吸收峰位置、强度和形状来推断物质的结构和成分。
分子的振动形式可以分为伸缩振动和弯曲振动。
伸缩振动是指化学键沿键轴方向的伸长和缩短,如 CH 键的伸缩振动;弯曲振动则是指化学键在垂直于键轴方向的振动,如 CH 键的弯曲振动。
红外光谱的波长范围通常在25 25 μm 之间,对应的波数范围为4000 400 cm⁻¹。
其中,4000 1300 cm⁻¹区域称为官能团区,主要反映分子中官能团的特征吸收;1300 400 cm⁻¹区域称为指纹区,主要反映分子的整体结构特征。
三、实验仪器与试剂1、仪器:傅里叶变换红外光谱仪(FTIR)、压片机、玛瑙研钵、干燥器。
2、试剂:KBr 粉末(光谱纯)、待测试样(固体或液体)。
四、实验步骤1、样品制备固体样品:采用 KBr 压片法。
称取 1 2 mg 样品,在玛瑙研钵中与100 200 mg KBr 粉末充分研磨混合,然后将混合物置于压片机中,在一定压力下压成透明薄片。
液体样品:采用液膜法或溶液法。
液膜法是将少量液体样品直接滴在两片盐片之间,形成液膜进行测试;溶液法是将样品溶解在适当的溶剂中,然后将溶液注入液体池中进行测试。
2、仪器操作打开红外光谱仪电源,预热 30 分钟。
设置仪器参数,如扫描范围、分辨率、扫描次数等。
将制备好的样品放入样品室,进行扫描测量。
3、数据处理对获得的红外光谱图进行基线校正、平滑处理等。
标注吸收峰的位置和强度,并与标准谱图进行对比分析。
红外光谱(最全-最详细明了)
1. 收集谱图数据
通过红外光谱仪获取样品的光 谱数据。
3. 峰识别与标记
识别谱图中的特征峰,并对其 进行标记。
5. 结果输出
得出样品成分的红外光谱解析 结果。
谱图解析技巧
1. 峰归属参考
查阅相关资料,了解常见官能团或分子结构 的红外光谱峰归属。
3. 多谱图比对
将待测样品谱图与标准样品谱图进行比对, 提高解析准确性。
红外光谱与其他谱学的联用技术
红外光谱与拉曼光谱联用
拉曼光谱可以提供分子振动信息,与红外光 谱结合,可更全面地解析分子结构和化学组 成。
红外光谱与核磁共振谱联用
核磁共振谱可以提供分子内部结构的详细信息,与 红外光谱结合,有助于深入理解分子结构和化学键 。
红外光谱与质谱联用
质谱可以提供分子质量和结构信息,与红外 光谱结合,有助于对复杂化合物进行鉴定和 分析。
红外光谱在大数据与人工智能领域的应用
红外光谱数据的处理与分析
利用大数据技术对大量红外光谱数据进行处理、分析和挖掘,提取有用的化学和物理信息 。
人工智能在红外光谱中的应用
利用人工智能技术对红外光谱数据进行模式识别和预测,提高红外光谱的解析能力和应用 范围。
红外光谱数据库的建立与完善
建立和完善红外光谱数据库,为科研和工业界提供方便、快捷的红外光谱查询和服务。
分子振动与转动能级
1 2
分子振动
分子中的原子或分子的振动,产生振动能级间的 跃迁。
转动能级
分子整体的转动,产生转动能级间的跃迁。
3
振动与转动能级间的耦合
某些特定的振动模式会导致分子的转动能级发生 跃迁。
红外光谱的吸收峰与跃迁类型
吸收峰
由于分子振动或转动能级间的跃迁,导致光谱上出现暗线或 暗带。
红外光谱实验报告
红外光谱实验报告引言:光谱是研究物质结构和性质的重要手段之一。
其中,红外光谱作为一种常用的分析技术,被广泛应用于物质的鉴定、分析和表征。
本实验旨在通过红外光谱仪器验证不同物质的红外吸收特性,并对实验结果进行分析和解释。
实验材料和仪器:本次实验所用的样品包括有机化合物甲醇、乙醇和丙酮等。
实验使用的主要仪器是一台红外光谱仪,其原理基于样品与特定波长的红外辐射相互作用,通过检测被样品吸收、散射或透射的红外辐射,得到相应的红外光谱图谱。
实验步骤:1. 样品制备:将甲醇、乙醇和丙酮分别取少量于试管中。
2. 实验操作:将试管放入红外光谱仪中,进行光谱扫描操作。
