广东省深圳市外国语学校2020-2021学年第一学期高二数学试卷(一)
2020-2021学年广东省深圳实验学校高中部高二下学期第一阶段考试数学试题 word版
深圳实验学校高中部2020-2021学年度第二学期第一阶段考试高二数学时间:120分钟 满分:150分 命题人:曾玉泉一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.用数字1,2,3组成允许有重复数字的两位数,其个数为( )A .9B .8C .6D .5 2.从3名男生与2名女生中选二人去参加同一个会议,要求至少有一名女生,选派的方法数为( )A .6B .7C .8D .14 3.右图是与杨辉三角有类似性质的三角形数垒,若,a b 是某行的前两个数,当7a =时,b =( )A. 20B. 21C. 22D. 234.有10件产品,其中3件是次品,从中任取两件,若X 表示取得次品的个数,则()2P X < 等于( ) A .115 B .715 C .815 D .14155.如右图所示的几何体由三棱锥P ABC -与三棱柱111ABC A B C -组合而成,现用3种不同颜色对这个几何体的表面涂色(底面111A B C 不涂色),要求相邻的面均不同色,则不同的涂色方案共有( ) A .36种 B .24种 C .12种 D .9种6.回文联是我国对联中的一种.用回文形式写成的对联,既可顺读,也可倒读.不仅意思 不变,而且颇具趣味.相传清代北京城里有一家饭馆叫“天然居”,曾有一副有名的回文联: “客上天然居,居然天上客;人过大佛寺,寺佛大过人.”在数学中也有这样一类顺读与倒 读都是同一个数的自然数,称之为“回文数”.如44,585,2662等;那么用数1,2,3,4,5,6可以组成4位“回文数”的个数为( )A . 30B .36C .360D .1296 7.在561819(1)(1)(1)(1)x x x x -+-++-+-…的展开式中,含3x 的项的系数是( ) A .3871 B .3871- C .4840 D .4840- 8.224x y +≤表示的平面区域内,以横坐标与纵坐标均为整数的点为顶点,可以构成的三角形个数为( )A .256B . 258C .260D .264二、选择题:本题共4小题,每小题5分,共20分。
2020-2021学年广东省深圳实验学校高中部高二下学期第一阶段考试英语试题
广东省深圳实验学校高中部2020-2021学年高二下学期第一阶段考试英语试题第一部分单项选择(共10小题,每小题1分,满分10分)从每题所给的四个选项中,选出最佳选项,并在答题卡上将该项涂黑。
1.Tom doesn’t want to move to London because he thinks if he __________ there, he wouldn’t be able to see his parents very often.A. livesB. were to liveC. had livedD. would live2.The proposal father made this morning did sound feasible __________ every member of the family __________ one-third of his or her income in case of emergency.A. that; set asideB. which; set asideC. which; sets asideD. that; sets aside3.The nationwide smog serves as a constant reminder, indicating that it’s high time we _________ on ourselves.A. will reflectB. has reflectC. reflectD. reflected4.If only I __________ her advice that I book an air ticket in advance. I __________ a slight change in schedule could have such a strong influence on my travel plan.A. followed; don’t expectB. have followed; didn’t expectC. followed; hadn’t expectedD. had followed; didn’t expect5.Had I known about this computer program, a huge amount of time and energy __________ .A. would have been savedB. had been savedC. will be savedD. was saved6.George is going to talk about the geography of his country, but I’d rather he __________ more on its culture.A. focusedB. would have focusedC. would focusD. had focused7.__________ several times, but unfortunately, the boy still couldn’t smooth away the problem on his own.A. Having explained itB. The teacher having explained itC. The teacher had explained itD. Although the teacher had explained it8.Facial recognition technology is working well at tourist attractions around China,__________ the time people spend standing in lines at entries or security check.A.to reduceB. reducedC. having reducedD. reducing9.The bell __________ the end of the class ring, __________ our heated discussion.A. indicated; interruptingB. indicating; interruptingC. indicating; interruptedD. indicated; interrupted10.It was from only a few supplies that she had bought in the village __________ the hostess cooked such a nice dinner.A. whereB. whenC. thatD. which第二部分阅读理解(共两节, 满分50 分)第一节(共15小题,每小题2.5分, 满分37.5分)阅读下列短文,从每题所给的A、B、C和D四个选项中,选出最佳选项。
广东省深圳市福田区外国语学校2023-2024学年九年级上学期期中数学试题(原卷版+解析卷)
2023-2024 学年第一学期期中调研九年级数学试卷答题时间90分钟,满分100分.一.选择题(共 10 小题,每小题3分,共30分)1. 一个正方体截去四分之一,得到如图所示的几何体,其左视图是( )A. B. C. D. 2. 在一个不透明的盒子里装有若干个白球和15个红球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过多次重复试验,发现摸到白球的频率稳定在 0.4 左右,则袋中白球约有( )A. 10 个B. 15 个C. 20 个D. 25 个3. 如图,矩形ABCD 中,对角线 AC BD 、交于点 O .若608AOB BD ∠=°=,,则 AB 的长为( )A. 3B. 4C. D. 54. 一元二次方程2430x x −−=根的情况是( ). A. 没有实数根B. 只有一个实数根C. 有两个不相等的实数根D. 有两个相等的实数根 5. 关于反比例函数6y x=,下列说法中不正确的是( ) A. 点()2,3−−在它图象上 B. 图象关于原点中心对称C. 当0x >时,y 随x 的增大而增大D. 它的图象位于第一,三象限 6. 如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影的的子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m ,与树相距15m ,则树的高度是( )A 7m B. 6m C. 5m D. 4m7. 在“双减政策”的推动下,我区某中学学生每天书面作业时长明显减少,2022年上学期每天书面作业平均时长为100min ,经过2022年下学期和2023年上学期两次调整后,2023年上学期平均每天书面作业时长为70min .设该校这两学期平均每天作业时长每期的下降率为x ,则可列方程为( )A. ()2701100x +=B. ()2701100x +=C. ()2100170x −=D. ()2100170x −=8. 在同一平面直角坐标系中,函数()0y kx k k =−≠与y =()0k k x≠的大致图象可能是( ) A. B. C.D.9. 下列说法正确的是( )A. 两条对角线互相垂直的四边形是菱形B. 顺次连接菱形各边中点形成的四边形一定是矩形C. 已知点 C 为线段AB 的黄金分割点,若2AB =,则1AC =−D. 中午用来乘凉的树影是中心投影10. 如图,在 ABC 中,9024ACB AC BC ∠=°==,,,ACB 绕顶点C 逆时针旋转得到DEC ,使点 D 落在 AB 边上,连接 EB ,则 BE 的长为( ).A. B. C. D. 72二.填空题(共5小题,每小题3分,共15分)11. 已知方程²30x mx ++=的一个根是1,则m 的值是_______12. 如图,ABC 中,点D 、E 分别在线段AB 、AC 上,DE BC ∥,若4=AD ,6BD =,2AE =,则CE 的长是 _____.13. 如图,甲楼AB 高 16 米,乙楼CD 坐落在甲楼的正北面,已知当地冬至中午12时,物高与影长的比是2:3, 已知两楼相距BD 为 12 米,那么甲楼的影子落在乙楼上的高 DE =_______米.14. 如图,在 Rt AOB 中,904AOB OB AB ∠=°=,,∥x 轴,双曲线k y x=经过点B ,将AOB 绕点 B 逆时针旋转,使点 O 的对应点 D 落在 x 轴正半轴上,AB 的对应线段CB 恰好经过点 O .则 k 的值是_____.15. 如图,四边形ABCD 是正方形,点F 是边AB 上一点,连接DF ,点E 是边BC 延长线上的一点,且 DF DE ⊥,连接AC 交EF 于点Q ,若53AQ QC =,1AF =,则EF 的长为_____.三.解答题(共7小题,共55分)16. 解方程:(1)24120x x −−=;(2)22210x x −−=.17. 小红的爸爸积极参加社区志愿服务工作.根据社区安排,志愿者被随机分到A 组(清除小广告)、B 组(便民代购)和C 组(环境消杀). (1)小红爸爸被分到B 组的概率是____________;(2)某中学王老师也参加了该社区的志愿者队伍,请用画树状图或列表的方法求他和小红的爸爸被分到同一组的概率.18. 已知:ABC 三个顶点的坐标分别为()()()225415A B C −−−,-,,-,,-.的(1)画出ABC 关于 x 轴对称的111A B C △,并写出点1C 的坐标______;(2)以点 O 为位似中心,将ABC 放大为原来的 2 倍,得到222A B C △,请在网格中画出222A B C △,并写出点2B 的坐标为______,222ABCA B C S S = ∶______. 19. “荔枝”是深圳地方名优特产,深受消费者喜爱,某超市购进一批“荔枝”,进价为每千克24元,调查发现,当销售单价为每千克40元时,平均每天能售出20千克,而当销售单价每降价1元时,平均每天能多售出2千克,设每千克降价x 元.(1)当一斤荔枝降价6元时,每天销量可达______千克,每天共盈利______元;(2)若超市要使这种“荔枝”的销售利润每天达到330元,且让顾客得到实惠,则每千克应降价多少元?20. 如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,过点A 作AE ⊥BC 于点E ,延长BC 到点F ,使CF =BE ,连接DF .(1)求证:四边形AEFD 是矩形;(2)连接OE ,若AD =5,EC =2,求OE 的长度.21. (1)如图1,在平面直角坐标系中,一次函数y ax b =+的图象与反比例函数k y x=的图象交于点()1,2A 和()2,B m −.①直接写出=a ____,b =____,k =____; ②请直接写出不等式k ax b x+>的解集____;连接OA 、OB ,则AOB S =△_______. (2)如图 2,直线 :2l y x m =−+与 x ,y 轴分别交于 A 、B 两点,点 M 是双曲()40y x x=>上一点,分别连接MA 、MB .在双曲线上是否存在点 M ,使得以BM 为斜边的MAB △与AOB 相似?若存在,请求出点 M 的坐标; 若不存在,请说明理由.22. 综合与实践:在综合与实践课上,老师让同学们以“折叠”为主题开展数学活动.【问题发现】(1)如图 1,在正方形 ABCD 中,6AB BC ==,F 为BC 边中点,E 为 AB 边上一点,连接 DE DF 、,分别将 和 CDF 沿 DE DF 、翻折,点 A 、C 的对应点分别为点 G 、H ,点 G 与点 H 重合,则EDF ∠=____°,AE =_____;【类比探究】(2)如图2,在矩形ABCD 中,54AB BC ==,,F 为BC 边的中点,E 为AB 边上一点,连接DE DF 、,分别将ADE 和CDF 沿 DE DF 、翻折,点A 、C 的对应点分别为点G 、H ,且D 、H 、G 三点共线,求AE 的长.【拓展延伸】(3)如图3,在菱形ABCD 中,660AB D ∠==°,,F 为CD 边上的三等分点,E 为BC 边上一点,连接AE AF 、,分别将ABE 和ADF 沿 AE AF 、翻折,点D 、B 的对应点分别为点G 、H ,点G 与点H 重合,直线GE 交直线AB 于点P ,请直接写出PB 的长.的2023-2024 学年第一学期期中调研九年级数学试卷答题时间90分钟,满分100分.一.选择题(共 10 小题,每小题3分,共30分)1. 一个正方体截去四分之一,得到如图所示的几何体,其左视图是( )A. B. C. D.【答案】D【解析】【分析】运用三种视图的空间方位进行解题.【详解】解:A 、选项不符合三种视图,不符合题意;B 、选项是主视图,不符合题意;C 、选项是右视图,不符合题意;D 、选项是左视图,符合题意;故选:D .【点睛】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.2. 在一个不透明的盒子里装有若干个白球和15个红球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过多次重复试验,发现摸到白球的频率稳定在 0.4 左右,则袋中白球约有( )A. 10 个B. 15 个C. 20 个D. 25 个【答案】A【解析】【分析】此题考查了用频率估计概率,以及概率公式,利用如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率是解题的关键.【详解】解:设白球有x 个,则 0.415x x =+,解得:10x =,经检验:10x =是原方程的解,∴10x =,故选A .3. 如图,矩形ABCD 中,对角线 AC BD 、交于点 O .若608AOB BD ∠=°=,,则 AB 的长为( )A. 3B. 4C.D. 5【答案】B【解析】 【分析】题考查矩形的性质和等边三角形的判定和性质.通过矩形的性质推出ABO 为等边三角形是解题的关键.【详解】∵ABCD 是矩形,∴1842OA OB OC OD BD =====, 又∵60AOB ∠=°,∴ABO 是等边三角形,∴4AB OA ==,故选B .4. 一元二次方程2430x x −−=的根的情况是( ). A. 没有实数根B. 只有一个实数根C. 有两个不相等的实数根D. 有两个相等的实数根 【答案】C【解析】【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【详解】解:2430x x −−=,其中a =1,b =-4,c =-3,()224441(3)280=−=−−××−=> b ac ,∴一元二次方程有两个不相等的实数根故选:C .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx +c =0(a ≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根. 5. 关于反比例函数6y x=,下列说法中不正确的是( ) A. 点()2,3−−在它的图象上 B. 图象关于原点中心对称C. 当0x >时,y 随x 的增大而增大D. 它的图象位于第一,三象限 【答案】C【解析】【分析】本题主要考查反比例函数的图象与性质,根据反比例函数的图象与性质逐一判断即可.熟练掌握反比例函数的图象与性质是解题的关键.【详解】解:A 、当2x =−时,则632y ==--,所以点()2,3−−在它的图象上,故不符合题意; B 、由反比例函数6y x=可知图象关于原点中心对称,故不符合题意; C 、当0x >时,y 随x 的增大而减小,故符合题意;D 、它的图象位于第一、三象限,故不符合题意;故选:C .6. 如图,为了测量某棵树的高度,小明用长为2m 的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m ,与树相距15m ,则树的高度是( )A. 7mB. 6mC. 5mD. 4m【答案】A【解析】 【分析】先说明△ADE ∽△ABC ,然后利用相似三角形的对应边成比例列式解答即可.【详解】解:如图:AD =6m ,AB =21m ,DE =2m ;∵DE //BC ,∴△ADE ∽△ABC ,∴DE AD BC AB =,即 2621BC =, 解得:BC =7m ,故选:A .【点睛】本题主要考查了相似三角形的判定与性质,发现并判定△ADE ∽△ABC 是解答本题的关键. 7. 在“双减政策”的推动下,我区某中学学生每天书面作业时长明显减少,2022年上学期每天书面作业平均时长为100min ,经过2022年下学期和2023年上学期两次调整后,2023年上学期平均每天书面作业时长为70min .设该校这两学期平均每天作业时长每期的下降率为x ,则可列方程为( )A. ()2701100x +=B. ()2701100x +=C. ()2100170x −=D. ()2100170x −=【答案】C【解析】 【分析】利用2023年上学期平均每天书面作业时长2022=年上学期每天书面作业平均时长(1×−该校这两学期平均每天作业时长每期的下降率2),即可列出关于x 的一元二次方程,此题得解.【详解】解:设根据题意得:()2100170x −=.故选:C .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键. 8. 在同一平面直角坐标系中,函数()0y kx k k =−≠与y =()0k k x≠的大致图象可能是( )A. B. C.D.【答案】D【解析】【分析】本题主要考查了反比例函数的图象和一次函数的图象,熟悉两函数中k 的符号对函数图象的影响是解题的关键.【详解】解:①当0k >时,y kx k =−过一、三、四象限;y =k x 位于一、三象限; ②当0k <时,y kx k =−过一、二、四象象限;y =k x 位于二、四象限. 观察图形可知,只有D 选项符合题意.故选D .9. 下列说法正确的是( )A. 两条对角线互相垂直的四边形是菱形B. 顺次连接菱形各边中点形成的四边形一定是矩形C. 已知点 C 为线段AB 2AB =,则 1AC =−D. 中午用来乘凉的树影是中心投影【答案】B【解析】 【分析】本题考查的是菱形的判定,中点四边形的判定,黄金分割的含义,平行投影的含义;本题根据菱形的判定,中点四边形的判定,黄金分割的含义结合线段的黄金分割点有2个,以及太阳光线是平行光线逐一分析判定即可,熟记基础概念是解本题的关键.【详解】解:两条对角线互相垂直的平行四边形是菱形,故A 不符合题意;顺次连接菱形各边中点形成的四边形一定是矩形,表述正确,故B 符合题意;如图,C 是AB 的黄金分割点,则AC AB ′=,则1AC ′=,或BC AB =,则1BC =−,∴)213AC =−−=C 不符合题意; 中午用来乘凉的树影是平行投影,故D 不符合题意;故选B10. 如图,在 ABC 中,9024ACB AC BC ∠=°==,,,ACB 绕顶点C 逆时针旋转得到DEC ,使点 D 落在 AB 边上,连接 EB ,则 BE 的长为( )A. B. C. D. 72【答案】A【解析】【详解】现根据旋转证得ECB ACD ,即2BE AD =,然后过点C 作CF AB ⊥于点F ,则2AD AF =,根据三角形的面积求出CF 长,然后利用勾股定理求出AF 即可解题.∴AB ,由旋转可知:42EC BC CD AC ====,,90ECD∠=°, ∵90ECB BCD ACD BCD ∠+∠=∠+∠=°,∴ECB ACD ∠=∠, 又∵2ECBC CD AC==, ∴ECB ACD ∽, ∴2BE BC AD AC==,即2BE AD =, 过点C 作CF AB ⊥于点F ,则2AD AF =, ∵1122ABC S AC BC AB CF =×=× ,∴AC BC CF AB ×==∴AF ,∴2AD AF ==,即2BE AD == 故选:A .【点睛】本题考查旋转的性质,相似三角形的判定和性质,勾股定理,等腰三角形的性质,作辅助线构造“三线合一”是解题的关键.二.填空题(共5小题,每小题3分,共15分)11. 已知方程²30x mx ++=的一个根是1,则m 的值是_______【答案】-4【解析】【分析】将x=1代入方程中即可求出m 的值.【详解】解:由题意可知,将x=1代入方程中得到:1²+m+3=0,解得m=-4,故答案为:-4.【点睛】本题考查了一元二次方程方程解得概念,告诉方程的解就是将解代入方程中,等号两边相等即可.12. 如图,ABC 中,点D 、E 分别在线段AB 、AC 上,DE BC ∥,若4=AD ,6BD =,2AE =,则CE 的长是 _____.【答案】3【解析】【分析】根据DE BC ∥,易证AD AE DB EC =,再代入数据即可求解. 【详解】解:∵DE BC ∥, ∴AD AE DB EC=, ∵4=AD ,6BD =,2AE =, ∴426CE=, 解得:3CE =,故答案为:3.【点睛】本题主要考查了平行线分线段成比例定理,熟练地掌握平行线分线段成比例,是解题的关键. 13. 如图,甲楼AB 高 16 米,乙楼CD 坐落在甲楼的正北面,已知当地冬至中午12时,物高与影长的比是2:3, 已知两楼相距BD 为 12 米,那么甲楼的影子落在乙楼上的高 DE =_______米.【答案】8【解析】【分析】本题考查了相似三角形的应用和平行投影的知识;过E 作EF AB ⊥,利用平行投影的知识物高与影长的比是2:3,求出AF 的长度,进而求得DE BF AB AF ==−即可得出答案.解题的关键是利用平行投影的知识,求出AF 的长度.【详解】如图,过点E 作EF AB ⊥,垂足为点F ,在Rt ΔAFE 中,90AFE ∠=°,12EF BD ==∵物高与影长的比是2:3 ∴23AF EF =, ∴8AF =∵16AB =,∴1688DE BF AB AF ==−=−=故答案为:8米14. 如图,在 Rt AOB 中,904AOB OB AB ∠=°=,,∥x 轴,双曲线k y x=经过点B ,将AOB 绕点 B 逆时针旋转,使点 O 的对应点 D 落在 x 轴正半轴上,AB 的对应线段CB 恰好经过点 O .则 k 的值是_____.【答案】【解析】【分析】先求得BOD 是等边三角形,即可求得B 的坐标,然后根据待定系数法即可求得k 的值.【详解】∵ AB x 轴,ABO BOD ∴∠=∠,ABO CBD ∠=∠ ,BOD OBD ∴∠=∠,OB BD = ,BOD BDO ∴∠=∠,BOD ∴ 是等边三角形,如图,过点B 作BE x ⊥轴于点E ,60BOD ∴∠=°,∴30OBE ∠=°, ∴114222OE OB ==×=,∴BE(2B ∴,∵双曲线 k y x=经过点B ,2k ∴=×=故答案为:【点睛】本题考查了反比例函数图象上点的坐标特征,旋转的性质,等边三角形的判定和性质,待定系数法求反比例函数的解析式等,求得 BOD 是等边三角形是解题的关键.15. 如图,四边形ABCD F 是边AB 上的一点,连接DF ,点E 是边BC 延长线上的一点,且 DF DE ⊥,连接AC 交EF 于点Q ,若53AQ QC =,1AF =,则EF 的长为_____.【解析】【分析】过E 点作EG AB 交AC 的延长线于点G ,设EF 于CD 交于点P ,则有ADF CDE ≌,即可得到1AF CE EG ===,再证得QCP QGE QAF ∽∽,可以得到14EC GC BC CA ==,求出BF 和BE 长,利用勾股定理解题即可.【详解】解:过E 点作EG AB 交AC 的延长线于点G ,设EF 于CD 交于点P ,∵ABCD 是正方形,DF DE ⊥,∴90B DAF DCB DCE CEG ADC EDF ∠=∠=∠=∠=∠=∠=∠=°,AD DC =,45ACB ECG ∠=∠=°,AB CD , ∴ADF CDE ∠=∠,∴ADF CDE ≌,∴1AF CE ==,又∵45ECG ∠=°,∴1EC EG ==,∵EG AB ,AB CD ,∴EG AB CD ,∴G CAB ∠=∠,B BEG ∠=∠, ∴QCP QGE QAF ∽∽, ∴35QCPC PC PQ QG EG AF QF ====, ∴2184GC CA ==, 又∵EG AB CD ,∴14ECGC BC CA ==, ∴4BC AB ==,∴35BF BE ==,,∴EF ,【点睛】本题考查相似三角形的判定和性质,勾股定理,全等三角形的判定和性质,正方形的性质,作辅助线构造相似三角形是解题的关键.三.解答题(共7小题,共55分)16. 解方程:(1)24120x x −−=;(2)22210x x −−=.【答案】(1)16x =,22x =−(2)112x =+,212x =−【解析】【分析】本题主要考查了解一元二次方程的配方法和因式分解法,关键是熟练掌握各自的解题方法. (1)利用因式分解法求解,“因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,也就是把原方程进行了降次转化为解一元一次方程”;(2)利用配方法解方程,解题时要注意解题步骤的准确使用,把左边配成完全平方式,右边化为常数,然后开平方求解即可.【小问1详解】解:24120x x −−=, ()()260x x +−=, ∴20x +=或60x −=,∴12x =−,26x =;【小问2详解】解: 22210x x −−=,∴2221x x −=, 则212x x −=,∴222111222x x −+=+ , 221324x x −+= , 即21324x −= ,则12x −,∴112x =+,212x =. 17. 小红爸爸积极参加社区志愿服务工作.根据社区安排,志愿者被随机分到A 组(清除小广告)、B 组(便民代购)和C 组(环境消杀). (1)小红爸爸被分到B 组概率是____________;(2)某中学王老师也参加了该社区的志愿者队伍,请用画树状图或列表的方法求他和小红的爸爸被分到同一组的概率.【答案】(1)13 (2)13【解析】【分析】(1)小红爸爸随机分到一组有3种情况,其中1种是分到B 组,根据概率公式可得答案;(2)通过画树状图,得出一共有多少种情况,再从中选出满足条件有多少种情况,最后根据概率公式可得答案.【小问1详解】解:∵小红爸爸随机分到一组有3种情况,其中1种是分到B 组,∴小红爸爸被分到B 组的概率为13; 故答案为:13【小问2详解】解:小红爸爸和王老师分组可用树状图表示如下:的的由树状图可知,共有9种等可能结果,其中小红爸爸和王老师被分到同一组的结果有三种,分别是()()(),,,,,A A B B C C ,∴()3193P ==小红爸爸和王老师被分到同一组. 