第4章集成运算放大电路

合集下载

第4章 集成运算放大电路 习题解答

第4章 集成运算放大电路 习题解答

第4章自测题、习题解答自测题4一、选择1.集成运放的输出级一般采用()。

A. 共基极电路B. 阻容耦合电路C. 互补对称电路2.集成运放的中间级主要是提供电压增益,所以多采用()。

A. 共集电极电路B. 共发射极电路C. 共基极电路3.集成运放的输入级采用差分电路,是因为()。

A. 输入电阻高B. 差模增益大C. 温度漂移小4.集成运放的制造工艺,使得相同类型的三极管的参数()。

A 受温度影响小 B. 准确性高 C. 一致性好5.集成运放中的偏置电路,一般是电流源电路,其主要作用是()。

A. 电流放大B. 恒流作用C. 交流传输。

解:1、C 2、B 3、C 4、C 5、B二、判断1.运放的有源负载可以提高电路的输出电阻()。

2.理想运放是其参数比较接近理想值()。

3.运放的共模抑制比K CMR越高,承受共模电压的能力越强()。

4.运放的输入失调电压是两输入端偏置电压之差()。

5.运放的输入失调电流是两输入端偏置电流之差()。

解:1、×2、×3、√4、√5、√三、选择现有如下类型的集成运放,根据要求选择最合适的运放:①.通用型②. 高阻型③. 低功耗型④. 高速型⑤. 高精度⑥. 大功率型⑦. 高压型。

1.作视频放大器应选用。

2.作内阻为500KΩ信号源的放大器应选用。

3.作卫星仪器中的放大器应选用。

4.作心电信号(?左右)的前置放大器应选用。

5.作低频放大器应选用。

作输出电流为4A的放大器应选用。

解:1、④ 2、② 3、③ 4、⑤ 5、① 6、⑥习题44.1通用型集成运算放大器一般由哪几个部分组成?每一部分常采用哪种基本电路?对每一基本电路又有何要求? 解:通用型集成运算放大器一般由输入级、中间级、输出级组成。

输入级采用差动放大电路,输入级要求尽量减小温度漂移。

中间级采用共射放大电路,要求提供较高的电压放大倍数。

输出级采用共集接法,互补对称电路,要求输出电阻要小。

4.2某一集成运算放大器的开环增益A od = 100dB ,差模输入电阻r i d = 5M Ω, 最大输出电压的峰─峰值为U OPP =±14V 。

第4章 集成运算放大电路课后习题及答案

第4章 集成运算放大电路课后习题及答案

第4章 集成运算放大电路一 填空题1、集成运放内部电路通常包括四个基本组成部分,即、、和。

2、为提高输入电阻,减小零点漂移,通用集成运放的输入级大多采用_________________电路;为了减小输出电阻,输出级大多采用_________________ 电路。

3、在差分放大电路发射极接入长尾电阻或恒流三极管后,它的差模放大倍数将 ud A ,而共模放大倍数将 ,共模抑制比将 。

uc A CMR K 4、差动放大电路的两个输入端的输入电压分别为和,则差mV 8i1-=U mV 10i2=U 模输入电压为 ,共模输入电压为 。

5、差分放大电路中,常常利用有源负载代替发射极电阻,从而可以提高差分放大电e R 路的 。

6、工作在线性区的理想运放,两个输入端的输入电流均为零,称为虚______;两个输入端的电位相等称为虚_________;若集成运放在反相输入情况下,同相端接地,反相端又称虚___________;即使理想运放器在非线性工作区,虚_____ 结论也是成立的。

7、共模抑制比K CMR 等于_________________之比,电路的K CMR 越大,表明电路__________越强。

答案:1、输入级、中间级、输出级、偏置电路;2、差分放大电路、互补对称电路;3、不变、减小、增大;4、-18mV, 1mV ;5、共模抑制比;6、断、短、地、断;7、差模电压放大倍数与共模电压放大倍数,抑制温漂的能力。

