机械手设计汇总
械手结构的设计和分析
机械手腕部的结构分析
机器手手腕的自由度数,应根据作业需要来设计。机器手手腕自由度数目愈多,各关节的运动角度愈大,则机器手腕部的灵活性愈高,机器手对对作业的适应能力也愈强。
机器手手腕要与末端执行器相联,因此,要有标准的联接法兰,结构上要便于装卸末端执行器。
机器手的手腕机构要有足够的强度和刚度,以保证力与运动的传递。
为了减轻机器手运动部分的惯量,提高机器手的控制精度,一般腰部回转运动部分的壳体是由比重较小的铝合金材料制成,而不运动的基座是用铸铁或铸钢材料制成。
腰部结构要便于安装、调整。
机械手腰座结构的设计要求分析
机械手腰座结构的具体采用方案
腰座回转的驱动形式要么是电机通过减速机构来实现,要么是通过摆动液压缸或液压马达来实现,目前的趋势是用前者。因为电动方式控制的精度能够很高,而且结构紧凑,不用设计另外的液压系统及其辅助元件。考虑到腰座是机器手的第一个回转关节,对机械手的最终精度影响大,故采用电机驱动来实现腰部的回转运动。一般电机都不能直接驱动,考虑到转速以及扭矩的具体要求,采用大传动比的齿轮传动系统进行减速和扭矩的放大。
直角坐标机器手结构
圆柱坐标机器手的空间运动是用一个回转运动及两个直线运动来实现的,这种机器手构造比较简单,精度还可以,常用于搬运作业。其工作空间是一个圆柱状的空间。
圆柱坐标机器手结构
球坐标机器手的空间运动是由两个回转运动和一个直线运动来实现的,这种机器手结构简单、成本较低,但精度不很高。主要应用于搬运作业。其工作空间是一个类球形的空间。
03
机械手腰座结构的分析
腰部的回转运动要有相应的驱动装置,它包括驱动器。驱动装置一般都带有速度与位置传感器,以及制动器。
腰座要有足够大的安装基面,以保证机器手在工作时整体安装的稳定性。
机械手plc控制设计总结
机械手PLC控制设计项目年度总结一、项目概述项目名称:机械手PLC控制设计项目负责人:____________________项目团队成员:____________________项目周期:____年____月至____年____月二、设计目标和要求1. 设计目标:开发一套高效稳定的PLC控制系统,用于机械手的精准操作和控制。
2. 技术要求:确保系统能够实现____________________(例如:高速响应、精准定位等)。
三、项目实施过程1. 需求分析:与利益相关者进行沟通,明确了机械手的操作需求和技术规格。
2. 系统设计:设计了基于PLC的控制逻辑,包括输入/输出配置、逻辑编程等。
3. 系统集成:将PLC控制系统与机械手硬件进行集成测试。
4. 现场调试:在实际工作环境中对系统进行调试,确保其性能稳定可靠。
5. 用户培训和文档编制:为操作人员提供培训,并编制了详细的使用手册。
四、项目成果1. 成功实现了机械手的自动控制,提高了操作效率和准确性。
2. 在实际应用中,系统表现稳定,故障率低。
3. 用户反馈良好,操作简便,维护方便。
五、遇到的挑战及应对1. 挑战:____________________。
应对措施:____________________。
2. 挑战:____________________。
应对措施:____________________。
六、经验与教训1. 项目管理经验:如何高效地协调团队资源,确保项目按时完成。
2. 技术经验:在PLC编程和系统集成方面的实践经验。
3. 遇到的问题和解决方法:____________________。
七、未来工作建议1. 对现有系统进行进一步优化,以提高____________________。
2. 探索新的技术应用,如____________________,以增强系统功能。
3. 加强与用户的沟通,收集反馈,持续改进产品。
八、总结本项目在机械手PLC控制设计方面取得了重要成果,不仅提高了操作效率,也为未来相关项目提供了宝贵的经验。
机械手设计
一、总体方案设计1.1设计任务基本要求:设计一个多自由度机械手(至少要有三个自由度)将最大重量为40Kg的工件,由车间的一条流水线搬到别一条线上;二条流水线的距离为:1000mm;工作节拍为:70s;工件:最大直径为160mm 的棒料;1.2总体方案确定1.2.1自由度自由度是指机器人所具有的独立坐标轴运动的数目,但是一般不包括手部(末端操作器)的开合自由度。