3. 结果记录:记录各样品的红外光谱图谱,并进行观察和分析。
实验结果与讨论:通过实验操作得到的红外光谱图谱如下图所示(图1)。
[插入图1]从图中可以看出,甲醇、乙醇和丙酮的红外吸收峰位数目和位置存在明显差异。
接下来,我们将对各个样品的红外吸收峰进行解析。
甲醇样品:在图谱中可观察到两个主要峰位,分别出现在3000-3400 cm-1和1000-1300 cm-1范围内。
前一个峰位为甲醇分子中的O-H伸缩振动,后一个峰位则表示甲醇中的C-O伸缩振动。
乙醇样品:与甲醇样品类似,乙醇样品的红外光谱中也可观察到两个主要峰位,分别位于3000-3500 cm-1和1050-1270 cm-1范围内。
两个峰位的解释与甲醇相似,分别对应乙醇中的O-H伸缩振动和C-O伸缩振动。
丙酮样品:与甲醇、乙醇不同,丙酮样品的红外光谱图中只有一个主要峰位,出现在1710-1740 cm-1的范围内,对应着丙酮分子中的C=O伸缩振动。
通过对比不同样品的红外光谱图谱和相应峰位的分析,我们可以发现不同化合物的红外吸收峰位存在差异,这正是红外光谱技术可以用于物质鉴定和分析的基础。
实验结论:通过对甲醇、乙醇和丙酮等有机化合物的红外光谱实验观察和分析,我们验证了红外光谱技术在物质鉴定和分析中的有效性。
红外光谱必备知识资料
红外光谱必备知识资料红外光谱(I R)(Infrared Spectroscopy)【1】(2007-12-22 12:54:17)标签:我记录我的校园教育杂谈 ir第一节:概述1、红外吸收光谱与紫外吸收光谱一样是一种分子吸收光谱。
红外光的能量(△E=0.05-1.0ev)较紫外光(△E=1-20ev)低,当红外光照射分子时不足以引起分子中价电子能级的跃迁,而能引起分子振动能级和转动能级的跃迁,故红外吸收光谱又称为分子振动光谱或振转光谱。
2、红外光谱的特点:特征性强、适用范围广。
红外光谱对化合物的鉴定和有机物的结构分析具有鲜明的特征性,构成化合物的原子质量不同、化学键的性质不同、原子的连接次序和空间位置不同都会造成红外光谱的差别。
红外光谱对样品的适用性相当广泛,无论固态、液态或气态都可进行测定。
3、红外光谱波长覆盖区域:0.76 mm ~ 1000mm.红外光按其波长的不同又划分为三个区段。
(1)近红外:波长在0.76-2.5mm之间(波数12820-4000cm-1)(2)中红外:波长在2.5-25mm(在4000-400 cm-1)通常所用的红外光谱是在这一段的(2.5-15mm,即4000-660 cm-1)光谱范围,本章内容仅限于中红外光谱。
(3)远红外:波长在25~1000mm(在400-10 cm-1)转动光谱出现在远红外区。
4、红外光谱图:当物质分子中某个基团的振动频率和红外光的频率一样时,分子就要吸收能量,从原来的振动能级跃迁到能量较高的振动能级,将分子吸收红外光的情况用仪器记录,就得到红外光谱图。
5、红外光谱表示方法:(1)红外光谱图红外光谱图以透光率T %为纵坐标,表示吸收强度,以波长l ( mm) 或波数s (cm-1)为横坐标,表示吸收峰的位置,现主要以波数作横坐标。
波数是频率的一种表示方法(表示每厘米长的光波中波的数目)。
通过吸收峰的位置、相对强度及峰的形状提供化合物结构信息,其中以吸收峰的位置最为重要。
红外光谱(一)资料
红外吸收强度及其表示符号
摩尔消光系数(ε) 强度 符号
>200
75~200 25~75 5~25 0~5
很强
强 中等 弱 很弱
VS
S M W VW
各种化学键的红外吸收位置
5 IR光谱得到的结构信息
IR光谱表示法: 横坐标为吸收波长(m),或吸收频率(波数/cm) 纵坐标常用百分透过率T%表示 从谱图可得信息: 1 吸收峰的位置(吸收频率) 2 吸收峰的强度 ,常用 vs (very strong), s (strong), m (medium), w (weak) vw (very weak), b (broad) ,sh (sharp),v (variable) 表示 3 吸收峰的形状 (尖峰、宽峰、肩峰)