【点睛】本题考查了利用树状图法求概率、概率公式,解本题的关键在通过画树状图法,得出一共的情况数和满足条件的情况数.18. 已知:ABC 三个顶点的坐标分别为()()()225415A B C −−−,-,,-,,-.(1)画出ABC 关于 x 轴对称的111A B C △,并写出点1C 的坐标______;(2)以点 O 为位似中心,将ABC 放大为原来的 2 倍,得到222A B C △,请在网格中画出222A B C △,并写出点2B 的坐标为______,222ABC A B C S S = ∶______. 【答案】(1)见解析,()115C −, (2)加解析,()2108B ,,14∶【解析】【分析】此题考查了作轴对称图形及位似图形,(1)分别确定对称点111A B C ,,,顺次连线即可;(2)分别连接AO BO CO ,,并延长二倍,确定点222A C B ,,,顺次连线即可得到222A B C △,利用位似图形的性质即可解答. 【小问1详解】 解:如图:111A B C △即为所求,()115C −,;故答案为:()115C −,; 【小问2详解】 解:如图:222A B C △即为所求,由图可知:()2108B ,, ABC 与222A B C △位似,位似比12∶,2221ABC A B C S S ∴= ∶∶4. 故答案为:()2108B ,,14∶.19. “荔枝”是深圳地方名优特产,深受消费者喜爱,某超市购进一批“荔枝”,进价为每千克24元,调查发现,当销售单价为每千克40元时,平均每天能售出20千克,而当销售单价每降价1元时,平均每天能多售出2千克,设每千克降价x 元.(1)当一斤荔枝降价6元时,每天销量可达______千克,每天共盈利______元;(2)若超市要使这种“荔枝”的销售利润每天达到330元,且让顾客得到实惠,则每千克应降价多少元?【答案】19. 32;320 20. 5元 【解析】【分析】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. (1)由题意:当销售单价为每千克40元时,平均每天能售出20千克,而当销售单价每降价1元时,平均每天能多售出2千克.即可得出结论;(2)由题意:超市要使这种“荔枝”的销售利润每天达到330元,列出一元二次方程,解方程,即可解决问题.是【小问1详解】解: 由题意得:销售数量为202632+×=千克;利润为()()402462620320−−××+=元; 故答案为:32;320; 【小问2详解】由题意得:()()4024202330x x −−+=, 解得: 1,5,x x ==₁₁ ∵让顾客得到实惠,5x ∴=, 答:销售利润每天达到330元,且让顾客得到实惠,每千克应降价5元.20. 如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,过点A 作AE ⊥BC 于点E ,延长BC 到点F ,使CF =BE ,连接DF .(1)求证:四边形AEFD (2)连接OE ,若AD =5,EC =2,求OE 的长度. 【答案】(1)见解析;(2【解析】【分析】(1)根据菱形的性质得到AD ∥BC 且AD =BC ,等量代换得到BC =EF ,推出四边形AEFD 是平行四边形,根据矩形的判定定理即可得到结论;(2)由菱形的性质得AD =AB =BC =10,由勾股定理求出AE =4,AC,再由直角三角形斜边上的中线性质即可得出答案.【详解】证明:(1)∵四边形ABCD 是菱形, ∴AD ∥BC 且AD =BC , ∵BE =CF , ∴BC =EF , ∴AD =EF ,是∵AD ∥EF ,∴四边形AEFD 是平行四边形, ∵AE ⊥BC , ∴∠AEF =90°,∴四边形AEFD 是矩形;(2)解:∵四边形ABCD 是菱形,AD =5, ∴AD =AB =BC =5, ∵EC =2, ∴BE =5-2=3, 在Rt △ABE 中,4AE ===,在Rt △AEC 中,AC ,∵四边形ABCD 是菱形, ∴OA =OC ,∴OE =12AC【点睛】本题考查了矩形的判定和性质,菱形的性质,勾股定理,直角三角形斜边上的中线性质等知识;根据菱形的性质得到AD ∥BC 且AD =BC ,等量代换得到BC =EF 是解题的关键.21. (1)如图1,在平面直角坐标系中,一次函数y ax b =+的图象与反比例函数ky x=的图象交于点()1,2A 和()2,B m −.①直接写出=a ____,b =____,k =____; ②请直接写出不等式kax b x+>的解集____;连接OA 、OB ,则AOB S =△_______.(2)如图 2,直线 :2l y x m =−+与 x ,y 轴分别交于 A 、B 两点,点 M 是双曲()40y x x=>上一点,分别连接MA 、MB .在双曲线上是否存在点 M ,使得以BM 为斜边的MAB △与AOB 相似?若存在,请求出点 M 的坐标; 若不存在,请说明理由.【答案】(1)①1,1,2;②20x −<<或1x >;32;(2)()4,1M 【解析】【分析】(1)①将()1,2A 代入k y x=求出k 的值,得到2y x =,然后将()2,B m −代入2y x =求出()2,1B −−,然后利用待定系数法将()1,2A ,()2,1B −−代入y ax b =+求解即可; ②根据图象结合A ,B 两点的坐标即可求出不等式kax b x+>的解集;设直线AB 与y 轴交于点C ,首先求出点C 的坐标,得到1OC =,然后利用AOBAOC COB S S S =+ 代数求解即可; (2)首先根据题意求出OB m =,2m=,过点M 作ME x ⊥轴于点M ,过点A 作AF BM ⊥交BM 于点F ,根据相似三角形的性质得到2mAO AF ==,OE OA AE m =+=,然后证明出BOA AEM ∽ ,进而得到,4m M m,然后代入()40y x x =>求解即可.【详解】(1)①根据题意得, 将()1,2A 代入k y x=得,21k=,解得2k =, ∴2y x=, 将()2,B m −代入2y x =得,212m ==−−, ∴()2,1B −−,将()1,2A ,()2,1B −−代入y ax b =+,得221a b a b +=−+=−,解得11a b = = ;故答案为:1,1,2; ②∵()1,2A ,()2,1B −−, ∴根据图象可得,不等式kax b x+>解集20x −<<或1x >; 如图所示,设直线AB 与y 轴交于点C ,∵1a =,1b =, ∴1y x =+,∴当0x =时,11y x =+=, ∴()0,1C , ∴1OC =,∴1131121222AOB AOC COB S S S =+=××+××= ; 故答案为:20x −<<或1x >;32;(2)∵直线 :2l y x m =−+与 x ,y 轴分别交于 A 、B 两点, ∴当0x =时,2y x m m =−+=, ∴OB m =,当0y =时,02x m =−+,解得2mx =, ∴2m AO =, 如图所示,过点M 作ME x ⊥轴于点M ,过点A 作AF BM ⊥交BM 于点F ,的∵BOA BAM ∽ , ∴ABO ABF ∠=∠, ∵AF BM ⊥,AO BO ⊥,∴2mAOAF ==, ∵BOA BAM ∽ ,∴BAO BMA ∠=∠,90BAM AOB ∠=∠=°, ∴90BAO MAE ∠+∠=°, ∵ME x ⊥轴,∴90AME MAE ∠+=°, ∴BAO AME ∠=∠, ∴BMA AME ∠=∠, ∵AF BM ⊥,ME x ⊥轴,∴2mAFAE ==, ∴OE OA AE m =+=,∵BAO AME ∠=∠,90BOA AEM ∠=∠=°, ∴BOA AEM ∽ ,∴OB AE OA ME=,即2m AE m ME =, ∴124m ME AE ==,∴,4m M m, ∵点 M 是双曲()40y x x=>上一点, ∴44m m=,即216m =, 解得4m =或4−(舍去),∴()4,1M .【点睛】本题是一次函数和反比例函数的交点问题,考查了待定系数法求函数的解析式,三角形的面积以及函数与不等式的关系,相似三角形的性质和判定等知识,数形结合是解题的关键.相似三角形的性质:相似三角形对应边成比例,对应角相等.相似三角形的判定方法:①两组角对应相等的两个三角形相似;②三边对应成比例的两个三角形相似;③两边对应成比例且夹角相等的两个三角形相似. 22. 综合与实践:在综合与实践课上,老师让同学们以“折叠”为主题开展数学活动.【问题发现】(1)如图 1,在正方形 ABCD 中,6AB BC ==,F 为BC 边的中点,E 为 AB 边上一点,连接 DE DF 、,分别将ADE 和 CDF 沿 DE DF 、翻折,点 A 、C 的对应点分别为点 G 、H ,点 G 与点 H 重合,则EDF ∠=____°,AE =_____; 【类比探究】(2)如图2,在矩形ABCD 中,54AB BC ==,,F 为BC 边的中点,E 为AB 边上一点,连接DE DF 、,分别将ADE 和CDF 沿 DE DF 、翻折,点A 、C 的对应点分别为点G 、H ,且D 、H 、G三点共线,求AE 的长. 【拓展延伸】(3)如图3,在菱形ABCD 中,660AB D ∠==°,,F 为CD 边上的三等分点,E 为BC 边上一点,连接AE AF 、,分别将ABE 和ADF 沿 AE AF 、翻折,点D 、B 的对应点分别为点G 、H ,点G 与点H 重合,直线GE 交直线AB P ,请直接写出PB 的长.【答案】(1)45°,2 (2)45°,127 (3)125或34【解析】【分析】(1)由翻折可得,3AEEG CF FG ===,在Rt EBF 中利用勾股定理解题即可; (2)延长DG 交AB 于点M ,连接FG ,由翻折可得FGM FBM ≌,即可得到GM BM =,在Rt ADM 中运用勾股定理解题;(3)分2DF =和4DF =两种情况解题解题,如图,当点F 为DC 的三等分点时,4DF =,则2FC =,设直线GE 交直线CD 于点Q ,连接AC ,过点E 作EN DC ⊥交DC 的延长线于点N ,则有FQG EQC ≌,即FQ QE =,再在Rt ENQ 中利用勾股定理求出CQ ,最后根据相似三角形的对应边成比例解题即可.【详解】(1)∵四边形ABCD 是正方形,6,90AD AB BCD ∴==∠=°,∵F 为AD 的中点,3CF BF ∴==,∵将ADE 和CDF 沿CE CF 、翻折, 点A C 、的对应点分别为点G H 、,,3AE EG CF FG ∴===,设 ,AE x =则 6,BE x =−3EF x ∴=+,²²²EF BE BF =+ ,()()3?6?3?x x ∴+=−+,解得2x =2AE ∴=, ∵将ADE 和CDF 沿CE CF 、, 点A C 、的对应点分别为点G H 、,,ADE GDE CDF GDF ∴∠=∠∠=∠,90BCD ∠=° ,11904522EDF ADC ∴∠=∠=×°=°, 故答案为: 45°,2;(2)延长DG 交AB 于点M ,连接FG , ∵F 为BC 边的中点, ∴2CF BF ==由翻折可得:2FG CF BF ===,90DGF C B A DHE ∠=∠=∠=∠=∠=°,5DG DC AB ===,AE EH =,又∵FM FM =, ∴FGM FBM ≌, ∴GM BM =,设MB x =,则5DM x =+,5AM x =−,在Rt ADM 中,222AD AM DM +=,即()()222455x x +−=+, 解得:45x =, ∴295DM =,215AM =, ∵1111122222ADM S AM AD AE AD DM EH AE AD DM AE =×=×+×=×+× ∴21412529745AM AD AE AD DM ××===++;(3)①如图,当点F 为DC 2DF =,则4FC =,设直线GE 交CD 于点Q , ∵ABCD 是菱形,∴120DAB DCB ∠=∠=°,6AD DC BC ===,60D ABC ∠=∠=°,由翻折可得:DAF GAF ∠=∠,BAE GAE ∠=∠,D AGF ∠=∠=60ABC AGE ∠=∠=°,FG FD =,∴120FGQ QCE ∠=°=∠,60EAF ∠=°连接AC ,则ACD 是等边三角形,60ACE D EAF CAD ∠=∠=∠=∠=°,∴DAF CAE ∠=∠,AD AC =,∴ADF ACE ≌,∴2EC DF FG ===,又∵FGQ QCE FQG EQC ∠=∠∠=∠,, ∴FQG EQC ≌,∴FQ QE =,过点E 作EN DC ⊥交DC 的延长线于点N ,则60ECN ∠=°,∴30CEN ∠=°, ∴112CN CE ==,∴EN =设CQ x =,则4FQ QE x ==−,在Rt ENQ 中,222EN NQ QE +=,即()()22214x x ++=−, 解得:65x =, 又∵ABCD 是菱形,∴AB DC ,∴DCB CBP ∠=∠,CQE P ∠=∠, ∴ECQ EBP ∽, ∴2BP EB CQ EC==, ∴6122255BP CQ ==×=; ②如图,当点F 为DC 的三等分点时,4DF =,则2FC =,设直线GE 交直线CD 于点Q ,连接AC ,过点E 作EN DC ⊥交DC 的延长线于点N ,由①可得,ADF ACE ≌,∴4EC DF FG ===,又∵FGQ QCE FQG EQC ∠=∠∠=∠,,∴FQG EQC ≌,∴FQ QE =,则60ECN ∠=°,∴30CEN ∠=°, ∴122CN CE ==,∴EN ,设CQ x =,则()422FQ QE x x ==−−=+,在Rt ENQ 中,222EN NQ QE +=,即(()()22222x x +−=+, 解得:32x =, 又∵ABCD 是菱形,∴AB DC ,∴DCB CBP ∠=∠,CQE P ∠=∠, ∴ECQ EBP ∽, ∴12BP EB CQ EC ==, ∴11332224BP CQ ==×=; 综上, BP 长为125或34. 【点睛】本题考查相似三角形的判定和性质,勾股定理,翻折的性质,全等三角形的判定和性质,矩形和菱形的性质,能作出辅助线构造直角三角形应用勾股定理计算是解题的关键.。
2024年深圳市宝安第一外国语学校中考数学试卷试题(含答案详解)
初三年级5月数学学科学情反馈一、选择题(共10小题,每小题3分,共30分)1.有理数这个概念最早源自《几何原本》,以下各数中,有理数为()A .19B .C .πD .2.024*********…2.下列英文字母中,为中心对称图形的是()A .B .C .D .3.2024年春节前夕,全国多地、多趟列车受冰雪天气影响,“春运”第70年见证了“高铁速度,绿皮温度”,据统计,全国铁路春运期间发送旅客4.8亿人次,数据4.8亿用科学记数法表示正确的是()A .104.810⨯B .94.810⨯C .84810⨯D .84.810´4.下列运算正确的是()A .224a a a +=B a=C .224a a a ⋅=D .842a a a ÷=5.如图是某家具店出售的黄色木椅的侧面图,其中130,,60ABD CD EF E ∠=︒∠=︒∥,则BDC ∠=()A .70︒B .60︒C .50︒D .40︒6.数学的应用无处不在,如图,某机场的告示牌中,提示随身携带行李的规则,其中提到每件行李重量限制“8≤千克”,则将表示行李限额的不等式表示在数轴上为()A .B .C .D .7.为纪念北京奥运会成功举办,国务院批准从2009年起,将每年8月8日设置为“全民健身日”.因为为了认真发展体育运动,增强人民体质,贯彻执行《中华人民共和国体育法》,网上各种健身项目层出不穷.如图是侧抬腿运动,可以保证全身得到锻炼!已知小敏大腿根部距脚尖90cm ,即90cm OA =,当其完成图中一次动作时,脚尖划过的轨迹长度为()cm .A .45π2B .45π4C .45πD .4528.以下说法正确的是()A有意义,则3x ≠B .将抛物线23y x =-向左平移1个单位,得到抛物线()231y x =--的图象C .对于反比例函数2y x=,y 随x 的增大而减小D .到三角形三边距离相等的点是三边角平分线的交点9.山西刀削面作为国家级非遗美食,吸引了大批游客品尝!为了更好地传承这种非遗美食,同时解放人的双手,某公司推出了一款刀削面机器人,宣传标语如下:机器化时代,帮您解决一切人工问题!速度更快:每台削面机器人比一个削面师傅每分钟多削160刀!效率更高:每台削面机器人削660刀的时间和一个削面师傅削180刀的时间相同!机器铸造未来,让生活美美的偷个懒!根据该宣传,求每台削面机器人每分钟能削多少刀面.设每台削面机器人每分钟能削x 刀面,根据题意可列方程为()A .660180160x x =+B .660180160x x=+C .660180160x x=-D .660180160x x =-10.如图,动点P 、Q 在平行四边形ABCD 的边和对角线上运动,动点P 的运动轨迹为折线O A D O ---,动点Q 的运动轨迹为折线O C B O ---,两动点同时开始运动,且运动速度均为1cm/s .设动点运动时间为x 秒,两动点间距离为cm y ,x 与y 的函数关系式如图所示.当点P 在平行四边形ABCD 的边上运动时,两动点间的最短距离为m ,此时运动时间为32)秒,则m 的值为().AB C D .32二、填空题(共5小题,每小题3分,共15分)11.因式分解:34x x -=.12.若一元二次方程250x x m -+=有两个不相等的实数根,则满足条件的正整数m 的值为.(只需要填一个)13.化学课上,同学们将元素周期表中的前5位化学元素(氢氦锂铍硼)制成了一副互不重复的元素扑克牌(共5张,每张上记录一种化学元素).小明从中先任意抽取一张记录下来,不放回,然后再从中抽取一张记录,则小明两次抽到的元素中含稀有气体的概率为.14.一束光从空气中以不同的角度摄入水中,会发生反射和折射现象,如图①是光束在空水中的径迹.如图②,现将一束光以一定的入射角α(4tan 3α=)射入水面GK ,此时反射光线与折射光线夹角恰为90︒,直线l 为法线,若水深为3m ,则线段CD =m .15.在四边形ABCD 中,9045BAD BCD ABC ∠=∠=︒∠=︒,,点E 为对角线BD 的中点,连接AE 并延长交线段BC 于点F ,64CF BF ==,,则CD 的长为.三、解答题(共7小题,共55分)16.计算:()11π202422cos302-⎛⎫--+--︒⎪⎝⎭17.先化简,再求值:229816131x x x x x ⎛⎫--+-÷⎪+-⎝⎭,其中2x =.18.春节热映档电影《热辣滚烫》给我们每个人都上了一课:只要心中有梦想,只要自己不放弃不服输,一切都有可能!所以停止内耗,开始行动,愿我们每个人都能拥有热辣滚烫的人生!这部电影折射出的道理点醒了很多人,也唤醒了无数喜欢内耗拖延的人!因此,为了了解身边人对这部电影的评价,小尚在周边随机选取了20名亲朋好友进行调查,并按一定的分类标准将其平均分成甲乙两组,对该电影进行打分(百分制,分数为x ,x 为整数).通过对数据进行整理分析,描述如下:信息一:甲组成员的影评成绩如下表:分数8085A x ≤<:8590B x ≤<:9095C x ≤<:95100D x ≤≤:频数22其中9095C x ≤<:这组的成绩数据为:92,92,92,94.信息二:乙组成员的影评成绩分布见如下扇形统计图:其中在9095C x ≤<:这组的成绩数据为:93,93,93.信息三:组号平均数众数中位数甲90.6m n 乙92.310093根据以上提供的三个信息,回答下列问题:(1)m =________,n =________,=a ________;(2)影评分数在95100D x ≤≤:区间的视为“电影铁粉”,若乙组中共有200人参与此次影评活动,则乙组中有________人为“电影铁粉”.(3)由于甲组成员不掺杂粉丝膜拜心理,仅仅针对电影内容做出评价,故评价更为客观.现将甲乙两组平均数按7:3的比例进行加权,得到此次影评的最终成绩为________.19.投壶是中国古代的一种弓箭投掷游戏,弓箭投入壶内、壶耳会得到不同的分数,落在地上不得分.小龙与小华每人拿10支箭进行游戏,游戏结果如下:投入壶内投入壶耳落在地上总分小龙3支4支3支27分小华3支3支4支24分(1)求一支弓箭投入壶内、壶耳各得几分?(2)小丽也加入游戏,投完10支箭后,有2支弓箭落到了地上,若小丽赢得了比赛,则她至少投入壶内几支箭?20.如图,以平行四边形ABCD 的一边AB 为直径的圆交边BC 于点E ,交对角线AC 于点F ,G 是边CD 上的一点,连接AG ,且BE DG =.(1)请在以下三个条件中任选一个:________,证明:直线AG 是圆M 的切线.①AGD ACB ∠=∠:②F 是弧AE 的中点:③E 是BC 的中点.(2)在第(1)问的条件下,若直径为4,连接BF 并延长交AG 于点N , 3AN =,求四边形ABCD 的面积.21.根据以下素材,探索完成任务.如何设计拱桥景观灯的悬挂方案?素材1图1中有一座拱桥,图2是其抛物线形桥拱的示意图,某时测得水面宽20m ,拱顶离水面5m .据调查,该河段水位在此基础上再涨1.8m 达到最高.素材2为迎佳节,拟在图1桥洞前面的桥拱上悬挂40cm 长的灯笼,如图3.为了安全,灯笼底部距离水面不小于1m ;为了实效,相邻两盏灯笼悬挂点的水平间距均为1.6m ;为了美观,要求在符合条件处都挂上灯笼,且挂满后成轴对称分布.问题解决任务1确定桥拱形状在图2中建立合适的直角坐标系,求抛物线的函数表达式.任务2探究悬挂范围在你所建立的坐标系中,仅在安全的条件下,确定悬挂点的纵坐标的最小值和横坐标的取值范围.任务3拟定设计方案给出一种符合所有悬挂条件的灯笼数量,并根据你所建立的坐标系,求出最左边一盏灯笼悬挂点的横坐标.22.剪纸在中国是历史悠久,并且流传很广的一种民间艺术形式.剪纸虽然制作简便,造型单纯,但由于其能够充分反映百姓的生活内涵,具有浓郁的民俗特色,因此是中国众多民间美术形式的浓缩与夸张.学完全等和相似以后,一个小组的同学拿着一张边长为5的正方形纸片,在BC 边上取一点E ,使得2CE =,过点E 所在直线剪掉一个直角三角形,点E 所在直线交CD 于点F ,过点F 所在直线再剪掉一个直角三角形,使得剪掉的两个三角形全等.甲同学认为只有一种剪法;乙同学认为有两种剪法;丙同学认为有三种剪法(1)你认为哪位同学的说法是正确的________(填“甲”或“乙”或“丙”),请在下图中画出一种正确的画法,并直接写出所画图中CF 的长度________.(2)按照上面的条件,使剪掉的两个直角三角形相似(点F 不与D 重合),过点F 所在直线交AD 于点G ,设CF x DG y ==,.①求出y 与x 的函数关系式:②当DG 最大时,则tan BFE ∠=________.(3)将一张矩形纸片ABMN AB BM <(),先沿一条直线剪掉一个直角三角形,在剩下的纸片中,再沿一条直线剪掉一个直角三角形(剪掉的两个直角三角形相似),剩下的是如图所示的四边形纸片ABCD ;其中90,24,20,15,7A AB BC CD AD ∠=︒====,则AN =________________.(画出示意图)1.A【分析】本题考查了无理数的概念,熟练掌握知识点是解题的关键.无理数是无限不循环小数,根据定义判断即可.【详解】解:A 、19是分数,为有理数,故本选项符合题意;B 、开方开不尽,是无理数,故本选项不符合题意;C 、π是无限不循环小数,是无理数,故本选项不符合题意;D 、2.024*********…是无限不循环小数,是无理数,故本选项不符合题意.故选:A .2.B【分析】本题考查中心对称图形的识别,根据中心对称图形的概念:在平面内,把一个图形绕着某个点旋转180︒,旋转后的图形能与原来的图形重合,那么这个图形是中心对称图形.进行判断即可.【详解】解:A 选项:它不是中心对称图形;B 选项:它是中心对称图形;C 选项:它不是中心对称图形;D 选项:它不是中心对称图形.故选:B 3.D【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数的绝对值1<时,n 是负整数.【详解】解:4.8亿480000000=,∴8480000000 4.810=⨯,故选:D .4.C【分析】本题考查了同底数幂的乘除法,合并同类项,二次根式的性质,熟练掌握知识点是解题的关键.依次根据合并同类项法则,二次根式的性质,同底数幂的乘除法进行化简计算即可.【详解】解:A 、2222a a a +=,故本选项不符合题意;Ba =,故本选项不符合题意;C 、224a a a ⋅=,故本选项符合题意;D 、844a a a ÷=,故本选项不符合题意.5.A【分析】本题考查了平行线的性质,三角形的外角定理,熟练掌握知识点是解题的关键.先根据平行线的性质定理得到60BCD ∠=︒,再由三角形的外角定理即可求解.【详解】解:∵CD EF ∥,∴60BCD E ∠=∠=︒,∵ABD BCD BDC ∠=∠+∠,∴1306070BDC ∠=︒-︒=︒,故选:A .6.C【分析】此题考查了在数轴上表示不等式的解集,(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.根据数轴表示不等式的方法表示即可.【详解】解:由题意得每件行李重量的取值范围为08x ≤≤,故选:C .7.A【分析】本题考查了弧长公式,熟练掌握知识点是解题的关键.根据弧长公式180n rl π=,代入计算即可.【详解】解:由题意得,轨迹长为:4590451802ππ⨯⨯=,故选:A .8.D【分析】本题考查了分式,二次根式有意义的条件,二次函数的平移,反比例函数的性质,角平分线性质定理逆定理,熟练掌握知识点是解题的关键.A 、根据分式和二次根式有意义的条件即可求解;B 、根据二次函数左右平移规律为“左加右减”求解;C 、根据反比例函数性质求解;D 、根据角平分线性质定理逆定理即可求解.【详解】解:A有意义,则3030x x -≥⎧⎨-≠⎩,解得3x >,故本选项不符合题意;B 、将抛物线23y x =-向左平移1个单位,得到抛物线()231y x =-+的图象,故本选项不符合题意;C 、对于反比例函数2y x=,在每一象限内,y 随x 的增大而减小,故本选项不符合题意;D 、由角平分线的性质定理逆定理可得到三角形三边距离相等的点是三边角平分线的交点,故本选项符合题意.9.D【分析】本题考查了分式方程的应用,正确理解题意是建立方程的关键.设每台削面机器人每分钟能削x 刀面,则由每台削面机器人削660刀的时间和一个削面师傅削180刀的时间相同建立方程.【详解】解:设每台削面机器人每分钟能削x 刀面,根据题意可列方程为:660180160x x =-.故选:D .10.B【分析】本题考查函数图象,平行四边形的性质,全等三角形的判定及性质,勾股定理.根据图象可得AC =P 在AD 上,点Q 在BC 上运动时,过点O 作EF AD ⊥于点E ,交BC 于点F ,则EF 的长为AD ,BC 间的距离.通过“ASA ”证明AOE COF △≌△,得到AE CF =,从而当点P 运动至点E 时,点Q 运动至点F ,此时PQ EF m ==,根据勾股定理求出EO 的长,即可得到EF ,从而解答.【详解】解:由图可知,当点P 从点O 向点A ,点Q 从点O 向点C 运动时,PQ 间距离y 逐渐增大,当点P 运动到点A ,点Q 运动到点C 时,由图象可知y PQ ==∴AC =∵四边形四边形ABCD 是平行四边形,∴12OA OC AC ===)1s=,当点P在AD上,点Q在BC上运动时,过点O作EF AD⊥于点E,交BC于点F,则EF的长为AD,BC间的距离∵在平行四边形ABCD中,AO CO=,AD BC∥,∴EAO FCO∠=∠,∵AOE COF∠=∠,∴()ASAAOE COF≌,∴AE CF=,∵点P,Q的运动速度相同,∴当点P运动至点E时,点Q运动至点F,此时PQ EF m==,根据图象可知点P从点A运动至点E()33s22+=,∴33122AE=⨯=,∵EF AD⊥,∴Rt AEO△中,EO===∵AOE COF△≌△,∴2FO EO==,∴E F即m=.故选:B11.(2)(2)x x x+-【分析】本题考查了因式分解,应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【详解】解:324(4)(2)(2)x x x x x x x -=-=+-.故答案为:(2)(2)x x x +-.12.1(答案不唯一)【分析】本题考查了一元二次方程根的的情况,解一元一次不等式,熟练掌握知识点是解题的关键.由方程两个不相等的实数根,得到0∆>,再求不等式的解集即可.【详解】解:由题意得,2540m ∆=->,解得:254m <,则满足条件的正整数m 的值有:6,5,4,3,2,1,填写一个即可,故答案为:1(答案不唯一).13.25【分析】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.