自由度表示了机器人灵活的尺度,在三维空间中描述一个物体的位置和姿态需要六个自由度。
机械手的自由度越多,越接近人手的动作机能,其通用性就越好,但是结构也越复杂,自由度的增加也意味着机械手整体重量的增加。
轻型化与灵活性和抓取能力是一对矛盾,,此外还要考虑到由此带来的整体结构刚性的降低,在灵活性和轻量化之间必须做出选择。
工业机器人基于对定位精度和重复定位精度以及结构刚性的考虑,往往体积庞大,负荷能力与其自重相比往往非常小。
一般通用机械手有5~6个自由度即可满足使用要求(其中臂部有3个自由度,腕部和行走装置有2~3个自由度),专用机械手有1~2个自由度即可满足使用要求。
在控制器的作用下,它执行将工件从一条流水线拿到另一条流水线这一动作。
在满足前提条件上尽量使结构简单,所以我们这次选择5自由度机械手。
1.2.2机械手基本形式的选择常见的工业机械手根据手臂的动作形态,按坐标形式大致可以分为以下4种: (1)直角坐标型机械手:特点:操作机的手臂具有三个移动关节,其关节轴线按直角坐标配置。
优缺点:结构刚度较好,控制系统的设计最为简单,但其占空间较大,且运动轨迹单一,使用过程中效率较低。
结构图:(2)圆柱坐标型机械手:特点:操作机的手臂至少有一个移动关节和一个回转关节,其关节轴线按圆柱坐标系配置。
优缺点:结构刚度较好,运动所需功率较小,控制难度较小,但运动轨迹简单,使用过程中效率不高。
结构图:( 3)球坐标(极坐标)型机械手:特点:操作机的手臂具有两个回转关节和一个移动关节,其轴线按极坐标系配置。
机械手设计要求
简易搬运机械手的设计
一、设计总体方案
1、机械手外形如上图所示。
2、本设计关于机械手具有4个自由度既:手部回转;手臂伸缩;手臂回转;手臂升降4个主要运动。
3、本设计机械手主要由4个大部件和5个液压缸组成:
(1)手部,采用一个双作用式液压缸,通过机构运动实现手抓的张合。
(2)腕部,采用一个回转液压缸实现手部回转0180。
(3)臂部,采用直线缸来实现手臂平动。
(4)机身,采用一个直线缸和一个回转缸来实现手臂升降和回转。
4、设计技术参数
抓重:30Kg (夹持式手部)
自由度数:4个自由度
座标型式:圆柱座标
最大工作半径:1600mm
手臂最大中心高:900mm
手臂运动参数
伸缩行程:800mm
伸缩速度:50mm/s
升降行程:330mm
升降速度:50mm/s
回转范围:00180 回转速度:s 40 手腕运动参数
回转范围: 00180 回转速度:s 40
手指夹紧油缸的运动速度 50mm/s
5、驱动方案选择液压驱动。
二、控制方案
1、控制流程:先左转 →下降 → 手腕逆时针转动90° →手臂伸长 →检查有无物品,若有物品,手爪抓紧 →手臂收缩 →手腕顺时针转动90° →上升 →右转 →手臂伸长至最
长→下降→手腕逆时针转动90°→手爪松开→手臂收缩最短→手腕顺时针转动90°→上升→延时T。
至此,一个工作循环完毕。
2、控制方案选择单片机控制。
机械手总体方案设计
机械手总体方案设计(总4页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第2章机械手的总体方案设计2.1 机械手基本形式的选择常见的工业机械手根据手臂的动作形态,按坐标形式大致可以分为以下4种: (1)直角坐标型机械手;(2)圆柱坐标型机械手; ( 3)球坐标(极坐标)型机械手;(4)多关节型机机械手。
其中圆柱坐标型机械手结构简单紧凑,定位精度较高,占型。
图2.1 是机械手搬运物品示意图。
地面积小,因此本设计采用圆柱坐标[]11图中机械手的任务是将传送带B上的物品搬运到传送带A。
图2.1 机械手基本形式示意2.2、方案设计(1)、黑箱结构如图2.1所示图2.2 设计方案(2)、机械手动作分析及运动分析如图2.3所示,工件首先被机械手夹持,然后再随之一起运动。
其周期运动可以表现为(按动作顺序):大臂下降—夹紧工件—手腕上翻—大臂上升—大臂回转—手臂延伸—放松工件—手臂收回—手腕下翻—大臂回转—大臂下降。