横坐标:波数(v )400~4000 cm-1;表示吸收峰的位置。 纵坐标:透过率(T %),表示吸收强度。T↓,表明吸 收的越好,故曲线低谷表示是一个好的吸收带。
4
红外光谱与有机化合物结构
红外光谱图: 纵坐标为吸收强度, 横坐标为波长λ ( μm ) 和波数1/λ 单位:cm-1 可以用峰数,峰位, 峰形,峰强来描述。 应用:有机化合物的结构解析。 定性:基团的特征吸收频率; 定量:特征峰的强度;
R-COR C=0 1715cm-1 R-COCl C=0 1800cm-1 F-COF C=0 1928cm-1
; ; ;
R-COH C=0 1730cm -1 ; R-COF C=0 1920cm-1 R-CONH2 C=0 1920cm-1 ; ;
b.共轭效应
O O H3C C CH 3 C CH 3 O C CH 3 O C
5. 物态变化的影响
红外光谱实验实验报告
一、实验目的1. 了解红外光谱的基本原理和应用领域。
2. 掌握红外光谱仪的操作方法和实验技巧。
3. 通过红外光谱分析,对样品进行定性鉴定。
二、实验原理红外光谱(Infrared Spectroscopy)是一种利用分子对红外辐射的吸收特性进行物质定性和定量分析的技术。
当分子中的化学键振动和转动时,会吸收特定频率的红外光,从而产生红外光谱。
红外光谱具有特征性强、灵敏度高、样品用量少等优点,广泛应用于有机化学、材料科学、生物医学等领域。
三、实验仪器与试剂1. 仪器:红外光谱仪、样品池、紫外-可见分光光度计、电子天平、干燥器等。
2. 试剂:待测样品、标准样品、溶剂等。
四、实验步骤1. 样品制备:将待测样品研磨成粉末,过筛后备用。
2. 样品池准备:将样品池清洗干净,晾干后备用。
3. 样品测试:将样品放入样品池中,进行红外光谱扫描。
扫描范围为4000-400cm-1,分辨率设置为2cm-1。
4. 数据处理:将得到的红外光谱数据导入数据处理软件,进行基线校正、平滑处理等操作。
5. 定性分析:将处理后的红外光谱与标准样品光谱进行比对,结合化学知识,对样品进行定性鉴定。
五、实验结果与分析1. 样品A:经过红外光谱分析,样品A的特征峰与标准样品光谱一致,鉴定为化合物A。
2. 样品B:样品B的红外光谱特征峰与标准样品光谱存在差异,但经过化学知识分析,推断样品B为化合物B。
3. 样品C:样品C的红外光谱特征峰与标准样品光谱一致,鉴定为化合物C。
六、实验讨论与心得1. 实验过程中,样品池的清洁度对实验结果有较大影响。
实验前需确保样品池干净、干燥。
2. 在数据处理过程中,基线校正和平滑处理是提高光谱质量的重要步骤。
3. 红外光谱分析具有较好的准确性和可靠性,但在进行定性鉴定时,还需结合化学知识进行分析。
4. 实验过程中,注意红外光谱仪的操作安全,避免仪器损坏。
5. 本实验加深了对红外光谱原理和操作方法的理解,提高了样品分析能力。
红外光谱测试
当红外光照射到物质上时,物质分子会吸收特定波长的红外 光,产生振动和转动能级的跃迁,从而形成红外光谱。不同 物质分子具有不同的振动和转动能级,因此红外光谱具有特 征性,可以用于物质鉴别和组成分析。
红外光谱的分类
透射光谱法
测量透过物质后的红外光的强度,从而得到物 质的红外光谱。
反射光谱法
测量照射到物质表面后的红外光的反射强度, 从而得到物质的红外光谱。
技术创新与进步
1 2
高精度光谱解析
随着计算技术和算法的进步,红外光谱解析的精 度将进一步提高,能够更准确地解析出物质的结 构和组成。
微型化与便携化
随着微电子技术和制造工艺的发展,红外光谱仪 将进一步微型化和便携化,便于野外和现场测试。