二 选择题1、集成运放电路采用直接耦合方式是因为_______。

A .可获得很大的放大倍数B .可使温漂小C .集成工艺难以制造大容量电容2、为增大电压放大倍数,集成运放中间级多采用_______。

A . 共射放大电路 B. 共集放大电路 C. 共基放大电路3、输入失调电压U IO 是_______。

A .两个输入端电压之差B .输入端都为零时的输出电压C .输出端为零时输入端的等效补偿电压。

【2024版】电子技术基础-第4章

【2024版】电子技术基础-第4章

( a)
( b)
( c)
非线性集成电路
3
( d)
( e)
(a)为圆壳式
(b)为双列直插式 (c)为扁平式 (d)为单列直插式 (e)为菱形式
( a)
( b)
( c)
( d)
( e)
4
4.1 直接耦合放大电路
两级直接耦合放大电路如图4-1所示
图4 –1 两级直接耦合放大器电路
5
4.1.1 直接耦合放大器和组成及其零点漂移现 象
KCMR20lgAuddB Au c
15
4.2 集成运算放大电路概述
1.集成运放电路的组成及各部分的作用
集成运算放大器实质上是一种双端输入、单端输出,具有高 增益,高输入阻抗、低输出阻抗的多极直接耦合放大电路。
当给他施加不同的反馈网络时,就能实现模拟信号的多种数 学运算功能(如比例、求和、求差、积分、微分……),故被称 为集成运算放大电路,简称集成运放。
1.零点漂移现象 当输入电压为0时,由于温度等原因,输出电压uo≠0。 并且随温度的变化而变化。 输入信号为0,而输出信号不为0的现象称为零点漂移简称 零漂 ( zero drift )。
图4-2 直接耦合放大电路的零点漂移
6
2.产生零点漂移的原因
产生零点漂移的原因很多,如温度的变化(包括环境温 度的变化及三级管工作时由于管耗引起的结温变化),电源 电压的波动以及电路元件以及电路元件参数的变化等,都会 引起放大电路的零点漂移。其中又以温度的变化使三级管参 数随之变化引起的漂移最为严重。当温度上升时,将引起 ICBO及β增大,Ube减小。从而使静态工作点Q上移,集电极电 流IC增加,产生零点漂移现象。
(3)输出信号的响应参数 在书的69页,不再列出。

第4章 集成运算放大器的结构及特性

第4章  集成运算放大器的结构及特性

4.输入失调电压温漂 dVio /dT
在规定工作温度范围内,输入失调 电压随温度的变化量与温度变化量 之比值。
5.输入失调电流温漂dIio /dT
在规定工作温度范围内,输入失调电 流随温度的变化量与温度变化量之比 值。
6.最大差模输入电压Vidmax
(maximum differential mode input voltage) 运放两输入端能承受的最大差模输入电压, 超过此电压时,差分管将出现反向击穿现象。
五、运算放大器的符号和型号
运算放大器的符号中有三个引线端,两个 输入端,一个输出端。一个称为同相输入端, 即该端输入信号变化的极性与输出端相同,用 符号‘+’或‘IN+’表示;另一个称为反相输入 端,即该端输入信号变化的极性与输出端相异, 用符号“-”或“IN-”表示。输出端一般画在输 入端的另一侧,在符号边框内标有‘+’号。实 际的运算放大器通常必须有正、负电源端,有 的品种还有补偿端和调零端。
7.最大共模输入电压Vicmax
(maximum common mode input voltage) 在保证运放正常工作条件下,共模输入 电压的允许范围。共模电压超过此值时, 输入差分对管出现饱和,放大器失去共 模抑制能力。
二、运算放大器的动态技术指标
1.开环差模电压放大倍数 Avd :(open loop voltage gain)运放在无外加反馈条件下,输出电 压的变化量与输入电压的变化量之比。 2.差模输入电阻rid :(input resistance)输入差模 信号时,运放的输入电阻。 3.共模抑制比 KCMR :(common mode rejection ratio)与差分放大电路中的定义相同,是差模电压 增益 Avd 与共模电压增益 Avc 之比,常用分贝数 来表示。 KCMR=20lg(Avd / Avc ) (dB)

模电第四章 集成运算放大电路题解

模电第四章 集成运算放大电路题解

集成运算放大电路自测题一、选择合适答案填入空内。

(1)集成运放电路采用直接耦合方式是因为。

A.可获得很大的放大倍数B. 可使温漂小C.集成工艺难于制造大容量电容(3)集成运放制造工艺使得同类半导体管的。

A.指标参数准确B.参数不受温度影响C.参数一致性好(4)集成运放的输入级采用差分放大电路是因为可以。

A.减小温漂B. 增大放大倍数C. 提高输入电阻(5)为增大电压放大倍数,集成运放的中间级多采用。

A.共射放大电路B.共集放大电路C.共基放大电路解:(1)C (2)B (3)C (4)A (5)A三、电路如图T4.3所示,已知β1=β2=β3=100。

各管的U BE均为0.7V,试求I C2的值。

图T4.3解:分析估算如下:100BE1BE2CC =--=R U U V I R μA100)2221(2C =≈++-=R R I I I ββμA习 题4.1 通用型集成运放一般由几部分电路组成,每一部分常采用哪种基本电路?通常对每一部分性能的要求分别是什么?(概念题目,直接看结果)解:通用型集成运放由输入级、中间级、输出级和偏置电路等四个部分组成。

通常,输入级为差分放大电路,中间级为共射放大电路,输出级为互补电路,偏置电路为电流源电路。

对输入级的要求:输入电阻大,温漂小,放大倍数尽可能大。

对中间级的要求:放大倍数大,一切措施几乎都是为了增大放大倍数。

对输出级的要求:带负载能力强,最大不失真输出电压尽可能大。

对偏置电路的要求:提供的静态电流稳定。

4.2 已知一个集成运放的开环差模增益A od 为100dB ,最大输出电压峰-峰值U opp =±14V ,分别计算差模输入电压u I (即u P -u N )为10μV 、100μV 、1mV 、1V 和-10μV 、-100μV 、-1mV 、-1V 时的输出电压u O 。