图2.3 机械手运动图(3)、功能原理如图2.3所示图2.4 机械手功能原理图(4)、方案设计①传动系统如果机械手采用机械传动,则自由度少,难于实现特别复杂的运动。
而对于组合机床自动上下料的机械手,其工件的运动需要多个自由度才能完成,故不宜采用机械传动方案。
如果机械手采取气压传动,由于气控信号比光、电信号慢得多, 且由于空气的可压缩性,工作时容易产生抖动和爬行,造成执行机构运动速度和定位精度不可靠,效率也较低。
电气传动必须有减速装置和将电机回转运动变成直线运动的装置,结构庞大,速度不易控制。
气液联合控制和电液联合控制则使系统和结构上很复杂。
综上所述,我们选择液压传动方式。
②控制系统本机械手是专用自动机械手,选择智能控制方式中的PLC程序控制方式,这样可以使机械手的结构更加紧凑和完美。
③执行系统分析本机械手的执行系统是手部机构。
手部机构形式多样,但综合其总体构型,可分为:气吸式、电磁式和钳爪式3种。
机械手毕业设计 (2)
机械手毕业设计1. 引言机械手,也称为机器手臂,是一种用于辅助、自动执行一系列工业任务的机械装置。
随着科技的不断发展,机械手在生产制造领域得到了广泛应用。
本文旨在介绍一个关于机械手的毕业设计项目,包括设计背景、目标、可行性分析,以及具体的设计方案和实施计划。
2. 设计背景目前,各个行业的生产制造过程中都需要使用机械手来完成繁重、危险或精密的工作。
为了提高工作效率和质量,设计与开发一个高效、精确的机械手成为迫切需求。
3. 设计目标本毕业设计旨在设计一个具有以下特点的机械手:•稳定性:机械手必须能够在不同工作环境下保持稳定,并且能够承受合适的负荷。
•灵活性:机械手需要具备足够的灵活性和适应性,能够完成不同种类的任务。
•精度:机械手在执行任务时需要具备较高的定位精度,以确保工作的准确性。
•自动化:机械手需要具备一定的自主决策和自动化能力,能够根据任务需要进行自主操作。
4. 可行性分析在设计过程中,我们进行了可行性分析来评估设计方案的可行性。
可行性分析包括以下几个方面:•技术可行性:通过相关的技术研究和实验,我们确定设计方案具备可行性。
•经济可行性:我们评估了设计和制造机械手所需要的成本,并进行了成本效益分析,确认项目的经济可行性。
•时间可行性:我们制定了详细的项目计划,并评估了完成设计和制造所需要的时间,确认项目的时间可行性。
基于可行性分析的结果,我们确定了毕业设计的可行性,并继续进行了后续工作。
5. 设计方案基于设计目标和可行性分析的结果,我们提出了下面的设计方案:•选择适当的机械结构:根据任务的特点和要求,我们选择了合适的机械结构,包括关节式和平行式机械手臂。
•配置合适的传感器:为了提高机械手的反馈控制能力,我们配置了合适的传感器,例如位置传感器、力传感器和视觉传感器等。
•开发控制系统:我们设计和开发了机械手的控制系统,包括硬件和软件部分。
控制系统能够实现机械手的运动控制、力控制和视觉控制等功能。
机械手设计涉及知识点
机械手设计涉及知识点机械手设计是现代工程领域中一个重要的课题,它涉及到多个学科和领域的知识。
在机械手设计中,我们需要考虑到机械结构设计、控制系统设计、传感器技术以及人机交互等多个方面的知识点。
下面将对机械手设计涉及的主要知识点进行阐述。
一、机械结构设计机械结构设计是机械手设计中的核心内容之一。
它涉及到机械手的外形尺寸、关节布局、运动链设计等方面。
在机械手结构设计中,我们需要考虑到机械手的稳定性、刚度和精度等因素。
此外,还需注意机械手的负载能力和工作空间大小的设计,以满足实际工作场景的需求。
二、控制系统设计控制系统设计是机械手设计中的另一个重要方面。
它包括机械手的运动控制和力/力矩传感器的反馈控制。
在机械手的运动控制中,我们需要考虑到机械手的位置控制、速度控制和力控制。
在力/力矩传感器的反馈控制中,我们需要采集机械手工作时的实时力/力矩数据,并对其进行处理和控制。
三、传感器技术传感器技术在机械手设计中起到了至关重要的作用。
通过传感器,可以采集到机械手内外部环境信息,如位置、速度、力、温度等。
在机械手设计中,我们需要选择合适的传感器,并设计相应的信号采集电路和处理算法。