先画树状图,找出所有的等可能结果数,再找出小明两次抽到的元素中含稀有气体(氦)的结果数,最后利用概率公式求解即可.【详解】解:由题意可画树状图为:∴有20种等可能的结果数,符合题意的有8种,∴小明两次抽到的元素中含稀有气体(氦)的概率为82205=,故答案为:25.14.74【分析】本题考查了平行线的性质,解直角三角形,等角的三角函数值相等,熟练掌握知识点是解题的关键.可得2EOD α∠=∠=,则4tan 3ED EOD OE ∠==,4tan 23OE CE ∠==,则4ED =,94CE =,即可求解.【详解】解:如图,由题意得,90,1,,,3EOK BOC GK ED OE ED OE α∠=∠=︒∠=⊥=∥,∴1BOK BOK KOC ∠+=∠+∠,∴1KOC α∠=∠=,∵GK ED ∥,∴2KOC α∠=∠=,∵AOF EOD α∠=∠=,4tan 3α=,∴4tan 3ED EOD OE ∠==,4tan 23OE CE ∠==,而3OE =,∴4ED =,94CE =,∴974m 44CD =-=,故答案为:74.15.【分析】如图所示,过点D 作DT BC ∥交AF 于T ,过点A 作AH BC ⊥于H ,延长AD BC ,交于G ,证明()AAS BFE DTE ≌,得到4DT BF ==;再证明ABG DCG △,△都是等腰直角三角形,得到CD CG =,设2CD CG x ==,则102BG x =+,5AH HG x ==+;证明ADT AGF △∽△,得到DT AD FG AG =,进一步证明AH CD ∥,得到AD CH AG HG =,则DT CH FG HG =,即452625x x x x+-=++,解方程即可得到答案.【详解】解:如图所示,过点D 作DT BC ∥交AF 于T ,过点A 作AH BC ⊥于H ,延长AD BC ,交于G ,∵DT BC ∥,∴EDT EBF ETD EFB ==∠∠,∠∠,∵点E 为对角线BD 的中点,∴BE DE =,∴()AAS BFE DTE ≌,∴4DT BF ==,∵9045BAD BCD ABC ∠=∠=︒∠=︒,,∴4590G DCG =︒=︒∠,∠,∴ABG DCG △,△都是等腰直角三角形,∴CD CG =,∵AH BC ⊥,∴12BH GH AH BG ===;设2CD CG x ==,则102BG BF CF CG x =++=+,∴5AH HG x ==+;∵DT BC ∥,∴ADT AGF △∽△,∴DT AD FG AG=,∵90AHG DCG ==︒∠∠,∴AH CD ∥,∴AD CH AG HG =,∴DT CH FG HG =,即452625x x x x+-=++,解得x =x =,∴2CD x ==故答案为:【点睛】本题主要考查了相似三角形的性质与判定,平行线分线段成比例定理,全等三角形的性质与判定,等腰直角三角形的性质与判定等等,解题的关键在于正确作出辅助线构造全等三角形与相似三角形.16.3-【分析】本题考查了含有特殊角的三角函数值的实数的运算,熟练掌握知识点是解题的关键.分别根据零指数幂,去绝对值,负整数指数幂,特殊角的三角函数值进行化简计算即可.【详解】解:原式(1222=----⨯=122=-+-3=-17.14x x --,12【分析】本题考查了分式的化简求值,熟练掌握知识点是解题的关键.先化简括号内分式,再将除法转化为乘法计算即可.【详解】解:原式()2239134x x x x x +-+-=+-()()()243134x x x x x -+-=-⋅+-14x x -=-,当2x =时,原式12=.18.(1)92,92,40(2)80(3)91.11【分析】(1)C 中有4人,且分数为92分的有3人,D 中有102242---=人,因此众数为92;为中位数是第5,6两人评分的平均数,第5,6两人评分都是92分,因此中位数是92;101020%1010%34-⨯-⨯-=,因此有410100%40%÷⨯=;(2)用总人数乘以所占百分比即可;(3)根据甲乙两组平均数所占百分比以及甲乙两组平均数,列式计算即可.【详解】(1)解:由题意得在甲组10人中,A 中有2人,B 中有2人,C 中有4人,且分数为92分的有3人,D 中有102242---=人,因此众数为92;甲组10人,因此中位数是第5,6两人评分的平均数,将分数排列,可知第5,6两人评分都是92分,因此中位数是92;101020%1010%34-⨯-⨯-=,因此有410100%40%÷⨯=,故答案为:92,92,40;(2)解:20040%80⨯=(人),故答案为:80;(3)解:90.670%92.330%91.11⨯+⨯=,故答案为:91.11.【点睛】本题考查了扇形统计图,频数分布表,中位数,众数,用样本估计总体,以及加权平均数的概念,熟练掌握知识点是解题的关键.19.(1)一支弓箭投入壶内得5分,投入壶耳得3分(2)她至少投入壶内2支箭【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,正确列出方程组和不等式是解答本题的关键.(1)设一支弓箭投入壶内得x 分,投入壶耳得y 分,根据小龙得了27分,小华得了24分列方程组求解即可;(2)根据小丽赢得了比赛列不等式求解即可.【详解】(1)设一支弓箭投入壶内得x 分,投入壶耳得y 分,根据题意得34273324x y x y +=⎧⎨+=⎩解得53x y =⎧⎨=⎩答:一支弓箭投入壶内得5分,投入壶耳得3分;(2)设投入壶内m 支箭,根据题意可得()5310227m m +-->解得:32m >∵m 需取整数∴min 2m =答:她至少投入壶内2支箭.20.(1)②,证明见解析(2)38425【分析】此题考查了切线的判定、圆周角定理、菱形的判定和性质等知识,证明四边形ABCD 是菱形是解题的关键.(1)选择②F 是弧AE 的中点,连接,AE BF ,证明()ASA ABF CBF ≌,得到AB BC =,再证明()SAS ACE ACG ≌,得到90AGC AEC ∠=∠=︒,AB 为直径,即可得到结论;(2)由勾股定理得到5BN =,由等积法求出125AB AN AF BN ⋅==,则165BF =,得到2425AC AF ==,求出1192225ABC S AC BF =⋅= ,即可得到答案.【详解】(1)解:选择②,证明:连接,AE BF ,∵F 是弧AE 的中点,∴ABF CBF ∠=∠,∵AB 为直径,∴90AFB AEB BFC AEC ∠=∠=∠=∠=︒,∵BF BF =,∴()ASA ABF CBF ≌∴AB BC =,∵四边形ABCD 是平行四边形,∴四边形ABCD 是菱形,AB CD∴BC CD =,BAF ACG ∠=∠,∵BE DG =.∴CE CG =,∴90BAF ABF CBF ACE ∠+∠=∠+∠=︒,∴BAF ACE ∠=∠,∴ACG ACE ∠=∠,又∵AC AC=∴()SAS ACE ACG ≌,∴90AGC AEC ∠=∠=︒∵AB CD∴18090BAG AGC ∠=︒-∠=︒∴AB AG⊥∵AB 为直径,∴直线AG 是圆M 的切线.(2)如图,由勾股定理得到5BN =,∵1122ABN S AF BN AB AN =⋅=⋅ ∴125AB AN AF BN ⋅==∴165BF ==∵AB BC =,∴2425AC AF ==∴112416192225525ABC S AC BF =⋅=⨯⨯= ,∴四边形ABCD 的面积为192384222525ABC S =⨯= .21.任务一:见解析,2120y x =-;任务二:悬挂点的纵坐标的最小值是 1.8-;66x -≤≤;任务三:两种方案,见解析【分析】任务一:根据题意,以拱顶为原点,建立如图1所示的直角坐标系,待定系数法求解析式即可求解;任务二:根据题意,求得悬挂点的纵坐标5 1.810.4 1.8y ≥-+++=-,进而代入函数解析式即可求得横坐标的范围;任务三:有两种设计方案,分情况讨论,方案一:如图2(坐标系的横轴,图3同),从顶点处开始悬挂灯笼;方案二:如图3,从对称轴两侧开始悬挂灯笼,正中间两盏与对称轴的距离均为0.8m ,根据题意求得任意一种方案即可求解.【详解】任务一:以拱顶为原点,建立如图1所示的直角坐标系,则顶点为(0,0),且经过点(10,5)-.设该抛物线函数表达式为2(0)y ax a =≠,则5100a -=,∴120a =-,∴该抛物线的函数表达式是2120y x =-.任务二:∵水位再上涨1.8m 达到最高,灯笼底部距离水面至少1m ,灯笼长0.4m ,∴悬挂点的纵坐标5 1.810.4 1.8y ≥-+++=-,∴悬挂点的纵坐标的最小值是 1.8-.当 1.8y =-时,211.820x -=-,解得16x =或26x =-,∴悬挂点的横坐标的取值范围是66x -≤≤.任务三:有两种设计方案方案一:如图2(坐标系的横轴,图3同),从顶点处开始悬挂灯笼.∵66x -≤≤,相邻两灯笼悬挂点的水平间距均为1.6m ,∴若顶点一侧挂4盏灯笼,则1.646⨯>,若顶点一侧挂3盏灯笼,则1.636⨯<,∴顶点一侧最多可挂3盏灯笼.∵挂满灯笼后成轴对称分布,∴共可挂7盏灯笼.∴最左边一盏灯笼悬挂点的横坐标是 4.8-.方案二:如图3,从对称轴两侧开始悬挂灯笼,正中间两盏与对称轴的距离均为0.8m ,∵若顶点一侧挂5盏灯笼,则0.8 1.6(51)6+⨯->,若顶点一侧挂4盏灯笼,则0.8 1.6(41)6+⨯-<,∴顶点一侧最多可挂4盏灯笼.∵挂满灯笼后成轴对称分布,∴共可挂8盏灯笼.∴最左边一盏灯笼悬挂点的横坐标是 5.6-.【点睛】本题考查了二次函数的应用,根据题意建立坐标系,掌握二次函数的性质是解题的关键.22.(1)乙,52或3,作图见详解(2)①102y x =-或21522=-+y x x ,6tan 13BFE ∠=(3)16或25或32【分析】(1)有两种剪法,①在DC 上取点F ,使得52DF CF ==,在AD 上取点G ,使得2DG CE ==;②在DC 上取点F ,使得2DF CE ==,则3CF =,在AD 上取点G ,使得3DG CF ==;(2)①当FEC FGD ∠=∠时,FEC FGD △∽△,则25x y x =-,化简得102y x=-,当FEC GFD ∠=∠时,FEC GFD △∽△,则25x x y =-,化简得21522=-+y x x ;②对于102y x=-,由05x <<得DG y =无最大值;对于21522=-+y x x ,则21525228y x ⎛⎫=--+ ⎪⎝⎭,故当52x =时,DG y =最大,且最大值为258DG =;过点E 作EH BF ⊥于点H ,由勾股定理得=BF ,可证EBH FBC △∽△,则EH BH ==FH =6tan 13EH BFE FH ∠==;(3)连接BD ,由勾股定理求得BD ,再根据勾股定理的逆定理得90BCD ∠=︒,根据题意,画出相应的图形,然后利用相似三角形的性质和分类讨论的方法,求出剪掉的两个直角三角形的斜边长,然后即可得出答案.【详解】(1)解:乙说法正确,CF 的长度52或3,作图如下,如图①,在DC 上取点F ,使得52DF CF ==,在AD 上取点G ,使得2DG CE ==;如图②,在DC 上取点F ,使得2DF CE ==,则3CF =,在AD 上取点G ,使得3DG CF ==;故答案为:乙,52或3.(2)解:①当FEC FGD ∠=∠时,如图:∵四边形ABCD 是正方形,∴90C D ∠=∠=︒,∴FEC FGD △∽△,∴CECFDG DF =,∴25xy x =-,∴102y x =-,当FEC GFD ∠=∠时,如图:∵四边形ABCD 是正方形,∴90C D ∠=∠=︒,∴FEC GFD △∽△,∴CE CF DF DG=,∴25x x y =-,∴21522=-+y x x ;②对于102y x =-,∵05x <<,∴DG y =无最大值;对于21522=-+y x x ,则2215152522228y x x x ⎛⎫=-+=--+ ⎪⎝⎭,∴当52x =时,DG y =最大,且最大值为258DG =;过点E 作EH BF ⊥于点H ,∵90C ∠=︒,∴由勾股定理得:BF ==∵90BHE C ∠=∠=︒,∵EBH FBC ∠=∠,∴EBH FBC△∽△∴EH BE BH FC BF BC==,∴EH BH ==∴FH ==∴6tan 13EH BFE FH ∠==;(3)解:连接BD ,90A ∠=︒ ,7AD =,24AB =,222724625BD ∴=+=,20BC = ,15CD =,22222015625BC CD ∴+=+=,222BC CD BD ∴+=,90DCB ∴∠=︒,①如图所示,由已知可得,DNM MCB △∽△,则DN MN DM MC CB MB==,设DN x =,CM y =,则2415207x y y x +==+,解得1815x y =⎧⎨=⎩,71825AN ∴=+=;②如图所示,由已知可得,DCN NMB △∽△,则DCCNDNNM MB NB ==,设NC m =,ND n =,则1524720m nn m ==++,解得2025m n =⎧⎨=⎩,72532AN ∴=+=,32AN ∴=;③如图所示:同(2)得DCN CBM ∽,∴DC DN CNCB CM BM ==,设,DN x CM y ==,则1524207x yy x -==+,解得:912x y =⎧⎨=⎩,AN∴16故答案为:16或25或32.【点睛】本题考查了相似三角形的判定与性质,全等三角形的判定与性质,二次函数求最值,锐角三角函数,正方形的性质,矩形的性质,勾股定理及逆定理,正确添加辅助线,熟练掌握知识点是解题的关键.。
广东省深圳市福田区外国语学校2022-2023学年七年级上学期期中考试数学试卷(原卷版)
2022-2023学年度第一学期期中考试七年级数学试卷说明:答题前,务必将自己的姓名、学号等填写在答题卷规定的位置上.1.考生必须在答题卷上按规定作答:凡在试卷、草稿纸上作答的,其答案一律无效.2.全卷共4页,考试时间90分钟,满分100分一、选择题(共10小题,每题3分,共30分)1. 2022的倒数是( )A. 2022−B. 12022±C. 12022D. 12022− 2. 用平面去截一个几何体,如果截面是圆形,则原几何体可能是( )A. 正方体、球B. 圆柱、圆锥C. 圆锥、棱柱D. 球、长方体 3. 下列正方体的展开图中,“勤”的对面是“戴”的展开图是( )A. B. C. D.4. 2022年春节期间,某市20家A 级景区平均每天接待游客2万人次,则全市这20家A 级景区这7天共接待游客数量用科学记数法可表示为( )人次A. 51.410×B. 64.810×C. 60.1410×D. 4210× 5. 下列各数()33−,(3)−−,()43−,3−−,33−中,负数有( )A. 2个B. 3个C. 4个D. 5个6. 下列结论中,正确的是( )A. 单项式235xy 的系数是3,次数是3 B. 单项式x 的次数是1,没有系数 C. 单项式2−xy z 系数是1−,次数是4 D. 多项式253x xy −+是三次三项式 7. 下列说法中正确的个数为( ):①一个有理数不是整数就是分数;②0是单项式;③一个棱柱有8个面,则该棱柱是一个八棱柱;④若x x =−,则x 一定是负数;⑤若a b >,则一定有a b >;⑥一个三位数百位数字为c ,十位数字为b ,个位数字为a ,则这个三位数可以表示为cba .的A. 2个B. 3个C. 4个D. 5个8. 图所示,在数轴上标出了有理数a ,b ,c 的位置其中0是原点,则1a ,1b ,1c ,大小顺序是( ) A. 111a b c >> B.111b a c >> C. 111b c a >> D. 111c a b >> 9. 如图,按下面程序计算,若开始输入的值x 为正整数,最后输出的结果为282,则满足条件的x 的不同值最多有( )A. 3个B. 4个C. 5个D. 6个10. 对非负实数x “四舍五入”到个位的值记为x <>,即当n 为非负整数时,若1122n x n −≤<+,则x n <>=,如0.370<>=, 3.514<>=,给出下列关于x <>的结论正确的是( )① 1.4991<>=;②33x x <>=<>;③x y x y <><=>+<+>;④当0x ≥,m 为非负整数时,有20222022m x m x <+>=+<>; ⑤满足32x x <>=的非负数x 只有两个. A. ①④ B. ①④⑤ C. ①②⑤ D. ①③④二、填空题(共5小题,每题3分,共15分)11. 比较大小78−______67−. 12. 若2a −与3b +互为相反数,则a b −的值为________.13. 某品牌电脑原售价m 元,国庆打折促销,在原售价八折的基础上又降价n 元,那么该电脑的现售价为________元.14. 已知一个边长分别为7cm 和8cm 的长方形,若绕着该长方形的一条边所在的直线旋转一周得到的几何体的体积最小是________.的15. 按一定规律排列的一列数:3b a −,52b a ,73b a −,94b a ,(0)ab ≠ ,第n 个式子为________. 三、解答题(共7题,共55分)16. 计算题:(1)()()()915128−+−−+−(2)1131323142 −×−×÷− (3)2020311|24|(2)3−−−−×+− (4)111136693 −×−−17. 已知()3a =−−,()4b =−+,()2012c d ++−=,(1)a =__________,b =__________,c =__________,d =__________;(2)求多项式ab bc cd d −+−的值.18 如图,数轴上有a 、b 、c 三点.(1)c b −_______0;a b − _______0;2b − ______0(填“<”“>”或“=”).(2)化简:2c b a b b −−−+−.19. 由大小相同的边长为1cm 小立方块搭成的几何体如图.(1)请在方格纸中分别画出这个几何体从左面和上面看到的形状;(2)这个几何体的表面积为_______.(3)用相同形状的小立方块重新搭一个几何体,使得它从上面看和从左面看到的与你在上图方格中所画的图一致,这样的几何体最少要_______个立方块,最多要_______个立方块.20. 某文具厂计划一天生产500支中性笔,但由于各种原因,实际每天生产中性笔数与计划每天生产中性笔数相比有出入.下表是某周的生产情况(增产记为正,减产记为负):.星期一 二 三 四 五 六 日 生产情况19+ 5− 7− 23+ 9− 12+ 17+(1)该厂这周产量最多的一天比产量最少的一天多生产__________支中性笔;(2)该厂实行每日计件工资制,每生产10支可得6元.若超额完成数量不少于50支,则额外奖励50元;若未能完成任务,则扣100元.该厂工人这周的工资总额是多少元?21. (1)①观察一列数1,2,4,8,16,…,发现从第二项开始,每一项与前一项之比是一个常数,这个常数是________;根据此规律,如果n a (n 为正整数)表示这个数列第n 项,那么10a =__________,n a =_________;②为了求2399912222+++++ 的值,可以这么做;令23998999122222M =++++++ ,则231000999222222M =+++++ ,因此1000221M M −=−,所以10001000212121M −==−−,即2399910001222221+++++=− . 仿照以上推理: (2)计算23202217777+++++ 的值. (3)计算238911111123491033333 +×+×+×++×+×. 22. 我们知道x 的几何意义是在数轴上x 对应的点与原点的距离,即0x x =−,也就是说,x 表示在数轴上数x 与数0对应点之间的距离.同样的,若数轴上两点A ,B 在数轴上对应的点分别为a ,b ,则点A ,B 之间的距离可以表示为AB a b =-.阅读上面材料,回答问题. (1)数轴上表示2和7−两点之间的距离是________;若35x −=,则x =________. (2)若数轴上点A ,B 和C 在数轴上对应的数分别为3,7和1,点P 为数轴上一动点,其在数轴上对应的数为x .①当x 取值范围为____________时,PA PB +有最小值为____________;此时,PA PB PC +−的最大值是____________,最小值是____________.②设点Р以每秒一个单位长度的速度从A 点出发向左运动,到达点C 后以原来的速度向相反的方向运动.设的的点Р的运动时间为t秒,问是否存在点P,使得13PA PC=?若存在,请求出t的值;若不存在,请说明理由.。
2020-2021学年广东省深圳市高一(下)期末数学模拟练习试卷(一)
2020-2021学年广东省深圳市高一(下)期末数学模拟练习试卷(一)试题数:22,总分:1501.(单选题,5分)设集合P={x∈Z|(x+1)(x-4)≤0},Q={x|y=lgx},则()A.P⊆QB.P∩Q=[-1,4]C.P∪Q=PD.P∩Q={1,2,3,4}2.(单选题,5分)复数z=-2+i,则它的共轭复数z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(单选题,5分)已知某校高一、高二、高三年级的学生数分别为600,720,840,为调查学生对餐厅的满意度,拟采用分层抽样随机抽取一个容量为108的样本,则高二年级应抽取的学生数为()A.30B.36C.42D.484.(单选题,5分)设向量a⃗=(2,3),b⃗⃗=(4,−2),若(λa⃗+b⃗⃗)⊥b⃗⃗,则实数λ=()A.-10B.10C.-2D.25.(单选题,5分)已知点P(−1,√3)在角φ的终边上,若要得到函数y=sin(2x+φ)(0≤φ<2π)的图象,则需将函数y=sin2x的图象()个单位长度A.向左平移π3个单位长度B.向右平移π3个单位长度C.向左平移2π3D.向右平移2π个单位长度3=2,则tan2x=()6.(单选题,5分)若sinx−cosxsinx+cosxA. 43B. −43C. 34D. −347.(单选题,5分)设a>0,b>0,且a+b=1,则下列结论不一定成立的为()A.a b<1B.b a<1C.log a b+log b a≥2D.log a b-log b a≥28.(单选题,5分)已知球O在母线长为5,高为4的圆锥内部,则球O的表面积最大值为()A.12πB.9πC.8πD.6π9.(多选题,5分)下列说法正确的为()A.若x∈R,则“x2<1”是“x<1”充分不必要条件B.若x∈R,则“x<1”是“x2<1”充分不必要条件C.若命题p的否定为真命题,则命题p必为假命题D.命题“∃x0∈R,使得x02<2x0-1”的否定为“∀x∈R,x2>2x-1”10.(多选题,5分)如图,在边长为2的正方形ABCD中,E,F分别是BC,CD的中点.若分别以AE,AF,EF为折痕,将该正方形折成一个四面体Ω(使B,C,D三点重合),则下列结论正确的为()A.Ω的表面积为2B.Ω的体积为13C.Ω的外接球半径为√62D.Ω的外接球半径为√5211.(多选题,5分)若函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,则下列结论正确的为()A.实数ω有且仅有一个值B.实数φ可取两个不同的值C.f(x)的单调递增区间为(kπ−π3,kπ+π6)(k∈Z)D.若f(x1)=f(x2)(π6<x1<x2<π),则f(x1+x2)=√312.(多选题,5分)已知定义在R上的奇函数f(x),当x<0时,f(x)={ex+3,x<−1,e x−1,−1≤x<0,(其中常数e是自然对数的底数,e=2.71828⋅⋅⋅),函数g(x)=f(af(x)),则下列结论正确的为()A.∀x∈[-1,0],f(x)+f(x2)≤0恒成立B.当k∈N*时,方程f(x)+kx=0有唯一实数解C.当a=1时,函数g(x)的零点个数为7D.∃a∈R,使得函数g(x)恰有9个零点13.(填空题,5分)函数f(x)=ln(x+1)+√3x−1上的定义域为 ___ .14.(填空题,5分)某校从参加高一物理期末考试的学生中随机抽出60名,将其物理成绩(均为整数)分成六组:[40,50),[50,60),…,[90,100],并绘制成如下的频率分布直方图.由此估计此次高一物理期末考试成绩的第75百分位数为 ___ .)15.(填空题,5分)进行垃圾分类收集可减少垃圾处理量和处理设备,降低处理成本,减少土地资源的消耗,具有社会、经济、生态等多方面的效益.为普及垃圾分类知识,某校举行了垃圾分类知识考试,考试有且仅有两道试题.已知甲同学答对每道题的概率均为p ,乙同学答对每道题的概率均为q ,且在考试中每人各题的答题结果互不影响.若甲,乙同时答对第一题的概率为 12 ,且恰有一人答对第二题的概率为 512 ,则p+q=___ .16.(填空题,5分)设函数 f (x )=asin (x +π6)+√3bsin (x −π3) (a >0),若∀x∈R ,|f (x )|≤|f (0)|,则 1a −2b 的最小值为 ___ .17.(问答题,10分)已知i 为虚数单位,m∈R ,复数z 1=m+mi ,z 2=2m+2i ,z=z 1z 2. (1)若z 是纯虚数,求实数m 的值; (2)若|z|≤4,求|z 1-z 2|的取值范围.18.(问答题,12分)如图,在等腰梯形ABCD 中,AB || CD , |AB⃗⃗⃗⃗⃗⃗|=2|DC ⃗⃗⃗⃗⃗⃗|=2 , ∠BAD =π3,E 是BC 边的中点.(1)试用 AB ⃗⃗⃗⃗⃗⃗ , AD ⃗⃗⃗⃗⃗⃗ 表示 AC ⃗⃗⃗⃗⃗⃗ , AE ⃗⃗⃗⃗⃗⃗ ; (2)求 AE ⃗⃗⃗⃗⃗⃗•EC⃗⃗⃗⃗⃗⃗ 的值.19.(问答题,12分)随着电子产品的盛行,近年来青少年的眼睛健康不容忽视.某地欲举行中学生“用眼卫生健康知识竞赛”活动,规定每所学校均由3名学生组成代表队参加团体赛.某校为了选拔出代表队成员,共有120名学生参加了校内选拔赛,其竞赛成绩的频率分布表如下:竞赛成绩[50,60)[60,70)[70,80)[80,90)[90,100] 频数12 24 42 b a频率0.1 0.2 0.35 c 0.05 (1)求竞赛成绩的频率分布表中a,b,c的值,并计算这120名学生的竞赛成绩平均数及方差(同一组中的数据用该组区间的中点值作代表);(2)已知竞赛成绩不低于90分的学生中男、女人数之比为1:2,若从竞赛成绩不低于90分的学生中随机选取3人组成代表队,求代表队中女生人数多于男生人数的概率.20.(问答题,12分)设△ABC的内角A,B,C的对边分别为a,b,c,且a−ca+b +sinBsinA+sinC=0.(1)求C;(2)设点E,F是边AB(除端点外)上的动点,且AE<AF.若a=b=1,且∠ECF=π3,记∠ACE=θ,试用θ表示△CEF的面积S,并求S的最小值.21.(问答题,12分)如图,已知四边形ABCD为矩形,且AB=2AD,点E为AB的中点,将△ADE沿折痕DE折成△PDE.(1)若点M为PC的中点,证明:BM || 平面PDE;(2)若二面角D-PE-C为直二面角,求直线PC与平面DEC所成的角的正弦值.22.(问答题,12分)设函数g(x)的定义域为D,若x0∈D,且g(x0)=kx0(k∈Z),则称实数x0为g(x)的“k级好点”.已知函数f(x)=ln(e x+a).(其中常数e是自然对数的底数,e=2.71828⋅⋅⋅)(1)当a∈R时,讨论f(x)的“2级好点”个数;(2)若实数m为f(x)的“-1级好点”,证明:e2m+e−2m+m2>(a+1)m+1.22020-2021学年广东省深圳市高一(下)期末数学模拟练习试卷(一)参考答案与试题解析试题数:22,总分:1501.(单选题,5分)设集合P={x∈Z|(x+1)(x-4)≤0},Q={x|y=lgx},则()A.P⊆QB.P∩Q=[-1,4]C.P∪Q=PD.P∩Q={1,2,3,4}【正确答案】:D【解析】:由已知分别求出集合P,Q,对应各个选项即可求解.【解答】:解:由已知可得P={x∈Z|-1≤x≤4}={-1,0,1,2,3,4},Q={x|x>0},所以P∩Q={1,2,3,4},故选:D.【点评】:本题考查了集合间的包含关系,涉及到一元二次不等式的解法,属于基础题.2.(单选题,5分)复数z=-2+i,则它的共轭复数z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【正确答案】:C【解析】:根据复数共轭的定义以及复数的几何意义,即可得到结论.【解答】:解:∵z=-2+i,∴它的共轭复数z =-2-i,对应的坐标为(-2,-1)位于第三象限,故选:C.【点评】:本题主要考查复数的几何意义,以及共轭复数的概念,比较基础.3.(单选题,5分)已知某校高一、高二、高三年级的学生数分别为600,720,840,为调查学生对餐厅的满意度,拟采用分层抽样随机抽取一个容量为108的样本,则高二年级应抽取的学生数为()A.30B.36C.42D.48【正确答案】:B【解析】:根据题意,先计算三个年级的学生总数,由分层抽样的定义分析可得答案.