解:根据集成运放的开环差模增益,可求出开环差模放大倍数5od od 10dB100lg 20==A A当集成运放工作在线性区时,输出电压u O =A od u I ;当A od u I 超过±14V 时,u O 不是+14V ,就是-14V 。

集成运算放大电路

集成运算放大电路

电极经RC接VCC,发射极经电阻RE接VEE。电路中两管集电极负载电
阻的阻值相等,两基极电阻阻值相等,输入信号ui1和ui2分别加在两
管的基极上,输出电压u0从两管的集电极输出。这种连接方式称为
双端输入、双端输出方式。
下一页 返回
4.2 差分放大电路
2. 抑制零点漂移的原理
(1)依靠电路的对称性
上一页 下一页 返回
第一节 心脏除颤仪
2. 病人准备 ①卧硬板床,解开衣领、裤带,去除身上
的金属物品。 ②择期电复律者术晨禁食,术前排空大小
便。 ③给予吸氧,建立静脉通路。 3. 护士准备 衣帽整洁,仪表端庄,熟练
操作除颤仪。 4. 物品准备 除颤仪、导电糊(或浸湿生
理盐水的纱布)、治疗碗(清洁上一纱页布下1一页 返回
1
u i1 u i2 2 u id

uid 2ui1
图4-4电路中,在输入差模信号uid时,由于电路的对称性,使
得V1和V2两管的集电极电流为一增一减的状态,而且增减的幅度相
同。如果V1的集电极电流增大,则V2的集电极电流减小,即iC1=-iC2。
显然,此时RE上的电流没有变化,说明RE对差模信号没有作用,在RE
4.1.1 前级、后级静态工作点相互影响
前级的集电极电位恒等于后级的基极电位,前级的集电极电阻
RC1同时又是后级的偏流电阻,前、后级的静态工作点就互相影响,
互相牵制。
下一页 返回
4.1 直接耦合放大电路及问题
因此,在直接耦合放大电路中必须采取一定的措施,必须全面 考虑各级的静态工作点的合理配置,当放大电路的级数增多时,这 个问题显得更加复杂。常用的办法之一是提高后级的发射极电位。 在图4-1中是利用V2的发射极电阻RE2上的压降来提高发射极的电位。 这一方面能提高V1的集电极电位,增大其输出电压的幅度,另一方 面又能使V2获得合适的工作点。在工程中还有其他方法可以实现前、 后级静态工作点的配合。

第4章 集成电路运算放大电路

第4章 集成电路运算放大电路

④动态时ΔiO约为多少?
4.3 集成运放电路简介
•电压放大倍数高 集成运放的特点: •输入电阻大 •输出电阻小 已知电路图,分析其原理和功能、性能。 (1)了解用途:了解要分析的电路的应用场合、用途和技术 指标。 (2)化整为零:将整个电路图分为各自具有一定功能的基本 电路。 (3)分析功能:定性分析每一部分电路的基本功能和性能。 (4)统观整体:电路相互连接关系以及连接后电路实现的功 能和性能。 (5)定量计算:必要时可估算或利用计算机计算电路的主要 参数。
4.2.1 基本电流源电路
一、镜像电流源
T0 和 T1 特性完全相同。
U BE0 = U BE1 U BE I B0 = I B1 I B I C0 = I C1 I C
I R IC 2I B IC 2 IC IC

2
I R 即I C1
当β>>2时, I C1
学习指导 4.1 集成运算放大电路概述 4.2 集成运放中的电流源 4.3 集成运放电路的简介 4.4 集成运放的性能指标及低频等效电路
4.5 集成运放的种类及选择(自学) 4.6 集成运放的使用(自学) 小结
作 业
• 4.3
学习指导
在半导体制造工艺的基础上,将整个电路中的元 器件制作在一块硅基片上,构成特定功能的电子电路, 称为集成电路。 其体积小,而性能却很好。 集成电路按其功能分,有模拟集成电路和数字集 成电路。模拟集成电路的种类繁多,其中集成运算放 大器(简称集成运放)是应用极为广泛的一种。 主要内容:(1)集成运放中的电流源;(2)集成运放 电路的分析;(3)集成运放及主要性能指标。 基本要求:(1)熟悉运放的组成及各部分的作用, 理解主要性能指标及其使用注意事项;(2)了解镜 像电流源、微电流源的工作原理、特点和主要用途; (3)了解运放F007的基本组成和工作原理。(4)熟悉 LM324集成运放的引脚分布及其应用。