传感器的选型和布置对机械手的性能和可靠性有着至关重要的影响。
四、人机交互在机械手设计中,人机交互也是一个不可忽视的方面。
机械手的操作界面应该简洁、直观,并提供友好的交互方式。
同时,还需要考虑到人机之间的信息交流和反馈。
可以通过触摸屏、语音交互和手势识别等方式来实现人机交互。
五、其他相关知识点除了以上主要的知识点外,机械手设计还涉及到力学、电子、控制理论等多个学科的知识。
力学知识用于分析机械手的静力学和动力学特性,电子知识用于设计控制电路和信号处理算法,控制理论知识用于设计机械手的运动控制算法。
综上所述,机械手设计涉及到机械结构设计、控制系统设计、传感器技术以及人机交互等多个知识点。
在机械手设计过程中,我们需要综合运用这些知识点,以满足机械手在实际工作中的要求。
机械手的总体方案设计
第1章机械手的总体方案设计1.1机械手的传动方案设计按机械手手臂的不同形式及组合情况其活动范围也是不同的,基本上可以分为四种运动形式:直角坐标式、圆柱坐标式、球坐标式、关节坐标式。
根据工作要求可选择直角坐标式,具体设计成悬挂式。
其优点为:(1)多臂悬挂式的机械手对刚性联结的自动生产线非常实用,可以在各工位间传递工件,各臂均悬挂在生产线上方的横梁上,臂间距离和工位距离相等,手臂可同步地沿横梁平移一个工位间距,把工件从一个工位移动到下一个工位,可以减少随行夹具和其他装置,提高自动化程度。
(2)悬挂式机械手占地面积小,能有效的利用空间。
(3)悬挂式机械手结构简单,成本底。
该凸轮轴加工自动线上的送料机械手采用液压驱动,PLC控制,其中采取液压驱动有以下优点:(1)压力高,可实现较大的驱动力,且机构可以做的轻小,紧凑。
(2)可实现无级变速,定位精度高,系统固有频率小,压力、容量调节容易。
(3)重量小,惯性小,可以做到快速的变速和换向,控制容易,动作平稳,滞后小。
1.2主要技术参数的确定机械手的主要技术参数包括抓重、自由度、定位精度、重复定位精度、工作范围、最大速度及承载能力。
主要参数如下:抓重:3kg自由度:3个工作范围:前后移动:1800mm上下升降:350mm横移:50mm驱动方式:液压驱动控制方式:PLC控制缓冲方式:节流回路1.3 机械手的配置和工作原理图一上下料机械手简图该加工自动线上有五只送料机械手,它们的结构完全相同,均能作前后移动、上下升降和横移运动。
(上下料机械手简图如图一)前后移动、升降和横移运动是各自的伸缩油缸带动的,自动线的各工序按照加工顺序(从左向右)依次排列的。
如图二所示:图二凸轮轴自动线机械手配置图该送料机械手的动作顺序为:原位——下降(抓料)——向左横移——上升——向后横移——下降——向右横移(放料)——上升——向后横移——原位第2章上下料机械手的机械结构设计2.1上下料机械手的总体结构上下料机械手由几个主要组成部分:(1)前后行走机构(带滚轮的三角形支架);(2)横移油缸及其滚轮机构;(3)升降油缸;(4)手部支撑板;(5)机械手手部(两个夹持式手部)。
毕业设计机械手的总结与思考
毕业设计机械手的总结与思考
一、毕业设计机械手概述
在本次毕业设计中,我主要负责设计和实现一个机械手。
这个机械手的主要功能是模拟人类的手部运动,完成抓取、搬运和释放物体的任务。
为了实现这一目标,我需要对机械手的结构、驱动方式、控制系统等进行深入研究和设计。
二、设计过程与实现
在设计中,我首先对市场上现有的机械手进行了调研和分析,确定了机械手的整体结构和驱动方式。
然后,我使用三维建模软件对机械手进行了详细的设计,并进行了有限元分析,确保了机械手的结构强度和稳定性。
在实现阶段,我采用了Arduino作为主控制器,通过编写程序控制机械手的运动。
同时,我还为机械手设计了一套传感器系统,用于检测物体的位置和姿态,从而实现了自动抓取和搬运的功能。
三、遇到的问题与解决方案
在设计和实现过程中,我遇到了许多问题。
其中最大的问题是如何实现机械手的精准控制。
为了解决这个问题,我采用了PID控制算法,通过不断调整控制参数,实现了对机械手运动的精准控制。
此外,我还遇到了材料选择、结构设计、驱动系统选择等问题,通过查阅资料、实验和不断尝试,最终都得到了有效的解决。
四、总结与思考