3
智能化与自动化
未来红外光谱测试将更加智能化和自动化,减少 人工操作和干预,提高测试效率和准确性。
根据特征峰的位置和强度,推断样品中存在的官能团或分子结 构。
结合红外光谱的特征峰和其他测试结果,对样品的分子结构进 行分析和推断。
通过特征峰的峰高和峰面积,计算样品中相关官能团或分子的 含量或浓度,进行定量分析。
红外光谱测试结果可用于材料科学、化学、生物学、医学等领 域,为相关研究和应用提供重要信息。
物质。
用于生物大分子的结构 和组成分析,如蛋白质、
核酸等。
02 红外光谱测试的样品准备
样品选择与制备
01
02
03
04
固体样品
选择具有代表性的样品,确保 样品纯净度高,无杂质。
液体样品
选择清澈透明的液体,避免含 有气泡和悬浮物。
气体样品
选择纯净的气体,避免含有杂 质和水分。
制备方法
根据样品类型,采用合适的制 备方法,如研磨、溶解、干燥
红外光谱分析法试题及答案省名师优质课赛课获奖课件市赛课一等奖课件
20. 下列有关分子振动旳红外活性旳论述中 正确旳是 ( )
A 凡极性分子旳多种振动都是红外活性旳, 非极性分子旳多种振动都不是红外活性旳
B 极性键旳伸缩和变形振动都是红外活性 旳
C 分子旳偶极矩在振动时周期地变化, 即为 红外活性振动
D 分子旳偶极矩旳大小在振动时周期地变 化, 必为红外活性振动, 反之则不是
B 分子中有些振动能量是简并旳
C 因为分子中有 C、H、O 以外旳原子存 在
D 分子某些振动能量相互抵消了
O
O
R C O R (I) R C S R (II)
R C N R (III) A r C S R (IV )
O
O
4. 下列四种化合物中,羰基化合物频率出 现最低者为 ( )
A I B II C III D IV
9. 在含羰基旳分子中,增长羰基旳极性会 使分子中该键旳红外吸收带 ( )
A 向高波数方向移动 B 向低波数方向移动 C 不移动 D 稍有振动
10. 2 C HCl D N2
11. 某化合物旳相对分子质量Mr=72,红外光 谱指出,该化合物含羰基,则该化合物可能旳 分子式为 ( )
般出目前 1760 cm -1,但形成多聚体时,
吸收频率向高波数移动。(
)
13.酮、羧酸等旳羰基(>C=O)旳伸缩
振动在红外光谱中旳吸收峰频率相同。
(
)
14.拉曼光谱与红外光谱一样都是反应分
子中振动能级旳变化。 (
)
15.对同一物质,随人射光频率旳变化,
拉曼线频率变化,但拉曼位 。 (
)
红外光谱分析法试题解答
四、正误判断
1.红外光谱不但涉及振动能级旳跃迁,也涉 及转动能级旳跃迁,故又称为振转光谱。 ()
红外光谱(最全_最详细明了)、、
(a)酸酐上两个羰基接在同一个氧原子上,互 相偶合产生两个吸收带。
振动耦合引起吸收频率偏离基频,一个高频移动,一个低频移动。 例如,酸酐羰基有两个吸收峰是两个羰基振动耦合的结果:
O CH3 C
O CH3 C
O
1750 cm-1
O CH3 C
O CH3 C
O
1828 cm-1
(b) 一个碳上含有二个或三个甲基,则在 1385~1350cm-1出现两个吸收峰 。
(8)互变异构的影响:有互变异构的现象存在时,在红 外光谱上能够看到各种异构体的吸收带。各种吸收的相对 强度不仅与基团种类有关,而且与异构体的百分含量有关
如乙酰乙酸乙酯有酮式和烯醇式结构,两者的吸收皆能 在红外谱图上找到,但烯醇式的υC=O较酮式υC=O弱,说
明稀醇式较少。
CH3-CO-CH2-COO-C2H5 υC=O 1738(s),1717(s)
1678
1657
1651 cm-1
O OH
H OO
O
O
υC=O ( cm-1) 1676,1673; 1675,1622
(分子内氢键;分子间氢键):对峰位,峰强产生极明显影 响,使伸缩振动频率向低波数方向移动.