【解答】:解:根据题意,高一、高二、高三年级的学生数分别为600,720,840,共有600+720+840=2160人,拟采用分层抽样随机抽取一个容量为108的样本,×108=36,则高二年级应抽取的学生数为7202160故选:B.【点评】:本题考查分层抽样方法的应用,注意分层抽样的定义,属于基础题.4.(单选题,5分)设向量a⃗=(2,3),b⃗⃗=(4,−2),若(λa⃗+b⃗⃗)⊥b⃗⃗,则实数λ=()A.-10B.10C.-2D.2【正确答案】:A【解析】:根据题意,求出λ a⃗ + b⃗⃗的坐标,由数量积的计算公式可得(λa⃗+b⃗⃗)•b⃗⃗ =4(2λ+4)-2(3λ-2)=2λ+20=0,解可得λ的值,即可得答案.【解答】:解:根据题意,向量a⃗=(2,3),b⃗⃗=(4,−2),则λ a⃗ + b⃗⃗ =(2λ+4,3λ-2),若(λa⃗+b⃗⃗)⊥b⃗⃗,则(λa⃗+b⃗⃗)•b⃗⃗ =4(2λ+4)-2(3λ-2)=2λ+20=0,解可得λ=-10,故选:A.【点评】:本题考查向量数量积的计算,涉及向量的坐标计算,属于基础题.5.(单选题,5分)已知点P(−1,√3)在角φ的终边上,若要得到函数y=sin(2x+φ)(0≤φ<2π)的图象,则需将函数y=sin2x的图象()A.向左平移π3个单位长度B.向右平移π3个单位长度C.向左平移2π3个单位长度D.向右平移2π3个单位长度【正确答案】:A【解析】:由题意可得φ为第二象限角,利用任意角的三角函数的定义可求tanφ,结合范0≤φ<2π,可求φ的值,进而根据函数y=Asin(ωx+φ)的图象变换即可得解.【解答】:解:因为点P(−1,√3)在角φ的终边上,可得φ为第二象限角,所以tanφ=- √3,因为0≤φ<2π,所以φ= 2π3,所以若要得到函数y=sin(2x+ 2π3)=sin2(x+ π3)的图象,则需将函数y=sin2x的图象向左平移π3个单位长度即可得解.故选:A.【点评】:本题主要考查了任意角的三角函数的定义,函数y=Asin(ωx+φ)的图象变换的应用,考查了函数思想,属于基础题.6.(单选题,5分)若sinx−cosxsinx+cosx=2,则tan2x=()A. 43B. −43C. 34D. −34【正确答案】:C【解析】:由已知利用同角三角函数基本关系式可求tanx的值,进而根据二倍角的正切公式即可求解.【解答】:解:因为sinx−cosxsinx+cosx=2,所以tanx−1tanx+1=2,解得tanx=-3,则tan2x= 2tanx1−tan2x = 34.故选:C.【点评】:本题主要考查了同角三角函数基本关系式,二倍角的正切公式在三角函数求值中的应用,考查了计算能力和转化思想,属于基础题.7.(单选题,5分)设a>0,b>0,且a+b=1,则下列结论不一定成立的为()A.a b<1B.b a<1C.log a b+log b a≥2D.log a b-log b a≥2【正确答案】:D【解析】:由a>0,b>0,且a+b=1知0<a<1,0<b<1,又得log a b>0且log b a>0,根据函数单调性可判断AB;根据基本不等式可判断C,举例a=b= 12可判断D.【解答】:解:由a>0,b>0,且a+b=1知0<a<1,0<b<1,又得log a b>0且log b a>0,∴a b<a0=1,b a<b0=1,∴AB成立,不选AB;log a b+log b a=log a b+ 1log a b ≥2 √log a b•1log a b=2,当且仅当a=b= 12时,“=”成立,∴C对,不选C;当a=b= 12时,log a b-log b a=0,∴D错,选D.故选:D.【点评】:本题考查不等式与基本不等式,考查数学运算能力及推理能力,属于基础题.8.(单选题,5分)已知球O在母线长为5,高为4的圆锥内部,则球O的表面积最大值为()A.12πB.9πC.8πD.6π【正确答案】:B【解析】:由题意,可得当球O的轴截面是圆锥的轴截面的内切圆时,内切球等体积最大,求出轴截面的内切圆的半径,进而求出球O表面积的最大值.【解答】:解:设圆锥的轴截面为等腰△SAB,则球O的面积最大时,球O的轴截面是△SAB 的内切圆,所以S△SAB= 12AB•SO′= 12SA+SB+AB)•r,解得r= 32,所以球O的表面积的最大值为4πr2=4 π×94=9π.故选:B.【点评】:本题考查圆锥的内切球的半径的求法及球的体积公式,属于基础题.9.(多选题,5分)下列说法正确的为()A.若x∈R,则“x2<1”是“x<1”充分不必要条件B.若x∈R,则“x<1”是“x2<1”充分不必要条件C.若命题p的否定为真命题,则命题p必为假命题D.命题“∃x0∈R,使得x02<2x0-1”的否定为“∀x∈R,x2>2x-1”【正确答案】:AC【解析】:直接利用充分条件和必要条件,命题的否定,真值表的应用判断A、B、C、D的结论.【解答】:解:对于A:若“x2<1”整理出-1<x<1,故{x|-1<x<1}⊂{x|x<1},故“x2<1”是“x <1”充分不必要条件,故A正确;对于B:若“x2<1”整理出-1<x<1,故{x|-1<x<1}⊂{x|x<1},故“x2<1”是“x<1”充分不必要条件,则“x<1”是“x2<1”必要不充分条件,故B错误;对于C:若命题p的否定为真命题,则命题p必为假命题,故C正确;对于D:命题“∃x0∈R,使得x02<2x0-1”的否定为“∀x∈R,x2≥2x-1”故D错误.【点评】:本题考查的知识要点:充分条件和必要条件,命题的否定,真值表,主要考查学生的运算能力和数学思维能力,属于基础题.10.(多选题,5分)如图,在边长为2的正方形ABCD中,E,F分别是BC,CD的中点.若分别以AE,AF,EF为折痕,将该正方形折成一个四面体Ω(使B,C,D三点重合),则下列结论正确的为()A.Ω的表面积为2B.Ω的体积为13C.Ω的外接球半径为√62D.Ω的外接球半径为√52【正确答案】:BC【解析】:利用Ω的表面积即为正方形的面积,即可判断选项A,由翻折前后不变的量,得到翻折后的三棱锥,求解体积即可判断选项B,利用Ω的外接球即为以PA,PE,PF为长、宽、高的长方体的外接球,求解半径即可判断选项C,D.【解答】:解:对于A,由题意可知,Ω的表面积即为正方形的面积,所以Ω的表面积为2×2=4,故选项A错误;对于B,翻折前,AE=AF= √5,EF= √2,AB=AD=2,BE=EC=DF=1,翻折后,AP=2,EP=PF=1,AE=AF= √5,EF= √2,且AP⊥PF,AP⊥PE,PE⊥PF,则AP⊥平面PEF,所以Ω的体积为13×12×1×1×2 = 13,故选项B正确;Ω的外接球即为以PA,PE,PF为长、宽、高的长方体的外接球,则Ω的外接球的直径为2R= √12+12+22=√6,所以Ω的外接球半径为√62,故选项C正确,选项D错误.【点评】:本题考查了翻折问题,棱锥的体积公式的应用,表面积的求解以及外接球的理解,解题的关键是弄起翻折前后不变的量,考查了逻辑推理能力、空间想象能力、化简运算能力,属于中档题.11.(多选题,5分)若函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,则下列结论正确的为()A.实数ω有且仅有一个值B.实数φ可取两个不同的值C.f(x)的单调递增区间为(kπ−π3,kπ+π6)(k∈Z)D.若f(x1)=f(x2)(π6<x1<x2<π),则f(x1+x2)=√3【正确答案】:AD【解析】:先由图解函数f(x)解析式,再利用单调性、对称性等性质判断选项是否正确.【解答】:解:由图知,A=2,f(0)= √3,即2sinφ= √3,sinφ= √32,∴φ= π3+2kπ,k∈Z,又0<φ<π,∴φ= π3.ω与周期T有关,又π3−0 =2π32π•T = 13T,∴T=π,∴ω=2.∴f(x)=2sin(2x+ π3).A,因为周期一定,所以ω确定,且ω=2.故A对.B,∵(0,√3)是单调递增区间上的值,∴φ只能等于π3+2kπ,k∈Z,又0<φ<π,∴φ= π3.即只有一个值,故B错.C,∵f(x)=2sin(2x+ π3),∴满足2x+ π3∈[2kπ- π2,2kπ+ π2],k∈Z时,f(x)单调递增,解得x∈[kπ- 5π12,kπ+ π12],k∈Z,故C错;D,∵f(x1)=f(x2),且π6<x1<x2<π,∴x1,x2关于x= 7π12对称,∴x1+x2=2× 7π12= 7π6,∴f(x1+x2)=2sin(2× 7π6 + π3)=2sin 8π3=2sin 2π3= √3.故D对.故选:AD.【点评】:该题考查正弦函数的图象及单调性、对称性等性质,属于中等题型.12.(多选题,5分)已知定义在R上的奇函数f(x),当x<0时,f(x)={ex+3,x<−1,e x−1,−1≤x<0,(其中常数e是自然对数的底数,e=2.71828⋅⋅⋅),函数g(x)=f(af(x)),则下列结论正确的为()A.∀x∈[-1,0],f(x)+f(x2)≤0恒成立B.当k∈N*时,方程f(x)+kx=0有唯一实数解C.当a=1时,函数g(x)的零点个数为7D.∃a∈R,使得函数g(x)恰有9个零点【正确答案】:AD【解析】:根据题意作出f(x)的图象,结合图象,逐个判断每个选项,即可得出答案.【解答】:解:根据题意作出f(x)的图象:对于A :由图可知f (x )在(-1,1)上单调递增, 因为x∈[-1,0],则x 2∈[0,1], 又f (x )=-f (-x ),且-x∈[0,1], 且-x≥x 2,所以f (-x )≥f (x 2), 即-f (x )≥f (x 2),所以f (x )+f (x 2)≤0,故A 正确;对于B :当k∈N*时,方程f (x )+kx=0的根为f (x )=-kx 的根, 即y=f (x )与y=-kx 的交点的横坐标,结合图象可得交点可能有1个或三个,故B 错误; 对于C :a=1时,g (x )=f (f (x )),令g (x )=0,结合图象可得f (x )=0或f (x )=- 3e 或f (x )= 3e , 当f (x )=0时,x=0或- 3e 或 3e , 当f (x )=- 3e 时,x 有唯一的解, 当f (x )= 3e 时,x 有唯一的解,综上,当a=1时,g (x )的零点有5个,故C 错误; 对于D :令g (x )=f (af (x ))=0, 得af (x )=0或af (x )=- 3e 或af (x )= 3e , 当a≠0时,f (x )=0或f (x )=- 3ae或f (x )= 3ae, 当f (x )=0时,x=0或- 3e 或 3e ,若e-3<- 3ae <0时,f (x )=- 3ae 有3个解,f (x )= 3ae 有3个解, 综上,存在a∈R ,使得g (x )恰有9个交点,故D 正确. 故选:AD .【点评】:本题考查函数的零点,解题中注意转化思想的应用,属于中档题. 13.(填空题,5分)函数 f (x )=ln (x +1)+√3x−1 上的定义域为 ___ . 【正确答案】:[1](0,3]【解析】:根据题意,由函数的解析式可得 {x +1>03x −1≥0 ,解可得x 的取值范围,即可得答案.【解答】:解:根据题意,函数 f (x )=ln (x +1)+√3x−1 , 必有 {x +1>03x−1≥0,解可得0<x≤3,即函数的定义域为(0,3]; 故答案为:(0,3].【点评】:本题考查函数定义域的计算,涉及不等式的解法,属于基础题.14.(填空题,5分)某校从参加高一物理期末考试的学生中随机抽出60名,将其物理成绩(均为整数)分成六组:[40,50),[50,60),…,[90,100],并绘制成如下的频率分布直方图.由此估计此次高一物理期末考试成绩的第75百分位数为 ___ . )【正确答案】:[1]82【解析】:根据题意,高一物理期末考试成绩的第75百分位数,即成绩从低到高的第60×75%=45位同学,分别求出前4组小矩形对应的人数,前5组小矩形对应的人数,再按比例确定高一物理期末考试成绩的第75百分位数,即可求解.【解答】:解:高一物理期末考试成绩的第75百分位数,即成绩从低到高的第60×75%=45位同学,∵前4组的小矩形的面积和为0.01+0.15×2+0.03=0.07, 又∵样本的容量为60,∴前4组的小矩形对应的学生人数为60×0.07=42,∵前5组的小矩形的面积和为0.01+0.15×2+0.03+0.25=0.95, 又∵样本的容量为60,∴前5组的小矩形对应的学生人数为60×0.95=57, ∵分数在[80,90)的人数为0.025×10×60=15,∴此次高一物理期末考试成绩的第75百分位数为80+10×45−4215=82.故答案为:82.【点评】:本题考查由频数分布表、直方图求频数、频率,考查频率公式,以及百分位数的应用,属于基础题.15.(填空题,5分)进行垃圾分类收集可减少垃圾处理量和处理设备,降低处理成本,减少土地资源的消耗,具有社会、经济、生态等多方面的效益.为普及垃圾分类知识,某校举行了垃圾分类知识考试,考试有且仅有两道试题.已知甲同学答对每道题的概率均为p,乙同学答对每道题的概率均为q,且在考试中每人各题的答题结果互不影响.若甲,乙同时答对第一题的概率为12,且恰有一人答对第二题的概率为512,则p+q=___ .【正确答案】:[1] 1712【解析】:利用相互独立事件的概率乘法公式列出方程组即可求解.【解答】:解:由题意,得{pq=12p(1−q)+q(1−p)=512,解得p+q= 1712.故答案为:1712.【点评】:本题主要考查相互独立事件的概率乘法公式,属于基础题.16.(填空题,5分)设函数f(x)=asin(x+π6)+√3bsin(x−π3)(a>0),若∀x∈R,|f(x)|≤|f(0)|,则1a−2b的最小值为 ___ .【正确答案】:[1] 2√2【解析】:先利用诱导公式以及辅助角公式化简f(x)的解析式,然后由已知条件,得到f (0)为函数f(x)的最值,求出φ的值,由tanφ求出a与b的关系,然后由基本不等式求解最值即可.【解答】:解:函数f(x)=asin(x+π6)+√3bsin(x−π3)= asin(x+π6)−√3bcos(x+π6)= √a2+3b2sin(x+π6−φ),其中tanφ=√3ba,a>0,因为∀x∈R,|f(x)|≤|f(0)|,所以f(0)为函数f(x)的最值,则有0+π6−φ=π2+kπ,k∈Z,故φ=−π3−kπ,k∈Z,所以tanφ=tan(−π3−kπ)=tan(−π3)=−√3,故√3ba=−√3,所以b=-a,a>0,故1a −2b = 1a+2a≥2√1a•2a = 2√2,当且仅当1a =2a,即a= √22时取等号,所以1a−2b的最小值为2√2.故答案为:2√2.【点评】:本题考查了诱导公式以及辅助角公式的应用,三角函数最值的应用以及特殊角的三角函数值的运用,基本不等式求解最值的运用,考查了逻辑推理能力、化简运算能力与转化化归能力,属于中档题.17.(问答题,10分)已知i为虚数单位,m∈R,复数z1=m+mi,z2=2m+2i,z=z1z2.(1)若z是纯虚数,求实数m的值;(2)若|z|≤4,求|z1-z2|的取值范围.【正确答案】:【解析】:z=z1z2=(m+mi)(2m+2i)=2m2-2m+(2m2+2m)i.(1)由2m2-2m=0且2m2+2m≠0可解决此问题;(2)|z|≤4⇔|z|2≤42可求得m范围,然后可求得|z1-z2|的取值范围.【解答】:解:z=z1z2=(m+mi)(2m+2i)=2m2-2m+(2m2+2m)i.(1)∵z是纯虚数,∴2m2-2m=0且2m2+2m≠0,解得m=1;(2)|z|≤4⇔|z|2≤42,可得(2m2-2m)2+(2m2+2m)2≤16,解得-1≤m≤1.∴|z1-z2|=|-m+(m-2)i|= √(−m)2+(m−2)2 = √2m2−4m+4 = √2(m−1)2+2,∵-1≤m≤1,∴0≤(m-1)2≤4,∴0≤2(m-1)2≤8,∴2≤2(m-1)2+2≤10,∴ √2(m −1)2+2 ∈[ √2 , √10 ], ∴|z 1-z 2|∈[ √2 , √10 ].【点评】:本题考查复数代数形式、复数的模、不等式的解法,考查数学运算能力,属于中档题.18.(问答题,12分)如图,在等腰梯形ABCD 中,AB || CD , |AB⃗⃗⃗⃗⃗⃗|=2|DC ⃗⃗⃗⃗⃗⃗|=2 , ∠BAD =π3,E 是BC 边的中点.(1)试用 AB ⃗⃗⃗⃗⃗⃗ , AD ⃗⃗⃗⃗⃗⃗ 表示 AC ⃗⃗⃗⃗⃗⃗ , AE ⃗⃗⃗⃗⃗⃗ ; (2)求 AE ⃗⃗⃗⃗⃗⃗•EC⃗⃗⃗⃗⃗⃗ 的值.【正确答案】:【解析】:(1)根据向量的线性运算求解;(2)把 AE ⃗⃗⃗⃗⃗⃗ 和 AC ⃗⃗⃗⃗⃗⃗ 都用 AB ⃗⃗⃗⃗⃗⃗ , AD ⃗⃗⃗⃗⃗⃗ 表示,进而可求出 AE ⃗⃗⃗⃗⃗⃗•EC ⃗⃗⃗⃗⃗⃗ 的值.【解答】:解:(1)因为AB || CD ,且 |AB ⃗⃗⃗⃗⃗⃗|=2|DC ⃗⃗⃗⃗⃗⃗|=2 ,则 DC ⃗⃗⃗⃗⃗⃗=12AB ⃗⃗⃗⃗⃗⃗ , 所以 AC ⃗⃗⃗⃗⃗⃗=AD ⃗⃗⃗⃗⃗⃗+DC ⃗⃗⃗⃗⃗⃗=AD ⃗⃗⃗⃗⃗⃗+12AB ⃗⃗⃗⃗⃗⃗ ,因为E 是BC 边的中点,所以 AE ⃗⃗⃗⃗⃗⃗=AC ⃗⃗⃗⃗⃗⃗+CE ⃗⃗⃗⃗⃗⃗=AC ⃗⃗⃗⃗⃗⃗+12CB ⃗⃗⃗⃗⃗⃗=AC ⃗⃗⃗⃗⃗⃗+12(CD ⃗⃗⃗⃗⃗⃗+DA ⃗⃗⃗⃗⃗⃗+AB ⃗⃗⃗⃗⃗⃗) = AD ⃗⃗⃗⃗⃗⃗+12AB ⃗⃗⃗⃗⃗⃗+12(−12AB ⃗⃗⃗⃗⃗⃗−AD ⃗⃗⃗⃗⃗⃗+AB ⃗⃗⃗⃗⃗⃗)=12AD ⃗⃗⃗⃗⃗⃗+34AB ⃗⃗⃗⃗⃗⃗ .(2) EC ⃗⃗⃗⃗⃗⃗=AC ⃗⃗⃗⃗⃗⃗−AE ⃗⃗⃗⃗⃗⃗=(AD ⃗⃗⃗⃗⃗⃗+12AB ⃗⃗⃗⃗⃗⃗)−(12AD ⃗⃗⃗⃗⃗⃗+34AB ⃗⃗⃗⃗⃗⃗)=12AD ⃗⃗⃗⃗⃗⃗−14AB ⃗⃗⃗⃗⃗⃗ , 又因为 AD =AB−DC2cosπ3=1 ,所以 AE ⃗⃗⃗⃗⃗⃗⋅EC ⃗⃗⃗⃗⃗⃗=(12AD ⃗⃗⃗⃗⃗⃗+34AB ⃗⃗⃗⃗⃗⃗)⋅(12AD ⃗⃗⃗⃗⃗⃗−14AB ⃗⃗⃗⃗⃗⃗) = 14AD ⃗⃗⃗⃗⃗⃗2+14AB ⃗⃗⃗⃗⃗⃗⋅AD ⃗⃗⃗⃗⃗⃗−316AB ⃗⃗⃗⃗⃗⃗2= 14×12+12⋅1⋅2⋅cos60°−316×22=−14.【点评】:本题考查平面向量的线性运算和数量积运算,考查数学抽象和直观想象的核心素养,属于基础题.19.(问答题,12分)随着电子产品的盛行,近年来青少年的眼睛健康不容忽视.某地欲举行中学生“用眼卫生健康知识竞赛”活动,规定每所学校均由3名学生组成代表队参加团体赛.某校为了选拔出代表队成员,共有120名学生参加了校内选拔赛,其竞赛成绩的频率分布表如下:差(同一组中的数据用该组区间的中点值作代表);(2)已知竞赛成绩不低于90分的学生中男、女人数之比为1:2,若从竞赛成绩不低于90分的学生中随机选取3人组成代表队,求代表队中女生人数多于男生人数的概率.【正确答案】:【解析】:(1)利用频数的计算公式求a,b,由频率之和为1求b,利用平均数以及方差的计算公式求解平均数与方差即可;(2)先分别求出6人中,男生和女生的人数,然后用分类计数原理以及古典概型的概率公式求解即可.【解答】:解:(1)由题意可知,a=120×0.05=6,c=1-(0.1+0.2+0.35+0.05)=0.3,b=120×0.3=36,这120名学生的竞赛成绩平均数为55×0.1+65×0.2+75×0.35+85×0.3+0.05×95=75,方差为0.1×202+0.2×102+0.35×02+0.3×102+0.05×202=110;(2)竞赛成绩不低于90分的学生共有120×0.05=6人,因为竞赛成绩不低于90分的学生中男、女人数之比为1:2,故抽取的6人中有男生2人,女生4人,则抽取3人组成代表队,女生人数大于男生人数有2种抽法,① 女生2人,男生1人,则概率为P=C42C21C63 = 35;② 女生3人,则概率为P′=C43C62 = 15.故所求概率为35+15= 45.【点评】:本题考查了频率分布表的应用,频率之和为1的应用,频率、频数、样本容量之间关系的运用,古典概型概率公式的运用,考查了逻辑推理能力,属于基础题.20.(问答题,12分)设△ABC的内角A,B,C的对边分别为a,b,c,且a−ca+b +sinBsinA+sinC=0.(1)求C;(2)设点E,F是边AB(除端点外)上的动点,且AE<AF.若a=b=1,且∠ECF=π3,记∠ACE=θ,试用θ表示△CEF的面积S,并求S的最小值.【正确答案】:【解析】:(1)利用正弦定理将角化为边,由余弦定理的变形式求解即可得到答案;(2)利用正弦定理分别求出CE,CF,由三角形的面积公式表示出S,再利用三角恒等变换进行化简变形,然后由三角函数的性质求解最值即可.【解答】:解:(1)因为a−ca+b +sinBsinA+sinC=0,由正弦定理可得,a−ca+b +ba+c=0,化简整理可得a2+b2-c2=-ab,由余弦定理的变形式可得,cosC=a 2+b2−c22ab=−12,又0<C<π,故C=2π3;(2)因为a=b=1,所以△ABC为等腰三角形,则A=B=π−C2=π6,作出图象如图所示,因为∠ACE=θ,则∠AEC=π-A-∠ACE= 5π6−θ,由正弦定理可得,ACsin∠AEC =CEsinA=1sin(5π6−θ),所以CE=12sin(5π6−θ),因为∠FCB=C-∠ECF-∠ACE= π3−θ,则∠CFB= π2+θ,由正弦定理可得,BCsin∠CFB =CFsinB=1sin(π2+θ),所以CF=12sin(π2+θ),故△CEF的面积S= 12•CE•CF•sin∠ECF= √316×1cosθsin(π6+θ)= √316×112cos2θ+√32sinθcosθ,= √316×114(cos2θ+1)+√34sin2θ= √316×112sin(2θ+π6)+14= √38sin(2θ+π6)+4,所以当2θ+π6=π2,即θ=π6时,S取得最小值为√312.【点评】:本题考查了解三角形问题,主要考查了正弦定理和余弦定理的应用,三角恒等变换的应用,三角形面积公式的应用,考查了逻辑推理能力与化简运算能力,属于中档题.21.(问答题,12分)如图,已知四边形ABCD为矩形,且AB=2AD,点E为AB的中点,将△ADE沿折痕DE折成△PDE.(1)若点M为PC的中点,证明:BM || 平面PDE;(2)若二面角D-PE-C为直二面角,求直线PC与平面DEC所成的角的正弦值.【正确答案】:【解析】:(1)取PD中点N,证明四边形MNEB为平行四边形,证出NE || BM,利用线面平行判定即可;(2)没有平面DEC的垂线,所以等体积转化,求出点P到面DEC的距离h,求解.利用线面角的正弦值为ℎPC【解答】:解:(1)如图,取PD中点为N,连接NM,NE,∵M,N分别为PC,PD的中点,∴MN || DC,MN= 1DC,2AB,∵E为AB的中点,∴EB= 12∵四边形ABCD为矩形,∴AB || CD,AB=CD,∴MN || BE,MN=BE,∴四边形MNEB为平行四边形,∴NE || BM,∵NE⊂平面PED,BM⊄平面PED,∴BM || 平面PDE.(2)如图,由二面角D-PE-C为直二面角,可知平面DPE⊥平面CPE,∵平面DPE∩平面CPE=PE,DP⊥PE,DP⊂平面DPE,∴DP⊥平面CPE,∵PC⊂平面CPE,∴DP⊥PC,∵DC=2,PD=1,∴ PC=√22−12=√3,∵PE=1,EC= √12+12=√2,∴PC2=PE2+EC2,∴PE⊥EC,∵DE= √12+12=√2,EC= √12+12=√2,DC=2,∴DC2=DE2+EC2,∴DE⊥EC,设点P到平面DEC的距离为h,由题可知,V P-DCE=V D-PCE,即13•S DEC•ℎ=13•S PEC•DP,即13×12×DE×EC×ℎ=13×12×EC×PE×DP,即13×12×√2×√2×ℎ=13×12×√2×1×1,解得ℎ=√22,∴直线PC与平面DEC所成的角的正弦值为ℎPC =√22√3= √66.【点评】:本题考查线面平行的证明和线面成角,属于中档题.22.(问答题,12分)设函数g(x)的定义域为D,若x0∈D,且g(x0)=kx0(k∈Z),则称实数x0为g(x)的“k级好点”.已知函数f(x)=ln(e x+a).(其中常数e是自然对数的底数,e=2.71828⋅⋅⋅)(1)当a∈R时,讨论f(x)的“2级好点”个数;(2)若实数m为f(x)的“-1级好点”,证明:e2m+e−2m+m22>(a+1)m+1.【正确答案】:【解析】:(1)利用“k级好点”的概念,将问题转化为函数零点个数问题,然后根据零点的个数确定f(x)的“2级好点”个数即可;(2)根据条件,可知e2m+e−2m+m22>(a+1)m+1等价于证明a2+2+m22>(a+1)m+1成立,利用分析法和放缩法证明不等式即可.【解答】:解:(1)f(x)的“2级好点”个数等价于方程“f(x)=2x”的解的个数,即讨论方程ln(e x+a)=2x的解的个数.方程ln(e x+a)=2x等价于a=e2x-e x,令t=e x,等价于讨论方程a=t2-t在(0,+∞)上的解的个数.作出函数y=t2-t,t∈(0,+∞)的图象,}∪[0,+∞)时,有1个“2级好点”;根据图象,可知当a∈{−14时,没有“2级好点”;当a<−14当a∈(−1,0)时,有2个“2级好点”;4(2)由条件有f(m)=-m,即ln(e m+a)=-m,a=e-m-e m,所以e2m+e-2m=a2+2;>(a+1)m+1成立,等价于证明(a-m)2+a2-2m+2>0;故等价于证明a2+2+m22因为a2-2m+2=e2m+e-2m-2m,又由不等式e x>x,可得a2-2m+2>0;又(a-m)2≥0,所以(a-m)2+a2-2m+2>0成立,故原不等式成立.【点评】:本题以新概念为背景进行命题,重点考查函数零点、分析法证明不等式,属中档题.。
联合校2020-2021学年高二数学上学期第一次月考试题
联合校2020-2021学年高二数学上学期第一次月考试题考试时间:120分钟试卷满分:150分学校:___________姓名:___________班级:___________考号:___________一、选择题(每题5分,满分60分)1.已知向量,,则()A. (-1,1,5)B. (-3,5,-3)C. (3,-5,3)D. (1,-1,-5)2.点到原点的距离为()A. 1B. 3C. 5D. 93.已如向量,且与互相垂直,则k=A. B. C. D.4.若向量,且与的夹角余弦为,则等于()A. B. C. 或 D. 25.如图,长方体ABCD - A1B1C1D1中,,,那么异面直线与所成角的余弦值是()A. B. C. D.6.已知正四棱柱ABCD - A1B1C1D1,设直线AB1与平面所成的角为,直线CD1与直线A1C1所成的角为,则()A. B. C. D.7.如图,已知空间四边形OABC,其对角线为OB、AC,M、N分别是对边OB、AC的中点,点G在线段MN上,,现用基向量表示向量,设,则的值分别是()A. B.C. D.8.如图,60°的二面角的棱上有A、B两点,直线AC、BD分别在这个二面角的两个半平面内,且都垂直于AB.已知,则CD的长为A. B. 7 C. D. 99.在正方体ABCD﹣A1B1C1D1中,E是BB1的中点,若,则点B到平面ACE的距离等于()A. B. C. D. 310.如图,在三棱柱ABC - A1B1C1中,M为A1C1的中点,若,则下列向量与相等的是()A. B.C. D.11.如图,在正方体ABCD-A1B1C1D1中,M、N分别为AC,A1B的中点,则下列说法错误的是()A. MN∥平面ADD1A1B. MN⊥ABC. 直线MN与平面ABCD所成角为45°D. 异面直线MN与DD1所成角为60°12.将直角三角形ABC沿斜边上的高AD折成120°的二面角,已知直角边,,那么下面说法正确的是()A. 平面ABC⊥平面ACDB. 四面体的体积是C. 二面角的正切值是D. BC与平面ACD所成角的正弦值是二、填空题(每题5分,满分20分)13.若平面的一个法向量为,直线l的一个方向向量为,则l与所成角的正弦值为________.14.若同方向的单位向量是________________15.在空间直角坐标系O-xyz中,设点M是点关于坐标平面xOy的对称点,点关于x轴对称点Q,则线段MQ 的长度等于__________.16.已知平行六面体ABCD﹣A1B1C1D1所有棱长均为1,∠BAD=∠BAA1=∠DAA1=60°,则AC1的长为.三解答题(共6个解答题,17题10分,其余每题12分)17.如图,已知三棱锥O-ABC的侧棱OA,OB,OC两两垂直,且OA=1,OB=OC=2,E是OC的中点.(1)求异面直线BE与AC所成角的余弦值;(2)求直线BE和平面ABC的所成角的正弦值.18.如图.在四棱锥P-ABCD中,平面ABCD,且,,,,,.(1)求异面直线PC与AD所成角的余弦(2)求点A到平面PCD的距离.19.如图,已知三棱锥的侧棱两两垂直,且,,是的中点。
广东省中山市2020至2021学年度第一学期期末统一考试高二数学试卷真题