第4章集成运算放大电路

第4章集成运算放大电路

2020年4月8日星期三
Shandong University
第3页
模拟电路
二、集成运放电路的组成
两个 输入端
一个 输出端
若将集成运放看成为一个“黑盒子”,则可等效为一个 双端输入、单端输出的差分放大电路。
2020年4月8日星期三
Shandong University
第4页
模拟电路
集成运放电路四个组成部分的作用
模拟电路
第四章 集成运算放大电路
§4.1 概述 §4.2 集成运放中的电流源 §4.3 电路分析及其性能指标
2020年4月8日星期三
Shandong University
第1页
模拟电路
§4.1 概述
一、集成运放的特点 二、集成运放电路的组成 三、集成运放的电压传输特性
2020年4月8日星期三
Shandong University
2020年4月8日星期三
Shandong University
第5页
模拟电路
三、集成运放的电压传输特性 uO=f(uP-uN)
在线性区:
uO=Aod(uP-uN) Aod是差模开环放大倍数。
非线 性区
由于Aod高达几十万倍,所以集成运放工作在线性区时的 最大输入电压(uP-uN)的数值仅为几十~一百多微伏。
特点:IC1具有更高的稳定性。
2020年4月8日星期三
Shandong University
第9页
三、微电流源
模拟电路
要求提供很小的静态电流,又不能用大电阻。
IE1 (UBE0 UBE1) Re
U BE
I UT
I I e , I e E
S
E0 E1

模电课件第四章集成运算放大电路

模电课件第四章集成运算放大电路
第四章 集成运算放大电路
§4.1集成运算放大电路概述 一、集成运放的电路结构特点
集成运算放大电路:高电压放大倍数的直接耦合多级放大电路。
2019/7/28
模电课件
二、集成运放的电路组成
1、输入级:运算放大器的输入级通常是差分放大电路,其主 要功能是抑制共模干扰和温漂,双极型运放中差分管通常采 用CC-CB复合管,以便拓展通频带。 2、中间级:电压放大,要求:放大倍数要尽可能大,通常采 用共201射9/7/2或8 共源电路,并采用恒模电流课源件 负载和复合管以增加电压 放大倍数。
工作在放大状态。
当T0与 T1特性参数完全一致时,由U BE0 = U BE1可推得
IB0 = IB1 = IB IC0 = IC1 = Io 由基极输入回路得,
Io
IR
VCC
U BE R
I0 2IB

I0

2

I0

所以,I0

1 1 2
IR
基准电流
输出电流


时,I0 IR 。
在集成运放电路中通常只能制作小容量(几十pF)电容,不能 制作大201容9/7/量28 电解电容,级间通常模采电课用件 直接耦合。
四、以电流源为有源负载的放大电路
在集成运放的共射(共源)放大电路中,为了提高电压放大 倍数,常用电流源电路取代Rc (或Rd ),这样在电源电压不 变的情况下,既获得合适的静态电流,又可以得到很大的等效 的Rc(或 Rd )。
(1) 运放电路的结构分解 输入级是一个差动放大电路,主要由T1、T3(共集-共基组合)
和T2、T4组成。中间放大级由T16、T17、T13组成共集—共射电路; 输出级由T14、T18 、 T19组成互补输出电路。

第四章集成运算放大器

第四章集成运算放大器

第四章 集成运算放大电路
第一节 概述
2. 集成运放非线性工作(饱和状态)的特点
• (1) 当 u+ >u-时:uo = + UO(sat)
• (等2,)即集“成虚当运短u放+”<两的u个-结时输论:入不端u一o电=定-压成Uu立O+与(s。atu)-不一定相 • (3)集成运放输入电流仍等于零。尽管两个输入
dui dt
▲平衡电阻:
Rf
ui
+ uC- if
i1 C u-


∞ +
uo
R2 u+ +
(a) 电路
ui
Ui
0
uo
0
t
t
(b) 波形
R2 = Rf
第四章 集成运算放大电路
第二节 模拟信号的运算电路
上述的基本微分电路存在如下的缺点: ①输出端可能出现输出噪声淹没微分信号的现象;
②由于电路中的反馈网络构成的 RFC 滞后环节,它与集成运算放大
第四章 集成运算放大电路
第一节 概述
• 集成运算放大器基本内部组成可分为输入 级、中间级、输出级和偏置电路四个基本 组成部分。
第四章 集成运算放大电路
第一节 概述
• 1.输入级 • 采用差分放大电路构成。具有对称性好、输入电阻高、可以有效
减小零点漂移、抑制干扰信号等优点,因此可以有效放大有用信 号。 • 2.中间级 • 为整个电路提供足够大的电压放大倍数。一般采用共射级放大电 路,集电极电阻用晶体管恒流源代替,恒流源的动态电阻很大, 可以获得较高的电压放大倍数。 • 3.输出级 • 输出级与负载连接,主要作用是提供足够的输出功率(即足够大 的电流和电压)以满足负载的需要。要求其输出电阻低,带负载 能力强。一般由射级输出器或互补对称电路构成。 • 4.偏置电路 • 为整个电路提供稳定的和合适的偏置电流。偏置电路是由各种恒 流源电路组成。还有过载保护电路,可以防止输出电流过大时将 运放烧坏。