通过这次毕业设计,我深入了解了机械手的设计和实现过程,掌握了许多实用的技能和方法。
同时,我也深刻认识到,设计过程中需要注重细节,不断尝试和优化,才能达到最好的效果。
此外,我也意识到自己在许多方面还有待提高,例如理论知识、实践经验等。
在未来的学习和工作中,我将继续努力,不断提高自己的能力。
机械手的结构设计
机械手的结构设计引言机械手是一种通过伺服驱动和控制系统来模拟人手的机械装置。
它在工业生产和其他领域中有着广泛的应用,能够完成繁重、危险或需要高精度操作的任务。
机械手的结构设计是其性能和功能的关键因素之一。
本文将介绍机械手的结构设计要点,并详细讨论机械手的关节和末端执行器设计。
机械手的结构设计要点机械手的结构设计要点包括机械结构的刚性和稳定性、关节的运动范围和精度、末端执行器的定位精度和负载能力等。
以下是具体的设计要点:1.机械结构的刚性和稳定性机械手的机械结构必须具有足够的刚性和稳定性,以确保在运动过程中不会出现过大的变形和振动。
为了提高机械结构的刚性,可以采用优质材料和适当的结构设计,例如增加加强筋和加强支撑结构。
2.关节的运动范围和精度关节是机械手中用于连接各个部件的关键部分,其运动范围和精度对机械手的性能影响很大。
关节的运动范围应能够覆盖所需操作的工作空间,并且需要具备足够的精度,以保证准确的定位和操作。
为了提高关节的精度,可以采用高精度的传感器和控制系统。
3.末端执行器的定位精度和负载能力末端执行器是机械手的工具部分,用于实际操作和执行任务。
末端执行器的定位精度和负载能力直接影响机械手的功能和应用范围。
为了提高末端执行器的定位精度,可以采用精密的传动机构和驱动系统,并进行合理的校准和校验。
为了提高末端执行器的负载能力,可以采用足够强度和刚度的材料,适当加强结构设计。
4.安全和可靠性机械手在工业生产中常常承担重要和危险的任务,因此安全和可靠性是非常重要的设计要点。
机械手的结构设计应考虑到不同应用场景的安全需求,例如设置安全保护装置、优化布局和减少潜在风险。
关节的设计关节是机械手中的关键组成部分,直接影响机械手的运动范围和精度。
以下是关节设计的要点:1.关节类型和结构关节可以分为旋转关节和平移关节两种类型。
旋转关节允许机械手在某个轴向上进行旋转运动,而平移关节允许机械手在某个轴向上进行线性运动。
毕业设计机械手
毕业设计机械手毕业设计机械手一、引言在现代工业生产中,机械手的应用越来越广泛。
机械手作为一种能够代替人工完成重复性、危险性工作的设备,已经成为许多企业提高生产效率和降低成本的重要工具。
本文将探讨毕业设计中机械手的设计与应用。
二、机械手的基本原理机械手是一种能够模拟人手运动的机械装置。
它由机械结构、传动系统、控制系统等组成。
机械结构通常包括臂、手、指等部分,通过传动系统实现各个部分的运动,而控制系统则负责控制机械手的运动。
三、机械手的设计要点1. 结构设计:机械手的结构设计需要考虑其使用环境和工作要求。
例如,如果机械手需要在狭小空间内操作,那么需要设计紧凑的结构;如果机械手需要进行重载操作,那么需要设计强度较高的结构。
2. 传动系统设计:机械手的传动系统通常采用电机、减速器、传动链等组成。
在设计传动系统时,需要考虑传动效率、精度和可靠性等因素。
同时,还需要根据机械手的运动范围和工作负载选择合适的电机和减速器。
3. 控制系统设计:机械手的控制系统通常采用微处理器或PLC进行控制。
在设计控制系统时,需要考虑机械手的运动规划、路径规划和力控制等功能。
同时,还需要根据机械手的工作环境选择合适的传感器,如力传感器、位置传感器等。
四、机械手的应用领域1. 工业生产:机械手在工业生产中的应用非常广泛。
它可以代替人工完成重复性、危险性工作,提高生产效率和质量。
例如,在汽车制造中,机械手可以完成焊接、喷涂、装配等工作。
2. 医疗领域:机械手在医疗领域的应用也日益增多。
它可以用于手术辅助、康复训练等方面。
例如,机械手可以辅助医生进行微创手术,提高手术的精确度和安全性。
3. 空间探索:机械手在空间探索中也发挥着重要作用。
例如,机械手可以用于卫星的维修和组装,以及行星探测器的采样和分析等任务。