xyO'()y f x =3 4-2 -4广东省中山市2020-2021学年度第一学期期末统一考试高二数学试卷(理科)本试卷分第I 卷(选择题)、第II 卷(非选择题)两部分。
共150分,考试时间120分钟。
第I 卷(选择题 共40分)注意事项:1、答第I 卷前,考生务必将自己的姓名、统考考号、座位号、考试科目用铅笔涂写在答题卡上。
2、每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题上。
3、不可以使用计算器。
4、考试结束,将答题卡交回,试卷不用上交。
一、选择题(本大题共8小题,每小题5分,共40分. 在每小题给出的四个备选项中,只有一项是符合题目要求的.) 1.不等式25x x ≥的解集是 A .[0,5]B .[5,)+∞C .(,0]-∞D .(,0][5,)-∞+∞2.已知一个数列的前四项为22221357,,,24816--,则它的一个通项公式为 A .221(1)(2)nn n -- B .1221(1)(2)n n n --- C .221(1)2nn n -- D .1221(1)2n nn --- 3.椭圆221625400x y +=的离心率为A .35B .45C .34D .16254.函数f (x )的导函数'()f x 的图象如右图所示, 则下列说法正确的是A .函数()f x 在(2,3)-内单调递增B .函数()f x 在(4,0)-内单调递减C .函数()f x 在3x =处取极大值D .函数()f x 在4x =处取极小值5.等差数列{}n a 的前n 项和12...n n S a a a =+++, 若1031S =,20122S =,则40S =A .182B .242C .273D .4846.长为3.5m 的木棒斜靠在石堤旁,木棒的一端在离堤足1.4m 的地面上,另一端在沿堤上2.8m 的地方,堤对地面的倾斜角为α,则坡度值tan α等于[3,)+∞(1,2]分)16.(13分)已知某精密仪器生产总成本C (单位:万元)与月产量x (单位:台)的函数关系为1004C x =+,月最高产量为150台,出厂单价p (单位:万元)与月产量x 的函数关系为21125801800p x x =+-. (1)求月利润L 与产量x 的函数关系式()L x ;(2)求月产量x 为何值时,月利润()L x 最大?最大月利润是多少?17.(13分)第四届中国国际航空航天博览会于2010年11月在珠海举行,一次飞行表演中,一架直升飞机在海拔800m 的高度飞行,从空中A 处测出前下方海岛两侧海岸P 、Q 处的俯角分别是45°和30°(如右图所示). (1)试计算这个海岛的宽度PQ .(2)若两观测者甲、乙分别在海岛两侧海岸P 、Q 处同时测得飞机的仰角为45和30,他们估计P 、Q 两处距离大约为600m ,由此试估算出观测者甲(在P 处)到飞机的直线距离.18.(14分)如图,四棱锥P ABCD -的底面ABCD 为一直角梯形,其中,BA AD CD AD ⊥⊥,2,CD AD AB PA ==⊥底面ABCD ,E 是PC 的中点.(1)试用,,AD AP AB 表示BE ,并判断直线BE 与平面PAD 的位置关系; (2)若BE ⊥平面PCD ,求异面直线PD 与BC 所成角的余弦值.19.(14分)已知函数3221()(2)3f x x ax a a x =-++,a R ∈.(1)当2a =-时,求()f x 在闭区间[]1,1-上的最大值与最小值;(2)若线段AB :()2302y x x =+≤≤与导函数()y f x '=的图像只有一个交点,且交点在线段AB 的内部,试求a 的取值范围.20.(13分)过直角坐标平面xOy 中的抛物线()220y px p =>的焦点F 作一条倾斜角为4π的直线与抛物线相交于A 、B 两点.(1)求直线AB 的方程;(2)试用p 表示A 、B 之间的距离; (3)证明:AOB ∠的大小是与p 无关的定值. 参考公式:()()()2222224A A BB A B A B A B x y xy x x x x p x x p ⎡⎤++=+++⎣⎦中山市高二级2020-2021学年度第一学期期末统一考试数学试卷(理科)答案一、选择题:DDAB DA C B二、填空题:9. -79; 10. 22188y x -=; 11. -3; 12. 222a b r +=;13. 83; 14. 613t t ++∆,61t +.三、解答题:15. 解:(1)由题可知,8252a a a =+, ……(1分) 即741112a q a q a q =+, ……(3分)由于10a q ≠,化简得6321q q =+,即63210q q --=, ……(4分)121q -,81q -,[1(11q q----.能构成等差数列sin(4530)sin 45cos30cos45sin30==︒-︒︒︒-︒︒xzy18. 解:设,AB a PA b ==,建立如图所示空间直角坐标系,(0,0,0),(,0,0)A B a ,(0,0,)P b ,(2,2,0),(0,2,0)C a a D a ,(,,)2bE a a . ……(2分)(1)(0,,)2bBE a =,(0,2,0),(0,0,)AD a AP b ==,所以1122BE AD AP =+, ……(5分) BE ⊄平面PAD ,//BE ∴平面PAD . ……(7分)(2)BE ⊥平面PCD ,BE PC ∴⊥,即0BE PC ⋅=.(2,2,)PC a a b =-,22202b BE PC a ∴⋅=-=,即2b a =. ……(10分)(0,2,2),(,2,0)PD a a BC a a =-=, ……(11分)2410cos ,5225a PD BC a a<>==⋅, 所以异面直线PD 与BC 所成角的余弦值为105. ……(14分)19. 解:(1)当2a =-时,321()23f x x x =+. ……(1分)求导得2()4(4)f x x x x x '=+=+. ……(2分) 令()0f x '=,解得:4x =-或0x =. ……(3分)列表如下: ……(6分)x-1 (-1,0) 0 (0,1) 1 ()f x '- 0 +()f x53 ↘↗73所以,()f x 在闭区间[]1,1-上的最大值是73,最小值是0. ……(7分) (2)22()22y f x x ax a a '==-++. ……(8分) 联立方程组2222,2 3.y x ax a a y x ⎧=-++⎨=+⎩……(9分)得()2221230.x a x a a -+++-= ……(10分)设22()2(1)23g x x a x a a =-+++-,则方程()0g x =在区间()0,2内只有一根, 相当于(0)(2)0g g ⋅<,即()()2223230,a a a a +-⋅--< ……(12分)。
2020-2021学年高二数学期末复习题选择性必修第一册第一章空间向量与立体几何(含答案)
2020-2021学年高二数学人教A 版(2019)期末复习题第一章空间向量与立体几何一、选择题1.已知空间点()()1,,5,2,7,2A a B a ---,则AB 的最小值是( )A .B .C .D .2.若向量(,4,5),(1,2,2)a x b =--=-,且a 与b 的夹角的余弦值为,则实数x 的值为( ) A.-3 B.11 C.3 D.-3或113.已知(2,1,4),(1,1,2),(7,5,)a b c m =-=--=,若,,a b c 共面,则实数m 的值为( ) A.607B.14C.12D.6274.在空间直角坐标系中, 点()3,4,5P 与点(3,4,5)Q --的位置关系是( ) A.关于x 轴对称B.关于xOy 平面对称C.关于坐标原点对称D.以上都不对二、填空题5.如图,已知正方体1111ABCD A B C D -棱长为4,点H 在棱1AA 上,且11HA =,在侧面11BCC B 内作边长为1的正方形1,EFGC P 是侧面11BCC B 内一动点,且点P 到平面11CDD C 距离等于线段PF 的长,则当点P 运动时,2HP 的范围是__________.6.若(2,1,2),(6,3,2)a b =-=-,且()a b a λ+⊥,则实数λ= .7.如图,在底面是直角梯形的四棱锥P ABCD -中,侧棱PA ⊥底面,,90,2,1ABCD BCAD ABC PA AB BC AD ∠=︒====,则AD 到平面PBC 的距离为_______.三、多项选择题8.已知空间中三点()()()0,1,0,2,2,0,1,3,1A B C -,则下列说法不正确的是( )A.AB 与AC 是共线向量B.与AB 同向的单位向量是⎫⎪⎪⎝⎭C.AB 与BCD.平面ABC 的一个法向量是()1,2,5-9.已知点P 是平行四边形ABCD 所在的平面外一点,如果(2,1,4),(4,2,0),(1,2,1)AB AD AP =--==--,则下列结论正确的是( )A.AP AB ⊥B.AP AD ⊥C.AP 是平面ABCD 的法向量D.APBD10.设,,a b c 是任意的非零空间向量,且两两不共线,则下列结论中正确的有( ) A.()()0⋅-⋅=a b c c a b B.||||||-<-a b a bC.()()⋅-⋅b a c c a b 不与c 垂直D.22(32)(32)9||4||+⋅-=-a b a b a b11.设,a b 为空间中的任意两个非零向量,下列各式中正确的有( ) A.22||=a a B.2⋅=a b ba aC.222()⋅=⋅a b a bD.222()2-=-⋅+a b a a b b四、解答题12.ABC △的内角,,A B C 对的边为,,a b c ,向量(,3)m a b =与(cos ,sin )n A B =平行. (1)求角A ;(2)若2,a =求b c +的取值范围.13.如图,在边长为2的正三角形ABC 中,点,,D E G 分别是边,,AB AC BC 的中点,连接DE ,连接AG 交DE 于点F .现将ADE 沿DE 折叠至1A DE 的位置,使得平面1A DE ⊥平面BCED ,连接1,AG EG .求点B 到平面1A EG 的距离.14.如图,在三棱柱111ABC A B C -中,已知四边形11AA C C 为矩形,16AA =,4AB AC ==,160BAC BAA ∠=∠=︒,1A AC ∠的角平分线AD 交CC 于D .(1)求证:平面BAD ⊥平面11AA C C ; (2)求二面角111A B C A -的余弦值.15.如图,在棱长为2的正方体1111ABCD A B C D -中,E 为1BB 的中点.(1)求1D E 的长;(2)求异面直线AE 与1BC 所成的角的余弦值.16.如图,在三棱锥S ABC -中,侧面SAB 与侧面SAC 均为等边三角形,90BAC ∠=︒,O 为BC 中点.(1)证明:SO ⊥平面ABC ; (2)求二面角A SC B --的余弦值参考答案1.答案:C2.答案:A3.答案:B4.答案:A 点()3,4,5P 与点()3,4,5Q --的横坐标相同,而纵、竖坐标分别互为相反数,所以两点关于x 轴对称.5.答案:11322,4⎡⎤⎢⎥⎣⎦ 根据题意,以D 为原点建立空间直角坐标系如下图所示:作'HM BB ⊥交'BB 于M ,连接PM 则HM PM ⊥作'PN CC ⊥交'CC 于N,则PN 即为点P 到平面11CDD C 距离 设(),4,P x z ,则()()()1,4,3,4,4,3,0,4,F M N z ()04,04x z ≤≤≤≤ 由题意点P 到平面11CDD C 距离等于线段PF 的长 所以PN PF =由两点间距离公式可得x =化简得()2213x z -=-,则210x -≥解不等式可得12x ≥综上可得142x ≤≤ 则在Rt HMP ∆中222HP HM MP =+()()222443x z =+-+-()224421x x =+-+-()2322x =-+142x ⎛⎫≤≤ ⎪⎝⎭所以211322,4HP ⎡⎤∈⎢⎥⎣⎦ 答案: 11322,4⎡⎤⎢⎥⎣⎦6.答案:919-7.2分析知,,AB AD AP 两两垂直,∴可建立以A 为坐标原点,,,AB AD AP 所在的直线分别为x 轴、y 轴、z 轴的空间直角坐标系(如图所示),则()()()()()()0,0,0,2,0,0,2,2,0,0,0,2,2,0,2,0,2,0A B C P PB BC =-=,设平面PBC 的法向量为(),,a b c =n ,则0PB BC ⎧⋅=⎪⎨⋅=⎪⎩n n ,即22020a c b -=⎧⎨=⎩,取1a =,则0,1b c ==,则()1,0,1=n 是平面PBC 的一个法向量.又(2,0,0),AB AD =平面,PBC ∴所求距离为||||AB ⋅=n n . 8.答案:ABC解析:对于A,(2,1,0),(1,2,1)AB AC ==-,所以不存在实数λ,使得AB AC λ=,则AB 与AC 不是共线向量,所以A 错误;对于B,因为(2,1,0)AB =,所以与AB同向的单位向量为⎫⎪⎪⎝⎭,所以B 错误;对于C,向量(2,1,0),(3,1,1)AB BC ==-,所以cos ,||||AB BC AB BC AB BC ⋅〈〉==-,所以C 错误;对于D 项,设平面ABC 的一个法向量是(,,),(2,1,0),(1,2,1)x y z AB AC ===-n ,所以0,0,AB AC ⎧⋅=⎪⎨⋅=⎪⎩n n 则20,20,x y x y z +=⎧⎨-++=⎩令1x =,则平面ABC 的一个法向量为(1,2,5)=-n ,所以D 正确.故选ABC. 9.答案:ABC 解析:0,0,,AB AP AD AP AB AP AD AP ⋅=⋅=∴⊥⊥,则选项A,B 正确.又AB 与AD 不平行,AP∴是平面ABCD 的法向量,则选项C 正确.(2,3,4),(1,2,1),BD AD AB AP BD =-==--∴与AP 不平行,故选项D 错误. 10.答案:BD解析:根据空间向量数量积的定义及性质,可知⋅a b 和⋅c a 是实数,而 c 与 b 不共线,故()⋅a b c 与()⋅c a b 一定不相等,故A 错误;因为2[()()]()()()⋅-⋅⋅=⋅-⋅⋅b a c c a b c b a c c a b c ,所以当⊥a b ,且⊥a c 或⊥b c 时,[()()]0⋅-⋅⋅=b a c c a b c ,即()()⋅-⋅b a c c a b 与 c 垂直,故C 错误;易知BD 正确.故选BD. 11.答案:AD解析:由数量积的性质和运算律可知AD 是正确的.12.答案:(1)由于(,3)m a=与(cos sin )n A B =+平行,∴sin cos 0a B A =,∴sin sin cos A B B A ,∵sin 0B ≠,∴tan A , ∵0πA <<,∴π3A =.(2)∵π2,3a A ==,∴22sin R A == ∴2ππ2(sin sin )2sin sin 4sin 36b c R B C R B B B ⎛⎫⎛⎫⎛⎫+=+=+-=+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭, ∵2πππ5π0,3666B B <<<+<, ∴1πsin 126B ⎛⎫<+≤ ⎪⎝⎭, ∴24b c <+≤. 解析:13.答案:连接BE .以F 为坐标原点,1,,FG FE FA 所在直线分别为,,x y z 轴,建立空间直角坐标系,如图所示,则111,0,,0,,0,2B A E G ⎫⎛⎫⎛⎫-⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 1331331,,0,0,,,,,0222EB EA EG ⎛⎫⎛⎫⎛⎫∴=-=-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.设平面1A EG 的法向量为(,,)x y z =n ,则11023102EA y n EG x y ⎧⋅=-=⎪⎪⎨⎪⋅=-=⎪⎩n ,取x =则3,y z ==,则=n 是平面1A EG 的一个法向量,∴点B 到平面1A EG 的距离||||EB d ⋅===n n 解析:14.答案:解:(1)如图,过点D 作//DE AC 交1AA 于E ,连接CE BE ,, 设AD CE O ⋂=,连接BO ,1AC AA ⊥,DE AE ∴⊥,又AD 为1A AC ∠的角平分线,∴四边形AEDC 为正方形, CE AD ∴⊥,又AC AE =,BAC BAE ∠=∠,BA BA =,BAC BAE ∴≅△△,BC BE ∴=,又O 为CE 的中点,CE BO ∴⊥, 又AD ,BO ⊂平面BAD ,AD BO O ⋂=,CE ∴⊥平面BAD .又CE ⊂平面11AA C C ,∴平面BAD ⊥平面11AA C C . (2)在ABC △中,4AB AC ==,60BAC ∠=︒,4BC ∴=,在RtBOC △中,12CO CE ==BO ∴=又4AB =,12AO AD ==222BO AO AB +=,BO AD ∴⊥,又BO CE ⊥, AD CE O ⋂=,AD ,CE ⊂平面11AA C C ,BO ∴⊥平面11AA C C ,故建立如图空间直角坐标系0xyz -,则(2,2,0)A -,1(2,4,0)A ,1(2,4,0)C -,1B ,11C B ∴=,1(4,6,0)AC =-,11(4,0,0)C A =,设平面11AB C 的一个法向量为()111,,m x y z =, 则111m C B m AC ⎧⊥⎪⎨⊥⎪⎩,11111460220x y x y -+=⎧⎪∴⎨++=⎪⎩, 令16x =,得(6,4,m =-,设平面111A B C 的一个法向量为()222,,n x y z =, 则1111n C B n C A ⊥⎧⎨⊥⎩,222240220x x y =⎧⎪∴⎨++=⎪⎩,令2y =,得(0,2,1)n =-,92cos ,||||102m n m n mn ⋅∴<>==⋅⋅,故二面角111A B C A --解析:15.答案:(1)以AD ,AB ,1AA 的正方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系, 则()12,0,2D ,()0,2,1E ,可得1(03D E ==, 所以1D E 的长为3.(2)由(1)的坐标系,可得()0,0,0A ,()0,2,1E ,()0,2,0B ,()12,2,2C ,所以()0,2,1AE =,()12,0,2BC =,设异面直线AE 与1BC 所成的角为θ,所以111cos cos ,5AE BC AEBC AE BC θ⋅====, 即异面直线AE 与1BC. 解析:16.答案:(1)由题设AB AC SB SC SA ====,连结,OA ABC △为等腰直角三角形,所以OA OB OC ===,且AO BC ⊥,又SBC △为等腰三角形,故SO BC ⊥,且SO =,从而222OA SO SA +=.所以SOA △为直角三角形,SO AO ⊥.又AO BO O =.所以SO ⊥平面ABC .(2)取SC 中点M ,连结,AM OM ,由(1)知,SO OC SA AC ==,得,OM SC AM SC ⊥⊥. OMA ∠∴为二面角A SC B --的平面角.由AO BC AO SO SO BC O ⊥⊥=,,得AO ⊥平面SBC .所以AO OM ⊥,又AM =,故sin AO AMO AM ∠===所以二面角A SC B --。
2020-2021学年广东省深圳市高二(下)期末数学模拟试卷
2020-2021学年广东省深圳市高二(下)期末数学模拟试卷试题数:22,总分:1501.(单选题,5分)已知集合A={x∈Z|x<5},B={y|y=2x},则A∩B=()A.(-∞,5)B.(0,5)C.{1,2,3,4}D.{0,1,2,3,4}2.(单选题,5分)已知复数z满足z(1+i)=2i(i为虚数单位),则z的模为()A. √2B. √3C.2D.33.(单选题,5分)安排4名记者到3家公司做采访,每位记者去一家公司,每家公司至少安排一名记者,不同的安排方法共有()A.16种B.18种C.36种D.81种4.(单选题,5分)半径为√2的球O中有一内接圆柱,当该圆柱的侧面积取得最大值时,则圆柱的体积为()A.πB.2πC.4πD.8π5.(单选题,5分)某艺术机构随机调查了50名学员,其中报名插花艺术或瑜伽的学员共有30名,报名插花艺术的学员共有15名,报名瑜伽的学员共有25名,报名插花艺术且瑜伽的学员人数与该艺术机构学员的总数比值的估计值为()A.0.1B.0.15C.0.2D.0.256.(单选题,5分)为了衡量星星的明暗程度,公元前二世纪古希腊天文学家喜帕恰斯提出了星等这个概念.星等的数值越小,星星就越亮.1850年,由于光度计在天体光度测量的应用,英国天文学家普森又提出了亮度的概念,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 1-m 2=2.5(lgE 2-lgE 1),其中星等为m k 的星的亮度为E k (k=1,2).已知小熊座的“北极星”与大熊座的“玉衡”的星等分别为2.02和1.77,且当|x|较小时,10x ≈1+2.3x+2.7x 2,则“玉衡”与“北极星”的亮度之比大约为( ) A.1.28 B.1.26 C.1.24 D.1.227.(单选题,5分)已知直角梯形ABCD ,A=90°,AB || CD ,AD=DC= 12 AB=1,P 是BC 边上的一点,则 AP ⃗⃗⃗⃗⃗ •PC ⃗⃗⃗⃗⃗ 的取值范围为( ) A.[-1,1] B.[0,2] C.[-2,2] D.[-2,0]8.(单选题,5分)设函数 f (x )=xln(x +√1+x 2) ,则不等式f (2x )-f (3x-2)>0的解集为( ) A. (−25,0) B.(0,2) C. (25,2)D. (−∞,−2)∪(25,+∞)9.(多选题,5分)已知圆锥曲线C 的一个焦点为F (0,1),则C 的方程可以为( ) A.y 2=4x B. y =14x 2C. x 2m−1+y 2m =1(0<m <1)D. x 21−m+y 2m =1(0<m <1)10.(多选题,5分)已知函数 f (x )=Asin (ωx +φ)(x ∈R ,A >0,ω>0,|φ|<π2) 的部分图象如图所示,则下列说法正确的是( )A.直线x=2π3是f(x)图象的一条对称轴B.f(x)图象的对称中心为(−π12+kπ,0),k∈ZC.f(x)在区间[−π3,π6]上单调递增D.将f(x)的图象向左平移π12个单位长度后,可得到一个奇函数的图象11.(多选题,5分)已知a>0,b>0,则下列结论正确的是()A.若a>b,则a3+b3>a2b+ab2B.若a+b2=1,则2a−b≥12C.若log a2020>log b2020>0,则e a−b<abD.若a>1,则a+1a−1≥312.(多选题,5分)如图,正六棱柱ABCDEF-A'B'C'D'E'F'的所有棱长均为1,点M为对角线A'D上的动点,设过M且与A'D垂直的平面截此正六棱柱所得截面为σ,则下列说法正确的有()A.σ可以为△AB'F'B.σ可以为四边形C.σ可以为五边形D.σ的面积最大值为√15213.(填空题,5分)已知等差数列{a n},a1+a5=a2+3,则S7=___ .14.(填空题,5分)椭圆C:x2a2+y2b2=1(a>b>0)的一个焦点是圆M:(x-3)2+y2=1的圆心,且C的长轴长为10,则该椭圆的离心率等于___ .15.(填空题,5分)据气象台监测,在海滨城市A附近的海面有一台风.台风中心位于A东偏南45°方向、距离城市200√3km的海面P处,并以25km/h的速度向西偏北15°方向移动,则台风中心___ 小时后距离城市A最近.如果台风侵袭范围为圆形区域,半径150km,台风移动的方向与速度不变,那么该城市___ (填“会”或“不会”)受台风侵袭.16.(填空题,5分)3σ准则又称为拉依达准则,它是先假设一组检测数据只含有随机误差,对其进行计算处理得到标准偏差,按一定概率确定一个区间,认为凡超过这个区间的误差,就不属于随机误差而是粗大误差,含有该误差的数据应予以剔除.对于正态分布的随机误差,落在±3σ之外的概率只有0.27%,它在有限次测量中发生的可能性很小,故存在3σ准则.3σ准则是最常用也是最简单的粗大误差判别准则.为估计某精密仪器的测量误差,取其n次结果的平均值得εn~N(0,1n2),为误差使εn在(-0.3,0.3)的概率不小于0.9973,至少要测量___ 次.17.(问答题,10分)在① sinA=√2sinB;② tanB=13;③ −√2cosC(acosB+ bcosA)=c这三个条件中任选一个,补充在下列问题中并解答.问题:在△ABC中,角A、B、C所对的边分别是a、b、c,b 2+c2−a2bccosB=4√23,且____.(1)求tanA;(2)若△ABC的最大边长为4,求△ABC的面积.18.(问答题,12分)已知等比数列{a n}的前n项和为S n,且a n+1-S n=2,其中n∈N*.(1)求数列{a n}的通项公式;(2)在a n与a n+1之间插入n个数,使这n+2个数组成一个公差为d n的等差数列,求数列{1d n}前n+1项的和T n+1.19.(问答题,12分)2020年5月14日,中国经济“双循环”首次提出——“要深化供给侧结构性改革,充分发挥中国超大规模市场优势和内需潜力,构建国内国际双循环相互促进的新发展格局”.为了解国内不同年龄段的民众服装消费的基本情况,某服装贸易公司从其网站数据库中随机抽取了1000条客户信息进行分析,这些客户一年的服装消费金额数据如表所示.老年50 125 105 (1)若从这1000位客户中随机选一人,请估算该客户的消费期望;(2)把一年服装消费金额满8千元称为“高消费”,否则称为“低消费”.根据所给数据,完成下面的2×2列联表,判断能否有99%的把握认为服装消费的高低与年龄有关?低消费高消费合计年轻人中老年人合计附表及公式:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.P(K2≥k0)0.05 0.010 0.005 0.001 k0 3.841 6.635 7.879 10.82820.(问答题,12分)如图,在四面体ABCD中,△BCD为等边三角形,点M,N分别为棱BD,CD的中点,且AD=AM=BM.(1)证明:AN⊥BD;(2)若二面角A-BD-C的大小为2π3,求二面角A-MN-D的余弦值.21.(问答题,12分)已知抛物线C:y2=2px(p>0),动直线l经过C的焦点F,且与C交于A、B两点.当F为线段AB中点时,|AB|=4.(1)求抛物线方程;(2)问:在x轴上是否存在点Q(异于点F),满足|QB||QA|=|BF||AF|?若存在,求出点Q的坐标;若不存在,请说明理由.22.(问答题,12分)设函数f(x)=sin(x−π4 )√2e x −x,x∈[−π4,π4].(1)求f(x)的极大值点;(2)若f(x1)=f(x2),且x1≠x2,求证:x1+x2<0.2020-2021学年广东省深圳市高二(下)期末数学模拟试卷参考答案与试题解析试题数:22,总分:1501.(单选题,5分)已知集合A={x∈Z|x<5},B={y|y=2x},则A∩B=()A.(-∞,5)B.(0,5)C.{1,2,3,4}D.{0,1,2,3,4}【正确答案】:C【解析】:利用交集定义直接求解.【解答】:解:∵集合A={x∈Z|x<5},B={y|y=2x}={y|y>0},∴A∩B={1,2,3,4}.故选:C.【点评】:本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.2.(单选题,5分)已知复数z满足z(1+i)=2i(i为虚数单位),则z的模为()A. √2B. √3C.2D.3【正确答案】:A【解析】:利用复数模的运算性质求解即可.【解答】:解:因为z(1+i)=2i,则|z||1+i|=|2i|,即|z|• √2 =2,=√2.所以|z|=√2故选:A.【点评】:本题考查了复数模的求解,解题的关键是掌握复数模的运算性质,属于基础题.3.(单选题,5分)安排4名记者到3家公司做采访,每位记者去一家公司,每家公司至少安排一名记者,不同的安排方法共有()A.16种B.18种C.36种D.81种【正确答案】:C【解析】:根据题意,分2步进行分析:① 将4名记者分为3组,② 将分好后的三组全排列,安排到三家公司,由分步计数原理计算可得答案.【解答】:解:根据题意,分2步进行分析:① 将4名记者分为3组,有C42=6种分组方法,② 将分好后的三组全排列,安排到三家公司,有A33=6种安排方法,则有6×6=36种安排方法,故选:C.【点评】:本题考查排列组合的应用,涉及分步计数原理的应用,属于基础题.4.(单选题,5分)半径为√2的球O中有一内接圆柱,当该圆柱的侧面积取得最大值时,则圆柱的体积为()A.