集成运算放大器电路 模拟电子电路-PPT

集成运算放大器电路 模拟电子电路-PPT

IE2

1 R2
(U BE1
UBE2 )

UT R2
ln
I E1 IE2
当β1>>时,IE1≈Ir,IE2≈IC2,由此可得
R2

UT IC2
ln
Ir IC2
(4―10)
UCC
Ir
Rr
V1
第4章 集成运算放大器电路
IC2 V2
R2
图4―7微电流电流源
第4章 集成运算放大器电路
此式表明,当Ir和所需要的小电流一定时,可计算
UCC
Rr
Ir
IC1 IC2
IC3
第4章 集成运算放大器电路
V1
V2
Rr Ir
UCC V3
IC2
IC3
(a)
(b)
图4―5 (a)三集电极横向PNP管电路;(b)等价电路
第4章 集成运算放大器电路
三、比例电流源
如果希望电流源的电流与参考电流成某一比例关 系,可采用图4―6所示的比例电流源电路。由图可知
利用交流等效电路可求出威尔逊电流源的动态内阻
Ro为

Ro 2 rce
(4―13)
可见,威尔逊电流源不仅有较大的动态内阻,而且 输出电流受β的影响也大大减小。
图4―9给出了另一种反馈型电流源电路。它由两 个镜像电流源串接在一起组成,故称串接电流源。关 于它的稳流原理留给读者自行分析。
UCC
Ir
Rr
集成运放是一种多级放大电路, 性能理想的运放 应该具有电压增益高、 输入电阻大、 输出电阻小、 工 作点漂移小等特点。 与此同时, 在电路的选择及构成 形式上又要受到集成工艺条件的严格制约。 因此, 集 成运放在电路设计上具有许多特点, 主要有:

第四章 集成运算放大电路

第四章 集成运算放大电路

2. 最大输出电压 op-p 最大输出电压U
Uo / V - 10 Uid + ∞ +
-0.4
-0.2 -0.1
0 0.1 0.2 0.3 0.4 Uid / mV
-0.3
-10 线性区
集成运放的传输特性
3. 差模输入电阻 id 差模输入电阻r rid的大小反映了集成运放输入端向差模输入信号 源索取电流的大小。要求rid愈大愈好, 一般集成运放 rid为几百千欧至几兆欧, 故输入级常采用场效应管来 提高输入电阻rid。 F007的rid=2 M 。认为理想集成运 放的rid为无穷大。
动态时,加入差模信号uid,根据差分放大电路的特点, T1 管的集电极电流在静态电流IC1的基础上增加了∆iC1,T2管的集 电极电流在静态电流IC2的基础上减小了∆iC2,∆iC1=-∆iC2。 由于 iC4 和 iC1 是 镜 像 关 系 , ∆iC4=∆iC1 , 因 此 ∆io=∆iC4-∆iC2=∆iC1-(∆iC1)=2∆iC1。 可见这个电流值是单端输出电流的两倍, 即等于 差分放大电路双端输出时的电流值。因此,用电流源作为差分 放大电路的有源负载,可将双端输出信号“无损失”地转换成 单端输出信号。
若电路中有共模信号输入,T3 管和T4 管的集电极电流相等 (忽略T7管的基极电流),T3管和T5管的集电极电流相等,又由于 R1=R3,因此T6管的集电极电流和T5管的集电极电流相等, 如此 推来,T6管和T4管的集电极电流相等,而T16管的基极电流为T4 管和T6管的集电极电流之差,所以T16管的基极电流近似为零, 可见共模信号输出为零,电路具有较高的抑制共模信号的能力。
2. 偏置电路 偏置电路由T8~T13、电阻R4和R5组成。其中T10、T11、 T12 和R4、R5构成主偏置电路,该电路中R5上的电流是F007偏置电 路的基准电流,由图可知

第四章集成运算放大电路

第四章集成运算放大电路

( R L // rce 2 // rce 4 )
rbe
若RL<<(rce1∥rce2), 则
Au
RL
rbe
返回
4.3 集成运放电路简介
图4.3.1 F007电路原理图
图4.3.2 F007电路中的放大电路部分
1. 输入级 在输入级中,T1 、T3 和T2 、T4 组成共集-共基差分放大电 路, T5~T7和电阻R1~R3构成改进型电流源电路,作为差放的有
号变化速度的适应能力,是衡量运放在大幅值信号作用时工作
速度的参数,单位为V/μs。在实际工作中,输入信号的变化律
一定不要大于集成运放的SR。信号幅值越大、频率越高,要求 集成运放的SR就越大。
理想运算放大器
理想运放的技术指标
在分析集成运放的各种应用电路时,常常将集成运放看成 是理想运算放大器。所谓理想运放, 就是将集成运放的各项技术
图4.2.2 比例电流源
图4.2.3 微电流源
二、 改进型的镜像电流源(获得稳定输出的电流)
1. 加射极输出器的电流源
2. 威尔逊电流源
三、 多路电流源电路
IR IE0 I C1 I E1 IC 2 IE2 IC3 IE3 Re0 R e1 Re0 Re2 Re0 Re3 IR
IR I c1 V CC U R
BE
2
IR IR
2. 比例电流源
IR V cc U
BE 0
3. 微电流源
Re0 R e1 IR
I C1 I E1 U BE 0 U BE 1 Re
IC1 UT Re 1n IR IC1
R Re0
, I c1