O H NH 游离
R
R
HN H O 氢键
C=O 伸缩 N-H 伸缩 N-H 变形
1690 cm-1 3500 cm-1 1620-1590
偶极矩变化——结构对称性;
对称性差偶极矩变化大吸收峰强度大
符号:S (strong)
M (medium) W (weak)
B (broad)
Sh (sharp)
红外吸收峰强度比紫外吸收峰小2~3个数量级;
红外光谱资料
如果原子或分子的能级的跃迁,是由初始态能级(E1)跃迁 到激发态能级(E2)而吸收部分电磁波(光),就可获得其吸收光 谱。反之,从激发态能级(E2)跳回到初始态能级(E1)而辐射出 部分电磁波(光),就可获得其发射光谱。
例: RCH = CH2 可产生三种特征吸收峰
ν ν δ =C-H
C= C =C -H
3100
1680-1620
880
这三种峰可以相 互佐证,证明分 子为一取代烯烃。 这三种峰被叫做 相关峰。
1—辛烯的红外光谱图
4
1
2
3
1. =CH的伸缩振动 3. -C =CH的面外弯曲
2. C =C的伸缩振动 4. 915cm-1的倍频峰
按照量子理论,物质内粒子所处的稳定的能量状态(能级) 不是连续变化的,即所谓量子化的。如果与该物质相互作用的 红外辐射的能量量子h 近似或精确等于二个能级之间的能量 差时,就能使粒子从较低能级跃迁到较高能级。这就是通常所 说的能级跃迁,可以写成下列表达式:
△E =E2一E1=h 式中 E1一粒子初始能态的能量;
在中红外区更常用的一种单位是波数 ,波数用cm-1表 示、波数与波长的关系是:
几乎所有的红外谐图中都标有波数和波长两种刻度。
4.11 红外光谱
近红外区:
波长(m) 0.75 ~ 2.5
波数(cm-1) 13330 ~ 4000
中红外区: 远红外区:
2.5 ~ 15.4 15.4 ~ 830
4000 ~ 650 650 ~ 12
例:VC=O 吸收强度大于 VC=C 。 对称烯、炔等无吸收峰 或吸收峰很弱。
红外光谱(最全-最详细明了)、、
υC=O(cm–1) 1663 1686 1693
(7)振动偶合效应:分子内有近似相同频率且位于相邻部位的振动基团彼此相互作用,产生两种以上基团参加的混合振动。
波数即波长的倒数,表示单位(cm)长度光中所含光波的数目。波长或波数可以按下式互换:
一般扫描范围在4000~400cm-1。
4.红外吸收光谱产生的条件
满足两个条件: (1)辐射应具有能满足物质产生振动跃迁所需的能量 (2)辐射与物质间有相互偶合作用。
对称分子:没有偶极矩,辐射不能引起共振,无红外活性。如:N2、O2、Cl2 等。 非对称分子:有偶极矩,红外活性。
*
(3) 检测器 真空热电偶;不同导体构成回路时的温差电现象 涂黑金箔接受红外辐射; 傅立叶变换红外光谱仪采用热释电(TGS)和碲镉汞(MCT)检测器; TGS:硫酸三苷肽单晶为热检测元件;极化效应与温度有关,温度高表面电荷减少(热释电); 响应速度快;高速扫描;
如乙酰乙酸乙酯有酮式和烯醇式结构,两者的吸收皆能在红外谱图上找到,但烯醇式的υC=O较酮式υC=O弱,说明稀醇式较少。
CH3-CO-CH2-COO-C2H5 CH2-C(OH)=CH-COOC2H5 υC=O 1738(s),1717(s) υC=O与υC=C在1650cm-1(w) υOH3000cm-1
两种类型:色散型 干涉型(傅立叶变换红外光谱仪)
*
日本岛津公司的 DT-40 FT-IR
*
干涉仪
光源
样品室
检测器
显示器
绘图仪
计算机
干涉图
光谱图
FTS
*
红外光谱材料分析与测试技术作业-PPT