πB.2πC.4πD.8π【正确答案】:B【解析】:根据圆柱的底面为球的截面,由球的截面性质得出圆柱的高h、底面半径r与球的半径R之间的关系,用h和r表示出圆柱的侧面积,利用基本不等式求最值,再计算对应圆柱的体积.【解答】:解:画出球内接圆柱的轴截面,如图所示:设圆柱的高为h,底面半径为r,侧面积为S,)2+r2=R2,则(ℎ2解得h=2 √R2−r2.=2πR2,所以圆柱的侧面积为S=2πrh=4πr• √R2−r2=4π √r2(R2−r2)≤4π• √(r2+R2−r2)24R=1,高为h= √2 R=2.当且仅当r2=R2-r2时取等号,此时球内接圆柱底面半径为r= √22圆柱的体积为:V=πr2h=π•12•2=2π.故选:B.【点评】:本题考查了球与圆柱的组合体应用问题,也考查了利用基本不等式求最值问题,是中档题.5.(单选题,5分)某艺术机构随机调查了50名学员,其中报名插花艺术或瑜伽的学员共有30名,报名插花艺术的学员共有15名,报名瑜伽的学员共有25名,报名插花艺术且瑜伽的学员人数与该艺术机构学员的总数比值的估计值为()A.0.1B.0.15C.0.2D.0.25【正确答案】:C【解析】:由集合原理先求出报名插花艺术且瑜伽的学员,即可求得答案.【解答】:解:由题意根据集合原理可知,报名插花艺术且瑜伽的学员有15+25-30=10名,10÷50=0.2,所以报名插花艺术且瑜伽的学员人数与该艺术机构学员的总数比值的估计值为0.2.故选:C.【点评】:本题考查了用样本数字特征估计总体的数字特征的应用,考查了逻辑推理能力,属于基础题.6.(单选题,5分)为了衡量星星的明暗程度,公元前二世纪古希腊天文学家喜帕恰斯提出了星等这个概念.星等的数值越小,星星就越亮.1850年,由于光度计在天体光度测量的应用,英国天文学家普森又提出了亮度的概念,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 1-m 2=2.5(lgE 2-lgE 1),其中星等为m k 的星的亮度为E k (k=1,2).已知小熊座的“北极星”与大熊座的“玉衡”的星等分别为2.02和1.77,且当|x|较小时,10x ≈1+2.3x+2.7x 2,则“玉衡”与“北极星”的亮度之比大约为( ) A.1.28 B.1.26 C.1.24 D.1.22【正确答案】:B【解析】:把已知数据代入公式计算 E1E 2.【解答】:解:由题意2.02-1.77=2.5(lgE 2-lgE 1),可得 lg E1E 2=0.1 ,∴ E1E 2=100.1≈1+2.3×0.1+2.7×0.12=1.257≈1.26 .故选:B .【点评】:本题考查数学新文化,考查阅读理解能力.解题关键是在新环境中抽象出数学知识,用数学的思想解决问题.7.(单选题,5分)已知直角梯形ABCD ,A=90°,AB || CD ,AD=DC= 12 AB=1,P 是BC 边上的一点,则 AP ⃗⃗⃗⃗⃗ •PC ⃗⃗⃗⃗⃗ 的取值范围为( ) A.[-1,1] B.[0,2] C.[-2,2] D.[-2,0] 【正确答案】:D【解析】:P 在BC 上,不妨设 BP ⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ ,则 PC ⃗⃗⃗⃗⃗⃗⃗ =(1−λ)BC ⃗⃗⃗⃗⃗ (其中0≤λ≤1),把 AP ⃗⃗⃗⃗⃗ •PC ⃗⃗⃗⃗⃗ 转化为关于λ的函数求解即可.【解答】:解:因为P 在BC 上,不妨设 BP ⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ , 则 PC ⃗⃗⃗⃗⃗⃗⃗ =(1−λ)BC ⃗⃗⃗⃗⃗ (其中0≤λ≤1) 所以 AP ⃗⃗⃗⃗⃗ •PC ⃗⃗⃗⃗⃗ =( AB ⃗⃗⃗⃗⃗ +BP ⃗⃗⃗⃗⃗ )• PC⃗⃗⃗⃗⃗= AB ⃗⃗⃗⃗⃗ • PC ⃗⃗⃗⃗⃗ + BP ⃗⃗⃗⃗⃗ •PC ⃗⃗⃗⃗⃗ =(1-λ) AB ⃗⃗⃗⃗⃗ • BC ⃗⃗⃗⃗⃗ + λBC ⃗⃗⃗⃗⃗ • PC ⃗⃗⃗⃗⃗ =(1-λ) AB ⃗⃗⃗⃗⃗ • BC ⃗⃗⃗⃗⃗ + λBC ⃗⃗⃗⃗⃗ •(1-λ) BC⃗⃗⃗⃗⃗ =(1-λ)×2× √2 ×cos135°+λ(1-λ)×( √2 )² =-2(1-λ)+2λ(1-λ) =-2λ2+4λ-2=-2(λ-1)²,因为0≤λ≤1,所以-2(λ-1)²∈[-2,0], 故选:D .【点评】:本题考查平面向量的数量积运算,考查数学转化思想,是中档题.8.(单选题,5分)设函数 f (x )=xln(x +√1+x 2) ,则不等式f (2x )-f (3x-2)>0的解集为( ) A. (−25,0) B.(0,2) C. (25,2)D. (−∞,−2)∪(25,+∞) 【正确答案】:C【解析】:先判断函数f (x )为偶函数,然后利用导数判断函数f (x )的单调性,利用奇偶性以及单调性将不等式等价转化为|2x|>|3x-2|,求解即可.【解答】:解:因为函数 f (x )=xln(x +√1+x 2) , 则f (-x )= (−x )ln [(−x )+√1+(−x )2]=−xln 1√x 2+1+x= xln(x +√1+x 2)=f (x ) ,故函数f (x )为偶函数,当x >0时,f'(x )= ln(x +√1+x 2)+x •1+2x 2√x 2+1x+√x 2+1>0 ,所以f (x )在(0,+∞)上单调递增,不等式f (2x )-f (3x-2)>0,即f (2x )>f (3x-2), 等价于f (|2x|)>f (|3x-2|), 所以|2x|>|3x-2|,解得 25<x <2 .,所以不等式f (2x )-f (3x-2)>0的解集为 (25,2) .故选:C.【点评】:本题考查了函数性质的综合应用,主要考查了函数奇偶性的判断与应用,函数单调性的判断与应用,含有绝对值的不等式的解法,考查了逻辑推理能力与化简运算能力,属于中档题.9.(多选题,5分)已知圆锥曲线C的一个焦点为F(0,1),则C的方程可以为()A.y2=4xB. y=14x2C. x2m−1+y2m=1(0<m<1)D. x21−m +y2m=1(0<m<1)【正确答案】:BC【解析】:由题意可得焦点在y轴上,可得A不正确,将B中的方程写成标准形式可得B正确,由m的范围,将C中的方程写成标准形式,可得C正确,D中由m的范围,如果分母相等时可得曲线为圆,所以D不正确.【解答】:解:由焦点坐标在y轴,而A中焦点在x轴上,可得A不正确,B中标准形式为x2=4y,所以可得焦点坐标为(0,1),所以B正确;C中,因为m∈(0,1),所以m-1<0,所以双曲线的标准形式为y 2m - x21−m=1,且c2=m+1-m=1,所以可得C正确;D中,因为m∈(0,1),所以当m=1-m时,即m= 12,此时曲线为圆,所以D不正确;故选:BC.【点评】:本题考查圆锥曲线的标准方程的写法及焦点坐标的求法和命题真假的判断,属于基础题.10.(多选题,5分)已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<π2)的部分图象如图所示,则下列说法正确的是()A.直线x=2π3是f(x)图象的一条对称轴B.f(x)图象的对称中心为(−π12+kπ,0),k∈ZC.f(x)在区间[−π3,π6]上单调递增D.将f(x)的图象向左平移π12个单位长度后,可得到一个奇函数的图象【正确答案】:ABC【解析】:由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式,再利用正弦函数的图象和性质,得出结论.【解答】:解:根据函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<π2)的部分图象,可得A=2,14• 2πω= 5π12- π6,∴ω=2.结合五点法作图,可得2× π6+φ= π2,∴φ= π6,即 f(x)=2sin(2x+ π6).令x= 2π3,求得f(x)=-2,为最小值,故直线x=2π3是f(x)图象的一条对称轴,故A正确;令x=- π12+kπ,求得f(x)=0,f(x)图象的对称中心为(−π12+kπ,0),k∈Z,故B正确;在区间[−π3,π6]上,2x+ π6∈[- π2,π2'],函数f(x)单调递增,故C正确;将f(x)的图象向左平移π12个单位长度后,可得到y=2sin(2x+ π3)的图象,故D错误,故选:ABC.【点评】:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,正弦函数的图象和性质,属于中档题.11.(多选题,5分)已知a>0,b>0,则下列结论正确的是()A.若a>b,则a3+b3>a2b+ab2B.若a+b2=1,则2a−b≥12C.若log a2020>log b2020>0,则e a−b<abD.若a>1,则a+1a−1≥3【正确答案】:ACD【解析】:利用作差法判断A ,利用二次函数的性质判断B ,利用构造函数的单调性判断C ,利用基本不等式判断D .【解答】:解:A :∵a >b ,∴(a 3+b 3)-(a 2b+ab 2)=(a-b )2(a+b )>0,∴A 正确, B :∵a+b 2=1,a >0,b >0,∴0<b <1,∴a -b=-b 2-b+1∈(-1,1),∴2a-b ∈( 12 ,2),∴B 错误, C :由log a 2020>log b 2020>0,则1<a <b , 设函数f (x )= e x x ,f′(x )= e x (x−1)x 2 ,则f (x )在(1,+∞)单调递增,所以f (a )<f (b ),即 e a a < e bb ,则有e a-b <ab ,∴C 正确,D :若a >1,则a+ 1a−1 =a-1+ 1a−1 +1≥2 √1 +1=3,当且仅当a-1= 1a−1 ,即a=2时取等号,∴a+ 1a−1 ≥3,∴D 正确. 故选:ACD .【点评】:本题考查了命题真假的判定,涉及到不等式的性质、函数单调性,属于中档题. 12.(多选题,5分)如图,正六棱柱ABCDEF-A'B'C'D'E'F'的所有棱长均为1,点M 为对角线A'D 上的动点,设过M 且与A'D 垂直的平面截此正六棱柱所得截面为σ,则下列说法正确的有( )A.σ可以为△AB'F'B.σ可以为四边形C.σ可以为五边形D.σ的面积最大值为√152【正确答案】:ABD【解析】:利用线面垂直的判定定理即可判断选项A ,将平面AB'F'沿直线A'D 方向平移,分析变化过程中σ的形状,即可判断选项B ,C ,当截面σ为矩形时,其投影面积最大,截面σ的面积最大,求解即可判断选项D .【解答】:解:∵四边形A'ABB'为正方形,∴AB'⊥BA',连接BD,在正六棱柱ABCDEF-A'B'C'D'E'F'中,∠ABC=∠BCD=120°,则∠DBC=30°,∴∠ABD=90°,∴AB⊥BD,∵B'B⊥BD,AB∩B'B=B,∴BD⊥平面ABB'A',∵AB'⊂平面ABB'A',∴AB'⊥BD,∵BD∩BA'=B,∴AB'⊥平面A'BD,∴A'D⊥AB',∵B'F'⊥A'D,∴A'D⊥平面AB'F',故选项A正确;由题意可知,截面σ与平面AB'F'平行或重合,亦可视为将平面AB'F'沿直线A'D方向平移,若将平面AB'F'向点A'平移,则σ为三角形;若将平面AB'F'向点D平移,则σ的形状变化过程为:等腰三角形→六边形→矩形(四边形)→六边形→等腰三角形,故选项B正确,选项C错误;因为截面σ与底面ABCDEF所成的角相等,欲使截面σ的面积最大,只需考虑其在底面ABCDEF的投影面积最大,故当截面σ为矩形时,其投影面积最大,设B'C'和E'F'的中点分别为P,Q,则矩形BPQF面积为√152,即σ的面积最大值为√152,故选项D正确.故选:ABD.【点评】:本题主要考查了空间直线与直线、直线与平面、平面与平面的位置关系,考查空间想象能力、推理论证能力、运算求解能力,考查化归与转化思想等,属于中档题.13.(填空题,5分)已知等差数列{a n},a1+a5=a2+3,则S7=___ .【正确答案】:[1]21【解析】:根据已知条件,结合等差数列的性质,以及等差数列的等差中项,即可求解.【解答】:解:∵{a n}为等差数列,∴2a1+4d=a1+d+3,化简可得,a1+3d=3,即a4=3,∴S7=7a4=7×3=21.故答案为:21.【点评】:本题考查了等差数列的性质,以及等差数列的等差中项,需要学生熟练掌握公式,属于基础题.14.(填空题,5分)椭圆C:x2a2+y2b2=1(a>b>0)的一个焦点是圆M:(x-3)2+y2=1的圆心,且C的长轴长为10,则该椭圆的离心率等于___ .【正确答案】:[1] 35【解析】:由圆M的方程可得圆心M的坐标,由题意可得椭圆中的c的值,再由长轴长可得a的值,进而求出椭圆的离心率.【解答】:解:由圆M的方程可得圆心M(3,0),所以由题意可得c=3,由题意2a=10,所以a=5,所以椭圆的离心率e= ca = 35,故答案为:35.【点评】:本题考查椭圆的离心率的求法及由圆的方程可得圆心坐标的方法,属于基础题.15.(填空题,5分)据气象台监测,在海滨城市A附近的海面有一台风.台风中心位于A东偏南45°方向、距离城市200√3km的海面P处,并以25km/h的速度向西偏北15°方向移动,则台风中心___ 小时后距离城市A最近.如果台风侵袭范围为圆形区域,半径150km,台风移动的方向与速度不变,那么该城市___ (填“会”或“不会”)受台风侵袭.【正确答案】:[1]12; [2]不会【解析】:由题意画出图形,求解三角形可得台风中心距A最近时,台风中心B距A与P的距离,可得台风中心距离城市A最近的时间;进一步判断城市A是否受到台风影响.【解答】:解:如图,台风中心沿PB由P向B行驶,当台风中心距A最近时,AB⊥PB,由题意可知,∠APB=30°,又AP=200 √3 km,∴AB=200 √3 ×sin30°=100 √3 km,PB= 200√3 ×cos30°=300km,=12 h.而风速为25km/h,∴ 30025即台风中心12小时后距离城市A最近;∵台风侵袭范围为圆形区域的半径150km,且100√3>150,∴该城市不会受到台风侵袭.故答案为:12;不会.【点评】:本题考查解三角形在实际问题中的应用,考查运算求解能力,是基础题.16.(填空题,5分)3σ准则又称为拉依达准则,它是先假设一组检测数据只含有随机误差,对其进行计算处理得到标准偏差,按一定概率确定一个区间,认为凡超过这个区间的误差,就不属于随机误差而是粗大误差,含有该误差的数据应予以剔除.对于正态分布的随机误差,落在±3σ之外的概率只有0.27%,它在有限次测量中发生的可能性很小,故存在3σ准则.3σ准则是最常用也是最简单的粗大误差判别准则.为估计某精密仪器的测量误差,取其n次结果),为误差使εn在(-0.3,0.3)的概率不小于0.9973,至少要测量的平均值得εn~N(0,1n2___ 次.【正确答案】:[1]10【解析】:利用正态分布的意义以及正态分布曲线的对称性进行分析求解即可.【解答】:解:由题意,正态分布的随机误差落在±3σ之外的概率只有0.27%,所以落在(-3σ,3σ)的概率为0.9973,根据正态曲线的对称性,要使误差εn在(-0.3,0.3)的概率不小于0.9973,则3n≤0.3,解得n≥10.故答案为:10.【点评】:本题考查了正态分布曲线的特点以及曲线所表示的意义,解题的关键是利用正态分布曲线的对称性,属于基础题.17.(问答题,10分)在① sinA=√2sinB;② tanB=13;③ −√2cosC(acosB+ bcosA)=c这三个条件中任选一个,补充在下列问题中并解答.问题:在△ABC中,角A、B、C所对的边分别是a、b、c,b 2+c2−a2bccosB=4√23,且____.(1)求tanA;(2)若△ABC的最大边长为4,求△ABC的面积.【正确答案】:【解析】:(1)利用余弦定理消去边,得到A、B两角余弦值的关系;联立条件① 或② 或③ 、内角和公式,利用三角恒等变换解出tanA;(2)利用“大角对大边“得c=4,利用正弦定理得a,b的值,再求面积.【解答】:解:(1)由b 2+c2−a2bccosB=2bccosAbccosB=4√23有3cosA=2√2cosB(*),则A、B都是锐角.........(2分)若选① sinA=√2sinB,则sinB=√2*)有cosB=2√2由1=cos2B+sin2B=(√2)2+(2√2)2 = 12sin2A+98cos2A又sin2A+cos2A=1且A是锐角,可得sinA=√55,cosA=2√55,所以tanA=12......................(6分)若选② tanB=13,则cosB=3√1010,又由(*)有cosA=2√55,又sin2A+cos2A=1,可得sinA=√55,所以tanA=12......................(6分)若选③ −√2cosC(acosB+bcosA)=c,由正弦定理有−√2cosC(sinAcosB+sinBcosA)=−√2cosCsinC=sinC,则cosC=−√22,则C=135°,由(*)有3cosA=2√2cosB=2√2cos(180°−135°−A)=2cosA+2sinA,故tanA=12......................(6分)(2)由① ② ③ 都可得sinA=√55,cosA=2√55,sinB=√1010,cosB=3√1010,sinC=√22,................................(8分)因为sinA<sinB<sinC,所以a<b<c,所以最长边c=4,由正弦定理有asinA =bsinB=csinC,则a=4√105,b=4√55,......................(10分)所以△ABC的面积为12absinC=12×4√105×4√55×√22=85...................(12分)【点评】:本题主要考查正弦定理、余弦定理、三角恒等变换等知识,渗透数形结合、转化与化归、方程等思想,意在考查学生的逻辑推理,数学运算等核心素养.18.(问答题,12分)已知等比数列{a n}的前n项和为S n,且a n+1-S n=2,其中n∈N*.(1)求数列{a n}的通项公式;(2)在a n与a n+1之间插入n个数,使这n+2个数组成一个公差为d n的等差数列,求数列{1d n}前n+1项的和T n+1.【正确答案】:【解析】:(1)直接利用数列的递推关系式求出数列的通项公式;(2)利用(1)的结论,进一步利用乘公比错位相减法在数列求和中的应用求出数列的和.【解答】:解:(1)(解法一)设等比数列{a n}的公比为q,已知a n+1-S n=2,当n≥2时,a n-S n-1=2,两式相减可得a n+1-a n-(S n-S n-1)=0,即a n+1=2a n,则q=2,当n=1时,得a2-a1=2,即a1q-a1=2,解得a1=2,故等比数列{a n}的通项公式为a n=2n,n∈N∗.(解法二)设等比数列{a n}的公比为q,已知a n+1-S n=2,当n=1时,得a2-a1=2,即a1q-a1=2,当n=2时,得a3-s2=2,即a1q2−a1q−a1=2,两式相除可得q2-2q=0,因为q≠0,所以q=2,a1=2,故等比数列{a n}的通项公式为a n=2n,n∈N∗.(2)若在a n与a n+1之间插入n个数,使这n+2个数组成一个公差为d n的等差数列,则a n+1=a n+(n+2-1)d n,即为2n+1-2n=(n+1)d n,整理得d n=2nn+1,所以1d n=n+12n,(解法一)T n+1=1d1+1d2+1d3+⋅⋅⋅+1d n+1d n+1,即T n+1=221+322+423+⋅⋅⋅+n+12n+n+22n+1,1 2T n+1=222+323+424+⋅⋅⋅+n+12n+1+n+22n+2,两式相减,得12T n+1=1+122(1−12n)1−12−n+22n+2=32−12n+1−n+22n+2,故数列{1d n }前n+1项的和T n+1=3−n+42n+1.(解法二)T n=1d1+1d2+1d3+⋅⋅⋅+1d n−1+1d n,即T n=221+322+423+⋅⋅⋅+n2n−1+n+12n,1 2T n=222+323+424+⋅⋅⋅+n2n+n+12n+1,两式相减得:12T n=1+122(1−12n−1)1−12−n+12n+1=32−12n−n+12n+1,所以T n=3−n+32n,故数列{1d n }前n+1项的和T n+1=3−n+42n+1.【点评】:本题主要考查数列通项a n与前n项和S n的关系、等比数列的定义、等比等差数列的通项公式、错位相减法求和,考察了学生的运算、逻辑推理等核心素养.19.(问答题,12分)2020年5月14日,中国经济“双循环”首次提出——“要深化供给侧结构性改革,充分发挥中国超大规模市场优势和内需潜力,构建国内国际双循环相互促进的新发展格局”.为了解国内不同年龄段的民众服装消费的基本情况,某服装贸易公司从其网站数据库中随机抽取了1000条客户信息进行分析,这些客户一年的服装消费金额数据如表所示.(2)把一年服装消费金额满8千元称为“高消费”,否则称为“低消费”.根据所给数据,完成下面的2×2列联表,判断能否有99%的把握认为服装消费的高低与年龄有关?附表及公式:K2=(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.【正确答案】:【解析】:(1)求出ξ的可能取值,求出概率,再求解期望即可.(2)利用已知条件求解联列表,然后求解K2,即可判断结果.【解答】:解:(1)随机选一人,设该客户的消费额为ξ千元,则ξ的可能取值为:2,6,10,依题意可得,p(ξ=2)=3001000=310,p(ξ=6)=4001000=25,p(ξ=10)=3001000=310,所以该客户的消费期望是:E(ξ)=2×310+6×25+10×310=6千元.(2)2×2列联表如下:K2=1000×(300×200−100×400)2400×600×700×300≈7.937,因为7.937>6.635,所以有99%的把握认为服装消费的高低与年龄有关.【点评】:该题在国内经济“双循环”的大背景下,选取学生熟知的服装消费分析消费者的消费现状,并以此提供决策依据.本题试图考察随机变量的分布列与数学期望,2×2列联表以及独立性检验.并以此检验学生的数学抽象、数据分析、数学运算、逻辑推理等数学核心素养.20.(问答题,12分)如图,在四面体ABCD中,△BCD为等边三角形,点M,N分别为棱BD,CD的中点,且AD=AM=BM.(1)证明:AN⊥BD;(2)若二面角A-BD-C的大小为2π3,求二面角A-MN-D的余弦值.【正确答案】:【解析】:(1)不妨设O为MD的中点,且OD=a,则BD=4a,AD=BM=2a,连接AO,NO,MC,通过△AOD∽△BAD,证明AO⊥BD,MC⊥BD,推出ON || MC,证明ON⊥BD,证明BD⊥平面AON,然后证明AN⊥BD.(2)建立如图所示空间直角坐标系O-xyz,说明∠AON为二面角A-BD-C的平面角,求出平面AMN的一个法向量,平面DMN的一个法向量,利用空间向量的数量积求解二面角A-MN-D的余弦值即可.【解答】:(1)证明:如图1,不妨设O为MD的中点,且OD=a,则BD=4a,AD=BM=2a,连接AO,NO,MC,∵点M为棱BD的中点,且AM=BM,∴BA⊥AD,即∠BAD=π2,………………(1分)∵ AD BD =12=ODAD,且∠ADO=∠BDA,∴△AOD∽△BAD,∴ ∠AOD=∠BAD=π2,即AO⊥BD,………………(2分)又∵△BCD 为等边三角形,点M 为棱BD 的中点, ∴MC⊥BD ,……………………………………………(3分) ∵点O ,N 分别为MD ,CD 的中点, ∴ON || MC ,∴ON⊥BD ,…………………………………(4分) ∵AO ,ON⊂平面AON ,且AO∩ON=O , ∴BD⊥平面AON ,…………………………(5分) 又∵AN⊂平面AON ,∴AN⊥BD . …………………………………(6分) (2)解:建立如图所示空间直角坐标系O-xyz ,由(1)可知,∠AON 为二面角A-BD-C 的平面角,且 AO =NO =√3a , 若二面角A-BD-C 的大小为 2π3 ,则 ∠AON =2π3,……………………(7分)∴ A (0,−√3a2,3a 2) ,M (a ,0,0), N(0,√3a ,0) ,……………………(8分)∴ MA ⃗⃗⃗⃗⃗⃗ =(−a ,−√3a 2,3a 2) , MN ⃗⃗⃗⃗⃗⃗⃗ =(−a ,√3a ,0) , 不妨设平面AMN 的一个法向量为 n ⃗ =(x ,y ,z) ,则 {−x −√3y 2+3z 2=0,−x +√3y =0,解得 {x =√3y ,z =√3y , 令y=1,则 n ⃗ =(√3,1,√3) ,……………………(10分)显然 m ⃗⃗ =(0,0,1) 为平面DMN 的一个法向量, ∴ cos <m ⃗⃗ ,n ⃗ >=m⃗⃗⃗ ⋅n ⃗ |m ⃗⃗⃗ |⋅|n|⃗⃗⃗⃗ =√31×√7=√217,……………………(11分)二面角A-MN-D 的大小即为 <m ⃗⃗ ,n ⃗ > , ∴二面角A-MN-D 的余弦值为 √217.【点评】:本题以空间四面体为载体,主要涉及到线面垂直的位置关系和二面角的求法,重点考查学生的直观想象,逻辑推理,数学运算等核心素养,是中档题.21.(问答题,12分)已知抛物线C:y2=2px(p>0),动直线l经过C的焦点F,且与C交于A、B两点.当F为线段AB中点时,|AB|=4.(1)求抛物线方程;(2)问:在x轴上是否存在点Q(异于点F),满足|QB||QA|=|BF||AF|?若存在,求出点Q的坐标;若不存在,请说明理由.【正确答案】:【解析】:(1)由题意可得AB与x轴垂直,可得A的横坐标与焦点F的相同,纵坐标为2,代入抛物线的方程可得参数p的值,进而求出抛物线的方程;(2)设直线AB的方程与抛物线的方程联立求出两根之和及两根之积,|QB||QA|=|BF||AF|,可得k QA+k QB=0,进而求出存在这样的点Q满足条件.【解答】:解:(1)∵|AB|=4且F为线段AB中点,∴AB⊥x轴,不妨设点A在x轴上方,设A(p2,2),代入C:y2=2px(p>0),有p2=4且p>0,∴p=2;抛物线方程为y2=4x;(2)假设存在点Q(t,0)满足题意,设直线l AB:x=my+1,A(y124,y1),B(y224,y2),由{y2=4x,x=my+1,可得y2-4my-4=0,所以{y1+y2=4m,y1y2=−4.由 |QB||QA|=|BF||FA| ,得 |BF||QB|=|FA||QA| ,由抛物线定义可知∠AQF=∠BQF ,即k QA +k QB =0, k QA +k QB =y 1y 124−t +y2y 224−t =4(y 1+y 2)(y 1y 2−4t )(y 12−4t)(y 22−4t)=0 ,y 1y 2=4t=-4,t=-1,∴Q (-1,0), 综上所述,存在Q (-1,0)满足题意.【点评】:本题主要考查了抛物线的方程,抛物线的定义,探究性问题,考查了学生的运算能力,逻辑推理等核心素养.属于中档题. 22.(问答题,12分)设函数 f (x )=sin(x−π4)√2ex −x , x ∈[−π4,π4] .(1)求f (x )的极大值点;(2)若f (x 1)=f (x 2),且x 1≠x 2,求证:x 1+x 2<0.【正确答案】:【解析】:(1)根据导数符号与函数单调性之间的关系求出函数f (x )的单调性,进而可求得f (x )的极大值点;(2)不妨设x 1<x 2,则 −π4≤x 1<0<x 2≤π4 ,要证x 1+x 2<0,即证x 1<-x 2,即证f (x 2)=f (x 1)<f (-x 2),构造性函数作差证明即可.【解答】:解:(1)因为 f′(x )=cosx e x−1 , f″(x )=−√2sin(x+π4)e x,由 x ∈[−π4,π4] ,得 sin (x +π4)≥0 ,故f''(x )≤0, 所以f'(x )在 x ∈(−π4,π4) 单调递减,又f'(0)=0, 所以f (x )在 [−π4,0] 单调递增,f (x )在 (0,π4) 单调递减, 所以x=0是f (x )的极大值点,(2)证明:不妨设x 1<x 2,则 −π4≤x 1<0<x 2≤π4, 要证x 1+x 2<0,即证x 1<-x 2,又f (x 1)=f (x 2),且x 1≠x 2,f (x )在 (−π4,0) 单调递增,],即证f(x2)<f(-x2),x2∈(0,π4令函数g(x)=f(x)-f(-x),则g'(x)=f'(x)+f'(-x)=cosx(e x+e-x)-2,记h(x)=cosx(e x+e-x)-2,则h'(x)=-sinx(e x+e-x)+cosx(e x-e-x),设m(x)=h'(x),因为m′(x)=-2sinx(e x-e-x)<0,)上单调递减,且h'(0)=0,h'(x)在(0,π4)上单调递减,且h(0)=0,所以h'(x)<0,h(x)在(0,π4)上单调递减,且g(0)=0,即g'(x)<0,g'(x)在(0,π4所以g(x)<0,即f(x)-f(-x)<0,命题得证.【点评】:本题以基本初等函数的极值、单调性问题和不等式证明为载体,考查学生利用导数分析、解决问题的能力,化归转化思想和逻辑推理、数学运算等核心素养,具有较强的综合性.。