第四章差动与集成运算放大电路

第四章差动与集成运算放大电路

其中R′L=Rc∥(1/2RL)。这里R′L≠Rc∥RL,其原因是由于两 管对称,集电极电位的变化等值反相, 而与两集电极相连的
RL的中点电位不变,这点相当于交流地电位。因而对每个单管 来说, 负载电阻(输出端对地间的电阻)应是RL的一半,即
RL/2,而不是RL。
差动放大器对共模信号无放大,对差模信号有放大,这意 味着差动放大器是针对两输入端的输入信号之差来进行放大的,
第4章 差动放大电路与集成运算放大器
如图4.1.1(b)所示。不过,若采用图4.1.1(b)所示电路, 后级的集电极电位逐级高于前级的集电极电位,经过几级耦合 之后, 末级的集电极电位便会接近电源电压,这实际上也是限 制了放大器的级数。
所谓零点漂移,就是当输入信号为零时,输出信号不为零, 而是一个随时间漂移不定的信号。零点漂移简称为零漂。产生 零漂的原因有很多,如温度变化、电源电压波动、晶体管参数 变化等。其中温度变化是主要的,因此零漂也称为温漂。 在阻 容耦合放大器中,由于电容有隔直作用,因而零漂不会造成严 重影响。但是,在直接耦合放大器中,由于前级的零漂会被后 级放大,因而将会严重干扰正常信号的放大和传输。比如,图 4.1.1所示直接耦合电路中,输入信号为零时(即ΔUi=0),输 出端应有固定不变的直流电压Uo = UCE2。
所示。
第4章 差动放大电路与集成运算放大器
第4章 差动放大电路与集成运算放大器
由图4.1.4(a)可以看出,当差动放大器输入共模信号时, 由于电路对称,其输出端的电位Uc1和Uc2的变化也是大小相等、 极性相同,因而输出电压Uoc保持为零。可见,在理想情况下 (电路完全对称),差动放大器在输入共模信号时不产生输出 电压,也就是说,理想差动放大器的共模电压放大倍数为零, 或者说,差动放大器对共模信号没有放大作用,而是有抑制作 用。实际上,上述差动放大器对零漂的抑制作用就是它抑制共 模信号的结果。因为当温度升高时,两个晶体管的电流都要增 大,这相当于在两个输入端加上了大小相等、 极性相同的共模 信号。换句话说,产生零漂的因素可以等效为输入端的共模信 号。显然,Ac越小,对零漂的抑制作用越强。

第四章 集成运算放大电路

第四章 集成运算放大电路

(输出级偏臵的一部分;中间级的有源负载。)
34
§4-3.集成运放电路简介
F007简介 输入级
T1—T4:CC-CB差动放大
偏置电路
各部分的作用: 1.输入级:KCMR↑,Ri↑,IQ↓, 一般采用双端输入的差放电路。
5
§4-1.集成运算放大电路概述
三、集成运放的电压传输特性
集成运放符号: 电压传输特性:
uo f (uP uN )
同(反)相输入端是指运放的输入电 压与输出电压的相位关系。 可以认为集成运放是双端输入、单 端输出的差放电路。
10
集成运算放大器的符号和基本特点
3. 理想运放工作在线性区的两个特点 证:uo = Aud (u+ – u–) = Aud uid u+ – u– = uo/Aud 0 2) i+ i– 0 (虚断) 证: i+ = uid / Rid 0 同理 i – 0 1) u+ u–(虚短)
32
§4-3.集成运放电路简介
33
§4-3.集成运放电路简介
F007简介 偏臵电路 T12、R5、T11:主偏臵—R5中电流为基准电流
Im 2VCC U EB12 U BE11 0.73mA R5
T10、T11:微电流源
T8、T9:镜像电流源
T12、T13:镜像电流源
(输入级偏臵)
21
IR
Re2的作用:增大IE2,提高β。
§4-2.集成运放中的电流源电路
二、改进型电流源电路 2.威尔逊电流源 工作点稳定,输出电阻大。
I C2
2 (1 2 )IR IR 2 2
22
§4-2.集成运放中的电流源电路