五、机械手设计的挑战与展望随着科技的不断进步,机械手设计面临着许多挑战。
例如,如何提高机械手的精度和稳定性,如何实现机械手的智能化和自主化等。
机械手课程设计总结
机械手课程设计总结一、引言机械手是一种能够完成各种复杂操作的机器人,其应用领域非常广泛,如制造业、医疗、军事等。
因此,在机械手的课程设计中,需要注重培养学生的实践能力和创新意识。
本文将从课程设计的目标、内容、方法和效果四个方面进行总结。
二、目标1. 培养学生对机械手原理和运动控制的深入理解;2. 让学生掌握机械手的基本结构和工作原理;3. 培养学生分析和解决实际问题的能力;4. 培养学生团队协作精神和创新意识。
三、内容1. 机械手结构与原理:介绍机械手各部分的功能及相互关系,让学生了解其基本结构和工作原理。
2. 机械手运动控制:介绍机械手运动控制系统及其相关算法,让学生了解如何实现精准控制。
3. 实践项目:包括单臂机械手设计与仿真、双臂协作抓取等项目,让学生将所学知识应用到实际项目中,提高实践能力和解决问题的能力。
四、方法1. 理论教学:通过讲授机械手结构、原理、运动控制等相关知识,让学生建立起对机械手的基本认识。
2. 实验教学:通过实验操作,让学生亲身体验机械手的运动过程和控制方法,提高实践能力。
3. 项目设计:通过团队合作完成机械手相关项目设计,培养学生团队协作精神和创新意识。
五、效果1. 学生对机械手原理和运动控制有了更深入的理解;2. 学生熟练掌握了机械手的基本结构和工作原理;3. 学生具备了分析和解决实际问题的能力;4. 学生团队协作精神和创新意识得到了培养。
六、总结机械手课程设计是一项非常重要的任务,它不仅可以培养学生对机械手原理和运动控制的深入理解,还可以提高其实践能力和创新意识。
在教学过程中,应注重理论教学、实验教学和项目设计等多种教学方法的结合,以达到最佳的教学效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章绪论1.1课题研究的目的及意义随着工业自动化程度的提高,工业现场的很多易燃、易爆等高危及重体力劳动场合必将由机器人所代替。
这一方面可以减轻工人的劳动强度,另一方面可以大大提高劳动生产率。
例如,目前在我国的许多中小型汽车生产以及轻工业生产中,往往冲压成型这一工序还需要人工上下料,既费时费力,又影响效率。
为此,我们把上下料机械手作为我们研究的课题。
工业机械手是工业物流自动化中上网重要装置之一,是当今世界新技术革命的一个重要标志。
工业机械手是典型的机电一体化产品。
工业机械手的产生和推广是社会生产和发展的需要,也是现代生产和科技发展的新技术产品。
工业机械手已经在工业生产、资源开发、社会服务、排险救灾以及军事技术等方面发挥着愈来愈大的应用。
工业机械手的应用和推广已经并将获得极大的效益。
例如在机械制造工业、汽车工业等生产中采用电焊、弧焊、喷漆等机械手,可以大大提高劳动生产率,保证产品质量,改善劳动条件。
又如在微电子、医药等生产部门,采用机械手操作,可以消除人对产品的污染、确保产品质量。
机械手可以在有毒、噪音、高温、易燃、易爆等危险有害的环境中代替人长期稳定的工作,从根本上解决了操作者的安全保障问题。
因而在这方面应用和推广机器人技术是十分迫切和必要的。
近代工业机械手的原型可以从本世纪40代算起。
当时适应核技术的发展需要开发了处理放射性材料的主从机械手。
50年代初美国提出了“通用重复操作机器人”的方案,59年研制出第一工业机械手原型。
由于历史条件和技术水平关系,在60年代机械手发展较慢。
进入70年代后,焊接、喷漆机械手相继在工业中应用和推广。
随着计算机技术、控制技术、人工智能的发展、机械手技术得到迅速发展,出现了更为先进的可配视觉、触觉的机器人所应用的机械手。
如美国Unimation公司PUMA系列工业机器人相关的机械手,即使由直流伺服驱动、关节式结构、多cpu微机控制、采用专用语言编程的技术先进的机械手。
到了80、90年代机器人及相关的机械手开始在工业上普及应用。
据统计1980年全世界约有两万台机器人在工业上应用,而到今年增长更快。
今年已近开发出具有视觉、触觉及力觉感受的高性能机器人以及各种智能装配机械手,并投入工业应用。