2020-2021学年高二上学期数学人教A版(2019)选择性必修第一册
二十八抛物线方程及性质的应用(25分钟·50分)一、选择题(每小题5分,共20分)1.过点P(0,1)与抛物线y2=x有且只有一个交点的直线有( )A.4条B.3条C.2条D.1条2.与直线2x-y+4=0平行的抛物线y=x2的切线方程为( )A.2x-y+3=0B.2x-y-3=0C.2x-y+1=0D.2x-y-1=03.设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是( )A. B.[-2,2]C.[-1,1]D.[-4,4]4.已知抛物线C:x2=6y的焦点为F,直线l与抛物线C交于A,B两点,若AB的中点的纵坐标为5,则|AF|+|BF|= ( )A.8B.11C.13D.16二、填空题(每小题5分,共10分)5.抛物线x=8y2的通径(通径即过焦点垂直于对称轴的弦)长为.6.设F为抛物线C:y2=8x的焦点,过F且倾斜角为30°的直线交C于A,B两点,则|AB|= .三、解答题(每小题10分,共20分)7.已知顶点在原点,焦点在y轴上的抛物线截直线x-2y-1=0所得的弦长为,求此抛物线的方程.8.已知抛物线y2=2px(1<p<3)的焦点为F,抛物线上的点M(x0,1)到准线的距离为.(1)求抛物线的标准方程.(2)设直线MF与抛物线的另一交点为N,求的值.(15分钟·30分)1.(5分)若抛物线y2=x上两点A(x1,y1),B(x2,y2)关于直线y=x+b对称,且y1y2=-1,则实数b的值为( )A.-3B.3C.2D.-22.(5分)已知P为抛物线y2=4x上一个动点,P到其准线的距离为d,Q为圆C:(x+2)2+(y-4)2=1上一个动点,d+|PQ|的最小值是 ( )A.5B.4C.2+1D.+13.(5分)已知抛物线y2=4x,过点P(4,0)的直线与抛物线相交于A(x1,y1),B(x2,y2)两点,则+的最小值是.4.(5分)(2018·全国卷Ⅲ)已知点M和抛物线C:y2=4x,过C的焦点且斜率为k的直线与C交于A,B两点.若∠AMB=90°,则k= .【加练·固】已知O为坐标原点,F为抛物线y2=4x的焦点,A是抛物线上一点,若·= -4,则点A 的坐标是.5.(10分)已知抛物线C:y2=2px(p>0)的焦点为F,P(5,a)为抛物线C上一点,且|PF|=8.(1)求抛物线C的方程.(2)过点F的直线l与抛物线C交于A,B两点,以线段AB为直径的圆过Q(0,-3),求直线l的方程.1.已知在抛物线y=x2上存在两个不同的点M,N关于直线y=kx+对称,则k的取值范围为.2.已知抛物线C:y2=2px(p>0)上一点P(x0,-4)到焦点F的距离|PF|=2x0.(1)求抛物线C的方程.(2)设直线l与抛物线C交于A,B两点(A,B异于点P),且k AP+k BP=-2,试判断直线l是否过定点?若过定点,求出该定点的坐标;若不过定点,请说明理由.二十八抛物线方程及性质的应用(25分钟·50分)一、选择题(每小题5分,共20分)1.过点P(0,1)与抛物线y2=x有且只有一个交点的直线有( )A.4条B.3条C.2条D.1条【解析】选B.当直线垂直于x轴时,满足条件的直线有1条;当直线不垂直于x轴时,满足条件的直线有2条.2.与直线2x-y+4=0平行的抛物线y=x2的切线方程为( )A.2x-y+3=0B.2x-y-3=0C.2x-y+1=0D.2x-y-1=0【解析】选D.设切线方程为2x-y+m=0,与y=x2联立得x2-2x-m=0,Δ=4+4m=0,m=-1,即切线方程为2x-y-1=0.3.设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是( )A. B.[-2,2]C.[-1,1]D.[-4,4]【解析】选C.准线x=-2,Q(-2,0),设l:y=k(x+2),由得k2x2+4(k2-2)x+4k2=0.当k=0时,得x=0,即交点为(0,0),当k≠0时,Δ≥0,-1≤k<0或0<k≤1.综上,k的取值范围是[-1,1].4.已知抛物线C:x2=6y的焦点为F,直线l与抛物线C交于A,B两点,若AB的中点的纵坐标为5,则|AF|+|BF|= ( )A.8B.11C.13D.16【解析】选C.抛物线C:x2=6y的焦点为F,直线l与抛物线C交于A,B两点,若AB的中点的纵坐标为5,设A(x1,y1),B(x2,y2),y1+y2=10,则|AF|+|BF|=y1+y2+p=10+3=13.二、填空题(每小题5分,共10分)5.抛物线x=8y2的通径(通径即过焦点垂直于对称轴的弦)长为.【解析】抛物线x=8y2,即y2=x,可得2p=,因此通径长为.答案:6.设F为抛物线C:y2=8x的焦点,过F且倾斜角为30°的直线交C于A,B两点,则|AB|= .【解析】由y2=8x,得2p=8,p=4,则F(2,0),所以过A,B的直线方程为y=(x-2),联立得x2-28x+4=0.设A(x1,y1),B(x2,y2),则x1+x2=28,所以|AB|=x1+x2+p=28+4=32.答案:32三、解答题(每小题10分,共20分)7.已知顶点在原点,焦点在y轴上的抛物线截直线x-2y-1=0所得的弦长为,求此抛物线的方程.【解析】设抛物线方程为x2=ay(a≠0).由方程组消去y,得2x2-ax+a=0.因为直线与抛物线有两个交点,所以Δ=(-a)2-4×2×a>0,即a<0或a>8.设两交点分别为A(x1,y1),B(x2,y2),则x1+x2=,x1x2=,所以|AB|===,因为|AB|=,所以=,即a2-8a-48=0,解得a=-4或a=12,所以所求抛物线的方程为x2=-4y或x2=12y.8.已知抛物线y2=2px(1<p<3)的焦点为F,抛物线上的点M(x0,1)到准线的距离为.(1)求抛物线的标准方程.(2)设直线MF与抛物线的另一交点为N,求的值.【解析】(1)由题意知消去x0得2p2-5p+2=0,因为1<p<3,解得p=2,所以x0=,所以抛物线标准方程为y2=4x.(2)因为F(1,0),M,所以k MF=-,直线MF的方程为4x+3y-4=0,联立方程得方程组消去x得y2+3y-4=0,解得y=-4或1,将y=-4代入y2=4x,解得x=4,则|MF|=+1=,|NF|=4+1=5,所以==.(15分钟·30分)1.(5分)若抛物线y2=x上两点A(x1,y1),B(x2,y2)关于直线y=x+b对称,且y1y2=-1,则实数b的值为( )A.-3B.3C.2D.-2【解析】选D.因为抛物线y2=x上两点A(x1,y1),B(x2,y2)关于直线y=x+b对称,所以=-1,所以=-1,所以y1+y2=-1.因为y1y2=-1,所以x1+x2=+=(y1+y2)2-2y1y2=3,所以两点A(x1,y1),B(x2,y2)中点坐标为.代入y=x+b,可得b=-2.2.(5分)已知P为抛物线y2=4x上一个动点,P到其准线的距离为d,Q为圆C:(x+2)2+(y-4)2=1上一个动点,d+|PQ|的最小值是 ( )A.5B.4C.2+1D.+1【解析】选B.点P是抛物线y2=4x上的点,又点P到抛物线准线的距离为d,点P到圆C:(x+2)2+(y-4)2=1上的动点Q的距离为|PQ|,由抛物线定义知:点P到准线的距离等于点P到焦点F的距离,如图所示,连接圆心C与F,交圆于Q.FC交抛物线的点即为使d+|PQ|最小时P的位置,所以d+|PQ|的最小值为:|FC|-1,因为C(-2,4),F(1,0),所以|FC|==5,|CQ|=1,所以d+|PQ|的最小值为5-1=4.3.(5分)已知抛物线y2=4x,过点P(4,0)的直线与抛物线相交于A(x1,y1),B(x2,y2)两点,则+的最小值是.【解析】设AB的方程为x=my+4,代入y2=4x得y2-4my-16=0,则y1+y2=4m,y1y2=-16,所以+=(y1+y2)2-2y1y2=16m2+32,当m=0时,+的最小值为32.答案:324.(5分)(2018·全国卷Ⅲ)已知点M和抛物线C:y2=4x,过C的焦点且斜率为k的直线与C交于A,B两点.若∠AMB=90°,则k= .【解析】由抛物线的方程y2=4x可知其焦点F的坐标为(1,0),所以直线AB的方程为y=k(x-1), 由得k2x2-2(k2+2)x+k2=0,设A(x1,y1),B(x2,y2),所以x1+x2=,x1x2=1,因为∠AMB=90°,所以·=(x1+1,y1-1)·(x2+1,y2-1)=(x1+1)(x2+1)+(y1-1)(y2-1)=(x1+1)(x2+1)+[k(x1-1)-1]·[k(x2-1)-1]=(1-k-k2)(x1+x2)+(1+k2)x1x2+k2+2k+2=(1-k-k2)+(1+k2)+k2+2k+2=0,整理可解得k=2.答案:2【加练·固】已知O为坐标原点,F为抛物线y2=4x的焦点,A是抛物线上一点,若·= -4,则点A 的坐标是.【解析】因为抛物线的焦点为F(1,0),设A,则=,=,由·=-4得y0=±2,所以点A的坐标是(1,2)或(1,-2).答案:(1,2)或(1,-2)5.(10分)已知抛物线C:y2=2px(p>0)的焦点为F,P(5,a)为抛物线C上一点,且|PF|=8.(1)求抛物线C的方程.(2)过点F的直线l与抛物线C交于A,B两点,以线段AB为直径的圆过Q(0,-3),求直线l的方程.【解析】(1)由抛物线定义,可得5+=8,解得p=6,所以抛物线C的方程为:y2=12x.(2)由(1)知,F(3,0),设A(x1,y1),B(x2,y2),直线l的方程为x=my+3,联立方程消去x,整理得y2-12my-36=0,则Δ=144m2+144>0,且y1+y2=12m,y1y2=-36.因为以线段AB为直径的圆过点Q(0,-3),所以·=0,即x1·x2+(y1+3)·(y2+3)=0,所以x1x2+3(y1+y2)+y1y2+9=0,所以(my1+3)(my2+3)+3(y1+y2)+y1y2+9=0,所以(m2+1)y1y2+(3m+3)(y1+y2)+18=0,-36m2-36+36m2+36m+18=0,所以m=.所以直线l的方程为:x=y+3,即2x-y-6=0.1.已知在抛物线y=x2上存在两个不同的点M,N关于直线y=kx+对称,则k的取值范围为.【解析】设M(x1,),N(x2,),两点关于直线y=kx+对称,显然k=0时不成立,所以=-,即x1+x2=-.设MN的中点为P(x0,y0),则x0=-,y0=k×+=4.又中点P在抛物线y=x2内,所以4>,即k2>,所以k>或k<-.答案:∪2.已知抛物线C:y2=2px(p>0)上一点P(x0,-4)到焦点F的距离|PF|=2x0.(1)求抛物线C的方程.(2)设直线l与抛物线C交于A,B两点(A,B异于点P),且k AP+k BP=-2,试判断直线l是否过定点?若过定点,求出该定点的坐标;若不过定点,请说明理由.【解析】(1)由题可得:解得x0=2,p=4,所以抛物线的方程为y2=8x.(2)过定点(-2,0).设直线l的方程为x=my+n,A(x1,y1),B(x2,y2),联立消x得:y2-8my-8n=0,Δ=32(2m2+n)>0,所以y1+y2=8m,y1y2=-8n,所以k AP===,同理k BP=,又k AP+k BP=-2,所以y1y2-16=0,所以n=-2,所以直线l的方程为:x=my-2,过定点(-2,0).。
2020-2021学年广东省深圳市龙岗区高二(上)期末数学试卷
2020-2021学年广东省深圳市龙岗区高二(上)期末数学试卷1.(单选题,5分)命题“∀x∈R ,|x|+x 2≥0”的否定是( )A.∀x∈R ,|x|+x 2<0B.∀x∈R ,|x|+x 2≤0C.∃x 0∈R ,|x 0|+x 02<0D.∃x 0∈R ,|x 0|+x 02≥02.(单选题,5分)复数z 满足(1+i )•z=-1+i ,其中i 为虚数单位,则复数z=( )A.1+iB.1-iC.iD.-i3.(单选题,5分)已知1,a 1,a 2,3成等差数列,1,b 1,b 2,b 3,4成等比数列,则 a 1+a 2b 2 的值为( )A.2B.-2C.±2D. 544.(单选题,5分)设实数x 、y 满足 {y ≤xx +y ≤4y ≥−2,则z=2x+y 的最小值为( ) A.-8B.-6C.6D.105.(单选题,5分)已知双曲线 x 2a 2−y 2b 2=1 (a >0,b >0)右顶点与抛物线y 2=8x 焦点重合且离心率e= 32 ,则该双曲线方程为( )A. x 24−y 25=1 B. x 25−y 24=1 C. y 24−x 25=1 D. y 25−x 24=16.(单选题,5分)已知函数f (x )= 12 x 3+ax+4,则“a >0”是“f (x )在R 上单调递增”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.(单选题,5分)《周髀算经》是中国最古老的天文学和数学著作,它揭示日月星辰的运行规律.其记载“阴阳之数,日月之法,十九岁为一章,四章为一部,部七十六岁,二十部为一遂,遂千百五二十岁”.现恰有30人,他们的年龄(都为正整数)之和恰好为一遂(即1520),其中年长者年龄介于90至100,其余29人的年龄依次相差一岁,则最年轻者的年龄为()A.32B.33C.34D.358.(单选题,5分)双曲线x2a2 - y2b2=1(a>0,b>0)的左焦点F(-c,0)关于直线y=- bax的对称点Q在该双曲线上,则双曲线的离心率为()A. √52B. √5C. √3D. √329.(多选题,5分)下列选项中正确的是()A.不等式a+b≥2√ab恒成立B.存在实数a,使得不等式a+1a≤2成立C.若a、b为正实数,则ba +ab≥2D.若正实数x,y满足x+2y=1,则2x +1y≥810.(多选题,5分)如图,正方体ABCD-A1B1C1D1的棱长是1,下列结论正确的有()A.直线BC与平面ABC1D1所成的角为π4B.C到平面ABC1D1距离为长√22C.两条异面直线CD1和BC1所成的角为π4D.三棱锥D1-DAB中三个侧面与底面均为直角三角形11.(多选题,5分)已知数列{a nn+2n}是首项为1,公差为d的等差数列,则下列判断正确的是()A.a1=3B.若d=1,则a n=n2+2nC.a2可能为6D.a1,a2,a3可能成等差数列12.(多选题,5分)已知P是左、右焦点分别为F1,F2的椭圆x24+y22=1上的动点,M(0,2),下列说法正确的有()A.|PF1|+|PF2|=4B.|PF1|-|PF2|的最大值为2 √2C.存在点P,使∠F1PF2=120°D.|MP|的最大值为2+ √213.(填空题,5分)函数f(x)=lnx在点(1,0)处的切线方程为___ .14.(填空题,5分)复数z=(12+4a-a2)-(8a-16)i在复平面上对应的点在第四象限,则实数a的取值范围为___ .15.(填空题,5分)在数列{a n}中,a1=2,a n+1=2a n,S n为{a n}的前n项和,若S n=126,则n=___ .16.(填空题,5分)已知双曲线x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1、F2,A是双曲线上一点,且AF2⊥x轴,若△AF1F2的内切圆半径为(√3−1)a,则其渐近线方程是___ .17.(问答题,10分)在① S3=12,② 2a2-a1=6,③ a8=16,这三个条件中任选一个,补充在下面试题的空格处中并作答.已知{a n}是公差不为0的等差数列,其前n项和为S n,若____,且a1、a2、a4成等比数列.(1)求数列{a n}的通项公式;(2)设数列{b n}是各项均为正数的等比数列,且b2=a1,b4=a4,求数列{a n+b n}的前n项和T n.18.(问答题,12分)已知抛物线y2=2px(p>0)的顶点为O,准线方程为x=−12.(1)求抛物线方程;(2)若过点D(1,1)的直线1交抛物线于A,B两点,且D为AB的中点求直线l的方程;(3)过点(1,0)且斜率为1的直线与抛物线交于P,Q两点,求△OPQ的面积.19.(问答题,12分)如图,在梯形ABCD中,AB || DC,∠ABC=60°,FC⊥平面ABCD,四边形ACFE为矩形,点M为线段EF的中点,且AD=CD=BC=1,CF=√32.(1)求证:平面BCM⊥平面AMC;(2)求平面MAB与平面FCB所成锐二面角的余弦值.20.(问答题,12分)设数列{a n}的前n项和为S n,已知a1=1,S n+1-2S n=1,n∈N*.(Ⅰ)证明:{S n+1}为等比数列,求出{a n}的通项公式;(Ⅱ)若b n= na n,求{b n}的前n项和T n,并判断是否存在正整数n使得T n•2n-1=n+50成立?若存在求出所有n值;若不存在说明理由.21.(问答题,12分)已知椭圆C:x2a2+y2b2=1(a>b>0)的一个焦点为F(√3,0),且该椭圆经过点P(√3,12).(1)求椭圆C的方程;(2)过点F作直线l与椭圆C交于不同的两点A、B,试问在x轴上是否存在定点Q使得直线QA与直线QB恰关于x轴对称?若存在,求出点Q的坐标:若不存在,说明理由.22.(问答题,12分)已知函数f(x)=xlnx-ax2(a∈R)在定义域内有两个不同的极值点.(Ⅰ)求实数a的取值范围;(Ⅱ)记两个极值点为x1,x2,且x1<x2,求证:x1•x2>1.。
2024年广东深圳外国语学校七年级上学期入学考数学试题及答案
广东省深圳市外国语学校2024--2025学年上学期七年级入学考试数学试卷一、精心选一选(本大题共10个小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.把答案写在相应表格内)1.(2分)角的两条边是()A.斜线B.线段C.射线D.直线2.(2分)图上1厘米,表示实际5米,这幅图的比例尺为()A.1:5B.1:50C.1:500D.1:50003.(2分)的分子增加12,要使分数的大小不变,分母应增加()A.12B.25C.20D.304.(2分)若一根绳子的长度等于它本身的加上米,则这根绳子全长是()A.2B.3C.4D.55.(2分)用一个放大5倍的放大镜看一个30度的角,放大后看到角的度数是()A.30度B.150度C.60度D.不能确定6.(2分)一个圆柱体的侧面展开图是一个正方形,这个圆柱的底面直径与高的比为()A.1:2πB.1:πC.1:4πD.2:π7.(2分)按规律1,8,27,(),125()A.30B.64C.80D.1008.(2分)王刚同学是某校2003年入学的,他在四班,学号是15,下面比较实用的是()A.200304B.040315C.030415D.1504039.(2分)池塘里的睡莲的面积每天长大一倍,若经过13天就可以长满整个池塘,则这些睡莲长满半个池塘需要()A.6B.7C.10D.1210.(2分)下面的图形中,属于正方体的表面展开图的是()A.B.C.D.二、认真填一填.(每题2分,共20分.把答案写在相应表格内)11.(2分)5时15分=时,4吨90千克=吨.12.(2分)在1.606、、166%中最大的数是,最小的数是.13.(2分)四千五百万零七百写作,改写成以“万”做单位的数是万.14.(2分)我国已成功申办2008年的第29届奥运会.按每4年一次,第50届奥运会将在年举行,这一年共有天.15.(2分)如图,平行四边形面积是54cm2,则阴影部分面积是cm2.16.(2分)将三盆同样的红花和四盆同样的黄花摆成一排,要求三盆红花互不相邻,共有种不同的方法?17.(2分)初中部有教师120人,老、中、青教师的人数比是1:3:4,有中年教师人.18.(2分)某种商品的利润率是20%,如果进货价降低20%,售出价保持不变.19.(2分)若甲数是乙数的,乙数是丙数的,那么.20.(2分)黑、白、红三种颜色的小球各有15个.混合放在袋子中,从中至少摸出若干个.为了保证摸出的球中有6个是同色的,至少应摸出个.三、细心做一做。
2020-2021学年广东省深圳高级中学高一(上)期中数学试卷(附答案详解)
2020-2021学年广东省深圳高级中学高一(上)期中数学试卷一、单选题(本大题共8小题,共40.0分)1. 已知集合A ={x ∈R|3x +2>0},B ={x ∈R|(x +1)(x −3)>0},则A ∩B =( )A. (−∞,−1)B. (−1,−23)C. ﹙−23,3﹚D. (3,+∞)2. 如果a <b <0,那么下列各式一定成立的是( )A. |a|<|b|B. a 2<b 2C. a 3<b 3D. 1a <1b3. 德国数学家秋利克在1837年时提出“如果对于x 的每一个值,y 总有一个完全确定的值与之对应,则y 是x 的函数,“这个定义较清楚地说明了函数的内涵,只要有一个法则,使得取值范围中的每一个值,有一个确定的y 和它对应就行了,不管这个对应的法则是公式、图象、表格还是其它形式.已知函数f(x)由如表给出,则f(f(2020))的值为( )A. 1B. 2C. 3D. 20184. 若命题“∃x 0∈R ,使得x 02+mx 0+2m −3<0”为假命题,则实数m 的取值范围是( )A. [2,6]B. [−6,−2]C. (2,6)D. (−6,−2)5. 设a =0.60.3,b =0.30.6,c =0.30.3,则a ,b ,c 的大小关系为( )A. b <a <cB. a <c <bC. b <c <aD. c <b <a6. 若实数a ,b 满足1a +4b =√ab ,则ab 的最小值为( )A. √2B. 2C. 2√2D. 47. 已知函数f(x)={2x ,x ≥2(x −1)2,x <2,若关于x 的方程f(x)=k 有三个不同的实根,则数k 的取值范围是( )A. (0,1)B. (1,2)C. (0,2)D. (1,3)8. 已知函数f(x)=2+x2+|x|,x ∈R ,则不等式f(x 2−2x)<f(2x −3)的解集为( )A. (1,2)B. (1,3)C. (0,2)D. (1,32]二、多选题(本大题共4小题,共20.0分)9.下列函数中,最小值是2的是()A. y=a2−2a+2a−1(a>1) B. y=√x2+2+1√x2+2C. y=x2+1x2D. y=x2+2x10.下列四个结论中正确的是()A. 命题“∃x0∈R,sinx0+cosx0<1”的否定是“∀x∈R,sinx+cosx≥1”B. 命题“至少有一个整数n,n2+1是4的倍数”是真命题C. “a>5且b>−5”是“a+b>0”的充要条件D. 当α<0时,幂函数y=xα在区间(0,+∞)上单调递减11.如图1是某条公共汽车线路收支差额y与乘客量x的图象(收支差额=车票收入−支出费用).由于目前本条线路亏损,公司有关人员将图1变为图2与图3,从而提出了扭亏为盈的两种建议.下面有4种说法中正确的是()A. 图2的建议是:减少支出,提高票价B. 图2的建议是:减少支出,票价不变C. 图3的建议是:减少支出,提高票价D. 图3的建议是:支出不变,提高票价12.对∀x∈R,[x]表示不超过x的最大整数.十八世纪,y=[x]被“数学王子”高斯采用,因此得名为高斯函数,人们更习惯称为“取整函数”,则下列命题中的真命题是()A. ∃x∈R,x≥[x]+1B. ∀x,y∈R,[x]+[y]≤[x+y]C. 函数y=x−[x](x∈R)的值域为[0,1)D. 若∃t∈R,使得[t3]=1,[t4]=2,[t5]=3…,[t n]=n−2同时成立,则正整数n的最大值是5三、单空题(本大题共4小题,共20.0分)13.已知函数f(x)=a x−2−4(a>0,a≠1)的图象恒过定点A,则A的坐标为.14.若函数f(x)=ax2+2ax+1在[1,2]上有最大值4,则a的值为.15.y=f(x)是定义域R上的单调递增函数,则y=f(3−x2)的单调递减区间为.16.对于函数f(x),若在定义域存在实数x,满足f(−x)=−f(x),则称f(x)为“局部奇函数”.若函数f(x)=4x−m⋅2x−3是定义在R上的“局部奇函数”,则实数m 的取值范围为.四、解答题(本大题共6小题,共70.0分)17.化简求值:(1)0.064−13−(−18)0+1634+0.2512(2)12lg25+lg2+(13)log32−log29×log32.18.设函数y=√−x2+7x−12的定义域为集合A,不等式1x−2≥1的解集为集合B.(1)求集合A∩B;(2)设p:x∈A,q:x>a,且p是q的充分不必要条件,求实数a的取值范围.19.已知函数f(x)=a x(a>0且a≠1)在区间[1,2]上的最大值与最小值的和为6.(1)求函数f(x)解析式;(2)求函数g(x)=f(2x)−8f(x)在[1,m](m>1)上的最小值.20.已知函数f(x)是R上的偶函数,当x≥0时,f(x)=x3.(1)求x<0时f(x)的解析式;(2)解关于x的不等式f(x+1)≥8f(x).21.为了研究某种药物,用小白鼠进行试验,发现药物在血液内的浓度与时间的关系因使用方式的不同而不同.若使用注射方式给药,则在注射后的3小时内,药物在白鼠血液内的浓度y1与时间t满足关系式:y1=4−at(0<a<43,a为常数),若使用口服方式给药,则药物在白鼠血液内的浓度y2与时间t满足关系式:y2={√t,0<t<13−2t,1≤t≤3,现对小白鼠同时进行注射和口服该种药物,且注射药物和口服药物的吸收与代谢互不干扰.(1)若a=1,求3小时内,该小白鼠何时血液中药物的浓度最高,并求出最大值?(2)若使小白鼠在用药后3小时内血液中的药物浓度不低于4,求正数a的取值范围.22. 定义在R 上的函数g(x)和二次函数ℎ(x)满足:g(x)+2g(−x)=e x +2e x −9,ℎ(−2)=ℎ(0)=1,ℎ(−3)=−2. (1)求g(x)和ℎ(x)的解析式;(2)若对于x 1,x 2∈[−1,1],均有ℎ(x 1)+ax 1+5≥g(x 2)+3−e 成立,求a 的取值范围;(3)设f(x)={g(x),x >0ℎ(x),x ≤0,在(2)的条件下,讨论方程f[f(x)]=a +5的解的个数.答案和解析1.【答案】D【解析】【分析】本题考查一元二次不等式的解法,交集及其运算,考查计算能力,属于基础题.先求出集合B和A,然后利用交集运算求解A∩B.【解答】解:因为B={x∈R|(x+1)(x−3)>0}={x|x<−1或x>3},},又集合A={x∈R|3x+2>0}={x|x>−23}∩{x|x<−1或x>3}={x|x>3},所以A∩B={x|x>−23故选:D.2.【答案】C【解析】【分析】本题考查了不等式的基本性质,属基础题.根据条件取特殊值a=−2,b=−1,即可排除ABD;由不等式的基本性质,即可判断C.【解答】解:由a<b<0,取a=−2,b=−1,则可排除ABD;由a<b<0,根据不等式的基本性质可知C成立.故选:C.3.【答案】C【解析】【分析】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.先求出f(2020)=2018,从而f(f(2020))=f(2018),由此能求出结果.【解答】解:由题意知:f(2020)=2018,f(f(2020))=f(2018)=3.故选:C.4.【答案】A【解析】【分析】本题考查存在量词命题的真假,二次不等式恒成立,考查转化思想.先写出原命题的否定,再根据原命题为假,其否定一定为真,利用不等式对应的是二次函数,结合二次函数的图象与性质建立不等关系,即可求出实数m的取值范围.【解答】解:命题“∃x0∈R,使得x02+mx0+2m−3<0”的否定为:“∀x∈R,都有x2+mx+2m−3≥0”,由于命题“∃x0∈R,使得x02+mx0+2m−3<0”为假命题,则其否定为真命题,∴Δ=m2−4(2m−3)≤0,解得2≤m≤6.则实数m的取值范围是[2,6].故选:A.5.【答案】C【解析】【分析】本题主要考查了幂函数和指数函数的性质,是基础题.利用幂函数y=x0.3在(0,+∞)上单调递增,比较出a,c的大小,再利用指数函数y=0.3x 在R上单调递减,比较出b,c的大小,从而得到a,b,c的大小关系.【解答】解:∵幂函数y=x0.3在(0,+∞)上单调递增,且0.6>0.3,∴0.60.3>0.30.3,即a>c,∵指数函数y=0.3x在R上单调递减,且0.6>0.3,∴0.30.6<0.30.3,即b<c,∴b<c<a,故选:C.6.【答案】D【解析】【分析】本题考查了利用基本不等式求最值,属于基础题.由已知得a,b>0,利用√ab=1a +4b≥2√1a⋅4b即可得出ab≥4,验证等号成立的条件.【解答】解:实数a,b满足1a +4b=√ab,则a,b>0.∴√ab=1a +4b≥2√1a⋅4b,可得ab≥4,当且仅当1a =4b,a=1,b=4时取等号.