集成运算放大电路图

集成运算放大电路图
返回
图4.1.1 集成运放电路方框图
返回
图4.1.2 集成运放的符号和电压传输特性
返回
4.2 集成运放中的电流源电路
• 图4.2.1 镜像电流源 • 图4.2.2 比例电流源 • 图4.2.3 微电流源 • 图4.2.4 加射极输出器的电流源 • 图4.2.5 威尔逊电流源 • 图4.2.6 基于比例电流源的多路电流源 • 图4.2.7 多集电极管构成的多路电流源 • 图4.2.8 MOS管多路电流源 • 图4.2.9 F007中的电流源电路 • 图4.2.10 有源负载共射放大电路 • 图4.2.11 有源负载差分放大电路
返回
图4.2.1 镜像电流源
返回
图4.2.2 比例电流源
返回
图4.2.3 微电流源
返回
图4.2.4 加射极输出器的电流源
返回
图4.2.5 威尔逊电流源
返回
P178 图4.2.6 基于比例电流源的多路电流源
基准电压 = IR R + 0.7V + IR Reo
IR Reo = Ic1 Re1 = Ic2 Re2 = Ic3 Re3 返回
• 图4.4.1 集成运放低频等效电路 • 图4.4.2 简化的集成运放低频等效电路
返回
图4.4.1 集成运放低频等效电路
返回
图4.4.2 简化的集成运放低频等效电路
返回
4.5 集成运放的种类及选择
• 图4.5.1 两通道选通控制运放OPA676的原理示意图
返回
图4.5.1 两通道选通控制运放OPA676 的原理示意图
返回
4.6 集成运放的使用
• 图4.6.1 输入保护措施 • 图4.6.2 输出保护电路 • 图4.6.3 电源端保护 • 图4.6.4 提高输出电压的电路 • 图4.6.5 增大输出电流的措施