1.2国内外机械手研究概况我国的工业机械手发展主要是逐步扩大其应用范围。
在应用专业机械手的同时,相应的发展通用机械手,研制出示教式机械手工业机械手是在第二次世界大战期间发展起来的,始于40年代的美国橡树岭国家实验室的搬运核原料的遥控机械操作手研究,它是一种主从型的控制系统。
1958年美国联合控制公司研制出第一台机械手。
它的结构是:机体上安装一回转长臂,端部装有电磁铁的工件抓放机构,控制系统是示教型的;1962年,美国联合控制公司在上述方案的基础上,又试制成一台数控示教再现型机械手。
运动系统仿造坦克炮塔,臂可以回转、俯仰、伸缩,用液压驱动;控制系统用磁鼓做储存装置。
不少球面坐标式机械手就是在这个基础上发展起来的;普曼公司专门生产工业机械手联邦德国机器制造业是从1970年开始应用机械手,主要用于起重运输、焊接和设备的上下料等作业:联邦德国K公司还生产一种点焊机械手,采用关节式结构和程序控制;日本是工业机器人发展最快,应用国家最多的国家,自1969年从美国引进两种典型机械手后,开始大力从事机械手的研究,目前以成为世界上工业机械手应用最多的国家之一。
前苏联自六十年代开始发展应用机械手,主要用于机械化、自动化程序较低、繁重单调、有害于健康的辅助性工作。
我国工业机械手的研究与开发始于20世纪70年代。
1972年我国第一台机械手开发于上海,随之全国各省都开始研制和应用机械手。
从第七个五年计划(1986-1990)开始,我国政府将工业机器人的发展列入其中,并且为此项目投入大量的资金,研究开发并且制造了一系列的工业机器人,有由北京机械自动化研究所设计制造的喷涂机器人,广州机床研究所和北京机床研究所合作设计制造的点焊机器人,大连机床研究所设计制造的氩弧焊机器人,沈阳工业大学设计制造的装卸载机器人等等。
这些机器人的控制器,都是由中国科学院沈阳自动化研究所和北京科技大学机器人研究所开发的,同时一系列的机器人关键部件也被开发出来,如机器人专用轴承,减震齿轮,直流伺服电机,编码器,DC——PWM等等。
计算机控制机械手和组合式机械手等。
可以将机械手各运动构件,如伸缩、摆动、升降、横移、俯仰等机构,设计成典型的通用机构,以便根据不同的作业要求,选用不用的典型机构,组装成各种用途的机械手,即便于设计制造,又便于跟换工件,扩大了应用范围。
机械手的种类,按驱动方式分为液压式.气动式.电动式.机械式机械手;按适用范围可以分为专用机械手和通用机械手两种;按运动轨迹可以分为点位控制和连续轨迹控制机械手等。
1.3课题研究的内容本课题将要完成的主要任务如下:(1)选取合适的曲轴,并确定其特征参数;(2)选取机械手的坐标型式和自由度;(3)设计出机械手的各执行机构,包括:手部、手腕、手臂等部件的设计;(4)液压传动系统的设计。
本课题将设计出机械手的液压传动系统,包括液动元器件的选取,液动回路的设计;1.4机械手的组成工业机械手是工业机器人的执行系统,由执行机构、驱动机构和控制机构三部分组成,是抓取工件、进行操作及各种运动的机械部件。
(一)执行机构包括手部、手腕、手臂和立柱等部件,有的还增设行走机构。
1、手部手部装在操作机手腕的前端,它是操作机直接执行工作的装置。
由于与物件接触的形式不同,可分为夹持式和吸附式手部。
夹持式手部由手指(或手爪)和传力机构所构成。
手指是与物件直接接触的构件,常用的手指运动形式有回转型和平移型。
回转型手指结构简单,制造容易,故应用较广泛。
平移型应用较少,其原因是结构比较复杂,但平移型手指夹持圆形零件时,工件直径变化不影响其轴心的位置,因此适宜夹持直径变化范围大的工件。
手指结构取决于被抓取物件的表面形状、被抓部位(是外廓或是内孔)和物件的重量及尺寸。
常用的指形有平面的、V形面的和曲面的:手指有外夹式和内撑式;指数有双指式、多指式和双手双指式等。
而传力机构则通过手指产生夹紧力来完成夹放物件的任务。
传力机构型式较多,常用的有:滑槽杠杆式、连杆杠杆式、斜面杠杆式、齿轮齿条式、丝杠螺母弹簧式和重力式等。
吸附式手部主要由吸盘等构成,它是靠吸附力(如吸盘内形成负压或产生电磁力)吸附物件,相应的吸附式手部有负压吸盘和电磁盘两类。
对于轻小片状零件、光滑薄板材料等,通常用负压吸盘吸料。