则ab的最小值为4.故选:D.7.【答案】A【解析】【分析】本题考查函数零点与方程根的关系,考查数形结合思想,属于中档题.题目等价于函数y=f(x)的图象与直线y=k有3个交点,作出图象,数形结合即可【解答】解:作出函数f(x)的图象如图:若关于x 的方程f(x)=k 有三个不同的实根,即函数y =f(x)的图象与直线y =k 有三个交点,根据图象可知,k ∈(0,1). 故选:A .8.【答案】A【解析】 【分析】本题考查分段函数的性质以及应用,注意将函数解析式写出分段函数的形式,属于中档题.根据题意,将函数的解析式写出分段函数的形式,据此作出函数的大致图象,据此可得原不等式等价于{x 2−2x <0x 2−2x <2x −3,解可得x 的取值范围,即可得答案.【解答】解:根据题意,函数f(x)=2+x2+|x|={−4x−2−1,x <01,x ≥0,其图象大致为:若f(x 2−2x)<f(2x −3),则有{x 2−2x <0x 2−2x <2x −3,解可得:1<x <2,即不等式的解集为(1,2);故选:A.9.【答案】AC【解析】【分析】本题考查了基本不等式的应用,关键掌握应用基本不等式的基本条件,一正二定三相等,属于基础题.根据应用基本不等式的基本条件,分别判断即可求出.【解答】解:对于A:a−1>0,y=a2−2a+2a−1=(a−1)2+1a−1=(a−1)+1a+1≥2√(a−1)⋅1a−1=2,当且仅当a−1=1a−1,即a=2时取等号,故A正确;对于B:y=√x2+2√x2+2≥2,当且仅当√x2+2=√x2+2,即x2=−1时取等号,显然不成立,故B错误;对于C:y=x2+1x2≥2√x2⋅1x2=2,当且仅当x=±1时取等号,故C正确;对于D:当x<0时,无最小值,故D错误.故选:AC.10.【答案】AD【解析】【分析】本题考查命题的真假的判断,考查充要条件,命题的否定,幂函数的性质等知识的应用,是基本知识的考查.利用命题的否定判断A;令n=2k和n=2k+1,k∈Z分析n2+1是不是4的倍数判断B;根据充要条件判断C;由幂函数的性质判断D即可.【解答】解:命题“∃x0∈R,sinx0+cosx0<1”的否定是“∀x∈R,sinx+cosx≥1”,满足命题的否定形式,所以A正确;令n=2k,k∈Z,则n2+1=4k2+1不是4的倍数,令n=2k+1,k∈Z,则n2+1=4k2+4k+2不是4的倍数,所以“至少有一个整数n,n2+1是4的倍数”是假命题,所以B不正确;“a>5且b>−5”推出“a+b>0”成立,反之不成立,如a=5,b=−4,满足a+ b>0,但是不满足a>5且b>−5,所以“a>5且b>−5”是“a+b>0”的充要条件不成立,所以C不正确.当α<0时,幂函数y=xα在区间(0,+∞)上单调递减,满足幂函数的性质,所以D正确;故选:AD.11.【答案】BD【解析】【分析】本题考查了用函数图象说明两个量之间的变化情况,主要根据实际意义进行判断,考查了读图能力和数形结合思想.根据题意知图象反应了收支差额y与乘客量x的变化情况,即直线的斜率说明票价问题;当x=0的点说明公司的支出情况,再结合图象进行说明.【解答】解:根据题意和图(2)知,两直线平行即票价不变,直线向上平移说明当乘客量为0时,收入是0但是支出的变少了,即说明了此建议是减少支出而保持票价不变;由图(3)看出,当乘客量为0时,支出不变,但是直线的倾斜角变大,即相同的乘客量时收入变大,即票价提高了,即说明了此建议是提高票价而保持支出不变,故选:BD.12.【答案】BCD【解析】【分析】本题考查函数新定义,正确理解新定义是解题基础,由新定义把问题转化不等关系是解题关键.由新定义得[x]≤x <[x]+1,可得函数f(x)=x −[x]值域判断C ;根据题意,若n ≥6,则不存在t 同时满足1≤t <√23,√46≤t <√56,n ≤5时,存在t ∈[√35,√23)满足题意,判断D . 【解答】解:∀x ∈R ,x <[x]+1,故A 错误;由“取整函数”定义可得,∀x ,y ∈R ,[x]≤x ,[y]≤y ,由不等式的性质可得[x]+[y]≤x +y ,所以[x]+[y]≤[x +y],B 正确;由定义得[x]≤x <[x]+1,所以0≤x −[x]<1,所以函数f(x)=x −[x]的值域是[0,1),C 正确;若∃t ∈R ,使得[t 3]=1,[t 4]=2,[t 5]=3,…[t n ]=n −2同时成立,则1≤t <√23,√24≤t <√34,√35≤t <√45,√46≤t <√56,…√n −2n ≤t <√n −1n ,因为√46=√23,若n ≥6,则不存在t 同时满足1≤t <√23,√46≤t <√56,只有n ≤5时,存在t ∈[√35,√23)满足题意,故选:BCD .13.【答案】(2,−3)【解析】 【分析】本题主要考查指数函数的性质,利用a 0=1的性质是解决本题的关键.比较基础. 根据指数函数的性质,令指数为0进行求解即可求出定点坐标. 【解答】解:由x −2=0得x =2,此时f(2)=a 0−4=1−4=−3, 即函数f(x)的图象过定点A(2,−3), 故答案为:(2,−3)14.【答案】38【解析】 【分析】口向上和向下两种情况判定函数值在何时取最大值,并根据最大值为4,即可求出对应的实数a的值【解答】解:当a=0时,f(x)=1,不符合题意,舍去.当a≠0时,f(x)的对称轴方程为x=−1,(1)若a<0,则函数图象开口向下,函数在[1,2]递减,当x=1时,函数取得最大值4,即f(1)=a+2a+1=4,解得a=1(舍).(2)若a>0,函数图象开口向上,函数在[1,2]递增,当x=2时,函数取得最大值4,即f(2)=4a+4a+1=4,解得a=3,8,综上可知,a=38.故答案为:3815.【答案】[0,+∞)【解析】【分析】本题考查了复合函数的单调性问题,考查二次函数的性质,属于中档题.根据复合函数单调性“同增异减”的原则,问题转化为求y=3−x2的单调递减区间,求出即可.【解答】解:根据复合函数单调性“同增异减”的原则,因为y=f(x)是定义域R上的单调递增函数,要求y=f(3−x2)的单调递减区间,即求y=3−x2的单调递减区间,而函数y=3−x2在[0,+∞)单调递减,故y=f(3−x2)的单调递减区间是[0,+∞),故答案为:[0,+∞).16.【答案】[−2,+∞)【分析】本题考查函数与方程的关系,关键是理解“局部奇函数”的定义,属于拔高题.根据“局部奇函数“的定义便知,若函数f(x)是定义在R上的“局部奇函数”,只需方程(2x+2−x)2−m(2x+2−x)−8=0有解.可设2x+2−x=t(t≥2),从而得出需方程t2−mt−8=0在t≥2时有解,从而设g(t)=t2−mt−8,由二次函数的性质分析可得答案.【解答】解:根据题意,由“局部奇函数”的定义可知:若函数f(x)=4x−m⋅2x−3是定义在R上的“局部奇函数”,则方程f(−x)=−f(x)有解;即4−x−m⋅2−x−3=−(4x−m⋅2x−3)有解;变形可得4x+4−x−m(2x+2−x)−6=0,即(2x+2−x)2−m(2x+2−x)−8=0有解即可;设2x+2−x=t(t≥2),则方程等价为t2−mt−8=0在t≥2时有解;设g(t)=t2−mt−8=0,必有g(2)=4−2m−8=−2m−4≤0,解可得:m≥−2,即m的取值范围为[−2,+∞);故答案为:[−2,+∞).17.【答案】解:(1)0.064−13−(−18)0+1634+0.2512=0.43×(−13)−1+24×34+0.52×12=2.5−1+8+0.5=10;(2)12lg25+lg2+(13)log32−log29×log32=lg5+lg2+3−log32−2(log23×log32)=1+12−2=−12.【解析】本题考查了指数幂和对数的运算的性质,属于基础题.(1)根据指数幂的运算性质计算即可;(2)根据对数的运算性质计算即可.18.【答案】解:由题意得:−x2+7x−12≥0,解得:3≤x≤4,故A=[3,4],∵1x−2≥1,∴x−3x−2≤0,解得:2<x≤3,故B=(2,3],(1)A∩B={3};(2)设p:x∈A,q:x>a,且p是q的充分不必要条件,即[3,4]⫋(a,+∞),故a<3,故a的取值范围是(−∞,3).【解析】本题考查了一元二次不等式的求解,集合的交集运算,考查了充分必要条件,考查了推理能力与计算能力,属于基础题.(1)分别求出集合A,B,求出A∩B即可;(2)根据集合的包含关系求出a的范围即可.19.【答案】解:(1)函数f(x)=a x(a>0且a≠1)在区间[1,2]上的最大值与最小值之和为6,则a+a2=6,即a2+a−6=0,解得a=2或a=−3(舍),故a=2,∴f(x)=2x;(2)g(x)=f(2x)−8f(x)=22x−8⋅2x,令2x=t,则原函数化为ℎ(t)=t2−8t,t∈[2,2m],其对称轴方程为t=4,当2m≤4,即1<m≤2时,函数最小值为(2m)2−8⋅2m=4m−8⋅2m;当2m>4,即m>2时,函数的最小值为42−8×4=−16.∴g(x)=f(2x)−8f(x)在[1,m](m>1)上的最小值为g(x)min={4m−8⋅2m,1<m≤2−16,m>2.【解析】本题考查指数函数的解析式、单调性与最值,二次函数的性质,是中档题.(1)根据指数函数的性质建立方程a+a2=6,即可求a的值,进一步得到函数解析式;(2)求出函数g(x)=f(2x)−8f(x)的解析式,换元后对m分类,利用二次函数的性质求最值.20.【答案】解:(1)根据题意,设x <0,则−x >0,则f(−x)=(−x)3=−x 3,又由f(x)为偶函数,则f(x)=f(−x)=−x 3, 故x <0时f(x)的解析式为f(x)=−x 3; (2)根据题意,f(x)为偶函数,则f(x)=f(|x|), 所以8f(x)=8f(|x|)=8×|x|3=(2|x|)3=f(2|x|), 又由当x ≥0时,f(x)=x 3,在[0,+∞)上为增函数;则f(x +1)≥8f(x)⇔f(|x +1|)≥f(|2x|)⇒|x +1|≥|2x|, 变形可得:3x 2−2x −1≤0,解可得:−13≤x ≤1,即不等式的解集为[−13,1].【解析】本题考查函数的奇偶性的性质以及应用,涉及绝对值不等式的解法,属于中档题.(1)根据题意,设x <0,则−x >0,由函数的解析式可得f(−x)=(−x)3=−x 3,结合函数的奇偶性分析可得答案;(2)根据题意,由函数的奇偶性以及解析式分析可得原不等式等价于|x +1|≥|2x|,解可得x 的取值范围,即可得答案.21.【答案】解:(1)当a =1时,药物在白鼠血液内的浓度y 与时间t 的关系为:y =y 1+y 2={−t +√t +4,0<t <17−(t +2t),1≤t ≤3; ①当0<t <1时,y =−t +√t +4=−(√t −12)2+174,所以当t =14时,y max =174;②当1≤t ≤3时,∵t +2t ≥2√2,当且仅当t =√2时取等号, 所以y max =7−2√2(当且仅当t =√2时取到),因为174>7−2√2, 故当t =14时,y max =174.(2)由题意y ={−at +√t +4(0<t <1)7−(at +2t )(1≤t ≤3) ① −at +√t +4≥4 ⇒ −at +√t ≥0 ⇒ a ≤√t ,又0<t <1,得出a ≤1;令u =1t ,则a ≤−2u 2+3u,u ∈[13,1],可得(−2u 2+3u )min =79 所以a ≤79, 综上可得0<a ≤79, 故a 的取值范围为(0,79].【解析】本题考查学生的函数思想,考查学生分段函数的基本思路,用好分类讨论思想,注意二次函数最值问题,基本不等式在求解该题中作用.恒成立问题的处理方法.用好分离变量法.(1)建立血液中药物的浓度与时间t 的函数关系是解决本题的关键,要根据得出的函数关系式采取合适的办法解决该浓度的最值问题;二次函数要注意对称轴和区间的关系、还要注意基本不等式的运用;(2)分段求解关于实数a 的范围问题,注意分离变量法的应用.22.【答案】解:(1)∵g(x)+2g(−x)=e x +2e x −9,∴g(−x)+2g(x)=e −x +2e x −9, 由以上两式联立可解得,g(x)=e x −3; ∵ℎ(−2)=ℎ(0)=1,∴二次函数的对称轴为x =−1,故设二次函数ℎ(x)=a(x +1)2+k , 则{a +k =14a +k =−2,解得{a =−1k =2,∴ℎ(x)=−(x +1)2+2=−x 2−2x +1;(2)由(1)知,g(x)=e x −3,其在[−1,1]上为增函数,故g(x)max =g(1)=e −3,∴ℎ(x 1)+ax 1+5≥e −3+3−e =0对任意x 1∈[−1,1]都成立,即x 12+(2−a)x 1−6≤0对任意x ∈[−1,1]都成立,∴{1−(2−a)−6≤01+(2−a)−6≤0,解得−3≤a ≤7, 故实数的a 的取值范围为[−3,7];(3)f(x)={e x −3,x >0−x 2−2x +1,x ≤0,作函数f(x)的图象如下,令t=f(x),a∈[−3,7],则f(t)=a+5∈[2,12],①当a=−3时,f(t)=2,由图象可知,此时方程f(t)=2有两个解,设为t1=−1,t2=ln5∈(1,2),则f(x)=−1有2个解,f(x)=ln5有3个解,故共5个解;②当−3<a<e2−8时,f(t)=a+5∈(2,e2−3),由图象可知,此时方程f(t)=a+5有一个正实数解,设为t3=ln(a+8)∈(ln5,2),则f(x)=t3=ln(a+8)有3个解,故共3个解;③当a=e2−8时,f(t)=a+5=e2−3,由图象可知,此时方程f(t)=a+5有一个解t4=2,则f(x)=t4=2有2个解,故共2个解;④当e2−8<a≤7时,f(t)=a+5∈(e2−3,12],由图象可知,此时方程f(t)=a+5有一个解t5=ln(a+8)∈(2,ln15],则f(x)=t5有1个解,故共1个解.【解析】本题考查函数解析式的求法,考查不等式的恒成立问题及函数零点与方程解的关系,旨在考查数形结合及分类讨论思想,属于中档题.(1)运用构造方程组法可求g(x),运用待定系数法可求ℎ(x);(2)原问题等价于x12+(2−a)x1−6≤0对任意x1∈[−1,1]都成立,进而求得实数a的取值范围;(3)作出函数f(x)的图象,结合图象讨论即可.。
2018-2019学年广东省深圳外国语学校高二(上)期末数学试卷(理科)
2018-2019学年广东省深圳外国语学校高二(上)期末数学试卷(理科)1.(单选题,5分)命题“∃x∈R,2x+x2≤1”的否定是()A.∀x∈R,2x+x2>1B.∀x∈R,2x+x2≥1C.∃x∈R,2x+x2>1D.∃x∈R,2x+x2≥12.(单选题,5分)复数z=1+ 1−i1+i(是虚数单位)在复平面内对应的点落在()A.第一象限B.第二象限C.第三象限D.第四象限3.(单选题,5分)已知函数f(x)的导函数f′(x)的图象如图所示,则函数f(x)在区间[a,b]上的极值点的个数为()A.2B.3C.4D.54.(单选题,5分)函数f(x)=e-x sinx的单调递增区间()(k∈Z)A. [2kπ−5π4,2kπ−π4]B. [2kπ−3π4,2kπ+π4]C. [2kπ−π4,2kπ+3π4]D. [2kπ+π4,2kπ+5π4]5.(单选题,5分)将边长为1的正方形ABCD沿对角线BD折成直二面角,若点P满足BP⃗⃗⃗⃗⃗= 12CA⃗⃗⃗⃗⃗ + BD⃗⃗⃗⃗⃗⃗ ,则| BP⃗⃗⃗⃗⃗ |2的值为()A. 32B.2C. 10−√24 D. 946.(单选题,5分)若抛物线y2=ax的焦点与椭圆x26+y22=1的左焦点重合,则a的值为()A.-8B.-16C.-4D.47.(单选题,5分)命题“∀x∈(1,+∞),都有x2-lnx>ax成立”为真命题,则实数a的取值范围是()A.(-∞,1]B.(-∞,1)C.[1,+∞)D.(1,+∞)8.(单选题,5分)已知F1、F2是椭圆C:x2a2+y2b2=1的左右焦点,P是C上一点,3| PF1⃗⃗⃗⃗⃗⃗⃗ |•|PF2⃗⃗⃗⃗⃗⃗⃗ |=4b2,则C的离心率的取值范围是()A. (0,12]B. (0,√32]C. [√32,1)D. [12,1)9.(单选题,5分)正四棱锥P-ABCD的底面积为3,体积为√22,E为侧棱PC的中点,则PA 与BE所成的角为()A. π6B. π3C. π4D. π210.(单选题,5分)已知正四面体A-BCD的棱长为2,点E是AD的中点,则下面四个命题中正确的是()A.∀F∈BC,EF⊥ADB.∃F∈BC,EF⊥ACC.∀F∈BC,EF≥ √3D.∃F∈BC,EF || AC11.(单选题,5分)已知函数f(x)=x3+ax2+x在区间(-1,1)内有且仅有一个极值并且为极小值,则实数a的取值范围是()A.(2,+∞)B.[2,+∞)C.(-∞,-2)∪(2,+∞)D.(-∞,-2]∪[2,+∞)12.(单选题,5分)把正整数按一定的规则排成了如图所示的三角形数表,设a ij(i,j∈N*)是位于这个三角形数表中从上往下数第i行,从左往右数第j个数,若a ij=2015,则i与j的和为()A.104B.102C.80D.8113.(填空题,5分)计算定积分∫1(√1−x2−1)dx =___ .14.(填空题,5分)曲线y=e-2x+1在点(0,2)处的切线方程是___ .15.(填空题,5分)已知双曲线 C:x2a2 - y2b2=1(a>0,b>0)的离心率为√3,A B 为左、右顶点,点 P 为双曲线 C 在第一象限的任意一点,点 O 为坐标原点,若直线PA,PB,PO 的斜率分别为k1,k2,k3,记m=k1k2k3,则 m 的取值范围为___ .16.(填空题,5分)已知函数f(x)=x3+ax2+bx(a,b∈R)的图象如图所示,它与直线y=0在原点处相切,此切线与函数图象所围区域(图中阴影部分)的面积为274,则a的值为___ .17.(问答题,10分)设命题p:实数x满足x2-4ax+3a2<0,其中a>0;命题q:实数x满足x−3x−2≤0.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.18.(问答题,12分)已知a是实数,函数f(x)=x2(x-a).(Ⅰ)若f′(1)=3,求a的值及曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求f(x)在区间[0,2]上的最大值.19.(问答题,12分)如图1所示,直角梯形ABCD中,∠BCD=90°,AD || BC,AD=6,DC=BC=3.过B作BE⊥AD于E,P是线段DE上的一个动点.将△ABE沿BE向上折起,使平面AEB⊥平面BCDE.连结PA,PC,AC(如图2).(Ⅰ)取线段AC的中点Q,问:是否存在点P,使得PQ || 平面AEB?若存在,求出PD的长;不存在,说明理由;(Ⅱ)当EP= 23ED时,求平面AEB和平面APC所成的锐二面角的余弦值.20.(问答题,12分)已知函数f(x)=x-ln(x+a)(a是常数).(1)求函数f(x)的单调区间;(2)当y=f(x)在x=1处取得极值时,若关于x的方程f(x)+2x=x2+b在[ 12,2]上恰有两个不相等的实数根,求实数b的取值范围;(3)求证:当n≥2,n∈N*时,(1+ 122)(1+ 132)…(1+ 1n2)<e.21.(问答题,12分)已知A,B是椭圆C:x2a2 + y2b2=1(a>b>0)的左,右顶点,B(2,0),过椭圆C的右焦点F的直线交于其于点M,N,交直线x=4于点P,且直线PA,PF,PB的斜率成等差数列.(Ⅰ)求椭圆C的方程;(Ⅱ)若记△AMB,△ANB的面积分别为S1,S2求S1S2的取值范围.22.(问答题,12分)已知函数f(x)=x+a2x,g(x)=x+lnx,其中a>0.(1)若x=1是函数h(x)=f(x)+g(x)的极值点,求实数a的值;(2)若对任意的x1,x2∈[1,e](e为自然对数的底数)都有f(x1)≥g(x2)成立,求实数a 的取值范围.。
广东省广东外语外贸大学附属外国语学校2023-2024学年高二下学期期中考试数学试卷(含简单答案)
广东外语外贸大学附属外国语学校2023-2024学年高二下学期期中考试数学试题考试范围:第五六七章;考试时间:120分钟;满分:150分注意事项:1.选择题作答请用2B 铅笔写在答题卡上,修改时用橡皮擦干净.笔答题作答必须用黑色墨迹签字笔或钢笔填写在相对应的答题框内,不得超出答题框.2.保持答题卡卡面清洁,不要折叠,不要弄破.3.在每页考生信息框中填写姓名及考生号.第I 卷(选择题)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1. 已知函数f (x )的图象如图所示,下列数值的排序正确的是()A. B. C. D. 2. 2023年杭州亚运会吉祥物组合为“江南忆”,出自白居易的“江南忆,最忆是杭州”,名为“琮琮”、“莲莲”、“宸宸”的三个吉祥物,是一组承载深厚文化底蕴的机器人为了宣传杭州亚运会,某校决定派4名志愿者将这三个吉祥物安装在学校科技广场,每名志愿者只安装一个吉祥物,且每个吉祥物至少有一名志愿者安装,若志愿者甲只能安装吉祥物“宸宸”,志愿者乙不能安装吉祥物“宸宸”则不同的安装方案种数为( )A. 6B. 12C. 10D. 143. 函数的最小值为( )A. B. C.D. (2)(3)(3)(2)f f f f <'<-'(3)(3)(2)(2)f f f f <-'<'(3)(2)(3)(2)f f f f <'<-'(3)(2)(2)(3)f f f f ''-<<()[]11e ,3,4x y x x +=+∈-22e -55e 54e 1e --4. 已知某地市场上供应的灯泡中,甲厂产品占,乙厂产品占,甲厂产品的合格率是,乙厂产品的合格率是,则从该地市场上买到一个合格灯泡的概率是( )A. B. C. D.5. 从1,2,3,4,5中任取2个不同的数,记事件为“取到的2个数之积为偶数”,事件为“取到的2个数之和为偶数”,则( )A.B.C.D.6. 某三甲医院组织安排4名男主任医师和3名女主任医师到3家不同的区级医院支援,要求每家区级医院至少安排2人且必须有1名女主任医师,则不同的安排方法有( )A. 216种B. 108种C. 72种D. 36种7. 设函数与是定义在同一区间上的两个函数,若对任意的,都有,则称与在上是“密切函数”,区间称为“密切区间”,设函数与在上是“密切函数”,则实数m 的取值范围是( )A. B. C. D. 8. 若对一切正实数恒成立,则实数的取值范围是( )A B. C. D. 二、多选题:本题共3小题,共18分.在每小题给出的选项中,有多项符合题目要求.9. 下列说法中不正确的有( )A. B. 函数的切线与函数可以有两个公共点C. 若,则是函数的极值点D. 函数的减区间为10. 下列各式中,不等于是( )A. B. C.D. 11. 下列说法正确的是( ).的60%40%90%80%0.540.320.840.86A B ()|P B A =18171625()f x ()g x [],a b [],x a b ∈()()1f x g x -≤()f x ()g x [],a b [],a b ()ln f x x =()1mx g x x -=1,e e ⎡⎤⎢⎥⎣⎦[]2,2e -1,2e ⎡⎤⎢⎥⎣⎦1,1e e e ⎡⎤-+⎢⎥⎣⎦[]1,1e e -+2ln 2x t e x t +≥-x t 1(,e-∞1(,]2-∞1+2⎡⎫-∞⎪⎢⎣⎭,(,]e -∞ππsin cos44'⎛⎫= ⎪⎝⎭()y f x =()00f x '=0x ()f x ()ln2f x x x =-(),1-∞!n 11n n n A --⋅m mn nA C ⋅11n n A ++m n mn n mA A --⋅A. 已知随机变量X ,Y ,满足,且X 服从正态分布,则B 已知随机变量X 服从二项分布,则C. 已知随机变量X 服从正态分布,且,则D. 已知随机变量X 服从两点分布,且,令,则第II 卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分.12. 在的展开式中,的系数为15,则________.13. 丝瓜的主要用途是作为蔬菜被人们食用,除此之外,丝瓜成熟后里面的网状纤维(丝瓜络)可代替海绵用于洗刷灶具及家具,其肉、籽、花、藤、叶等也具有一定的药用作用.已知一种白玉香丝瓜成熟后的长度近似服从正态分布,某蔬菜种植基地新摘下一批成熟白玉香丝瓜,整理后发现长度在23cm 以上(含23 cm )的白玉香丝瓜有320根,则此次摘下的白玉香丝瓜约有______根.(结果保留整数,若,则,,)14. 对于函数,若其定义域内恰好存在两个不同非零实数,使得成立,则称函数为M 函数.若函数为M 函数,则实数a 的取值范围是____________.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15. 已知函数.(1)求曲线在点处的切线的方程;(2)求函数的极值.16. 某外语学校的一个社团中有7名同学,其中2人只会法语;2人只会英语,3人既会法语又会英语,现选派3人到法国的学校交流访问.(1)在选派的3人中恰有2人会法语的概率;.的24X Y +=(3,1)N 1()2E Y =15,3B ⎛⎫ ⎪⎝⎭80(3)243P X ==(4,1)N (5)0.1587P X ≥=(35)0.6826P X <<=(0)0.6,(1)0.4P X P X ====32Y X =-(2)0.6P Y =-=5(1)(1)x ax ++2x =a ()20,9N ()2,X N μσ:()0.6827P X μσμσ-<<+≈()220.9545P X μσμσ-<<+≈()330.9973P X μσμσ-<<+≈()y f x =12,x x ()()121211,f x f x x x ==()f x ()xef x a=()21xx x f x e +-=()y f x =()()0,0f ()y f x =(2)在选派的3人中既会法语又会英语的人数X 的分布列和数学期望.17. (1)求的展开式中的常数项;(2)若,求:①②.18. 某校有一个露天的篮球场和一个室内乒乓球馆为学生提供锻炼场所,甲、乙两位学生每天上下午都各花半小时进行体育锻炼,近50天天气不下雨的情况下,选择体育锻炼情况统计如下:上下午体育锻炼项目的情况(上午,下午)(篮球,篮球)(篮球,乒乓球)(乒乓球,篮球)(乒乓球,乒乓球)甲20天15天5天10天乙10天10天5天25天假设甲、乙选择上下午锻炼的项目相互独立,用频率估计概率.(1)分别估计一天中甲上午和下午都选择篮球的概率,以及甲上午选择篮球的条件下,下午仍旧选择篮球的概率;(2)记为甲、乙在一天中选择体育锻炼项目的个数,求的分布列和数学期望;(3)假设A 表示事件“室外温度低于10度”,表示事件“某学生去打乒乓球”,,一般来说在室外温度低于10度的情况下学生去打乒乓球的概率会比室外温度不低于10度的情况下去打乒乓球的概率要大,证明:.19. 设函数,其中为常数,且.(1)讨论函数的单调性;(2)设函数,是函数的两个极值点,证明:.6212x x ⎛⎫- ⎪⎝⎭()62212012121x x a a x a x a x ++=++++ 02412a a a a ++++ 123122312a a a a ++++ X X ()E X B ()0P A >(|)(|)P A B P A B >1()ln 1f x a x x =++a 0a >()f x ()()ln F x f x x a =+12,x x ()f x ()()1214ln 2F x F x +<-广东外语外贸大学附属外国语学校2023-2024学年高二下学期期中考试数学试题简要答案第I卷(选择题)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.【1题答案】【答案】B【2题答案】【答案】C【3题答案】【答案】D【4题答案】【答案】D【5题答案】【答案】B【6题答案】【答案】A【7题答案】【答案】A【8题答案】【答案】C二、多选题:本题共3小题,共18分.在每小题给出的选项中,有多项符合题目要求.【9题答案】【答案】ACD【10题答案】【答案】BC【11题答案】【答案】ACD第II 卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】或1【13题答案】【答案】2017【14题答案】【答案】四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.【15题答案】【答案】(1);(2)极小值为,极大值为.【16题答案】【答案】(1)(2)分布列略;【17题答案】【答案】(1)(2)①;②【18题答案】【答案】(1)0.4;(2)分布列略,182(3)证明略【19题答案】【答案】(1)答案略;(2)证明略..32-1,0e⎛⎫- ⎪⎝⎭210x y --=e -25e47()97E X =240365437447。