例:水分子(非线性分子) 振动自由度数=3 ×3 -6 =3
红外谱图上得峰数往往少于基本振动得数目。原因: (1)红外非活性振动:分子偶极距不发生变化 (2)峰得简并:振动频率完全相同,吸收带重合 (3)峰得掩盖:宽而强得吸收峰掩盖频率相近得窄
8、振动耦合效应与费米共振 振动耦合效应:当两个振动频率相同或相近得基团在分子中靠得很近时 ,她们得振动可能产生相互影响,使吸收峰裂分为两个,一个高于原来得 频率,一个低于原来得频率。 费米共振:当某一振动得倍频或组频位于另一强得基频附近时,由于相 互产生强烈得振动耦合作用,使原来很弱得泛频峰强化,或出现裂分双 峰,这种特殊得振动耦合称为费米共振。 9、互变异构 如果分子有互变异构现象发生,吸收峰将发生位移。
根据普朗克方程,发生振动能级跃迁需要能量得大小取 决于键两端原子得折合质量和键得力常数,即取决于分 子得结构特征。
结论: (1)化学键越强,K 越大,振动频率越高; (2)二原子μ越大,振动频率越低。
二分子得振动能级与吸收峰位置
分子得振动能级就是量子化得,相应能级得能量为: E振=(V+1/2)hν
V :振动量子数,其值可取0,1,2,3 …等整数 ν :化学键得振动频率
E1 = 1/2 hν E2 = 3/2 hν ……
△E=E2-E1= hν
……
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
分子振动能级就是量子化得,振动能级差得大小与分子得结 构密切相关。分子振动吸收能量等于其振动能级差得频率 得光。
二、分子外部因素对峰位得影响
外部因素包括:样品得物理状态、溶剂、仪器等。
1、样品得物理状态。 气态分子吸收峰尖锐,有时会出现转动能级跃迁引起得精细结构 小峰。 液态分子之间距离减小,作用力增强,谱带变宽,精细结构减弱或消 失,频率降低。 固态分子红移程度增大,振动耦合使谱带增多
红外光谱实验讲义
试验固体样品红外光谱的采集及分析当样品受到频率连续变化的红外光照耀时,分子汲取某些频率的辐射,并由其振动运动或转动运动引起偶极矩的净变化,产生的分子振动和转动能级从基态到激发态的跃迁,从而形成的分子汲取光谱称为红外光谱,又称为分子振动转动光谱。
,V ---------------- 频率V --------向V --------------- 能量 -------- 原子内电千跃卑号子内电孑跃用 振动跃迁红外光区可分成三个区:近红外区、中红外区、远红外区。
其中中红外区是讨论和应用最多的区域,一般说的红外光谱就是指中红外区的红外光谱。
区域名称 波长(Nm) 波数(Cm ・1) 能级跃迁类型近红外区 泛频区0.75-2.5 13158-4000 OH 、NH 、CH 键的倍频汲取 中红外区 基本振动区2.5-25 4000-400 分子振动/伴随转动 远红外区 分子转动区 25-300 400-10 分子转动波数(Cmj),它表示电磁波在单位距离(Cm)中振动的次数,波长和波数均反映了光的频率。
一、红外光谱的三要素1 .峰位分子内各种官能团的特征汲取峰只消失在红外光波谱的肯定范围,如:C=O 的伸缩振动一般在1700CmT 左右。
2 .峰强红外汲取峰的强度取决于分子振动时偶极矩的变化,振动时分子偶极矩的变化越小,谱带强度也就越弱。
一般说来,极性较强的基团(如C=O)振动,汲取强度较大;极性较弱的基团(如OC,NY 等)振动,汲取强度较弱;红外汲取强度分别用很强(Vs)、强(s)、中(m)、弱(W)表示.3 .峰形不同基团的某一种振动形式可能会在同一频率范围内都有红外汲取,如-OH 、-NH 的伸缩振动峰都在3400~3200cm 1,但二者峰外形有显著不同。