造成负压的方式有气流负压式和真空泵式。
对于导磁性的环类和带孔的盘类零件,以及有网孔状的板料等,通常用电磁吸盘吸料。
电磁吸盘的吸力由直流电磁铁和交流电磁铁产生。
用负压吸盘和电磁吸盘吸料,其吸盘的形状、数量、吸附力大小,根据被吸附的物件形状、尺寸和重量大小而定。
此外,根据特殊需要,手部还有勺式(如浇铸机械手的浇包部分)、托式(如冷齿轮机床上下料机械手的手部)等型式.2、手腕是连接手部和手臂的部件,并可用来调整被抓取物件的方位。
3、手臂手臂是支承被抓物件、手部、手腕的重要部件。
手臂的作用是带动手指去抓取物件,并按预定要求将其搬运到指定的位置.工业机械手的手臂通常由驱动手臂运动的部件(如油缸、气缸、齿轮齿条机构、连杆机构、螺旋机构和凸轮机构等)与驱动源(如液压、气压或电机等)相配合,以实现手臂的各种运动。
手臂在进行伸缩或升降运动时,为了防止绕其轴线的转动,都需要有导向装置,以保证手指按正确方向运动。
此外,导向装置还能承担手臂所受的弯曲力矩和扭转力矩以及手臂回转运动时在启动、制动瞬间产生的惯性力矩,使运动部件受力状态简单。
导向装置结构形式,常用的有:单圆柱、双圆柱、四圆柱和V形槽、燕尾槽等导向型式。
4、立柱立柱是支承手臂的部件,立柱也可以是手臂的一部分,手臂的回转运动和升降(或俯仰)运动均与立柱有密切的联系。
机械手的立往通常为固定不动的,但因工作需要,有时也可作横向移动,即称为可移式立柱。
5、机座机座是机械手的基础部分,机械手执行机构的各部件和驱动系统均安装于机座上,故起支撑和连接的作用。
(二)驱动系统驱动系统是驱动工业机械手执行机构运动的动力装置,通常由动力源、控制调节装置和辅助装置组成。
常用的驱动系统有液压传动、气压传动、电力传动和机械传动。
第二章机械手的总体结构设计机械手总体设计图(proe效果图)2.1机械手的座标型式与自由度2.1.1座标型式分析按机械手手臂的不同运动形式及其组合情况,其座标型式可分为直角座标式、圆柱座标式、球座标式和关节式。
由于本机械手在上下料时手臂具有升降、收缩及回转运动,因此,采用圆柱座标型式。
2.1.2自由度分析相应的机械手具有三个自由度,即手臂的伸长、缩短和整体旋转。
手臂伸缩手臂的伸缩整体旋转图2-1机械手的手指、手腕、手臂的运动示意图2.1.2 机械手的手部结构方案设计为了使机械手的通用性更强,把机械手的手部结构设计成可更换结构,当工件是棒料时,使用夹持式手部;当工件是板料时,使用气流负压式吸盘。
2.13 机械手的手腕结构方案设计考虑到机械手的通用性,同时由于被抓取工件是水平放置,因此手腕必须设有回转运动才可满足工作的要求。
因此,手腕设计成回转结构,实现手腕回转运动的机构为回转气缸。
2.14 机械手的手臂结构方案设计按照抓取工件的要求,本机械手的手臂有三个自由度,即手臂的伸缩、左右回转和升降(或俯仰)运动。
手臂的回转和升降运动是通过立柱来实现的,立柱的横向移动即为手臂的横移。
手臂的各种运动由气缸来实现。
2.5 机械手的驱动方案设计驱动机构是工业机械手的重要组成部分, 工业机械手的性能价格比在很大程度上取决于驱动方案及其装置。
根据动力源的不同, 工业机械手的驱动机构大致可分为液压、气动、电动和机械驱动等四类。
采用液压机构驱动机械手,结构简单、尺寸紧凑、重量轻、控制方便,驱动力大等优点。
因此,机械手的驱动方案选择液压驱动。
2.6 机械手的控制方案设计考虑到机械手的通用性,同时使用点位控制,因此我们采用可编程序控制器 (PLC)对机械手进行控制。
当机械手的动作流程改变时,只需改变PLC程序即可实现,非常方便快捷。
2.7 机械手的主要参数1、主参数机械手的最大抓重是其规格的主参数,目前机械手最大抓重以10公斤左右的为数最多。
故该机械手主参数定为10公斤,高速动作时抓重减半。
使用吸盘式手部时可吸附5公斤的重物。
2、基本参数运动速度是机械手主要的基本参数。
操作节拍对机械手速度提出了要求,设计速度过低限制了它的使用范围。
而影响机械手动作快慢的主要因素是手臂伸缩的速度。
该机械手最大移动速度设计为1.2m/s,最大回转速度设计为1200°/s,平均移动速度为lm/s,平均回转速度为900°/s。