第四章 集成运算放大器各种运用

第四章 集成运算放大器各种运用

的R1对应于当具用有R1内+R阻s代Rs替的,信为号了源不,使上电面压公增式益中 受Rs的太大影响,R1应该取大一些。但为了 保运证 放输 的入 内电 阻流,远对大于于通偏用置型电运流放,,RR11应 不宜远小超于过 数十千欧,反馈电阻RF越大则电压增益越大, 但要求反馈电流也应远大于偏置电流,所以 RF也不能取得过大,通常不宜超过兆欧。因 此,当Rs达到数千欧时,这个电路难以获得 高增益。另外,反相放大器是并联负反馈电
集成运放的基本组成
右图是运算放大器
的电路符号。它有两个 输入端和一个输出端。 反相输入端标“-”号, 同相输入端标“+”号。 输出电压与反相输入电 压相位相反,与同相输 入电压相位相同。此外 还有两个端分别接正、 负电源,有些集成运放 还有调零端和相位补偿 端。在电路中不画出。
二. 集成运算放大器的使用
由于集成运放具有性能稳定、可靠性高、寿命 长、体积小、重量轻、耗电量少等优点得到了广泛 应用。可完成放大、振荡、调制、解调及模拟信号 的各种运算和脉冲信号的产生等。
本章将介绍集成运放的基本知识、基本电路及 其主要应用。
主要内容
第一节 运算放大器的基本知识 第二节 运算放大器的基本电路 第三节 运算放大器的应用
因Ii=0,故i1≈if,因此 又因u+≈u-,因此
uo与ui之间的比例 关系也与运放本身
的参数无关,电路
精度和稳定度都很 高。KF为正表示uo 与ui同相,并且KF 总是大于或等于1, 这一点与反相放大 器不同。
当RF=0时KF=1,电路就变成电压 跟随器。
同相放大器实际上是一个电压串 联负反馈放大器,因此其输入阻抗高、 输出阻抗低,而且增益不受信号源内 阻的影响。该电路的不足是其共模抑 制比CMRR不太大。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2. 输入失调电流IOS IOS是当运放输出电压为零时,两个输入端的偏
置电流之差,IOS=|IB1IB2|。它是由内部元件参数不一致 等原因造成的。 IOS越小越好,一般为1 nA~10μA。
3. 输入偏置电流 IB IB是当输出电压为零时, 流入运放两输入端静态
基极电流的平均值IB=(IB1+IB2)/2。该值越小,信号源 内阻变化时引起输出电压的变化越小, 因此,IB越小 越好,一般为1nA~100 μA。
6. 输入失调电压温漂dUIO/dt和输入失调电流温漂 dIIO /dt
在规定的工作温度范围内,输入失调电压对温度 的变化率称为输入失调电压温漂,用以表征UOS受温 度变化的影响程度, 一般为1~50μV/℃,好的可达0.5 μV/℃。
在规定的工作温度范围内,输入失调电流对温度的 变化率称为输入失调电流温漂,用以表征IOS受温度变 化的影响程度, 一般为1~5nA/℃,好的可达pA/℃数 量级。
4. 开环差模电压放大倍数Aod
集成运放在开环时(无外加反馈时)输出电压与 输入差模信号电压之比称开环差模电压放大倍数Aod。 它是决定运放运算精度的重要因素,常用分贝(dB) 表示,目前最高值可达140 dB以上。
5. 共模抑制比KCMRR
KCMRR是差模电压放大倍数与共模电压放大倍数 之比, 即KCMRR=|Aod/Aoc| ,其含义与差动放大器中所 定义的KCMRR相同,高质量的运放KCMRR可达160 dB。
第4章 集成运算放大电路
4-1 概述 4-2 集成运算放大电路的线性应用 4-3 集成运算放大电路的非线性应用
4-1 概述
运算放大器实际上就是一个高增益的多级直接耦 合放大器,由于它最初主要用作模拟计算机的运算放 大,故至今仍保留这个名字。 集成运算放大器则是 利用集成工艺,将运算放大器的所有元件集成制作在 同一块硅片上,然后再封装在管壳内。集成运算放大 器简称为集成运放。随着电子技术的飞速发展,集成 运放的各项性能不断提高,目前,它的应用领域已大 大超出了数学运算的范畴。使用集成运放,只需另加 少数几个外部元件, 就可以方便地实现很多电路功 能。可以说,集成运放已经成为模拟电子技术领域中 的核心器件之一。
Uo=Aod(Ui1+Ui2) 由于一般集成运放的开环差模增益都很大,因此, 都要接有深度负反馈,使其净输入电压减小,这样才 能使其工作在线性区。
9. 差模输入电阻rid rid是集成运放在开环时, 输入电压变化量与由
它引起的输入电流的变化量之比,即从输入端看进去 的动态电阻。一般为MΩ数量级,以场效应管为输入 级的可达104 MΩ。
10. 开环输出电阻ro ro是集成运放开环时,从输出端向里看进去的等
效电阻。 其值越小,说明运放的带负载能力越强。
4. F007的输出级主要由三部分电路组成: 互补对称电路; UBE扩大电路; 过载保护电路。
基本技术指标
1. 输入失调电压UOS
实际的集成运放难以做到差动输入级完全对称, 当输入电压为零时, 输出电压并不为零。 规定在室温 (25℃)及标准电源电压下,为了使输出电压为零, 需在集成运放两输入端额外附加的补偿电压称为输入 失调电压UOS。UOS越小越好, 一般约为0.5~5mV 。
KCMRR=∞;
失调电压、 失调电流及它们的温漂均为0;
上限频率 fH=∞。 尽管理想运放并不存在, 但由于实际集成运放 的技术指标比较理想,在具体分析时将其理想化一般 是允许的。这种分析计算所带来的误差一般不大, 只是在需要对运算结果进行误差分析时才予以考虑。
1. 线性区
集成运放工作在线性区时, 其输出信号和输入信 号之间有以下关系成立:
R8
8
T 16
T22
T 17
R6
R 7
Rp
T15 T18
T21
T24
+VCC
7
T 14
R9 +V O
R10 6
T20
T23 4 -V EE
1. 输入级
输入级的性能好坏对提高集成运放的整体质量 起着决定性作用。很多性能指标,如输入电阻、输 入电压(包括差模电压、 共模电压)范围、 共模抑 制比等,主要由输入级的性能来决定。
7. 最大共模输入电压UIcmax UIcmax是在线性工作范围内集成运放所能承受的最
大共模输入电压。超过此值,集成运放的共模抑制比、 差模放大倍数等会显著下降。
8. 最大差模输入电压UIdmax UIdmax是运放同相端和反相端之间所能承受的最大
电压值。 输入差模电压超过UIdmax时,可能使输入级的 管子反向击穿。
3. 中间级
中间级是由T16、T17组成的复合管共射放大电路, 其输入电阻大,对输入级的影响小;其集电极负载为 有源负载(由恒流源T13组成),而T13的动态电阻很大, 加之放大管的β很大,因此中间级的放大倍数很高。
此外,在T16、T12的集电极与基极之间还加接了一 只约30 pF的补偿电容, 用以消除自激。
集成运放的总体结构
简单的集成运放
1.原理电路:
2.符号
u- - u-+ +
uo
3.集成运放的特点:
电压增益高 输入电阻大 输出电阻小
通用型集成运放F007
T8
T9 T12
3
+
T1
T3
T2
_2
T4
IREF
R5
39k
T7
T5
1
T6 T10
5
T11
R 1 R2
R3
R4
T13
A B
T19
C
30pF 9
4-2集成运算放大器的线性应用
理想运算放大器的条件及特点
在分析集成运放构成的应用电路时,将集成运放 看成理想运算放大器,可以使分析大大简化。理想运 算放大器应当满足以下各项条件:
开环差模电压放大倍数 Aod=∞;
差模输入电阻 rid=∞;
输出电阻
ro=0;
输入偏置电流 IB1=IB2=0;
共模抑制比
在图中,T1~T7以及R1、R2、R3 组成F007的输 入级。其中, T1~T4 组成共集—共基复合差动放大 器(V1、V2为共集电路,V3、V4为共基电路),构 成整个运放的输入电路。
2.
在集成运放中,为了减少静耗、限制温升,必须 降低各管的静态电流。而集成工艺本身又限制了大阻 值偏置电阻的制作,因此,集成运放多采用恒流源电 路作为偏置电路。这样既可使各级工作电流降低,又 可使各级静态电流稳定。F007中采用的恒流源电路是 “镜像电流源”及“微电流源”电路。
相关文档
最新文档