此时峰形的不同有助于官能团的鉴别。
远 外红中线波 无电 射频区200nm 40Onm 80Onm 2. 5 JA 15 ∖k Im 5m短 ------------------ 波长λ----------------------------- A 长光波造区及能量跃迁相关图常见官能团红外汲取特征频率表可见附录二、红外光谱仪的作用一是分析某化合物中是否含有某些官能团。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
适用 所有红外吸收的 有机化合物
特征性
特征性强
用途
鉴定化合物 鉴定官能团 推测结构
UV
分子外层价电子能级跃迁
具n-π*跃迁有机化合物 具π-π*跃迁有机化合物
简单、特征性不强 定量
推测有机化合物共轭骨架
红外分光光度法基本原理
红外分光光度法 ——研究物质结构与红外光谱之间关系
红外光谱 ——由吸收峰位置和吸收峰强度共同描述
红外光谱
红外光谱 (IR) infrared spectroscopy
当样品受到频率连续变化的红外光照射时,分子吸收了某些特 定频率的辐射,并由其振动或转动运动引起偶极矩的变化,产生分子 振动和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透 射光强度减弱。记录红外光的百分透射比与波数或波长关系曲线,就 得到红外光谱。
实验表明,组成分子的各种基团,如O-H、N-H、CH、C=C、C=OH和CC等,都有自己的特定的红外吸收 区域,分子的其它部分对其吸收位置影响较小。
通常把这种能代表及存在、并有较高强度的吸收谱 带称为基团频率,其所在的位置一般又称为特征吸收峰。
红外吸收峰
红外光谱区可分成4000 cm-1 ~1300 cm-1、 1300 cm-1 ~ 600 cm-1两个区域。
(2)变形振动(又称弯曲振动或变角振动) 基团键角发生周期变化而键长不变的振动称为变形振动,用符号
表示。变形振动又分为面内变形和面外变形振动。面内变形振动又 分为剪式(以表示)和平面摇摆振动(以表示)。面外变形振动又 分为非平面摇摆(以表示)和扭曲振动(以表示)。
图示
as CH 3
~
2960cm1
C-H的伸缩振动可分为饱和和不饱和的两种。饱和的C-H伸缩振动出现在3000 cm-1以下,约3000~2800 cm-1 ,取代基对它们影响很小;不饱和的C-H伸缩振动出 现在3000 cm-1以上,以此来判别化合物中是否含有不饱和的C-H键;苯环的C-H键 伸缩振动出现在3030 cm-1附近,它的特征是强度比饱和的C-H浆稍弱,但谱带比较 尖锐。
4000 cm-1 (2.5μm )
400 cm -1 (25μm )
108
Wavelength (cm-1)
107
-射线
X–射 线
106
紫外
105 104 103 102 101 1 10-1 10-2 10-3
近
红 中红外
可 见
外
红外
远红外
电子自旋振 动
核磁 振动
微波
Radio, TV 无线 电波
原子核转变
内层电动
分子转动
电磁转动
Region
Interaction
Wavelength (m)
10-
10
10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1
1
101
三、红外光谱的作用
绝大多数有机化合物的基频吸收带出现在MIR光 区。基频振动是红外光谱中吸收最强的振动,最适于 进行红外光谱的定性和定量分析。中红外光谱仪最为 成熟、简单,因此它是应用极为广泛的光谱区。通常, 中红外光谱法又简称为红外光谱法。
只有当红外辐射频率等于振动量子数的差值与分 子振动频率的乘积时,分子才能吸收红外辐射,产生 红外吸收光谱。
振动形式
一般将振动形式分成两类:伸缩振动和变形振动。 (1)伸缩振动
原子沿键轴方向伸缩,键长发生变化而键角不变的振动称为伸缩 振动,用符号表示。它又可以分为对称伸缩振动( s)和不对称伸 缩伸振缩动振(动。 as )。对同一基团,不对称伸缩振动的频率要稍高于对称
红外光谱是鉴别物质和分析物质化学结构的有效 手段,已被广泛应用于物质的定性鉴别、物相分析和 定量测定,并用于研究分子间和分子内部的相互作用。
四、红外光谱的表示方法
T~λ曲线 →前密后疏
(cm1 ) 10 4 ( m)
T ~σ曲线 →前疏后密
IR与UV的区别
IR
起源 分子振动能级伴 随转动能级跃迁
as CH 2
~
2925cm1
s CH 3
~
2870cm1
s CH 2
~
2850cm1
as
CH3 CH2
~ 1450cm1 ~ 1465 20cm1
s CH 3
~ 1375cm1
CH2 ~ 720cm1
红外吸收峰
物质的红外光谱是其分子结构的反映,谱图中的吸 收峰与分子中各基团的振动形式相对应。
一、红外吸收光谱的产生 二、振动形式 三、吸收特征峰与相关峰 四、吸收峰位置与强度
红外吸收光谱的产生
红外光谱主要由分子的振动能级跃迁产生 分子的振动能级差0.05 1.0eV远大于转动能级差(0.0001
0.05eV) 分子发生振动能级跃迁必然同时伴随转动能级跃迁
双原子分子A-B→近似看作谐振子 两原子间的伸缩振动→近似看作简谐振动
4000 cm-1 ~ 1300 cm-1 之间,称为基团频率区、官能团区或特征区。 区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定 官能团(最有分析价值)。
1300 cm-1 ~600 cm-1 区域内,除单键的伸缩振动外,还有因变形振 动产生的谱带。这种振动与整个分子的结构有关。当分子结构稍有不同时, 该区的吸收就有细微的差异,并显示出分子特征。这种情况就像人的指纹 一样,因此称为指纹区。(作为化合物存在某种基团的旁证)
特征区(官能团区)分为三个区域:
(1)4000 ~2500 cm-1 X-H伸缩振动区 (X可以是O、H、C或S等原子)
O-H基的伸缩振动出现在3650 ~3200 cm-1 范围内,它可以作为判断有无醇类、 酚类和有机酸类的重要依据。羟基化合物产生缔合现象,O-H基的伸缩振动吸收峰 向低波数方向位移,在3400 ~3200 cm-1 出现一个宽而强的吸收峰。胺和酰胺的NH伸缩振动也出现在3500~3100 cm-1 ,因此,可能会对O-H伸缩振动有干扰。
利用物质对红外光区电磁辐射的选择性吸收的特性来进行结构 分析、定性和定量的分析方法,称红外吸收光谱法
红外光谱法
1、概述 2、基本原理 3、红外光谱仪 4、试样的处理和制备
概述
一、红外光的区划
红外线:波长在0.76~500μm (1000μm) 范围内的电磁波
近红外区(NIR):0.76~2.5μm(760~ 2500nm)-OH和-NH倍频吸收区
中红外区(MIR):2.5~25μm (4000~ 400cm-1)振动、伴随转动光谱
远红外区(FIR):25~500μm
纯转动光谱
紫外-可见(UV-VIS):190 ~900nm 电子光谱
二、红外吸收过程
UV——分子外层价电子能级的跃迁(电子光谱) IR——分子振动和转动能级的跃迁 (分子光谱)
谱区范围